

Magnetic properties of the spin glass PrAu2Si2

Joachim Hemberger, Alexander Krimmel, Michael Nicklas, Georg Knebel, Michail Paraskevopoulos, Wilfried Trinkl, Manuel Brando, Veronika Fritsch, Alois Loidl

Angaben zur Veröffentlichung / Publication details:

Hemberger, Joachim, Alexander Krimmel, Michael Nicklas, Georg Knebel, Michail Paraskevopoulos, Wilfried Trinkl, Manuel Brando, Veronika Fritsch, and Alois Loidl. 1999. "Magnetic properties of the spin glass PrAu2Si2." *Physica B* 259-261: 907–8. https://doi.org/10.1016/S0921-4526(98)00845-X.

<u>@</u> 🛈 🕄 🖨

Direct observation of the quasiparticle relaxation in YBa₂Cu₃O_{7-δ}

A. Pimenov^{a,*}, A. Loidl^a, G. Jakob^b, H. Adrian^b

^aInstitut für Physik, Universität Augsburg, 2-86135 Augsburg, Germany ^bInstitut für Physik, Universität Mainz, 55099 Mainz, Germany

The importance of the low-frequency electrodynamics (v < 1 THz) of high-temperature superconductors was unambiguously demonstrated during the last few years [1,2]. One of the intriguing results of the recent experiments is the suppression of the quasiparticle scattering rate below $T_{\rm C}$, which clearly demonstrates the unconventional character of the high-temperature superconductivity. The drastic decrease of the effective scattering rate (τ^{-1}) makes the direct observation of the temperature dependence of τ^{-1} inaccessible to standard FIR methods. The accuracy of these methods decreases for frequencies below 10 cm⁻¹, the range, which become increasingly important to investigate the quasiparticle relaxation in the superconducting state. According to the theoretical calculations [3,4], the complex conductivity $(\sigma_1 + i\sigma_2)$ of high- $T_{\rm C}$ superconductors reveals characteristic features in this frequency range: (i) a Drude-like peak of $\sigma_1(v)$ with a strongly temperature-dependent width is observed in the spectra and (ii) the imaginary part of conductivity $\sigma_2(v) \cdot v$ shows a minimum around zero frequency with a characteristic width which is directly connected to the quasiparticle scattering rate.

*Corresponding author. Tel.: + 49-821-598-3605; fax: + 49-821-598-3649; e-mail: andrei.pimenov@physik.uni-augsburg.de.

In order to investigate these phenomena experimentally, we have carried out transmission measurements on YBa₂Cu₃O_{7- δ} film using submillimeter spectroscopy [5]. This method employs backward wave oscillators as monochromatic and continuously tuned sources of electromagnetic radiation in the frequency range 2 < v < 35 cm⁻¹. The real and imaginary parts of conductivity are calculated from the measured complex transmission coefficient of a thin superconducting film on a dielectric substrate.

The c-axis oriented film was prepared by high pressure DC-sputtering from a stoichiometric YBa₂Cu₃O₇ target onto a (0 0 1) oriented NdGaO3 substrate. Magnetic susceptibility measurement showed a sharp superconducting transition [Δ T(10–90%) < 0.5 K] with an onset $T_C = 89.5$ K.

Fig. 1 shows the frequency dependence of the complex conductivity of the YBa₂Cu₃O_{7- δ} film at different temperatures. A well-defined minimum around $v \sim 0$ is observed in $\sigma_2(v) \cdot v$, which is accompanied by a Drude-like peak in $\sigma_1(v)$. The characteristic frequency of this process shifts to lower frequencies with decreasing temperatures. To obtain the scattering rate, the experimental data were analyzed within a simple model, that describes the quasiparticles using a Drude expression $\sigma_D(\omega)$. The influence of the superconducting component was taken into

Fig. 1. Frequency dependence of the complex conductivity of $YBa_2Cu_3O_{7-\delta}$ (film at different temperatures. Upper panel: the product $\sigma_2 \cdot \nu$, lower panel: σ_1 . The lines are fits according to Eq. (1). The inset shows the temperature dependence of the quasiparticle scattering rate τ^{-1} as extracted from the fits to the conductivity data.

account by an additional term $\sigma_s(\omega)$. The whole expression can be written as:

$$\begin{split} \sigma_1 + i\sigma_2 &= \sigma_D^* + \sigma_s^* \\ &= \frac{n_n e^2}{m} (\tau^{-1} - i\omega)^{-1} + \frac{n_s e^2}{m} (\pi \delta(0)/2 + i/\omega), \quad (1) \end{split}$$

where n_n and n_s represent the effective density of the normal and superconducting components. Both conductivity components were then fitted simultaneously, taking n_s and τ as free parameters. Note that we are not using the two-fluid model assumption $n_n + n_s = \text{const.}$ The fits are represented by solid lines in Fig. 1.

The inset in Fig. 1 shows the temperature dependence of the scattering rate, determined from these fits. The scattering rate collapses from a value close to $20~\rm cm^{-1}$ at $T_{\rm C}$ to $1.8~\rm cm^{-1}$ at $40~\rm K$ and then remains almost constant for further decreasing temperatures. Most probably and in accord with many other experimental findings, a gap develops in the spin-fluctuation spectrum at the superconducting phase transition temperature making the quasiparticles long-lived below $T_{\rm C}$. From these data we can conclude that for temperatures $T > 40~\rm K$ the scattering rates are determined mainly by inelastic scattering processes from spin fluctuations. Below $40~\rm K$ elastic impurity scattering processes dominate.

References

- [1] D.A. Bonn, W.N. Hardy, in: D.M. Ginsberg (Ed.), Physical Properties of high Temperature Superconductors V, World Scientific, Singapore, 1996, p. 7.
- [2] D.B. Tanner, T. Timusk, in: D.M. Ginsberg (Ed.), Physical Properties of high Temperature Superconductors III, World Scientific, Singapore, 1992, p. 363.
- [3] C. Jiang, E. Schachinger, J.P. Carbotte, D. Basov, D. Timusk, Phys. Rev. B 54 (1996) 1264.
- [4] E. Schachinger, J.P. Carbotte, F. Marsiglio, Phys. Rev. B 56 (1997) 2738.
- [5] A.A. Volkov, Yu.G. Goncharov, G.V. Kozlov, S.P. Lebedev, A.M. Prochorov, Infrared Phys. 25 (1985) 369.