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GAUSSIAN LIMITS OF EMPIRICAL MULTIPARAMETER

K-FUNCTIONS OF HOMOGENEOUS POISSON PROCESSES

AND TESTS FOR COMPLETE SPATIAL RANDOMNESS

Lothar Heinrich

University of Augsburg, Institute of Mathematics, 86135 Augsburg, Germany

( e-mail: heinrich@math.uni-augsburg.de)

Abstract. We prove two functional limit theorems for empirical multiparameter second moment

functions (generalizing Ripley’s K-function) obtained from a homogeneous Poisson point field observed

in an unboundedly expanding convex sampling window Wn in R
d . The cases of known and unknown

(estimated) intensity lead to distinct Gaussian limits and require quite different proofs. Further we

determine the limit distributions of the maximal deviation and the integrated squared distance between

empirical and true multiparameter second moment function. These results give rise to construct

goodness-of-fit tests for checking the hypothesis that a given point pattern is completely spatially

random (CSR), i.e. a realization of a homogeneous Poisson process.

Keywords: Point process, reduced second moment measure, set-indexed Gaussian process, multipa-

rameter Gaussian process, Wiener sheet, m-dependence, U-statistic, weak convergence, Skorokhod-

space of multiparameter càdlàg-functions, goodness-of-fit tests

MSC 2010: Primary 60 F 17, 60 G 55; Secondary 60 F 05, 60 G 60

1 Introduction and Main Results

Statistical second-order analysis of spatially homogeneous point fields observed in a (large)

bounded region (called sampling window) Wn of the d-dimensional Euclidean space R
d is

based on the (asymptotic) properties of the empirical intensity bλn = N(Wn)/|Wn| and the

empirical process

Xn(B) =
X6=

i,j≥1

1Wn(Xi)1Wn(Xj)1B(Xj −Xi) for B ∈ Bd ∩ C% , (1.1)

where N =
P

i≥1 δXi
denotes a simple stationary point process on R

d (defined as locally finite

random counting measure without multiple atoms on the Borel sets Bd of Rd) and C% stands

for the cube [−%, %]d centred at the origin o with a freely selectable parameter % > 0 . In (1.1)

and throughout the paper, the sum
P6= runs over pairwise distinct indices, δx and 1B are

connected by δx(B) = 1B(x) = 1 for x ∈ B and = 0 for x /∈ B and |B| denotes the Lebesgue
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measure of B ∈ Bd
b (= family of bounded members of Bd). Further, all random variables and

processes are defined over a common probability space [Ω,F ,P] (which always exists). To

study the asymptotic behaviour of (1.1) we assume that the sequence (Wn) forms a convex

averaging sequence (briefly CAS), i.e. (Wn) consists of increasing, convex and compact sets

in R
d such that r(Wn) := sup{r > 0 : B(x, r) ⊆ Wn for some x ∈ Wn} −→ ∞ as n → ∞ (or

equivalently |∂Wn|d−1/|Wn| −→ 0 as n → ∞), where B(x, r) denotes the closed Euclidean

ball with center x ∈ R
d and radius r ≥ 0, and |∂Wn|d−1 indicates the surface content of Wn.

By applying some of results from convex geometry to the CAS (Wn) it can be shown that

1

r(Wn)
≤ |∂Wn|d−1

|Wn|
≤ d

r(Wn)
and

%

r(Wn)
≤ |Wn ⊕B(o, %)| − |Wn|

|Wn|
≤ (2d − 1) %

r(Wn)
(1.2)

for any % ≥ 0 , see [17], p.54, and [19], Appendix .

The properties of the CAS (Wn) are essential in proving spatial limit theorems (although in

some cases e.g. the convexity of Wn can be slightly relaxed). E.g., for a stationary ergodic

point process N =
P

i≥1 δXi
with intensity λ = EN([0, 1]d) satisfying EN2([0, 1]d) < ∞ , the

spatial ergodic theorem of Nguyen-Zessin, see [10] or [26], yields the P-a.s. limits bλn
P−a.s.−−−−→
n→∞

λ

and

Xn(B)

|Wn|
P−a.s.−−−−→
n→∞

λ E
�
(N − δo)(B)|N({o}) > 0

�
=: λ2 K(B) for any B ∈ Bd

b , (1.3)

where the expectation of the number (N − δo)(·) conditional on the null event {N({o}) >

0}, abbreviated by λK(·) in what follows, coincides with the reduced second-order moment

measure of N , see [9] (Chapt. 8), and can be rigorously defined as first-order moment measure

w.r.t. the reduced Palm distribution of N , see [10] (Chapt. 13) for details. It turns out that

the locally finite K-measure K(·) is o-symmetric, i.e. K(B) = K(−B) for B ∈ Bd
b . On

the other hand, to the best of the author’s knowledge a complete characterization of the

K-measure is so far still unknown. Another issue is to find suitable parametric subfamilies

of Bd
b on which the K-measure is uniquely determined or at least described sufficiently well

by the corresponding functions of parameters. For example, Ripley’s (one-parameter) K-

function K(r) := K(B(o, r)) for r ≥ 0, see [37], defines uniquely the K-measure when the

associated stationary point process N is additionally isotropic, see e.g. [23], Chapt. 4.3. In

the latter reference and in numerous papers, e.g. [40], [6], [12], [41], [22] , one can find various

refined and tricky, partially sophisticated techniques to estimate K(r) (and the related L-

function L(r) = (K(r))1/d and pair-correlation function g(r) = r K ′(r)/d |B(o, r)|) which are

particularly useful when the point pattern and Wn is comparatively small. If the isotropy

of N is missing, then Ripley’s K-function should be replaced by the K-measure on reacher

parametrized families sets, e.g., increasing (one-parametric) families {rBs : r ≥ 0} , where

Bs is any fixed o-symmetric, convex, compact set in R
d containing o as inner point, which

allows to measure the distance of points by the norm n(x) := inf{τ > 0 : x /∈ τBs}, see [19].
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To exhaust as much information from the point pattern as possible we suggest to consider

the K-measure on the following families of rectangular sets indexed by the multiparameter

r = (r1, . . . , rd) :

B(r) :=
d×

i=1
[−ri, ri] for r ∈ R

d
+ and B∗(r) :=

d−1×
i=1

[ri∧0, ri∨0]× [0, rd] for r ∈ R
d−1×R

1
+ ,

where a ∨ (∧)b := max(min){a, b}. By standard measure-theoretic approximation arguments

we can prove

Proposition 1. The function R
d−1 × R

1
+ 3 r 7→ K∗(r) := K(B∗(r)) determines the K-

measure uniquely.

In the following, for reasons of symmetry and to facilitate statistical procedures we prefer

to establish the multiparameter K-function R
d
+ 3 r 7→ K(r) := K(B(r)) although it is open

whether Proposition 1 holds for K(r). It should be mentioned that the limit (1.3) holds even

uniformly w.r.t. the class of convex polyhedra contained in a convex compact set, say C% for

some % > 0, see [26], p. 371. In case of balls {x ∈ R
d : n(x) ≤ r} and hyper-rectangles B(r)

or B∗(r) contained in C% this uniform P-a.s. convergence is easily obtained from (1.3) in

analogy to the proof of the (multidimensional) Glivenko-Cantelli theorem, see [26], p. 136.

Next, we introduce two further (unbiased) set-indexed estimators for λ2K(B) by modifying

the estimator (Õλ2 K)n,3(B) := Xn(B)/|Wn| on the l.h.s. of (1.3):

(Õλ2 K)n,1(B) :=
1

|Wn|
X
i≥1

1Wn(Xi) (N − δXi
)(B +Xi)) , (1.4)

(Õλ2 K)n,2(B) :=
X 6=

i,j≥1

1Wn(Xi) 1Wn(Xj) 1B(Xj −Xi)

|(Wn −Xi) ∩ (Wn −Xj)|
. (1.5)

By setting (Õλ2 K)n,i(r) := (Õλ2 K)n,i(B(r)) for i = 1, 2, 3 we obtain three empirical multipa-

rameter K-functions estimating λ2K(r) for r ∈ R
d
+. An application of the refined Campbell

theorem (Campbell-Mecke formula), see [10], pp. 286-288, or of the Propositions 6.1 and 8.1

in [9] provide the following means of the above estimators:

E(Õλ2K)n,1(B) = E(Õλ2 K)n,2(B) = λ2 K(B) and E(Õλ2 K)n,3(B) = λ2
Z
B

Rn(x)K(dx) , (1.6)

where Rn(x) := |Wn ∩ (Wn − x)|/|Wn| .

In other words, the estimators (1.4) and (1.5) are unbiased, whereas the asymptotic unbiased-

ness of (Õλ2 K)n,3(B) follows by use of the first inequality of (1.2), see also [17]. Summing up

the above relations and arguments combined with the properties of the CAS (Wn), we can

state the following Glivenko-Cantelli type theorem for empirical multiparameter K-functions:

Under the assumptions of the ergodic theorem (1.3),
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sup
r∈I%

�� (Õλ2 K)n,i(r)− λ2 K(r)
�� P−a.s.−−−−→

n→∞
0 for i = 1, 2, 3 and I% := [0, %]d . (1.7)
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Fig.1: Plot of the empirical K-function Ôλ2 K)n,3(r1, r2) Fig.2: Simulated Poisson process N0.8 in [0, 15]2
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Fig.3: Computation of the empirical two-parameter K-function Õλ2 K)n,1(r1, r2) in Wn

Remark 1. To compute the d-parameter functions (Õλ2 K)n,i(r) on I% we consider the point

differences Xj − Xi ∈ I% for i 6= j and sort the differences in each coordinate (between 0

and %) according to increasing values generating multidimensional stair functions, see Fig. 1

for d = 2. The use of the “naive" estimator (1.4) requires a reduction of Wn to the smaller

window {x ∈ Wn : B+x ⊂ Wn} (minus-sampling) while the edge-corrected Horvitz-Thompson
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type estimator (1.5), e.g. see [8], exploits the full information of the point pattern contained

in Wn by weighting the influence of each pair (Xi,Xj) for i 6= j. The unbiasedness of (1.5)

has been first observed in [35], which is why (1.5) is also named Ohser-Stoyan estimator. In

“large-domain statistics" the differences between (1.4), (1.5) and (Õλ2 K)n,3(B) are of minor

importance, see Theorem 4.6 in [18] and Lemma 2 in Sect. 2.

The main aim of the present paper is to determine the weak functional limits of the centred

and normed random processes
¦È

|Wn|
�Õλ2K)n,i(r) − E(Õλ2K)n,i(r)

�
, r ∈ I%

©
for i = 1, 2, 3

when N is a stationary Poisson process on R
d with intensity λ > 0 which, henceforth, will be

denoted briefly by Nλ. It turns out that the cases of known and unknown intensity λ > 0 have

to be treated separately through different approaches leading to quite different multiparameter

Gaussian limit processes.

To avoid ambiguity, we recall that Nλ is defined as follows: (i) Nλ(B) is Poisson distributed

with mean λ |B| for any B ∈ Bd
b and (ii) Nλ(B1), . . . , Nλ(Bk) are mutually independent

whenever B1, . . . , Bk ∈ Bd
b are pairwise disjoint. (i) and (ii) can be equivalently expressed

as follows: For any B ∈ Bd
b with |B| > 0, conditional on Nλ(B) = k , the random atoms

X1, . . . ,Xk in B are independently and uniformly distributed; the latter property is called

“complete spatial randomness" (briefly CSR). Clearly, Nλ is simple, stationary, ergodic and (ii)

entails that the conditional expectation in (1.3) equals the unconditional mean EN(B) = λ |B|
for N = Nλ. Thus, the K-measure coincides with the Lebesgue measure, i.e. K(·) = | · | .
Furthermore, Ô(λ2)n := Nλ(Wn)(Nλ(Wn)−1)/|Wn|2 turns out to be an unbiased estimator for

λ2 which is seen by applying (2.1) to f(x1, x2) = 1Wn(x1)1Wn(x2)/|Wn|2 .

Using the above-defined estimators (Õλ2 K)n,i(B) , i = 1, 2, 3, for Nλ =
P

i≥1 δXi
we are now

in a position to introduce the following six sequences of set-indexed mean zero random vari-

ables:

Yn,i(B) = (Õλ2 K)n,i(B)− λ2 |B| and Yn,3(B) = (Õλ2 K)n,3(B)− λ2 Jn(B) (1.8)

for i = 1, 2 and B ∈ Bd
b , where Jn(B) = |Wn|−1 R

B |Wn ∩ (Wn − x) |dx , and likewise

Zn,i(B) = (Õλ2 K)n,i(B)− Ô(λ2)n |B| and Zn,3(B) = (Õλ2 K)n,3(B)− Ô(λ2)n Jn(B) . (1.9)

The set-indexed random processes in (1.8) resp. (1.9) define immediately the (multiparameter)

random processes Yn,i(B(r)) , r ∈ I% , and Zn,i(B(r)) , r ∈ I% , for i = 1, 2, 3 . With a view

to the Theorems 1 - 4 we recall the well-known fact that the distribution of mean zero

multiparameter (resp. set-indexed) Gaussian process {G(r) , r ∈ I%} (resp. {G(B) , B ∈ Bd
b})

uniquely determined by its non-negative definite covariance function EG(s)G(t) , s, t ∈ I% ,

see [1] (resp. EG(B)G(B′) , B,B′ ∈ Bd
b , see [2]). For example, the standard set-indexed

Wiener sheet W (·) on Bd
b is defined by EW (B) = 0 and EW (B)W (B′) = |B ∩ B′| , see [2]

for details and a rigorous introduction. By putting W (r) := W (I(r)) with I(r) := ×d
i=1[0, ri]
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and |r| := Qd
i=1 ri for r = (r1, . . . , rd) ∈ R

d
+ we get the d-parameter (standard) Wiener sheet

with covariance function EW (s)W (t) = | I(s) ∩ I(t) | = | I(s ∧ t) | = |s ∧ t| for s, t ∈ R
d
+,

where s ∧ (∨)t = (s1 ∧ (∨)t1, . . . , sd ∧ (∨)td) for s = (s1, . . . , sd), t = (t1, . . . , td) ∈ R
d
+ . This

implies W (B(r))
d
= 2d/2 W (r) and W (I%)

d
= %d/2 W (I1) .

Finally, we recall that D[0, %]d consists of all real-valued functions f on the cube I% which

are “continuous from above" and have “limits from below" in each r ∈ I%, see [3], [34] for a

precise definition and the concept of weak convergence in the Skorokhod-space D[0, %]d.

Theorem 1. The random processes {Yn,i(r) :=
È
|Wn|Yn,i(B(r)) : r ∈ I%} defined in (1.8)

and driven by Nλ =
P

i≥1 δXi
belong a.s. to the Skorokhod-space D[0, %]d for i = 1, 2, 3 and

n ∈ N. The weak convergence

{Yn,i(r) : r ∈ I% } d−−−→
n→∞

{Y (r) : r ∈ I% } (1.10)

holds in D[0, %]d, where {Y (r) : r ∈ I%} is an a.s. continuous Gaussian process with mean

zero and covariance function EY (s)Y (t) = λ2 2d+1 |s ∧ t| ( 1 + λ 2d+1 |s ∨ t| ) .
Moreover, {Y (r) : r ∈ I%} d

=
¦
λ 2(d+1)/2

�
W (r)+(

È
1 + 2d+1 λ %d−1) %−d |r|W (%)

�
: r ∈ I%

©
,

where % := (%, . . . , %) and
d
= indicates “equality in distribution".

The counterpart of (1.10) when the intensity λ is unknown and λ2 is replaced by Ô(λ2)n is the

subject of

Theorem 2. The random processes {Zn,i(r) :=
È
|Wn|Zn,i(B(r)) : r ∈ I%} defined in (1.9)

and driven by Nλ =
P

i≥1 δXi
belong a.s. to the Skorokhod-space D[0, %]d for i = 1, 2, 3 and

n ∈ N. The weak convergence

{Zn,i(r) : r ∈ I% } d−−−→
n→∞

{Z(r) : r ∈ I% } d
= {λ 2(d+1)/2 W (r) : r ∈ I% } (1.11)

holds in D[0, %]d.

Remark 2. Theorem 1 and 2 generalize two functional limit theorems in [16] proven

for empirical processes associated with Ripley’s K-function {K(r), 0 ≤ r ≤ %}. Central limit

theorems (short: CLT’s) for empirical functionals related with (1.1) in case of non-Poissonian

point processes can be found e.g. in [25], [26], [15], [28].

The rest of the paper is organized as follows: In Sect. 2 we put together some lemmas which

facilitate the proofs of Theorem 1 and 2 given in Sect. 3 and 4, respectively. Further, we prove

the tightness of the random processes occurring in (1.10) and (1.11). In both Sect. 3 and 4 we

formulate CLT’s which extend the weak convergence of the finite-dimensional distributions

(short: FIDI’s) in Theorem 1 and 2. Both Theorem 3 and 4 seem to be of interest in its

own right. In the final Sect. 5 we study the supremum as well as the integral of the squared

Gaussian limit processes over the cube I%. These results enable us to establish asymptotic
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goodness-of-fit tests in the sense of Kolmogorov-Smirnov as well as Cramér-von Mises for

the multiparameter K-function of stationary Poisson processes on R
d. For d = 2 a table of

relevant quantiles of the test statistics (in case of unknown intensity) has been determined via

simulation of the Wiener sheet on [0, 1]2. This provides a test for checking the CSR hypothesis

of planar point patterns. Throughout, let c1, c2, . . . denote positive constants not depending

on n.

2 Preliminary Results

In this section we prove some auxiliary results (all of them apply only for Nλ) which among

others show that the limits of the processes Yn,i(·) ( resp. Zn,i(·)) (if they exist!) are same for

each i = 1, 2, 3 . Furthermore, it will be shown that all of these sequences of random processes

are tight in D[0, %]d. To begin with we state two basic relations for Nλ.

Lemma 1. For any integrable function f | (Rd)k 7→ R
1, i.e. f ∈ L1((Rd)k), for some k ∈ N

and any f1, f2 ∈ L1((Rd)2) ∩L2((Rd)2),

E
� X 6=

i1,...,ik≥1

f(Xi1 , . . . ,Xik)
�
= λk

Z
· · ·
Z

f(x1, . . . , xk) dx1 · · · dxk , (2.1)

(2.2)

Cov
�X6=

i,j≥1

f1(Xi,Xj),
X 6=

i,j≥1

f2(Xi,Xj)
�
= λ2

Z Z
f1(x, y)

�
f2(x, y) + f2(y, x)

�
dxdy (2.3)

+λ3
Z Z Z

f1(x, y)
�
f2(x, z) + f2(z, x) + f2(y, z) + f2(z, y)

�
dxdy dz ,

where
R

is written shorthand for an integral over R
d.

Proof of Lemma 1. To prove (2.1) we remember the definition of the kth-order factorial

moment measure and its specific shape for Poisson processes, see [10], p. 72. The proof

of (2.1) is accomplished by applying the (ordinary) Campbell theorem to multiple sums of

k-tuples (Xi1 , . . . ,Xik) of pairwise distinct atoms of Nλ, see [9], [8]. To verify the second

assertion we first rewrite the product S1 S2, where Sa =
P6=

i,j≥1 fa(Xi,Xj) for a = 1, 2 ,

as sums over pairs (Xi,Xj), triples (Xi,Xj ,Xk) and quadruples (Xi,Xj ,Xk,X`) of pairwise

distinct atoms of Nλ. Taking the expectation of these seven sums calculated according to

(2.1) reveals that the expectation over the sum of quadruples is just equal to ES1ES2. For

general fourth-order stationary point processes a corresponding formula in terms of factorial

moment and cumulant measures is stated in [15], p. 97. Hence, the sum of the remaining two

expectations of pairs and four expectations over triples of atoms of Nλ equals Cov(S1, S2).

Using again (2.1) with an appropriate choice of f for k = 2 and k = 3, respectively, leads

immediately to (2.3) and completes the proof of Lemma 1. �

To be somewhat more general we replace the set-indexed estimators (Õλ2 K)n,i(B) defined in

Sect. 1 by function-indexed empirical processes estimating the functional λ2 R g(x) dx. for
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any real-valued function g ∈ L1(R
d)∩L2(R

d). Substituting the indicator function 1B in (1.1),

(1.4), (1.5) and (1.6) by g we get following mean zero function-indexed empirical processes

Yn,1(g) :=
1

|Wn|
X6=

i,j≥1

1Wn(Xi) g(Xj −Xi)− λ2 J(g) , (2.4)

Yn,2(g) :=
X6=

i,j≥1

1Wn(Xi) 1Wn(Xj) g(Xj −Xi)

|(Wn −Xi) ∩ (Wn −Xj)|
− λ2 J(g) , (2.5)

Yn,3(g) :=
1

|Wn|
X6=

i,j≥1

1Wn(Xi) 1Wn(Xj) g(Xj −Xi)− λ2 Jn(g) (2.6)

and, for i = 1, 2 ,

Zn,i(g) := Yn,i(g) + (λ2 − Ô(λ2)n )J(g) and Zn,3(g) := Yn,3(g) + (λ2 − Ô(λ2)n )Jn(g) , (2.7)

where Jn(g) := |Wn|−1 R g(x) |Wn ∩ (Wn − x) |dx −→
n→∞

J(g) :=
R
g(x) dx .

The sequences Yn,i(g) and Zn,i(g) blown up with
È
|Wn| will presumably converge in distri-

bution to Gaussian limits. The next lemma guarantees that, by virtue of Slutsky’s lemma,

see [38], these limits does not depend on i = 1, 2, 3 .

Lemma 2. The following limits hold for i = 1, 3 if g, h ∈ L1(Rd) ∩L2(Rd), and for i = 2 if

g, h are boundedly supported and square integrable over R
d :

|Wn|E(Yn,i(g) − Yn,3(g) )
2 −→
n→∞

0 and |Wn|E(Zn,i(g) − Zn,3(g) )
2 −→
n→∞

0 , (2.8)

lim
n→∞

|Wn|E(Yn,i(g)Yn,i(h) ) = λ2
Z

g(x)
�
h(x) + h(−x)

�
dx+ 4λ3 J(g)J(h) , (2.9)

lim
n→∞

|Wn|E(Zn,i(g)Zn,i(h) ) = λ2
Z

g(x)
�
h(x) + h(−x)

�
dx . (2.10)

Proof of Lemma 2. From (2.7) we get the identity

Zn,i(g)− Zn,3(g) = Yn,i(g)− Yn,3(g) + (λ2 − Ô(λ2)n)(J(g) − Jn(g))

and the inequality E(X + Y )2 ≤ 2EX2 + 2EY 2 yields

|Wn|E(Zn,i(g)−Zn,3(g) )
2 ≤ 2 |Wn|E(Yn,i(g)−Yn,3(g) )

2+2 |Wn|Var
�Ô(λ2)n

� �
J(g)−Jn(g)

�2
Employing (2.3) with f1(x, y) = f2(x, y) = 1Wn(x)1Wn(y)/|Wn|2 gives |Wn|Var

�Ô(λ2)n
�
=

4λ3+2λ2/|Wn|. Since Jn(g) −→
n→∞

J(g), the second assertion of (2.8) follows from the first one.

To show the first assertion of (2.8) we first treat the case i = 1. Here and later in this proof

we use the abbreviations Rn(x) = |Wn ∩ (Wn − x)|/|Wn| and Rn(x, y) = |Wn ∩ (Wn − x) ∩
(Wn − y)|/|Wn|. The properties the CAS (Wn) guarantee that 1 ≥ Rn(x) ≥ Rn(x, y) −→

n→∞
1
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for any fixed x, y ∈ R
d. For f1(x, y) = f2(x, y) = 1Wn(x)1W c

n
(y) g(y − x)/|Wn| the formula

(2.3) yields after some rearrangements that

|Wn|E(Yn,1(g) − Yn,3(g) )
2 = λ2

Z �
1−Rn(z)

�
g2(z) dz (2.11)

+ λ3
Z Z �

1−Rn(y)−Rn(z) +Rn(y, z) +Rn(z − y)−Rn(−y,−z)
�
g(y) g(z) dy dz ,

whence it follows the first part (2.8) for i = 1 by Lebesgue’s dominated convergence theorem.

To show (2.8) for i = 2 we assume that g(x) = 0 for x /∈ B(o, %) for some % > 0. As before we

use (2.3) for f1(x, y) = f2(x, y) = 1Wn(x)1Wn(y) g(y−x) (1−Rn(y−x))/|(Wn−x)∩(Wn−y))|
and arrive at

|Wn|E(Yn,2(g) − Yn,3(g) )
2 = λ2

Z
B(o,%)

(1−Rn(z))
2

Rn(z)
g(z)( g(z) + g(−z) )dz (2.12)

+ λ3
Z

B(o,%)

Z
B(o,%)

Rn(y, z)
1−Rn(y)

Rn(y)

1−Rn(z)

Rn(z)
(g(y) + g(−y)) (g(z) + g(−z)) dy dz .

The convexity of Wn yields |Wn| − |Wn ∩ (Wn − x)| = |Wn ∩ (W c
n − x)| ≤ % |∂Wn|d−1 for

x ∈ B(o, %) so that combined with (1.2),

sup
x∈B(o,%)

� 1

Rn(x)
− 1

�
≤ d %

r(Wn)− d %
−→
n→∞

0 (2.13)

The latter relation implies |Wn|E(Yn,2(g)− Yn,3(g) )
2 −→
n→∞

0 completing the proof of (2.8).

For i = 3 the relations (2.9) and (2.10) can be easily deduced from the identities

|Wn|E(Yn,3(g)Yn,3(h) ) = λ2
Z

g(x)
�
h(x) + h(−x)

�
Rn(x) dy (2.14)

+ λ3
Z Z �

g(x) + g(−x)
� �

h(y) + h(−y)
�
Rn(x, y) dxdy

and

|Wn|E(Zn,3(g), Zn,3(h) ) = λ2
Z

g(x)
�
h(x) + h(−x)

�
Rn(x) dy −

2λ2

|Wn|
Jn(g)Jn(h) (2.15)

+ λ3
Z Z �

g(x) + g(−x)
� �

h(y) + h(−y)
�
Rn(x, y) dxdy − 4λ3 Jn(g)Jn(h)

by the integrability assumptions on g and h combined with Rn(y) −→
n→∞

1 and Rn(x, y) −→
n→∞

1

for any fixed x, y ∈ R
d. By the same arguments, without calculating the expressions of

|Wn|E(Yn,1(g)Yn,1(h) ) and |Wn|E(Zn,1(g)Zn,1(h)) in detail, we can confirm (2.9) and (2.10)

for i = 1. On the other hand, in the remaining case i = 2 the integral representations

of |Wn|E(Yn,2(g)Yn,2(h) ) and |Wn|E(Zn,2(g)Zn,2(h) ) contain the reciprocals 1/Rn(x) and

1/Rn(y) which, by (2.13), converge uniformly to 1 for x, y ∈ B(o, %). This provides the

asymptotic covariances (2.9) as well as (2.10) for i = 2 and completes the proof of Lemma 2.

�

9



Corollary 1. For indicator functions g = 1A , h = 1B of any A,B ∈ Bd
b the asymptotic

covariances (2.9) and (2.10) take the form

lim
n→∞

|Wn|EYn,i(A) Yn,i(B) = λ2 |A ∩B|+ λ2 |A ∩ (−B)|+ 4λ3 |A| |B|
lim
n→∞

|Wn|EZn,i(A)Zn,i(B) = λ2 |A ∩B|+ λ2 |A ∩ (−B)| .

Remark 3. The asymptotic variances of
È
|Wn|Yn,i(B) and

È
|Wn|Zn,i(B) become minimal

(resp. maximal) for sets B ⊂ Bd
b satisfying |B ∩ (−B)| = 0 (resp. |B ∩ (−B)| = |B| ).

In order to simplify the proofs of the Theorems 3 and 4 we need the following “truncation

lemma". For this purpose we assign to each function g |Rd 7→ R
1 the truncated function

ga,%(x) = g(x), if x ∈ C% and |g(x)| ≤ a, and g(x) = 0 otherwise, where a, % > 0 are suitably

chosen.

Lemma 3. For any real-valued function g ∈ L1(Rd) ∩L2(Rd) the following estimates hold:

sup
n∈N

|Wn|E
�
Yn,1(g) − Yn,1(ga,%)

�2 ≤ 2λ2 c2(a, %) + 4λ3 c1(a, %)
2 (2.16)

and

sup
n∈N:|Wn|≥1

|Wn|E
�
Zn,3(g) − Zn,3(ga,%)

�2 ≤ 2λ2 c2(a, %) + (2λ2 + 8λ3) c1(a, %)
2, (2.17)

where cj(a, %) :=
R |g(x)|j 1(|g(x)| > a) dx ∧ R |g(x)|j 1(x /∈ C%) dx for j = 1, 2 .

Proof of Lemma 3. Since Yn,1(g)− Yn,1(ga,%) = Yn,1(g − ga,%) the relation

|Wn|E
�
Yn,1(h)

�2
= λ2

Z
h(x)

�
h(x) +Rn(x)h(−x)

�
dx+ λ3 J(h)

�
J(h) + 3Jn(h)

�
,

which can be obtained in like manner as (2.14), implies for h = g − ga,% that

sup
n∈N

|Wn|E
�
Yn,1(g)− Yn,1(ga,%)

�2 ≤ 2λ2 J((g − ga,%)
2) + 4λ3 J(|g − ga,%|)2 . (2.18)

Together with J(|g − ga,%|j) ≤ cj(a, %) for j = 1, 2 we arrive at (2.16).

Using (2.15) directly with h = g = g − ga,% we get in the same way that

sup
n∈N:|Wn|≥1

|Wn|E
�
Zn,3(g)− Zn,3(ga,%)

�2 ≤ 2λ2 J((g − ga,%)
2) + (2λ2 + 8λ3)J(|g − ga,%|)2 ,

which gives (2.17). �

Remark 4. Since c1(a, %) ∨ c2(a, %) −→ 0 as a → ∞ or % → ∞ Slutsky’s theorem, see [38],

says that in order to prove the weak limits of the sequences
È
|Wn|Yn,i(g) and

È
|Wn|Zn,i(g)

for g ∈ L1(Rd)∩L2(Rd) it suffices to verify these limits only for some bounded and boundedly

supported g.
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Lemma 4. For sufficiently large n ∈ N, i = 1, 2, 3 and any disjoint sets A,B ∈ Bd
b ∩ C% the

set-indexed processes (1.8) and (1.9) fulfil the estimates

|Wn|E
�
Yn,i(A) Yn,i(B)

�2 ≤ c1(%) |A| |B| and |Wn|E
�
Zn,i(A) Zn,i(B)

�2 ≤ c2(%) |A| |B| .

For any n ∈ N and each i = 1, 2, 3 the multiparameter processes

{Yn,i(r) :=
È
|Wn|Yn,i(B(r)) , r ∈ I% } and {Zn,i(r) :=

È
|Wn|Zn,i(B(r)) , r ∈ I% } belong

a.s. to D[0, %]d . Moreover, both sequence {Yn,i(r) : r ∈ I%} and {Zn,i(r) : r ∈ I%} are tight in

D[0, %]d .

Proof of Lemma 4. The calculation of the mixed fourth-order moment E(Yn,i(A)Yn, i(B) )2

starts with the representation of the product Yn,i(A) Yn, i(B) through sums of multiple sums

over k-tuples (Xi1 , . . . ,Xik) of pairwise distinct atoms of Nλ for k = 2, 3, 4. After simplifying

these multiple sums due to A ∩ B = ∅, we square the whole sum of terms and evaluate the

expectations by applying repeatedly the Campbell-type formula (2.1) for k ∈ {2, 3, . . . , 8}.
The details of these rather lengthy and tedious, but straightforward calculations proving lastly

both estimates of Lemma 4 are left to the reader.

For i = 1, 2, 3 each realization of the random process Yn,i(r) =
È
|Wn|Yn,i(B(r)) on the

cube I% can be written as scaled difference of the step function Õλ2 K)n,i(B(r)) having at most

Xn(C%) jumps on each coordinate-axis and the continuous function λ2 |B(r)| (for i = 1, 2)

or λ2 R
B(r) Rn(x) dx (for i = 3). Note that step functions are finite linear combinations of

indicator functions r = (r1, . . . , rd) 7→ Qd
i=1 1Ji(ri) for Ji = [ai, bi), 0 ≤ ai < bi ≤ % or

Ji = {%}, i = 1, . . . , d . All these step functions and continuous functions belong to D[0, %]d ,

see [3], p. 1662. Since Nλ =
P

i≥1 δXi
is a locally finite counting measure we have P(Xn(C%) <

∞) = 1 yielding that P({Yn,i(r) : r ∈ I%} ∈ D[0, %]d) = 1. (2.7) reveals that the same applies

for {Zn,i(r) : r ∈ I%} .

To prove the tightness of the sequence Yn,i(r) =
È
|Wn|Yn,i(B(r)) , r ∈ I% , in D[0, %]d we

employ the following moment criterion given in [3], p. 1658, see also [4] for d = 1 : For any two

adjacent half-open hyper-rectangles Bp = ×i 6=p(si, ti]× (sp, tp] and B′
p = ×i 6=p(si, ti]× (tp, t

′
p]

(sp < tp < t′p) in I% with a common pth face for some p ∈ {1, . . . , d} we suppose that

E|ÜYn,i(Bp) ÜYn,i(B
′
p)|γ ≤ ( ν(B) ν(B′) )β (2.19)

for fixed γ > 0, β > 1/2 and some finite measure ν(.) on I%, where ÜYn,i(Bp) is the incre-

ment of d-parameter process Yn,i(r) around the hyper-rectangle Bp. It is easily checked thatÜYn,i(Bp) =
È
|Wn|Yn,i(∪ε1,...,εd∈{−1,1}Bp(ε1, . . . , εd)), where Bp(ε1, . . . , εd) is obtained from

Bp by multiplying the coordinates of each vertex of Bp by ε1, . . . , εd. By doing the same

for B′
p we see that the corresponding union of the sets B′

p(ε1, . . . , εd) has no common point

with the other union set. Hence, by the first estimate of Lemma 4 we can easily deduce the

estimate

|Wn|E( ÜYn,i(Bp) ÜYn,i(B
′
p) )

2 ≤ c1(%) 4
d |Bp| |B′

p| (2.20)
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proving (2.19) for γ = 2, β = 1 and ν(·) = | · | . In view of (2.7) and the second estimate

of Lemma 4 we get an analogous estimate for the increments of the processes {Zn,i(r) =È
|Wn|Zn,i(B(r)) , r ∈ I% } with a possibly different constant on the r.h.s. of (2.20). Thus, all

assertions of Lemma 4 are completely proved. �

3 CLT FOR THE SEQUENCES
q
|Wn|Yn,i(g) AND PROOF

OF THEOREM 1

We shall prove asymptotic normality for each of the sequences (2.4), (2.5) and (2.6) being

defined for a stationary Poisson process Nλ with intensity λ > 0 and some CAS (Wn) in R
d .

Further, let N
�
µ, σ2

�
denote a Gaussian random variable with mean µ and variance σ2 > 0,

and
d−−−→

n→∞
indicates convergence in distribution or weak convergence of the random elements

under consideration.

Theorem 3. For any g ∈ L1(R
d) ∩L2(R

d) and i = 1 or i = 3 ,È
|Wn|Yn,i(g)

d−−−→
n→∞

N
�
0, σ2(g)

�
with

(3.1)

σ2(g) = λ2
Z

g(x) (g(x) + g(−x)) dx+ 4λ3 J(g)2 , where J(g) =
Z

g(x) dx .

Furthermore, (3.1) holds for i = 2 , if g ∈ L2(R
d) and supp(g) := {x : g(x) 6= 0} ⊆ C% for

some % > 0 .

Proof of Theorem 3. Due to Lemma 2, the first part of (2.8), it suffices to to prove (3.1) for

i = 1 . Moreover, thanks relation (3.1) of Lemma 3 we may assume that the function g in (2.4)

has bounded (non-empty) support, say supp(g) ⊆ C% for some % > 0. Hence, g ∈ L2(R
d)

implies g ∈ L1(R
d).

We need further notation: For z ∈ Z
d define

X(n)
z :=

X
i≥1

1Ez∩Wn(Xi)
X
j 6=i

g(Xj −Xi)− λ2 |Ez ∩Wn|J(g) with Ez = z + [−1/2, 1/2)d .

By means of Vn := {z ∈ Z
d : Ez ⊆ Wn} and ∂Vn := {z ∈ Z

d : Ez ∩ W c
n 6= ∅} we rewrite

Yn,1(g) as partial sum processÈ
|Wn|Yn,1(g) =

1

|Wn|
X
z∈Vn

X(n)
z +

1

|Wn|
X

z∈∂Vn

X(n)
z (3.2)

over the m-dependent field of means zero random variables {X(n)
z : z ∈ Vn ∪ ∂Vn} with

m = 2 d%e+1. For more information on (CLT’s for) m-dependent fields the reader is referred

e.g. to [15], [16], [18] and [7]. Note that the m-dependence results from the independence
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properties of the Poisson point process and that g disappears outside C%. It is not difficult to

see that

E
� X
z∈∂Vn

X(n)
z

�2
≤ (m+ 1)d

X
z∈∂Vn

E(X(n)
z )2 with E(X(n)

z )2 ≤ 2λ2 J(g2) + 4λ3 J(|g|)2 .

The last estimate is obtained from a relation stated at the beginning of the proof of Lemma 3.

We next show that #(∂Vn) ≤ c3(d) |∂Wn|d−1. Obviously, Ez ⊆ ∂Wn ⊕ B(o,
√
d) for any

z ∈ ∂Vn implying #(∂Vn) ≤ |∂Wn⊕B(o,
√
d)|. Due to the convexity of Wn and by combining

the first and second inequality of (1.2) we obtain that

|∂Wn ⊕B(o,
√
d)| ≤ 2 (|Wn ⊕B(o, %)| − |Wn|) ≤ 2d

√
d |∂Wn|d−1 ,

which yields the desired estimate with c3(d) = 2d
√
d. By appealing to the properties of

the CAS (Wn) we get #Vn/|Wn| −→
n→∞

1 and the variance of the scaled second sum in (3.2)

disappears asymptotically. Finally, we are in a position to apply the CLT for stationary m-

dependent fields (see e.g. [15] and references therein or the stronger result quoted in Remark 3)

which provides that

|Wn|−1/2
X
z∈Vn

X(n)
z

d−−−→
n→∞

N
�
0, σ2(g)

�
.

Together with Slutsky’s theorem the latter implies (3.1) and completes the proof of Theorem 3.

�

Remark 5. By applying a Berry-Esseen bound proved in [7] for (non-stationary) m-dependent

random fields in terms of the third-order Lyapunov ratio we can state the following: For any

g |Rd 7→ R
1 satisfying ∅ 6= supp(g) ⊆ C% for some % > 0 and g ∈ L3(R

d),

sup
x∈R1

���P�È|Wn|Yn,i(g) ≤ xσ(g)
�
−P(N (0, 1) ≤ x )

��� ≤ c4(d, %, λ)J(|g|3)
σ3(g)

È
|Wn|

for i = 1, 2, 3 .

Corollary 2. The FIDI’s of the set-indexed processes {
È
|Wn|Yn,i(B) : B ∈ Bd∩C%} defined

in (1.8) for i = 1, 2, 3 converge in distribution (as n → ∞) to the FIDI’s of the mean zero

set-indexed Gaussian process {Y (B) : B ∈ Bd ∩ C%} with covariance function CY (A,B) :=

λ2 |A ∩B|+ λ2 |A ∩ (−B)|+ 4λ3 |A| |B| .

Proof of Corollary 2. We put g
(a1,...,ak)
B1,...,Bk

(x) = a1 1B1
(x)+· · ·+ak 1Bk

(x) for any a1, . . . , ak ∈ R
1

(such that ∨k
i=1|ai| > 0) and any B1, . . . , Bk ∈ Bd∩C%. Since g

(a1 ,...,ak)
B1,...,Bk

fulfils the assumptions

of Theorem 3 we deduce from (3.1) thatÈ
|Wn|Yn,i

�
g
(a1 ,...,ak)
B1,...,Bk

�
d−−−→

n→∞
N
�
0,

kX
p,q=1

ap aq CY (Bp, Bq)
�
.
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Hence, by applying the classical Cramér-Wold device, see e.g. [4], it follows the convergence

in distribution of the k-dimensional random vectors

(
È
|Wn|Yn,i(B1), . . . ,

È
|Wn|Yn,i(Bk))

d−−−→
n→∞

(Y (B1), . . . , Y (Bk))

for any B1, . . . , Bk ∈ Bd ∩ C%. Hence , Corollary 2 is proved. �

Proof of Theorem 1. Corollary 2 implies immediately to weak convergence of the FIDI’s of the

multiparameter processes {Yn,i(r) =
È
|Wn|Yn,i(B(r)) : r ∈ I%} to the FIDI’s of the multipa-

rameter Gaussian process {Y (r) = Y (B(r)) : r ∈ I%}. Since B(r) = −B(r) and |B(r)| = 2d |r|
for r ∈ I% we get the covariance function EY (s)Y (t) = CY (B(s), B(t)) = 2λ2 |B(s ∧ t)| +
4λ3 |B(s)| |B(t)| = λ2 2d+1 |s∧ t|+λ3 4d+1 |s| |t| which coincides with the covariance function

given in Theorem 1. A straightforward calculation shows that the covariance function of the

Gaussian process {λ 2(d+1)/2 (W (r) + (
È
1 + 2d+1 λ %d − 1) %−d |r|W (%) ) : r ∈ I%} coincides

with that of {Y (r) : r ∈ I%} . The tightness of {Yn,i(r) : r ∈ I%} stated in Lemma 4 completes

the proof of Theorem 1. �

4 CLT for the Sequences
q
|Wn|Zn,i(g) and Proof of Theorem 2

For the sake of simplicity we prefer to treat the case i = 3 with Zn,3(g) defined in (2.7) which

means to prove thatÈ
|Wn|Zn,3(g) =

1È
|Wn|

� X6=

i,j≥1

1Wn(Xi)1Wn(Xj) g(Xj −Xi)− |Wn|Ô(λ2)n Jn(g)
�

=
1È
|Wn|

X6=

i,j≥1

1Wn(Xi)1Wn(Xj)
�
g(Xj −Xi)−

Jn(g)

|Wn|
�

d−−−→
n→∞

N
�
0, τ2(g)

�
, (4.1)

where Jn(g) = |Wn|−1 R g(x) |Wn ∩ (Wn − x)|dx and τ2(g) = λ2 R g(x) �g(x) + g(−x)
�
dx.

Whereas the proof of Theorem 3 relies on the CLT for m−dependent random fields, we will

prove (4.1) by conditioning on {Nλ(Wn) = mn} such that mn/|Wn| −→
n→∞

λ > 0 and showing

asymptotic normality of a U -statistic defined for a triangular array of independent, uniformly

distributed (short: I.U.D.) random points on Wn.

Lemma 5. Let X
(n)
1 , . . . ,X

(n)
mn be a triangular array of I.U.D. random vectors on Wn such

that mn/|Wn| −→
n→∞

λ > 0. Then, for any g ∈ L1(R
d) ∩L2(R

d) ,

Un(g) :=
1È
|Wn|

X 6=

1≤i,j≤mn

�
g(X

(n)
i −X

(n)
j )− Jn(g)

|Wn|
�

d−−−→
n→∞

N
�
0, τ2(g)

�
(4.2)

with Jn(g) and τ2(g) as defined in (4.1).
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Proof of Lemma 5. It turns out that the Hoeffdings “projection method", see Chapt. 5.3 in

[38], fails due to the fact that the U -statistic
È
|Wn|Un(g) is asymptotically degenerate. Some

similar spatial U -statistics with Gaussian limits in [24] do not include our specific situation.

Lemma 5 extends a CLT for interpoint-distances in [14] and is based on Bolthausen’s lemma

(which is a variant of the Stein-Tikhomirov method), see [5]. In accordance with this lemma,

(4.2) holds if we can prove with the characteristic function fn(t) := E exp{it Un(g)} that

EU2
n(g) −→

n→∞
τ2(g) and f ′

n(t) + τ2(g) t fn(t) −→
n→∞

0 for each t ∈ R
1 . (4.3)

First we calculate EU2
n(g) in analogy to (2.15). With the abbreviations of Sect. 2 we arrive

at

EU2
n(g) =

mn (mn − 1)

|Wn|2
Z

g(x)
�
g(x) + g(−x)

�
Rn(x) dx− mn (mn − 1) (4mn − 6)

|Wn|3
(Jn(g))

2

+
mn (mn − 1) (mn − 2)

|Wn|3
Z Z �

g(x) + g(−x)
� �

g(y) + g(−y)
�
Rn(x, y) dxdy .

Lebesgue’s dominated convergence theorem and mn/|Wn| −→
n→∞

λ yield EU2
n(g) −→

n→∞
τ2n(g) .

With the truncated function ga,%(x) = g(x), if x ∈ C% and |g(x)| ≤ a, and g(x) = 0 otherwise,

for a, % > 0, and the above formula for EU2
n(g) permits the estimate

E
�
Un(g)− Un(ga,%)

�2 ≤ 2λ2
n c2(a, %) + 8λ3

n c1(a, %)
2 , (4.4)

where λn = mn/|Wn| and c1(a, %), c2(a, %) as in Lemma 3. The latter estimate combined

with Slutsky’s theorem, see [38], enables us in proving the second limit of (4.3) to assume

additionally that |g(x)| ≤ a for x ∈ supp(g) ⊆ C% for some finite a, % > 0. Next, we will

write
R

(xi)

shorthand for an integral over Wn w.r.t. the variable xi. With the abbreviation

Hn(z) := g(z) + g(−z) − 2Jn(g)/|Wn| and
Z
(x)

Z
(y)

Hn(x− y) dxdy = 0

we may write

fn(t) =
Z

(x1)

· · ·
Z

(xmn )

exp

�
itÈ
|Wn|

X6=

1≤i<j≤mn

Hn(xi − xj)

�
dx1
|Wn|

· · · dxmn

|Wn|
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and get the decomposition

f ′
n(t) = i

mn(mn − 1)

2
È
|Wn|

Z
(x1)

Z
(x2)

Hn(x1 − x2)
Z

(x3)

· · ·
Z

(xmn )

exp

�
itÈ
|Wn|

h
Hn(x1 − x2)

+
mnX
i=3

�
Hn(x1 − xi) +Hn(x2 − xi)

�
+

X6=

3≤i<j≤mn

Hn(xi − xj)
i� dx1

|Wn|
· · · dxmn

|Wn|

= i
mn(mn − 1)

2
È
|Wn|

Z
(x1)

Z
(x2)

Hn(x1 − x2)
Z

(x3)

· · ·
Z

(xmn )

 
exp

�
itÈ
|Wn|

h
Hn(x1 − x2)

+
mnX
i=3

�
Hn(x1 − xi) +Hn(x2 − xi)

� i�
− 1− itÈ

|Wn|
h
Hn(x1 − x2)

+
mnX
i=3

�
Hn(x1 − xi) +Hn(x2 − xi)

�i!
exp

�
itÈ
|Wn|

X6=

3≤i<j≤mn

Hn(xi − xj)

�
dx1
|Wn|

· · · dxmn

|Wn|

− mn(mn − 1) t

2 |Wn|
Z

(x1)

Z
(x2)

H2
n(x1 − x2)

dx1
|Wn|

dx2
|Wn|

f�
n(t)

− mn(mn − 1)(mn − 2) t

|Wn|
Z

(x1)

· · ·
Z

(xmn )

Hn(x1 − x2)Hn(x1 − x3)

× exp

�
itÈ
|An|

X6=

3≤i<j≤mn

Hn(xi − xj)

�
dx1
|Wn|

· · · dxmn

|Wn|

= T
(n)
1 (t) + T

(n)
2 (t) + T

(n)
3 (t) ,

where

f�
n(t) :=

Z
(x3)

· · ·
Z

(xmn )

exp

�
itÈ
|Wn|

X6=

3≤i<j≤mn

Hn(xi − xj)

�
dx3
|Wn|

· · · dxmn

|Wn|
.

Due to the well-known inequality
��eitx − 1− itx

�� ≤ t2 x2/2 for any t, x ∈ R
1 we obtain that���T (n)

1 (t)
��� ≤ mn(mn − 1) t2

4
È
|Wn| |Wn|

Z
(x1)

· · ·
Z

(xmn )

|Hn(x1 − x2)|

×
�
Hn(x1 − x2) +

mnX
i=3

�
Hn(x1 − xi) +Hn(x2 − xi)

��2 dx1
|Wn|

· · · dxmn

|Wn|

≤ mn(mn − 1) t2

4
È
|Wn| |Wn|3

 
I
(n)
1 +

8 (mn − 2)

|Wn|
I
(n)
2 +

4 (mn − 2)(mn − 3)

|Wn|2
I
(n)
3

!
(4.5)
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with

I
(n)
1 =

Z
(x1)

Z
(x2)

|Hn(x1 − x2)|3 dx1dx2 ≤ 8 c σ2(g) |Wn|

I
(n)
2 =

Z
(x1)

Z
(x2)

Z
(x3)

H2
n(x1 − x2) |Hn(x1 − x3)|dx1dx2dx3 ≤ 8

Z
|g(x)|dxσ2(g) |Wn|

I
(n)
3 =

Z
(x1)

· · ·
Z

(x4)

|Hn(x1 − x2)| |Hn(x1 − x3)|
�
|Hn(x1 − x4)|+ |Hn(x2 − x4)|

�
dx1 . . . dx4

≤ 2
�
4
Z

|g(x)|dx
�3

|Wn| .

The above estimates follow immediately from |H(x)| ≤ 4 a (since |g(x)| ≤ a),R
(y)

|Hn(x− y)|dy ≤ 4
R |g(y)|dy for all x ∈ R

1 and the relationZ
(x1)

Z
(x2)

H2
n(x1 − x2) dx1dx2 = |Wn|

Z �
g(x) + g(−x)

�2
Rn(x) dx− 4J2

n(g) ≤ 2 τ2(g) |Wn|,

which implies that

|Wn|−1
Z

(x1)

Z
(x2)

H2
n(x1 − x2) dx1 dx2 −→

n→∞
2 τ2(g) . (4.6)

Summing up all terms on the r.h.s. of (4.5) yields

T
(n)
1 (t) = t2 O(|Wn|−1/2) as n → ∞ . (4.7)

From the definition of T
(n)
3 (t) it is rapidly seen that���T (n)

3 (t)
��� ≤ mn(mn − 1)(mn − 2) |t|

|Wn|4
Z

(x1)

��� Z
(x2)

Hn(x1−x2) dx2
���dx1 sup

x1∈Wn

Z
(x3)

|Hn(x1−x3)|dx3,

where last integral over x3 is bounded by 4
R |g(x)|dx . To find an appropriate bound of the

remaining integral term we remember the fact that the support of g is contained in the cube

C% centred at the origin o . Using the abbreviation W
(%)
n := {x ∈ Wn : B(x, %

√
d) ⊆ Wn} , it

follows that
R
(y)

g(y − x)dy =
R
g(y)dy for any x ∈ W

(%)
n and��� Z g(x) |Wn ∩ (Wn − x)|dx − |W (%)

n |
Z

g(x)dx
��� ≤ |Wn \W (%)

n |
Z

|g(x)|dx .

Having in mind these relations and splitting the domain of integration over x1 into W
(%)
n and

Wn \W (%)
n we arrive after some rearrangements at
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Z
Wn

��� Z
Wn

Hn(x1 − x2) dx2
���dx1 ≤ 8 |Wn \W (%)

n |
Z

|g(x)|dx

Thus, T
(n)
3 (t) = |t| O

�
|Wn\W (%)

n |/|Wn|
�

as n → ∞ . This result combined with the properties

of the CAS (Wn) and (4.7) leads to

f ′
n(t) +

mn(mn − 1) t

2 |Wn|
Z

(x1)

Z
(x2)

H2
n(x1 − x2)

dx1
|Wn|

dx2
|Wn|

f�
n(t) −→

n→∞
0

for any fixed t ∈ R
1 . Further, by the inequality |eitx−1| ≤ |tx| for t, x ∈ R

1 , it follows that��� f�
n(t) − fn(t)

��� ≤ (2mn − 3)|t|√
Wn |Wn|2

Z
(x1)

Z
(x2)

|Hn(x1 − x2)|dx1 dx2

≤ 4 (2mn − 3) |t|√
Wn |Wn|

Z
|g(x)|dx −→

n→∞
0 .

Finally, together with the foregoing relation and (4.6), the second limit of (4.3) is proved

completing the proof of Lemma 5. �

Theorem 4. For any g ∈ L1(R
d) ∩L2(R

d) and i = 1 or i = 3 ,È
|Wn|Zn,i(g)

d−−−→
n→∞

N
�
0, τ2(g)

�
with τ2(g) = λ2

Z
g(x) (g(x) + g(−x)) dx . (4.8)

Furthermore, (4.8) holds for i = 2 , if g ∈ L2(R
d) and supp(g) := {x : g(x) 6= 0} ⊆ C% for

some % > 0.

Proof of Theorem 4. By virtue of the second part of (2.8) we need only to verify (4.1). For

this end, we make use of the total probability theorem providing that

P
�È

|Wn|Zn,3(g) ≤ x
�
=
X
k≥0

P
�È

|Wn|Zn,3(g) ≤ x
��Nλ(Wn) = k

�
P
�
Nλ(Wn) = k

�
which immediately leads to��P�È|Wn|Zn,3(g) ≤ x

�
−P

�
N (0, τ2(g)) ≤ x

� �� ≤ 1−P(an ≤ Nλ(Wn) ≤ bn)

+P(an ≤ Nλ(Wn) ≤ bn) max
an≤mn≤bn

��P�È|Wn|Zn,3(g) ≤ x
��Nλ(Wn) = mn

�
−P

�
N (0, τ2(g)) ≤ x

� ��
with the sequences of integers an := dλ|Wn| − λn|Wn|1/2e and bn := dλ|Wn| + λn|Wn|1/2e ,

where λn = o(|Wn|1/2) . Since P
�È

|Wn|Zn,3(g) ≤ x
��Nλ(Wn) = mn

�
= P

�
Un(g) ≤ x

�
due

to the CSR-property of Nλ , Lemma 5 and bλn
P−a.s.−−−−→
n→∞

λ imply the validity of (4.1). �
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Remark 6. So far the rates of convergence in the Theorem 4 as well as in Lemma 5 are

unknown. It seems that the methods applied in the recent papers [36] and [30] can help to

answer this open question.

Corollary 3. The FIDI’s of the set-indexed processes {Zn,i(B) : B ∈ Bd∩C%} defined in (1.9)

for i = 1, 2, 3 converge in distribution (as n → ∞) to the FIDI’s of the mean zero set-indexed

Gaussian process {Z(B) : B ∈ Bd ∩ C%} possessing the covariance function CZ(A,B) =

λ2 |A ∩B|+ λ2 |A ∩ (−B)| .

The proof of Corollary 3 consists in repeating almost verbatim the proof of Corollary 2.

Proof of Theorem 2. Corollary 3 implies the weak convergence of the FIDI’s of the mul-

tiparameter processes {Zn,i(r) =
È
|Wn|Zn,i(B(r)) : r ∈ I%} to the FIDI’s of the mul-

tiparameter Gaussian process {Z(r) = Z(B(r)) : r ∈ I%} having the covariance function

CZ(B(s), B(t)) = 2λ2 |B(s ∧ t)| = λ2 2d+1 |s ∧ t|. The latter shows that {Y (r) : r ∈ I%} and

{λ 2(d+1)/2 W (r) : r ∈ I%} have the same FIDI’s. The tightness of {Zn,i(r) : r ∈ I%} stated in

Lemma 4 completes the proof of Theorem 2. �

5 Applications to Testing for Complete Spatial Randomness

From the viewpoint of spatial point process statistics the main reason for studying limits

of set-indexed or multiparameter empirical processes consists in the construction of asymp-

totic goodness-of-fit tests to check non-parametric characteristics of the spatial point process

model under consideration. Theorems 1 and 2 allow to establish Kolmogorov-Smirnov and

Cramér-von Mises type tests, respectively, for the multiparameter K-function of a stationary

Poisson process (multiplied by λ2) for the cases of known as well as estimated intensity λ.

These goodness-of-fit tests can be interpreted as test for CSR generalizing the tests based

on the empirical one-parameter K-function suggested in [16]. For alternative (mostly non-

asymptotic) tests for CSR the reader is referred to [12], [23], [13], [22], [42] and further

references therein.

For this purpose, we are interested in the limit distributions of the test statistics

K
(n)
Y (λ, d, %) =

1√
λ

max
r∈I%

|Yn,2(r)| , C
(n)
Y (λ, d, %) =

1

λ

Z
I%

Y 2
n,2(r) dr

and

K
(n)
Z (d, %) =

1bλn

È
2d+1 %d

max
r∈I%

|Zn,2(r)| , C
(n)
Z (d, %) =

1bλ2
n 2

d+1 %d

Z
I%

Z2
n,2(r) dr .
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Using the continuity of the mappings f 7→ maxr∈I% |f(r)| and f 7→ R
I% f(r)2 dr on the

Skorokhod-space D[0, %]d we may combine the continuous mapping theorem, see [4], Slut-

sky’s theorem, see [38], and the Theorems 1 and 2 to obtain

K
(n)
Y (λ, d, %)

d−−−→
n→∞

1√
λ

max
r∈I%

|Y (r)|
d
=

√
λ 2d+1 max

r∈I%

���W (r) + (
È
1 + 2d+1 λ %d − 1) %−d |r|W (%)

���
d
=

√
κ max

r∈I1

���W (r) + (
√
1 + κ− 1) |r|W (e)

��� =: ∆d,κ (5.1)

where e = (1, . . . , 1) , κ = λ 2d+1 %d and

K
(n)
Z (d, %)

d−−−→
n→∞

%−d/2 max
r∈I%

|W (r)| d
= max

r∈I1
|W (r)| =: Kd , (5.2)

C
(n)
Z (d, %)

d−−−→
n→∞

%−d
Z
I%

W (r)2 dr
d
=
Z
I1

W 2(r) dr =: Cd . (5.3)

Here we have used the scale invariance {%−d/2 W (% r) : r ∈ R
d
+}

d
= {W (r) : r ∈ R

d
+}

of the Wiener sheet on Rd
+, see [1], entailing that

¦√
λ 2d+1

�
W (r) + (

È
1 + 2d+1 λ %d −

1) %−d |r|W (%)
�
: r ∈ I%

©
d
=
¦√

κ
�
W (r) + (

√
1 + κ − 1) |r|W (e)

�
: r ∈ I1

©
. Note that

explicit expressions neither for the distribution functions Hd,κ, Fd and Gd of ∆κ, Kd and

Cd, respectively, nor for their densities (they do exist!) are known. Only their asymptotic

tail behaviour seems to be available, see [2] and references therein. It is well-known that the

random variable Cd can be represented as infinite quadratic form of I.I.D. N (0, 1)-distributed

random variables, see e.g. [33], more precisely,

Cd
d
=
� 2
π

�2 d ∞X
i1,...,id=1

ξ2i1,...,id
(2 i1 − 1)2 · · · (2 id − 1)2

with I.I.D. ξi1,...,id
d
= N (0, 1)

providing the characteristic function

E exp{it Cd} =
∞Y

i1,...,id=1

�
1− 22d+1 i t

π2d (2 i1 − 1)2 · · · (2 id − 1)2

�−1/2
for t ∈ R

1.

If i t is replaced by −a ≤ 0 we get a formula for the Laplace-Stieltjes transform of Gd. In [11]

using different methods from stochastic analysis the shape of the Laplace-Stieltjes transform

of G2 was shown to be

E exp{−aC2} =
� ∞Y

k=1

cosh
� 2

√
2 a

(2k − 1)π

��−1/2
for a ≥ 0 .

By combining analytical techniques and numerical procedures it might be possible to invert

E exp{−aC2} at least approximately, see [32],[29] and [33] for the principle ideas and an
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application to the bivariate Brownian bridge. In our situation it remains to determine best

possible approximations for the 100α% percentage points Hd,κ(α) = inf{x > 0 : Hd,κ(x) ≥
α}, Fd(α) = inf{x > 0 : Fd(x) ≥ α} and Gd(α) = inf{x > 0 : Gd(x) ≥ α} by a large-scale

simulation of the Wiener sheet on [0, 1]d and an estimation of the corresponding densities of

Hd,κ, Fd and Gd. For d = 2 we have simulated 100,000 realizations of the Wiener sheet on

an equidistant grid of 1, 000 × 1, 000 points in [0, 1]2. The obtained percentage points are

summarized in the subsequent tables.

Table of 100α% percentage points of F2 and G2

100α% 95% 95.5% 96% 96.5% 97% 97.5% 98% 98.5% 99% 99.5%

F2(α] 2.434 2.476 2.514 2.555 2.671 2.671 2.747 2.839 2.971 3.180

G2(α) 0.713 0.745 0.778 0.814 0.856 0.909 0.974 1.056 1.170 1.387

Table of 100α% percentage points of H2,κ for κ = 0.5 + 0.1 × k , k = 0, 1, . . . , 25

κ 95% 97.5% 99% 99.5% κ 95% 97.5% 99% 99.5%

0.5 1.966 2.179 2.440 2.636 1.8 4.765 5.336 6.038 6.556

0.6 2.206 2.447 2.741 2.965 1.9 4.969 5.565 6.301 6.843

0.7 2.437 2.708 3.036 3.285 2.0 5.170 5.794 6.561 7,129

0.8 2.662 2.961 3.324 3.601 2.1 5.372 6.020 6.822 7.414

0.9 2.882 3.209 3.610 3.904 2.2 5.573 6.246 7.085 7.696

1.0 3.099 3.451 3.887 4.207 2.3 5.775 6.474 7.345 7.978

1.1 3.314 3.692 4.160 4.509 2.4 5.977 6.701 7.607 8.263

1.2 3.527 3.934 4.432 4.809 2.5 6.179 6.932 7.867 8.543

1.3 3.736 4.171 4.701 5.111 2.6 6.379 7.161 8.124 8.826

1.4 3.944 4.405 4.972 5.403 2.7 6.579 7.390 8.387 9.109

1.5 4.150 4.637 5.243 5.690 2.8 6.781 7.614 8.646 9.391

1.6 4.356 4.873 5.509 5.983 2.9 6.978 7.839 8.902 9.676

1.7 4.563 5.105 5.774 6.269 3.0 7.179 8.067 9.167 9.957

Acknowledgements. The author is deeply indebted to Dr. F. Reffel for his support in the

computation of the above-given 100α% percentage points based on large-scale simulations of

the two-dimensional Wiener sheet and the distribution functions F2, G2 and H2,κ.
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The computation of the subsequent plots presenting the distribution function and probability

density of K2 and C2, respectively, are based on 100,000 simulations of the standard Wiener

sheet on an equidistant 1,000 x 1,000 grid in [0, 1]2
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Fig.4: Empirical distribution function of F2(x) Fig.5: Kernel density estimation of F ′
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Fig.6: Empirical distribution function of G2(x) Fig.7: Kernel density estimation of G′
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Fig.8: Wiener sheet over the unit square simulated on an equidistant 100 x 100 grid
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