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Abstract: We study the influence of disorder and randomly distributed impurities
on the properties of correlated antiferromagnets. To this end the Hubbard model with
(i) random potentials, (ii) random hopping elements, and (jii) randomly distributed
values of interaction is treated using quantum Monte Carlo and dynamical mean-field
theory. In cases (i) and (iii) weak disorder can lead to an enhancement of antiferro-
magnetic (AF) order: in case (i) by a disorder-induced delocalization, in case (iii) by
binding of free carriers at the impurities. For strong disorder or large impurity concen-
tration antiferromagnetism is eventually destroyed. Random hopping leaves the local
moment stable but AF order is suppressed by local singlet formation. Random poten-
tials induce impurity states within the charge gap until it eventually closes. Impurities
with weak interaction values shift the Hubbard gap to a density off half-filling. In both
cases an antiferromagnetic phase without charge gap is observed.

1 Introduction

Antiferromagnetic spin correlations are present in many strongly correlated electron sys-
tems, notably the prototype Mott insulators NiO and V,03, the parent compounds of
HTSC cuprates, and heavy fermion systems such as YbP, U;Zn;7, and many others. Many
of those systems are intrinsically disordered, in particular upon additional homo- or het-
erovalent doping. The influence of impurity doping on antiferromagnetic (AF) order and
electronic properties has recently been studied in a variety of systems. Doping with static
scatterers like nonmagnetic impurities usually weakens antiferromagnetic order, a promi-
nent example being Zn doping in YBa;Cu30Og [1]. In spin chains (CuGeQs) [2] and ladder
compounds (SrCuz03) [3] doping with magnetic and nonmagnetic impurities can induce
AF order while the pure systems show spin gap behavior. Very effective in destroying
AF order are mobile carriers, e.g. hole doping in La;_,Sr,CuQOq {4]. The stability of AF
order strongly depends on the positions of the dopant level. While in the nickel oxides
La;_,Sr,NiOg4 [5] and Ni;_Li, O [6] holes are supposed to be localized, in the cuprate
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La;_SryCuQy4 the hole level lies in the valence band leading to mobile scatterers. As a
result, AF order is stable in La;_,Sr,NiO4 up to x = 0.5, but is destroyed in the cuprate
already at approx. 5% Sr doping.

In the present paper, we will study the influence of disorder on AF order and the Mott
band gap in correlated antiferromagnets. We employ the Hubbard model in the presence
of different types of disorder. While the (disordered) Hubbard model is certainly far too
simple to describe real materials it already contains very rich physics including local mo-
ment formation, magnetic ordering, Mott-Hubbard transition, and Anderson localization.
On the other hand, the interplay of disorder and interactions in electronic systems belongs
to the most difficult problems in physics, and reliable results within simple models are
still very desirable. The problem has been investigated in the past by a variety of meth-
ods, including field theoretical approaches [7], renormalization group treatments [8,9],
unrestricted Hartree-Fock [10,11], dynamical mean-field theory (DMFT) [12-14], quan-
tum Monte Carlo (QMC) [15-17], and several more (see [18] for a review). Here, we
give an overview of results obtained by QMC and DMFT concentrating on the AF phase
diagram and the Mott gap.

‘We consider the following Hubbard Hamiltonian

. 1., 1
H= Z(Ei “.U)ﬁic+ Z tij(é;‘roéjc +h.C.) +2Ui(ﬁiT - 5)(”& - E) (1.1)
ic (ij)e i

In principle all parameters €;,t;;,U; can be randomly distributed. The precise definition of
the different disorder types studied in this paper will be given in the following sections.
The average ¢ = (1;;) sets our energy scale. We will restrict the hopping #;; to nearest-
neighbors hence not allowing for frustration. Longer range, random hopping amplitudes
will be important in the modeling of amorphous materials such as doped semiconductors
[18,19] and are not considered in the present work.

2 Methods

2.1 Determinant Quantum Monte Carlo (d=2)

We use a finite temperature determinant quantum Monte Carlo method [20] to obtain
approximation-free results for finite lattices. The algorithm is based on a mapping of
the interacting electron problem onto a d + 1 dimensional quasi-classical problem using
auxiliary Ising-type spins. It provides for calculating thermal averages of observables, A,
at a temperature 7 = 1/B,
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The phase space sampling over the auxiliary field configurations is performed using
Monte Carlo techniques. The weight of a configuration is proportional to a product of
two determinants, one for each electron spin species. In the case of half-filling without
random potentials, i.e. € — u = 0, on a bipartite lattice the determinants always have the
same sign, hence their product is always positive semi-definite, which can be shown by

particle-hole transformation of one spin species [c;; — (~ 1)‘7071]. In the general situation

that the product can become negative the algorithm can still be employed in principle.
However, the signal to noise ratio decreases exponentially with systems size, inverse tem-
perature, and interaction, putting severe restrictions to the applicability of the method.
This so-called “minus-sign problem” is a general obstacle for all exact fermionic Monte
Carlo methods as well as for spin-systems in the presence of frustration. Even without the
minus-sign problem the computational effort is large because the computer time grows
cubically with system size N, restricting N to the order of 100 on present supercomputers.
In the case of disorder all observables have to be averaged over the (frozen) disorder
configurations. Because of the computational effort we restrict ourselves to two dimen-
sional lattices with linear size up to L, = 10 which often allows a reliable finite size
scaling. Since we are interested in AF ordering we calculate the magnetic correlation
functions C(J) and their Fourier transforms, the magnetic structure factors S(g),

Simem=p), S@ =y,cDe. (23)

1

In particular the AF structure factor S(m,m) is used to obtain the ground state sublattice
magnetization M by a finite size scaling Ansatz according to spinwave theory [21]:

2
S M ok, @.4)

2.2 Dynamical Mean-Field Theory (Limit of Infinite Dimensions)

The dynamical mean-field theory [22,23] is a local approximation in which the self energy
becomes site diagonal, or momentum independent:

zij(0) =8;%(w), Z(ko)=Z5(w). (2.5)

The one-particle Green function G(k,®) can hence be obtained from the non-inter-
action Green function G°(k,w) by G(k,0) = G°(k,0 — £(®)), and the local Green func-
tion is given by Gj(w) = 1/NX; G(k,®) This does not imply a simple shift of energies,
like in traditional mean-field theories (e.g. Hartree-Fock), because X remains dynamical,
i.e. frequency dependent, preserving local quantum fluctuations. The local approximation
becomes exact in the limit of infinite spatial dimensionality and maps the interacting lat-
tice model onto a self-consistent single impurity model like, for example, the Wolff model
[24]:

~ R R I, . 1 o .
Hwolet = ZEEII; + U(noT - E)(n()i - z) + E(n()T + n(u). (2.6)
o
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Here, the one-particle energies & have to be defined such that the non-interacting local
Green function of the Wolff model fulfills G}, = (Gi — Z)~!. In the self-consistent
solution the local (interacting) Green function of the Wolff model has to be equal to G;. In
the presence of disorder one has to average over all possible values of U or €, respectively.
This type of local averaging is equivalent to the “coherent potential approximation”, well
known from investigations of disordered alloys.

While the self-consistency is rather easily reached by iteration the solution of the single
impurity problem is the hard part. There exists no analytic solution and different numerical
and approximative techniques have been employed [23]. Here we again use auxiliary field
QMC [25], an algorithm quite similar to the one for finite dimensional lattices sketched
above. The computer time grows like L} where the number of Matsubara frequencies,
L =< B. Fortunately, QMC for the single band model is free from the minus-sign problem.

In the following, the non-interacting DOS is chosen as a semi-elliptic model DOS with
bandwidth=8, equal to the d = 2 tight binding bandwidth for r = 1. A typical quantity
under consideration is the staggered magnetic susceptibility ¥ar whose divergence sig-
nals the transition to an AF ordered state. One can also extend the DMFT equations to the
ordered phase to obtain spin and sublattice dependent electron densities and the sublat-
tice magnetization M. The one-particle density of states (DOS) is obtained by analytical
continuation of the imaginary time Green function using the Maximum Entropy method.
For details of the algorithm, the implementation of disorder averages and determination
of expectation values see [23,14].

3 Random Potentials

3.1 Local Moment Quenching

Random potentials are the most frequently studied type of disorder in the context of An-
derson localization. Contrary to the Hubbard interaction which at half-filling favors single
occupation on each site, different local potentials lead to different occupations and hence
to a quenching of local magnetic moments on sites with large absolute value of the local
potential. This is seen in Fig. 1a where the average local moment squared, m?, is plotted
versus disorder strength for a flat distribution of € values with width A. It is also shown that
the spin-spin-correlations go in parallel with m?. For a large width of random potentials
this type of disorder is apparently very effective in the destruction of magnetic order. To
study the behavior of the charge gap, the electronic compressibility, k¥ = on/dy, is calcu-
lated as a function of A (Fig. 1b). While disorder decreases k in the non-interacting case,
K is enhanced by disorder at finite U. The reason is the introduction of states within the
AF charge gap as will be discussed below. As mentioned above, random potentials break
the particle-hole symmetry leading to a minus-sign problem even at half filling. This is
the reason why only small lattices (4 x 4 in Fig. 1) can be studied for this type of disorder.
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problem is unknown we approximate it by the Green function of the AF Hartree-Fock
solution:

[eal = (1/N) (- oD) /(@ ~ E}). (38)
k

Here 2D = ml/ is the Hubbard energy gap in the pure AF, £ = /D2 + :-;i is the AF band

energy, and D is obtained from the self-consistency condition (1/N)3;(2E;)~! = U~
With this local host Green function we can calculate the location of impurity-induced
states from the poles in the T-matrix, Ty(w) = /(] — &[g3(®))i:). We consider a con-
stant distribution of random potentials between +A/2. There are disorder-induced states
within the gap if | ng},’[i > 2/A. The energy D up to which states are formed within the
gap is given by {gg(—D)}i = 2/A. The remaining charge gap 2D is plotted versus A in
Fig. 4. The decrease is almost linear and 2D vanishes close to A = U. Also shown is the
result from a numerical unrestricted Hartree-Fock (UHF) analysis. In this approach, the
HF Hamiltonian on a finite lattice is numerically (self-consistently) diagonalized, so that
disorder is treated exactly [10,11,26]. The energy gap is obtained from the energy differ-
erice between the lowest energy state of the upper Hubbard band and the highest energy
state of the lower Hubbard band. Averages are taking over 100 disorder realizations on
a 10 x 10 lattice. The saturation of the gap at A/U ~ 1 is due to the finite system size.
The agreement with the T-matrix approach is excellent for the present interaction value
U = 10¢. Deviations from the T-matrix approach are more pronounced at lower interaction
strengths where the fermion states are more extended.

The closing of the charge gap is also observed within the DMFT approach. Fig. 5a
shows the density of states for several disorder values. Note that all spectra shown are
within the AF ordered phase, i.e. AF order is much more stable than the charge gap which
closes about A = U/. A linear reduction of the charge gap is also observed in the case of
a binary disorder distribution (Fig. 5b). For this stronger type of disorder both the charge
gap and the AF order vanishnear A = U.

3.4 Spin Vacancies
As discussed in the previous section the one-particle excitation gap decreases with A and

vanishes near A = U. Upon further increase of A the two Hubbard bands will overlap
whereby electrons from the highest levels of the lower band (with g > U /2) will be
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of Ty can be explained by a strong enhancement of the local moment density on the
remaining sites at small U (Fig. 6b). The reason for this enhancement is that with reduced
average number of nearest neighbors the kinetic energy decreases, leading to a stronger
localization. At large U the local moments are already almost saturated at x = 0 and
just cannot be further enhanced. The situation in the case of vacancies is therefore quite
different from the effect of weak site disorder where disorder-enhanced delocalization is
observed.

4 Random Hopping

The case of spin vacancies discussed in the previous section can of course be regarded
as a specific type of randomness in the hopping elements. The more generic case of a
continuous (flat) distribution of ;; € [1 ~ A/2,1 + A/2] was studied in d = 2 using QMC.
Since the hopping is still restricted between nearest neighbors on a square lattice particle-
hole symmetry is preserved and no minus-sign problem occurs at » = 1. Random ¢;
hardly affect the density of local moments (Fig. 7a), the slight decrease may be due to
ij

relations are strongly suppressed if A is of the order of ¢ (see Fig. 7a). The finite size
scaling according to (2.4) yields the AF order parameter (staggered moment) M versus
A (Fig. 7b). M vanishes at a critical disorder strength of A; ~ 1.4. We propose [16] that
the phase boundary is determined basically by the variance of the AF exchange coupling
y= (<J3) — (J,-j)z)/(J?j). AF order persists for v < v, = 0.4. This criterion is consistent
with the phase boundary of the bond-disordered AF Heisenberg model with a bimodal
distribution of J;; [31]. The reason for the vanishing of AF order for this type of disorder
is supposedly the formation of local singlets. Such singlets will form first on the strongest
bonds and will leave some spins which are weakly coupled to their neighbors unpaired.
Those “free” spins are expected to give a Curie-like contribution to the susceptibility as
observed in doped semiconductors [18,19]. The numerical results indeed show a strong
enhancement of the uniform susceptibility in the disordered case [16].

the enhanced kinetic energy which is = | /(t2). Nevertheless, longer-range spin-spin cor-
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Figure 7 (a) Local moment and spin-spin correlations in ¢ = 2 for random hopping (same
quantities as in Fig. 1). (b) Staggered magnetization M vs. A as obtained by finite size scaling
[16].
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Figure 9 (a) Staggered magnetization in d = 2 as a function of impurity concentration f.
(b) f — n phase diagram at temperature T = 1/8 within DMFT. For small f the AF phase is
stabilized against doping. [17]

5.2 Antiferromagnetic Order

Figure 9a shows the staggered moment M extrapolated to the thermodynamic limitin d =
2 atn =1 as a function of impurity concentration f. For small f AF order is robust leading
to the charge gap at n = 1. AF order vanishes at f; ~ 0.45, i.e. close to the percolation
threshold fperc = 0.4.

Off half-filling the finite size scaling is no longer possible due to the minus-sign prob-
lem and the AF phase boundary is obtained within DMFT only (shown in Fig. 9b at
T = 1/8). 1t is found that the U = 0 impurities can induce AF order at densities for which
the clean model is disordered. In the clean model (f = 0) additional electrons are free to
move and hence very effective in destroying long range order. U = 0 sites provide local-
izing centers which are energetically favorable for the additional carriers. This is why the
AF phase extends to larger dopings at finite (but small) values of f. Since the mechanism
of localizing mobile dopants is observed in d = 2, too, we expect the enlargement of the
AF phase to be present in d = 2 at T = 0 as well, in spite of the fact that in the clean
mode! in d = 2 the critical doping is supposed to be zero. Eventually at larger fractions
f the AF phase shrinks, and the critical density approaches 1.0 for f; = 0.6 (f: = 0.75 in
the ground state [17]). For even larger values of f there is no AF ordereven atn = 1.

Both the stabilization of AF order and the shift of the Mott gap to higher densities result
from the localization of carriers at the U = 0 impurities. AF order is only destroyed when
the density on the U = O sites saturates, i.e. it is stable across the Mott-Hubbard MIT.
Hence the separation of Mott-Hubbard MIT and AF order is not present in the U = 0
impurity model, at least not for the present parameter values.

6 Summary and Conclusion

In this paper we discussed different types of disorder in correlated antiferromagnets and
presented results obtained mostly by quantum Monte Carlo simulations in 4 = 2 and
within dynamical mean-field theory (d = ).
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Different mechanisms were identified by which disorder can enhance antiferromagnetic
order: (i) disorder-enhanced delocalization at strong coupling in the case of weak disorder
in the chemical potentials and (i1) localization of surplus carriers in the case of impuri-
ties with weak local interaction. In both cases compressible antiferromagnetic phases are
observed. To determine if the gapless AF phase is metallic requires the calculation of
transport properties which is presently in progress.

Quantum Monte Carlo simulations of electronic tight binding models are just mak-
ing the transition from addressing rather abstract issues of correlation effects to making
contact with real experiments. One important feature in this respect is the treatment of in-
trinsic disorder. For a quantitative description of experiments, however, the inclusion of a
realistic band structure is mandatory. Here the DMFET will be particularly helpful because
it allows for the treatment of multi-band models in a wider range of parameters and in the
thermodynamic limit.
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