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Abstract. A study of (aperiodic) quantum stochastic resonance (QSR) in
parallel is put forward. By doing so, a generally stochastic input signal is
fed into an array of parallel dissipative quantum two-level systems (TLS) and
its integral response is studied against increasing temperature. The response is
guantified by means of an information-theoretic measure provided by the rate of
mutual information per element and, in addition, by the cross-correlation between
the information-carrying input signal and the output response. For ohmic-like
guantum dissipation, both measures exhibit QSR for biased two-level systems.
Our prime focus here, however, is on the case with zero asymmetry between the
two localized stable states. We then find that the mutual information measure
exhibits QSR only for sufficiently strong dissipatiom ¢ 3/2), as measured by

the dimensionless ohmic friction strength Moreover, thenutual information
measurerelates QSR within quantum linear response theory tostgeal-to-
noise-ratio(SN R), being independent of the input driving frequencies in this
limit. In contrast, thecross correlation measureonnects QSR to a genuine
synchronization phenomenorior a single symmetric TLS, aperiodic QSR is
exhibited in the cross-correlation measure for a Gaussian exponentially correlated
input signal fora > 1 already. Upon feeding the aperiodic input signal into a
parallel array of unbiased TLS’s, QSR successively emerges above the critical
ohmic dissipation strength > 1/2 with increasing numben of parallel units.

Thus, QSR can occun parallel despite the fact that it does not occur in each
individual, unbiased, TLS forv < 1. This paradoxical phenomenon—which
can be tested with an array of bistable superconducting quantum interference
devices—constitutes a true quantum effect: itis due to the power-law dependence
on temperature of the tunnelling rate and the stochastic linearization of quantum
fluctuations with increasing number of parallel units.

1 On leave from Bogolyubov Institute for Theoretical Physics, Kiev, Ukraine.
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1. Introduction

The phenomenon oftochastic resonanc€SR) constitutes a nonlinear noise-mediated
cooperative phenomenon wherein feeble information of a deterministic signal can be enhanced in
the presence of an optimal dose of noise. Sinceitsinceptionin 1981, SR has been demonstratedin
numerous systems including bistable elements such as tunnel diodes, superconducting quantum
interference devices (SQUIDs), autocatalytic chemical reaction schemes, sensory neurons, or
communication devices, to name only a few (the interested reader is referred to the popular
reviews [1]—[3], or the comprehensive surveydi)[ Although the basic SR mechanismis by now
well understood, there remain a number of challenging unsolved problems. In particular, most
of the research thus far predominantly focused on classical stochastic systems. The borderline
between the classical world and the quantum domain has been crossed only recently, in order
to account for genuine, tunnelling-induced quantum mechanical SR-effects [5]-[9]. Moreover,
these few prior studies @fuantum stochastic resonan(@SR) have all been restricted to the
conventionatlefinition of SR, i.e. to stochastic resonance wiplegodicinput signal. The subject
of aperiodicSR, i.e. stochastic resonance in the presence of a wide-band random input signal
experiences a flurry of activity in the context of classical neuronal systems. The corresponding
response has been quantified either by information-theoretic, or by spectral cross-correlation
measures [10]-[18].

In this work, our basic challenge is to move from the classical situation and to study the
guantum mechanical versiongdrallelinformation transfer of an aperiodic input-signa0[ 14]
through a parallel array of bistable quantum systems, being typified by quantum two-level systems
(TLS), see figure 1. As such, this study involves an interplay among (i) quantum dissipative
dynamics, (ii) information theory aspects and (iii) nonequilibrium statistical mechanics. A
certain amount of interdisciplinary knowledge is thus required which will be provided in
subsequent units: after having set up our model (section 2) we derive in section 3 the result
for the rate of mutual information in arrays of uncoupled TLS’s. Aperiodic QSR with respect to
the input—output cross-correlation measure is analyzed in section 4. An outlook together with
our conclusions is presented in section 5.

2. Set up of model dynamics

In the following we review prominent results of the theory of quantum dissipation [19]-[22] as
needed to set up the model dynamics. We consider an array of uncoupled quantum two-level
systems which are subjected to a common, generally random classical gighadf vanishing
statistical average. Moreover, each individual TLS is bilinearly coupled to a separate heat bath
at a common temperature. The total Hamiltonian for a single TLS element coupled to the bath
reads within theunnellingor localized representation [19]-[22]

1 1 1
H(t)= — §€(t)5z + §hA5x — 200, > k(b +bx) + Y hw, (bj{bA + 2) . (1)
) )

Hereine(t) = o + 2z f (t) denotes a time-dependent energy bias between two localized states.
This driven spin-boson Hamiltonian describes the reduced quantum tunnelling dynamics in
an asymmetric double-well potential with minima located:gt, = 4z [19]-[22] with the
corresponding time-dependent well-asymmetry denoted(ly The boson operators, b,
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Figure 1. Quantum stochastic resonance in parallel: a generally stochastic input
information signal is fed into a parallel array of uncoupled bistable, dissipative

guantum systems, being modelled by two-level systems. The output information
q(t) corresponds to the combined sum of individual TLS responses. Note that
the two level systems become mutually dependent via their common input signal

f(t).

correspond to normal mode oscillators of the thermal bath with frequengieShe operators

0., 0, denote the usual Pauli matrices. The tunnelling dynamics itself can be characterized by
the time-dependent position operaidt) = z,0.(t). FurthermorehA in (1) is the tunnelling

matrix element between the two lowest-lying energy levels. The effect of the thermal bath is
captured by amperatorrandom forceé(t) = Yy kA (b e + bye “xt). Due to the inherent
Gaussian statistics of the harmonic bath, its statistical properties are determined by the complex-
valued autocorrelation function [19]-[22]

(E()E0)) 5 = Z / J(w)[coth(Bhw/2) cos(wt) — isin(wt)]dw. 2)

Here, the spectral densifffw) = (/%) 3, k3d(w—w,) of the thermal bath has been introduced,
(...)3 denotes the thermal average whergin= 1/kzT denotes the inverse temperature. We
assume that/(w) acquires an ohmic form, i.el(w) = (27h/423)awe/“:. The dissipation
parametera. quantifies the dimensionless viscous friction strength @ndharacterizes the
physically relevant exponential cut-off of the spectral density. The driving f¢(¢e plays
the role of an information-carryingput signal For instance, in the case of SQUIDs the input
signal corresponds to an applied magnetic flux variation whilsotitputrelates to the total
magnetic flux 23].

This two-level approximation for the tunnelling dynamics is well justified at low
temperature$¢ 7T < hw, and for a time-dependent bigs + 2z,f(t)| < hw,, Wherehw,
measures the energy splitting between the lowest tunnel doublet and the closest higher-lying
excited state in the full bistable double well.
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Figure 2. Average rate of mutual informatiod/n plotted against the
scaled temperature in an array of= 103 symmetric TLS's. The different
curves correspond to differing signal bandwidthef a Gaussian exponentially
correlated input signaf(t) (Ornstein—Uhlenbeck process). The dimensionless
parameter values used are: friction strength= 2.0, tunnelling coupling

A = 10~*w,, and strength of input signal varianegA4, = 10~ 2hw.. The

solid curve compares these findings against the channel informational capacity
per element(,, /n; see text.

With SR generically operating in th@verdampedegime, we consider the TLS quantum
dynamics in thencoherentregime where the population dynamics of the localized states obey
a nonstationary Markovian dynamics. This description holds true for ohmic friction at arbitrary
temperature if the tunnelling coupling is small, e < w,, and the coupling to the heat bath is
sufficiently strongo > 1/2 [22]. The approximation in addition covers the regime at smaller
dissipation strengthe < 1/2, if only the temperature is sufficiently high, i.egT > hA
[19,21,22]. As a consequence, the localized populatiéhst) = (1 + (0.(t))s)/2 obey the
balance equations [6], [22], [24]-[26]

dP, (¢
0w+ WP ),
dP_(t

O w_@p )+ WP () @)

with the time-dependent relaxation rates governed by the golden rule result
00 t
Wa(t) = SA2 [ drexpl-@/(7)] cos [Q"(T) . e(t’)dt’}. (@)
2 0 h t—T

The functiong)’(t) and@”(¢) in (4) denote the real and imaginary parts of the bath correlation
function, respectively, i.e 2[1]

Q'(t) +1Q"(t) 4%/ dt, /t1 (E(t2)E(0)) gty + 1ML,
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whereh\ = 422 [7° dwJ(w)/mw denotes the bath reorganization ener2g].[ For the situation
considered herein, the functioy(t) can be evaluated in closed analytical form to yiéld, P7]

Q" (t) = 2aarctan(w.t),
s (1 + k)
Q'(t) _Qaln{\/l+wgt2|F(1+ﬁ+iw5t)|2}' (5)

In (5), I'(») denotes the complex gamma-functian, = kz1'/h, andx = wg/w.. Note that in
the limit of adiabaticdriving varying on a time-scale; such that bothv.7¢, akgT'7¢/h > 1,
the time-dependent transition ratéis, (¢) follow the instantaneoussalue of the bias(¢).

In this case, the relaxation raté®_ () obey the detailed balance condition in the form
W, (t) = e~®/kTY/_(¢). Moreover, at extremely low temperatures;z7T < hw,, and a
small bias,¢y, < hw,, one arrives from4), (5) at the well known [19]-[21], [28] analytical
approximation for the static relaxation ratés (¢),

A2 okpT\ " )
4w, T'(2cr) hw, 2rkgT

wherel'(z) is the complex gamma-function. This resultis applicable for any value of the viscous
friction strengtha.

It is worth noting that the considered incoherent limit for the tunnel dynamics of driven,
dissipative TLS allows for an effectivpiasiclassicainterpretation in terms of a classical random
telegraph process. Put differently, the position operatorassumes effectively a classical two-
state process(t) — xz(t) = +xo. Its transition rates, however, are governed bygbhantum
expressiong (4); see also appendix 1. As such, the model presents the quantum analogue of
the classical aperiodic SR-investigation i].

Wi(e) = ; exp(Feo/2kpT), (6)

F(a—l—l

3. Mutual information

We next consider the transfer of information from a random aperiodic classical input gighal
through a parallel array consisting of quantum two-level systems as depicted in figure 1. In doing
S0, we consider the observable for the sum of individual TLS responses, i.e.

= Xjﬁ i(t). )

Within the considered quasiclassical approximation, any quantum coherence can safely be
neglected (incoherent quantum dynamics), and consequently the output and its sum become
classical objects, i.e.,

«we«wzi@@

Our focus here concerns the rate of mutual information between the summedgugund the
aperiodic input signaf (t). The average amount of mutual information per unit tirag [or
the transinformation rate) between two continuous-time random procg§geandq(¢), with
t € [0, 71, is defined by the double functional integra0:

T )= Jim 2 [ [ DI DOPL0).a(0)] oz, 5 ®
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P[f(t),q(t)] denotes the joint probability density functional for the random proceg&es
and f(t); P[f(t)] is the a priori given probability density functional of the signal, and
Plq(t)] = [Df(t)P[f(t),q(t)] is the probability density functional of the output. Moreover,
depending on the basisof the logarithm in 8) the transinformation ratéis measured in binary
units, bits/s i.e.a = 2, natural unitnats/s(a = ¢), or digits/s (a=10)

In the absence of any external driving, the integral output sigftalcan be described as
a sum of identical independent random telegraph noises with signal-dependent transition rates
(4). Note that due to theommonsignal f(¢), an array of initially uncoupled TLS’s becomes
statistically dependent through the common input informafign. In view of the subadditivity
of the mutual information one finds that

I(q: f) <nlo(x: f), (9)

wherely(z : f) is the rate of mutual information for a single TLS element. Thus, the average
amount of mutual information per element cannot exceed the one for a single elgm&he

focus of this work is on the situation with many elements. Then, in absence of the information
signalf (¢) we can invoke the the central limittheorem to treat the output sighgpproximately

as a Gaussian process. The information-carrying si¢iffalis assumed to be approximately a
Gaussian process as well. Then, by addressing mainly the cassks$ignals,f(t), it follows

that the integral outpuij(¢) is approximated by Gaussian statistics as well. Consequently, the
rate of mutual information betweett) andf (¢) is governed by a nontrivial result due to Pinsker
[31] for the transinformation rate between two stationary Gaussian proc&3eaehding

Ha: f) =5 [ 1og, (1= o)) (10)
where
Sqf(w)
W) = (12)
) = o) 5 @)

denotes the so-termed coherence function &j3dv) andS,,(w) are the cross-spectral power
density and the output spectral power density, respectively. For weak adiabatic diitinane
obtains—in close analogy to the classical caks@-ffrom quantum linear response theory, cf
appendix, the result

Sqa(w) = n[X(W)]*S 5 (w) +nSE (W),

Ste(w) = nx(w)Sss(w), (12)
wherey(w) is the linear susceptibility of a single TLS. Equatidr2) allows one to recastL)
into the more familiar form$3]

[X(w)[*Sgs(w)
(q f 2 / lOga (1 + HW dw. (13)
Upon close inspection,1B) just coincides with the celebrated Shannon’s formula for the rate
of transinformation across a Gaussian, memory-free cha@@glHere, Shannon’s formula is

applied to thdilteredGaussian signal(t) = n [*__ x(t—7)f(7)dr. By use of the rms amplitude
Ag,i.e. A2 = [ Sff(w)dw/27r, one can recasil@) by use of A.7) into the appealing form

=5 / log, (1 + —SNR( )Sff(w)> dw, (14)
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whereSN R(w) is the signal-to-noise raticd(V R) for a single TLS driven by a weak periodic
input perturbation at angular frequency In the considered situation of weak adiabatic
signals SN R(w) does not depend ow, cf (A.8). Therefore, by use of the inequality,
log,(1+z) < z/Ina, we obtain

I(q: f) <C,:=nSNR/(2rIna). (15)

As a result, we find that the maximal achievable amount of information being transmitted
by the parallel array is approximately determined by the conventional signal-to-noise ratio,
independentlyf the spectrum of the information carrying input signal.

To gain further insight, we next model the stationary Gaussian input sjfmalby an
exponentially correlated process (a so-called Ornstein—Uhlenbeck process) with zero average
and autocorrelation

(f(t+7)f(t))y = Afe . (16)

With the decay rate obeying both;y < w., akgT /], we stay within the regime of adiabatic
driving. The signal’'s power spectrum is clearly of Lorentzian shape, i.e.,

Spr(w) = 2457/ (> + w?). (17)
Upon combining {7) and A.8) in (14) we arrive at the main result

oo Y [, 2n SNR | [ (nySNR)Y?/(V2rIna) : v < n SNR
[(q'f)ana[ L T 1] _{ n SNR/(2rlna) : v >n SNR - (18)

Note that for input signals of small bandwidth< n.S N R, the transinformation rate becomes
proportional to both thequare roobf S N R and to thesquare rooof the signal bandwidth. The
maximal (versus temperature) transinformation rate consequently coincides with the maximum
of thesignal-to-noise rationeasure. The position of this maximuff) ., depends neither on the
signal bandwidthy, nor on the number of elements in the parallel array. We also observe that
no saturation in the temperature dependence of the information flow—the so-called ‘stochastic
resonance without tuninglPp]—occurs ain — co. Moreover, with increasing bandwidththe

rate of mutual informationl(8) increasesnonotonicallyand achieves the upper boundaty at

~v > n SN R. Thus, the quantit¢’, provides the informational capacit®9] of thewholearray.

As a consequence of this analysis, the conditions for occurrence of aperiodic QSR—
being quantified by the mutual information transmission—are essentially identical to those for
conventional QSR, being quantified by thé&/ R-measure [1]-[4]. By use of the rate expression
in (6) and the result fo6 N R in (A.8), its temperature dependence is determined by

SNR oc T**7%/ cosh(eg /2kpT). (19)

Thus, the mutual information per unit time da&st exhibit QSR in unbiased systems (i.e.
€0 = 0) if @ < 3/2. In this regime, QSR requires a finite bias# 0. However, QSR does
also occur for unbiased systerifigy > 3/2. In this case, it is necessary to go beyond the low
temperature approximation i6)(by using the full result for the incoherent quantum rategl)n (
and 6). This is in agreement with conventional QSR, as shown previousl¥an The results
for the transinformation rate per element are depicted in figure 2 for a large endemble)?)
of unbiased parallel TLS as a function of differing bandwidiifer a viscous friction strength
of @« = 2. The solid line shows the result for the averaged informational cap&gity. : this
limit is approached rather quicklfy/w. > 1078) as the bandwidth parameter increases. The
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maximal value assumed ldyn increases monotonically with increasingef (18), and saturates
at the value oS N R/(2x In 2) for a single bistable element.

Most importantly, the transinformation rate for aperiodic, parallel QSR connects this
phenomenon with conventional QSR for a single unit as characterized by the SNR measure.
Because the maximum position &f, ., doesnot depend on the bandwidth parameterthe
transinformation measuoes not characterize parallel (aperiodic) QSR as a synchronization
phenomenan

4. Aperiodic QSR as synchronization phenomenon

In search for a quantification of aperiodic QSR as a synchronization phenomenon we consider
the cross-correlation coefficierit(, 14,17, 18]

b= Jo° ReSyp(w)dw
\/fooO Sqq(w)dw\/fooo Syr(w)dw
It worth recalling that conventional aperiodic classical SR has originally been introduced for
the Fitzhugh—Nagumo model of the neuronal dynamid.[ For this model, it was shown
that the cross-correlation coefficiemind the rate of mutual informatiohprovide equivalent
measures. As we show below, however, for the case of aperiodic QSR in parallel these two
measures no longer provide the same information, but behave instead rather distinctly. Within

guantum linear response theory, the application of equatiti®)s (L7), (A.5), and O0) yields
for the cross-correlation coefficient the result

~ Wi(e) vne(T)
P S Weo) \/1 + ne2(T) Wl ’ (1)

¥+W (o)

wherec(T') = xgAo/kpT cosh(eg/2kpT) andW (eg) := W (o) + W_(ep).

(20)

4.1. Aperiodic QSR for a single element

Note that @1) is valid also for the case = 1, p; := p, i.e. for QSR in a single element. The
corresponding result can be simplified upon noting #@Y) < 1, yielding

1 onO W(Eo)
kpT cosh(eq/2kpT) v+ Wi(eo)
With the focus being on unbiased TLS’s the analysis2@) 6hows that aperiodic QSR for the
cross-correlation measure already occursofar 1. Therefore, withl < o < 3/2 the input—
output cross-correlations can be optimized by applying an appropriate dose of thermal noise
whilst for the mutual information measure QSR only occursdfas 3/2. The maximal value

for p is assumed at a temperature
th a— a—
Thae = 5 [2( = VD (3 /wg) V27, (23)
271'/{?3

wherew, = A’T"?(«a)/2w.I'(2a). The substitution ofZ3) into (6) yields the relation
Wo(T?,,) =(a—1)y, a>1. (24)

max

p (22)

This result inherits the condition for ampproximatematching between the time-scales of
(incoherent) tunnelling events and the autocorrelation time of the input signal at maximal cross
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Figure 3. Aperiodic quantum stochastic resonance as a synchronization
phenomenon: the cross correlation measufer a single unbiased TLS unit

is depicted versus the scaled temperature for differing bandwidth parameters

an Ornstein—Uhlenbeck input signal at an ohmic friction strength-ef1.44; its
maximal value now exhibits a distinct dependence on the chosen value of inverse
noise correlation time,. The remaining parameter values ard: = 10w,

ZJZ()AO = 10_2hwc.

correlation. Thus, we indeed find that the cross-correlation coeffigieharacterizes aperiodic
QSR as a genuingynchronization phenomenion

The corresponding bell-shaped aperiodic QSR behaviour is depicted in figimea
dissipative strength af = 1.44; this specific value is of relevance for the observed experimental
SQUID dynamics as investigated i8] in absence of driving. Naturally, it is expected that this
novel aperiodic QSR phenomenon can be verified experimentally as well. Note that for this value
of ohmic dissipative strength no maximum for the mutual information rate occurs. Moreover,
the cross correlation measure for synchronization is an increasing function versus decreasing
bandwidth strength; see figure. This latter resultis in accordance with conventional (periodic)
SR where the maximum of spectral amplification increases with decreasing driving frequency
for a periodic input signald7].

4.2. Parallel aperiodic QSR

The case of a large ensemble of parallel units, cf figure 1, witk 1 is even more striking.
Then, upon combinings) with (21) we find that QSR in the cross correlation measure emerges
already fora. > 1/2. Put differently, a large ensemble of identical independent, unbiased TLS’s
is able to exhibit QSR whilst a single element does not. This paradoxical result is depicted
in figure 4 for the case withh = 0.9. The bottom curve in the figure depicts the result for

a singlesymmetricTLS, where in agreement with the previous analysis no QSR occurs. The
QSR phenomenon successively occurs with increasing number of parallel units. This surprising
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Figure 4. Parallel aperiodic quantum stochastic resonance: the cross-correlation
measure between a stochastic Ornstein—Uhlenbeck input signal process and the
integral output in arrays containing a differing number of elemenssdepicted
versus the scaled temperature. The corresponding parallel arrays are composed
of symmetric dissipative TLS’s at the ohmic frictional strength= 0.9, and

A =10"%w,, v = 10 %w,, 204y = 10~3kw,. While no QSR occurs for a single

TLS unit, an increasing number of elements the parallel array provides the
stochastic resonance effect.

phenomenon is rooted in the diminishing role of internal, individual fluctuations (of in a
large ensemble of parallel elements, £2) The phenomenon is due to a combination of this
fact together with th@ower lawdependence on temperature of the incohegeantunrates in
(6); as such the effect is of genuine quantum origin.

Next we consider the limit — oo in (21), i.e.,

Y + W(E())

Using the result for the quantum rate i6) (we find that in the considered limit the cross-
correlationp increasesnonotonicallywith increasing temperature for > 1/2, until p reaches
its maximal valuep ~ 1 at W(ey) > ~. This behaviour of growing cross-correlation with
increasing temperature, which saturates at large noise dose, has been termed in the literature
SR without tuning 10]; it can be explained in terms of a ‘stochastic linearizatidi, [L7] as
n — OoQ.

5. Summary and conclusions

The main primer of this work has been the investigation of quantum stochastic resonance through
an array of independent, parallel quantum two level systems. Before concluding it may be useful
to recapitulate again our main ideas, involved assumptions and main findings. Our idea has
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been to investigate the transduction of information for a generally aperiodic (stochastic) input
signal through an array of parallel bistable quantum systems—all being in contact with a thermal,
identical environment—which we modelled in terms of ohmic-like, dissipative two level systems.
Then, we proceeded by applying the rate of transinformation by Shannon’s forb@uarhe

main assumptions used in this work, being valid in many practical situations, are: (i) use of an
incoherent quantum dynamics for individual TLS systems, (ii) weak adiabatic sifftalaith
Gaussian statistics, and, for the case of QSR in parallel, (iii) a large nundie&lements in the
array.

Explicit findings have been obtained for stochastic signals from an exponentially correlated
Gaussian process, such as the insightful result for the rate of mutual informatid®).inthis
very result demonstrates unambiguously that the rate of mutual information is determined by
conventional' N R for a single element with external cosinusoidal driving. This statementis also
valid for classical systems. Henceforth, we have established a universal connection between SR
in parallel and the5 N R characterization of conventional SR. Because the maximum position
of the rate of transinformation does not depend on the characteristic time scale of the input
signal, this measure doastquantify QSR as a synchronization effect. Moreover, the averaged
amount of transinformation per one element per unit tiché;, is generally less than that
of the single element],. The main reason for this behaviour is related to the fact that the
dynamical behaviour of an array of independent (in the absence of the input signal) TLS’s
become statisticallgdependentvhen a common signal is present; the theoretical maximum of
Imaz/n = I is assumed only when the elements in the array beammpletelyuncorrelated.
Therefore, the introduction of additional mutual coupling among the TLS’s will only result in a
furtherdeteriorationof mutual information between input and output.

In contrast, the cross correlation measyréndeed characterizes QSR as a synchronization
phenomenon. For weak adiabatic Ornstein—Uhlenbeck signals, it was demonstrated that the
input—output cross-correlation can be optimized by a corresponding dose of thermal noise in a
single symmetric TLS iftv > 1. The study of the cross-correlation for QSR in a parallel array
revealed a new paradoxical phenomenon: the appearance of QSR in ensemidep@fdent
elements which by themselves all do not display QSR, cf figur&his surprising behaviour
is the result of a synergetic interplay between classical stochastic linearizafid,[16] and
the inherent power-law dependence on temperature of the quantum rates. In generalizing the
experimental setup used i8§, 39] for detecting SR in a single SQUID element, this result can
possibly be examined by use of a parallel array of SQUIDs of the type put forward recently by
Wernsdorferet al [40].

In conclusion, we can assert that the measure of mutual information overtakes within
the theme ofaperiodic (quantum) stochastic resonance the roleSéf R, whilst the cross-
correlation coefficient overtakes the role of the spectral amplification mea3tfregBoth the
cross-correlation coefficient and the spectral amplification characterize QSR as a genuine noise-
optimized, averaged synchronization measure. Moreover, our novel findings for aperiodic QSR
in single elements and in parallel arrays are expected to be become experimentally observable in
mesoscopic bistable quantum systems such as tunnelling of magnetic flux in rf-driven SQUIDs
[36, 38, 39], tunnelling of impurities in mesoscopic bismuth wirdd], or in proton-transferring
molecular complexes, as well as in parallel arrangements of such systems. Likewise, the results
herein may also be of importance when nature optimizes electron transfer reactions due to
nonequilibrium noise influences in biological complexes.
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Appendix 1. Quantum linear response theory

In this appendix we provide the readers with results of quantum linear response theory (LRT)
as they are of relevance for this study on aperiodic QSR. Within the framework of LRT, the
deviation of the thermal averadéz(t))s = (z(t))s — z, from theequilibriumvaluez due to

the external perturbatiofi(t) is

Ga)e= [ x(t—e) 1), (A1)

wherex(t) denotes the response function. The linear susceptibility is defined as the one-sided
Fourier transformy (w) = [¢° ' x(t)dt. Furthermore, the spectral power of fluctuations reads
Spe(w) = [ e“TChp(7)dT, With

Cualr) = Jim o | G008+ 7) + 0t + T)0a(E)) pdt (A2)

being the time-averaged, symmetrized autocorrelation function of the TLS fluctuations. Note
that within LRT the spectral powe, . (w) can be decomposed as

Sez(W) = ‘X(W)stf(w) + Sag:g:) (w). (A.3)
Here,S(®) (w) stands for the spectral power of spontaneous fluctuations of the TLS in the absence
of driving, andS;¢(w) denotes the spectral power of the signal defined analogously, ).
Moreover, S (w) is related to the linear susceptibilify(w) by the well-knownfluctuation-
dissipation theorenFDT) [42]
hw

(0) — ™ Y
Sy (w) = hcoth <2kBT> Imy(w). (A.4)
An evaluation of eithe%) (w), or ¥(w) for the spin-boson model) presents a nontrivial task
which can be solved only approximately. To this end, let us consider the TLS dynamics subjected
to weak harmonic driving of the form

f(t) = Agcos(Q2t). (A.5)
Then, an analysis of the asymptotic{ oo) solution of the equatior] yields [6, 22]

. 1 x2 We

X(Q) : ) (A.6)

- kgT cosh®(e/2kpT) W (€p) — i
with the relaxation ratdV (ey) := Wi(e) + W_(e) given by @) with €(t) = ¢. The
expressionA.5) is valid for xg Ay, i) < hw., akgT [6]. Moreover, we assume the condition
W (eo) < kpT to hold, being obeyed for all practical purposes. In this casequla@tumFDT
(A.3) can safely be substituted by @assicalanalogue, yielding the unperturbed spectral density
of the TLS
z 2W (€o)
g(0) _ Lo 0 '
e () cosh?(eo/2kpT) W2 (o) + w?
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The spectral power density (A7) contemplates the random transitions between levels of the

TLS with the switching ratesiV..(¢,) determined by the relaxation ofieanpopulations. It

thus reflects the quasiclassical Onsager regression hypothesis which underpins the quasiclassical

interpretation of the incoherent Markovian TLS dynamics as classical random telegraph process.
Furthermore, the signal-to-noise ratty R, is the ratio of the spectral amplitude of signal,

mAZ|x(Q2)|%, to the spectral power density of fluctuatiossq) at the same frequeney, i.e. 4],

2|c 2
SNR(Q) = 7“40(13)“@)’ (A.8)
ze (2)
Upon combining A.5) and (A.6) one obtains the result
2,.2
SNR = %0 Weo) (A.9)

2(kpT)? cosh®(eo/2kpT)
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