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Dramatic Change of the Magnetic Response in LiV2O4: Possible Heavy Fermion to
Itinerant d-Metal Transition
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The magnetic relaxation of the d-metal oxide LiV2O4 has been measured by means of quasielastic

neutron scattering. At low temperatures, the observed residual linewidth of 0.5 meV and a square-
root temperature dependence of the magnetic relaxation rate are canonical features of heavy-fermion
systems. For T . 40 K the magnetic response changes dramatically and can be characterized as a
metal close to ferromagnetic order. [S0031-9007(99)08823-7]

PACS numbers: 71.27.+a, 61.12.Ex, 71.20.Be, 71.30.+h
LiV2O4 is a transition-metal oxide that crystallizes in
the cubic spinel-type structure [1]. In this compound
the vanadium ions have the formal charge V13.5 and
it was shown two decades ago that LiV2O4 is metal-
lic [2]. No sign of magnetic order or superconductiv-
ity could be observed for T $ 0.02 K [3] as opposed to
the isostructural compounds LiTi2O4 [4] and ZnV2O4 [5]
which become superconducting sTc ­ 13.7 Kd and mag-
netically ordered sTN ­ 40 Kd, respectively. In the fcc
spinel structure the transition-metal ions occupy corner-
sharing tetrahedral sites and, due to this inherent geomet-
rical frustration, magnetic order can easily be suppressed.
Indeed, the antiferromagnetic (AFM) order in ZnV2O4 be-
comes possible only due to a cubic-to-tetragonal structural
phase transition at 50 K [5]. Based on the results of spe-
cific heat, susceptibility and NMR measurements, Kondo
et al. [3] proposed that LiV2O4 be the first example
of a d-metal compound exhibiting heavy-fermion (HF)
behavior [6] with a characteristic temperature of Tp ø
30 K [3]. Subsequently, Chmaissem et al. [7] reported
an anomalous temperature dependence of the lattice con-
stants below T ­ 20 K and interpreted it in terms of a
strongly enhanced Grüneisen parameter, which again is
a characteristic fingerprint of HF systems. 7Li NMR re-
sults, similar to those presented by Kondo et al. [3], were
published by Fujiwara et al. [8] but were interpreted in
terms of a spin-fluctuation theory.

Quasielastic neutron scattering experiments provide a
unique characterization of the dynamic properties of a
magnetic system. The most fundamental property is
the dynamical susceptibility x 00sQ, v, T d that can be
measured via the dynamic structure factor SsQ, v, T d,

SsQ, v, T d ­ s1 2 e2hvykBT d21x 00sQ, v, T d . (1)

In the absence of interactions, a local magnetic mo-
ment will give a sharp delta-function peak in SsQ, v, T d.
Exchange interactions with conduction electrons will
yield Lorentzian line shapes and the corresponding width
0031-9007y99y82(14)y2919(4)$15.00
GsQ, T d at low temperatures gives a rough estimate of the
hybridization strength and determines a characteristic tem-
perature Tp. In strongly correlated f-electron compounds,
two different classes have been observed: (i) Kondo sys-
tems with a residual linewidth for T ! 0 and a monot-
onous increase with increasing temperature, which are
characteristics for pure HF systems, and (ii) linewidth of
mixed-valence compounds, which are large and roughly
temperature independent. Bickers et al. [9] calculated the
temperature dependence of the magnetic relaxation rate
and showed that at low temperatures GsQ, T d displays
a minimum around Tp followed by a high-temperature
behavior that can be well described by a square-root de-
pendence. Hence, the magnetic relaxation rate is a fun-
damental property of strongly correlated electron systems
and allows for a definite characterization. For the first
time, in this Letter, we report on detailed neutron scatter-
ing experiments on the Q and T dependence of the mag-
netic relaxation rate in LiV2O4.

Polycrystalline samples of LiV2O4 were prepared by
sintering a mixture of powders of LiVO3 and VO with
a slight excess of LiVO3 in order to compensate for Li
evaporation. Platinum crucibles were used for reaction of
the powders at 750 ±C for 10 days. In x-ray diffraction
experiments we found the nominally pure fcc normal
spinel structure with a lattice constant a ­ 8.240s1d Å.
From EPR and magnetic susceptibility measurements, we
estimated a number of 0.1% V defects.

Quasielastic neutron scattering experiments have been
performed on the time-of-flight spectrometer IN6 at the
Institut Laue Langevin (ILL), Grenoble. The incom-
ing neutron wave length was 5.1 Å. Carefully pow-
dered polycrystalline samples were filled in a flat-plate
sample holder and mounted in a cryostat, allowing for
temperatures 1.5 # T # 300 K. Since natural LiV2O4
contains the highly absorbing 6Li isotope, a sample holder
of 2 mm thickness was chosen to ensure a transmission
of 85%. Additionally, a vanadium plate and an empty
© 1999 The American Physical Society 2919
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sample holder were measured to account for detector ef-
ficiency and background signal, respectively. The raw
data were corrected in a standard way employing standard
routines of the ILL. The detectors of the spectrometer
covered a scattering angle of 11± # 2Q # 113±, and to
analyze the Q dependence of the quasielastic signal they
were binned into six groups with a mean angular step
width of 17±. Good agreement of measured and calcu-
lated intensities was achieved assuming a single quasielas-
tic Lorentzian multiplied by the detailed balance factor
and convoluted with the instrumental resolution.

Figure 1 shows the dynamic structure factor SsQ, vd
at two different temperatures at low Q (Figs. 1a and 1b)
and for Q ­ 1.95 Å21 at T ­ 80 K (Fig. 1c). There is
a large elastic sv ­ 0d contribution due to elastic scat-
tering contributions. Additionally, substantial quasielastic
intensities can easily be identified which decrease with in-
creasing momentum transfer Q, thus indicating that these
intensities are of magnetic origin. To parametrize our data
we used a simple relaxational ansatz for the dynamic sus-
ceptibility:

x 00sQ, v, T d ­ vGsQ, T d
x0sQ, T d

v2 1 G2sQ, T d
. (2)

GsQd is the Q-dependent half width at half maximum and
x0sQ, T d is related to the bulk susceptibility x0sT d via
the magnetic form factor f2sQd x0sT d. The solid lines in
Fig. 1 have been calculated using Eqs. (1) and (2).

Figure 2 shows the Q dependence of the energy-
integrated intensities for temperatures between 4 and
80 K. We recall that the magnetic scattering is modu-
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FIG. 1. Quasielastic scattering signal of LiV2O4 at T ­ 4 and
80 K for Q ­ 0.41 Å21 and Q ­ 1.95 Å21, respectively. The
data are fitted by a single quasielastic Lorentzian multiplied by
the detailed balance factor and convoluted with the instrumental
resolution (solid line).
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lated by the square of the neutron magnetic form factor
fsQd. The Q dependence of f2sQd for the two possible
electronic configurations of V in LiV2O4 is shown in the
inset of Fig. 2. At T ­ 80 K, on increasing Q, the inten-
sity decreases strongly, as can be explained by the form
factor alone, indicating the importance of FM fluctuations
at elevated temperatures. At low temperatures, a strong
modulation of the integrated intensities appears with a
maximum of the Lorentzian intensities close to a Q value
equivalent to the reciprocal lattice spacing. We conclude
that AFM spin fluctuations significantly contribute to the
spectra at low temperatures. The existence of AFM fluc-
tuations which vanish at elevated temperatures while FM
correlations still exist have been reported for the HF sys-
tem UPt3 [10]. Of course, in LiV2O4 this is only a rough
estimate since we cannot account for the different crystal-
lographic directions using polycrystalline samples.

The most important result of this communication is
shown in Fig. 3. A residual quasielastic linewidth G ­
0.5 meV for T ! 0 followed by a square-root tempera-
ture dependence up to T ­ 40 K (solid line in Fig. 3).
This behavior of the magnetic relaxation rate is the hall-
mark for the formation of a canonical heavy-fermion
state at low temperatures in LiV2O4. The absence of
any significant Q dependence of the linewidth within this
temperature range indicates that HF behavior in LiV2O4
originates predominantly from local on-site Kondo inter-
actions. As is evident from Fig. 3, a dramatic change of
the magnetic response is observed for higher tempera-
tures. At T ­ 80 K and T ­ 150 K, the quasielastic
linewidth for large Q values follows the square-root be-
havior (solid line in Fig. 3), indicating that the single-ion
(large-Q values) properties are still dominated by on-site
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FIG. 2. Q dependence of the energy-integrated intensity of
the quasielastic scattering of LiV2O4 at 4, 15, and 80 K, re-
spectively. For comparison, the inset shows the Q dependence
according to the square of the neutron magnetic form factor
of the two vanadium configurations possible in LiV2O4. The
maximum around Q ­ 0.76 Å21 at 4 K corresponds to the re-
ciprocal lattice spacing ap. Dashed or dotted lines are guides
to the eye.
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FIG. 3. Temperature dependence of the quasielastic linewidth
of LiV2O4 for Q ­ 0.41 Å21 and Q ­ 1.95 Å21, respectively.
The solid line is a fit according to GsTd ­ G0 1 b

p
T with

the residual linewidth G0 ­ GsT ! 0d ­ 0.48 meV, while the
dashed line is a guide to the eye. The inset shows the com-
pletely different Q dependence of the width of the quasielastic
scattering for T ­ 80 K and T ­ 15 K, respectively.

Kondo interactions. However, the linewidth for low-Q
values reveals an abrupt decrease and an almost linear
increase for further increasing temperatures (dashed line
in Fig. 3). This Korringa-type behavior roughly extrap-
olates towards zero linewidth at zero temperature and is
the characteristic feature of a local moment weakly hy-
bridized with the band states.

Based on these experimental results, one may conclude
that LiV2O4 is characterized by a sudden increase of the
hybridization strength between local moments and band
states at temperatures above 40 K. However, a closer
inspection of the width of SsQ, v, T d points towards an
even more fundamental change of the magnetic properties.
The dramatic change of GsQ, T d is demonstrated in the
inset of Fig. 3. At T ­ 15 K, the linewidth is of the
order of 1 meV, independent of Q. At T ­ 80 K, a linear
Q dependence has developed which extrapolates to zero
linewidth for zero momentum transfer within experimental
uncertainties. A linear Q dependence of the magnetic
relaxation rate is expected in Fermi-liquid theory and also
has been predicted in the framework of phenomenological
spin fluctuation theories of weakly FM metals [11]. An
almost linear Q dependence of G has been reported for
Pd0.99Ni0.01 [12], a system which is close to a FM ground
state. Following this line of evidence, LiV2O4 might
be characterized as a metal with itinerant d electrons
close to weak ferromagnetism [11]. The Q dependence
of the magnetic relaxation has also been studied in HF
systems. A Q dependence of G at low temperatures
has been observed in single crystalline CeCu6 by Aeppli
et al. [13] and has been explained by intersite couplings of
Kondo singlet-triplet excitations. However, in CeCu6, G

decreases upon increasing the wave vector.
The fundamental difference in the magnetic behavior
for T # 40 K, on the one hand, and T . 40 K, on the
other hand, is also reflected in the temperature dependence
of the dynamic structure factor SsQ0, v0, T d for fixed
energy h̄v0 and momentum transfer Q0, as shown in
Fig. 4 in a double logarithmic plot. In a first crude ap-
proximation, SsQ0, v0, T d corresponds to the spin-lattice
relaxation rate 1yT1 in NMR experiments [14]. This is
valid in the high-temperature approximation and when
assuming a Q-independent hyperfine coupling. For
T . 40 K, SsQ0, v0, T d follows roughly a linear increase
indicating a Korringa-type of behavior consistent with the
observations of Fig. 3. This behavior is in accord neither
with the 7Li nor with the 51V NMR results (Refs. [3],
[8], and references therein) which show a decreasing
spin-lattice relaxation rate on increasing temperature
in this temperature range. But, of course, our results
were measured at high frequencies sh̄v0 ­ 0.25 meV ­
70 GHzd, at low-Q values sQ0 ­ 0.41 Å21d and in zero
external field. At 40 K, precipitously strong deviations
from this high-temperature Korringa behavior appear,
which can be explained by a sudden onset of strong
AFM intersite correlations attempting to compensate the
local moments. For T , 10 K, SsQ0, v0, T d turns into
Korringa behavior again, but now with a strongly enhanced
Korringa rate revealing fully compensated moments and a
highly enhanced density of states characteristic of a Fermi
liquid with heavy quasiparticles. Also from NMR exper-
iments, a magnetic relaxation rate has been determined
which follows a square-root temperature dependence [3,8]
and is in rough agreement with our present results at
high-Q values, as shown in Fig. 3.
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FIG. 4. Temperature dependence of SsQ, vd of LiV2O4 for
fixed energy transfer h̄v0 ­ 0.25 meV and fixed scattering
angle (momentum transfer) Q0 ­ 0.41 Å21. The inset shows
the temperature dependence of the susceptibility as determined
by integrating the quasielastic scattering intensities. For com-
parison, the solid line indicates linear, Korringa-type behavior,
whereas the dashed line is a guide to the eye.
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From SsQ0, v0, T d, we can directly calculate the bulk
susceptibility x0sT d without any free parameter. The
result is shown in the inset of Fig. 4. On decreasing tem-
peratures, x0sT d reveals a Curie-Weiss-like increase,
passes through a smooth maximum close to T ­ 30 K,
and decreases towards low temperatures, closely resem-
bling the results of Knight-shift measurements [3,8].
The strong increase at the lowest temperatures remains
unexplained.

Let us summarize the experimental findings so
far: The neutron scattering data provide clear ex-
perimental evidence for heavy-fermion behavior for
T # 40 K with a characteristic (Kondo-lattice) tempera-
ture Tp ø 5 10 K. The magnetic relaxation stays
finite for T ! 0 and follows a square-root dependence
with increasing temperatures. SsQ, v, T d reveals a con-
stant width as a function of Q. Antiferromagnetic spin
fluctuations characteristic of HF systems dominate at low
temperatures. The situation is less clear for T $ 40 K
where a dramatic change of the magnetic relaxation be-
havior appears. With decreasing Q, SsQ, v, T d narrows
linearly and provides some evidence that the d electrons
behave almost itinerantly. GsQ, T d then has to be ex-
plained assuming spin fluctuations in a weakly FM metal,
i.e., such as in Pd:Ni [12]. Itinerancy of the d-electron
system could possibly also resolve the problem with the
paramagnetic moment which is considerably enhanced as
compared to a localized S ­ 1y2 system. Fits to the high-
temperature Curie-Weiss behavior result in unphysical g
values of g ø 2.2 [3]. However, we cannot exclude that
a stable d1 configuration exists but that long-wavelength
FM spin fluctuations dominate the system. Indications
of a single ion Kondo effect become evident at high-Q
values only (Fig. 3).

Band-structure calculations [15] reveal that the t2g

states are close to the Fermi level and, due to a slight
distortion of the octahedral environment, are split into
a low-lying singlet and two excited doublets. For T #

40 K the d1 electrons occupy the singlet and are strongly
hybridized with the band states (0.5 electron per V site)
which are formed by the excited t2g levels. This, of
2922
course, is the archetypical situation for heavy-fermion
formation. The dramatic change of the magnetic response
could result from a change of this electronic configuration.
The possible origin of this transition may be explained
by an interplay of Hubbard interactions, Hund’s-rule
coupling, and orbital degrees of freedom.
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