

Thermodynamic, transport and magnetic properties of α' -NaV2O5

Meike Lohmann, Joachim Hemberger, Michael Nicklas, Alois Loidl, Matthias Klemm, Günter Obermeier, Siegfried R. Horn

Angaben zur Veröffentlichung / Publication details:

Lohmann, Meike, Joachim Hemberger, Michael Nicklas, Alois Loidl, Matthias Klemm, Günter Obermeier, and Siegfried R. Horn. 1999. "Thermodynamic, transport and magnetic properties of α '-NaV2O5." *Physica B* 259-261: 983–84. https://doi.org/10.1016/S0921-4526(98)00843-6.

Thermodynamic, transport and magnetic properties of α'-NaV₂O₅

M. Lohmann*, J. Hemberger, M. Nicklas, A. Loidl, M. Klemm, G. Obermeier, S. Horn

Experimental Physik V, Universität Augsburg, Universitatsstrasse 1, D-86135 Augsburg, Germany

Up to now α' -NaV₂O₅ has been described as a $S = \frac{1}{2}$ one-dimensional antiferromagnet which undergoes a spin-Peierls (SP) transition at $T_{SP} = 34 \text{ K}$ [1]. However, recent measurements raised some doubts if this description in terms of charge ordered chains is correct [2]. In this article we report on specific heat, electrical resistivity and ESR experiments on α'-NaV₂O₅. The ESR and resistivity experiments were performed on a high-quality needle-shaped single crystal. The heat capacity experiments were performed on polycrystalline material. The sample preparation and experimental details are described elsewhere [3,4]. Fig. 1 shows the ESR intensity which is a direct measure of the spin susceptibility. The overall behaviour of the susceptibility is in good agreement with DC results [1]: for T > 250 K it is well described by the Bonner-Fisher (BF) model (solid line) assuming a single-exchange constant J = 578 K. According to the model predictions $\chi_{\text{max}} \approx 0.147 g^2 \mu_{\text{B}}^2 / J \approx$ 4×10^{-4} emu/mol is expected close to the experimentally observed value $\chi_{\rm max} \approx 4.2 \times 10^{-4}$ emu/mol. While we find a good agreement at high temperatures, the experimental data decrease significantly faster than predicted towards lower temperatures. A possible explanation could be the increasing importance of three-dimensional exchange interactions. The inset of Fig. 1 shows the low-temperature data which are well described assuming $T_{\rm SP} = 34$ K and an exponential decrease with a gap value of $\Delta = 100$ K (solid line in the inset of Fig. 1).

The heat capacity was measured for temperatures 3 K < T < 70 K. In the analysis of our specific heat results we tried two parameterizations to describe the data for $T > T_{\text{SP}}$. In scenario A we fixed the linear term to the value calculated from the exchange interaction, namely $\gamma = 1.21 \times 10^{-3} \text{ R/K}$ and fitted the phonon contribution. The best fit was obtained using a Debye temperature $\Theta_{\text{D}} = 281 \text{ K}$ and a number of degrees of freedom N = 15, but the specific heat anomaly at T_{SP} , $\Delta C/\gamma T_{\text{SP}} \approx 20$, was far off the mean-field (MF) value. In scenario B we fixed the magnetic specific heat to the MF prediction $\Delta C/\gamma T_{\text{SP}} \approx 1.4$, to reproduce the MF jump in the specific heat. From the fit in scenario B we deduced $\gamma = 19 \times 10^{-3} \text{ R/K}$, $\Theta_{\text{D}} = 302 \text{ K}$ and N = 14. A calculation of the exponential decrease of the specific heat with

^{*}Corresponding author. Tel. + 49-821-5983610; fax: + 49-821-5983649; e-mail: meike.lohmann@physik.uni-augsburg.de.

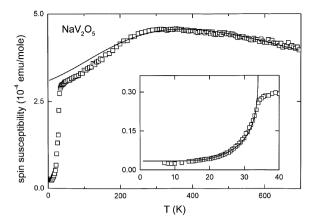


Fig. 1. ESR intensity in α' -NaV₂O₅ compared to the Bonner–Fisher model (solid line). The absolute value was determined by comparison to SQUID-measurements at 300 K. Inset: Spin susceptibility at low temperatures around $T_{\rm SP}$. The solid line is a mean-field calculation with a gap of 100 K.

a constant gap value of 100 K and $T_{\rm SP}=34$ K reveals a strong excess specific heat for temperatures below 20 K. The calculations of scenario B are roughly compatible with the experiment, but now the linear term is a factor of 15 too large compared to the predictions of the Bonner–Fisher model for a uniform AFM spin chain. Therefore, it has to be stated that the release of entropy at the phase transition is far too high for a spin–Peierls system with an exchange constant J=578 K. The resistivity

reveals a clear semiconducting behaviour and increases from $10^3~\Omega$ at $600~\rm K$ to almost $10^{13}~\Omega$ at low temperatures. Using high excitation voltages allowed to extend the measurements down to $20~\rm K$. A clear but smeared out anomaly at $T_{\rm SP}$ was detected and a strong decrease of the resistance by almost 40% within a range of $5~\rm K$ above $T_{\rm SP}$ is observed. However, R(T) increases again below $T_{\rm SP}$ for decreasing temperature, thus indicating semiconducting behaviour.

In conclusion, we presented ESR, specific heat and electrical resistivity results which can hardly be described within the framework of a spin–Peierls transition. The spin susceptibility at high temperatures can be well described by a Bonner–Fisher model, but shows significant deviations below 250 K. The heat capacity data are not compatible with a specific heat anomaly as predicted by a mean-field theory. The electrical resistivity shows semiconducting behaviour and a clear anomaly at $T_{\rm SP}$.

We acknowledge stimulating discussions with B. Elschner, B. Lüthi, A.P. Kampf, W. Trinkl and M. Dumm. This work has been partly supported by the BMBF under the contract number EKM/13 N 6917.

References

- [1] M. Isobe, Y. Ueda, J. Phys. Soc. Japan 65 (1996) 1178.
- [2] H. Smolinski et al., Preprint cond-mat/9801276.
- [3] M. Lohmann et al., Solid State Commun. 104 (1997) 649.
- [4] J. Hemberger et al., Europhys. Lett. 42 (1998) 661.