NMR and NQR studies of impurities in high-temperature superconducting cuprates

R. Michalak^{a,*}, G.V.M. Williams^b, J.L. Tallon^b, R. Dupree^c, A. Loidl^a

^aUniversitätsstre 2, University of Augsburg, 86159 Augsburg, Germany ^bNZ Institute for Industrial Research, P.O. Box 31310, Lower Hutt, New Zealand ^cDepartment of Physics, University of Warwick, Coventry, CV4 7AL, UK

The effect of impurities on the electronic and magnetic properties of high-temperature superconductors has proved to be highly successful in contributing to the understanding of the complex normal and superconducting states [1-4]. In particular, the substitution of non-magnetic Zn and magnetic Ni for Cu in the superconducting CuO₂ planes leads to a rapid decline in T_c and localized behaviour near the impurities. However, there is no consensus concerning the mechanism for the impurity-induced suppression of superconductivity or the origin of the localized behaviour about the impurities. For this reason we have performed NMR and NQR measurements on YBa₂(Cu_{1-z}Zn_{z/2}Ni_{z/2})₄O₈.

We show in the inset to Fig. 1 that non-magnetic Zn, magnetic Ni or both equally suppress T_c . Here we plot T_c against impurity fraction per Cu for YBa₂(Cu_{1-z}Zn_z)₄O₈ (open up triangles), YBa₂(Cu_{1-z}Zn_{z/2}Ni_{z/2})₄O₈ (open down triangles) and YBa₂(Cu_{1-z}Zn_{z/2}Ni_{z/2})₄O₈ (filled circle). It can be seen that the data are well described by the Abrikosov–Gorkov equation consistent with Ni and Zn being unitary scatterers [2,5]. A similar equal suppression of T_c by Zn and Ni has also been observed in $La_{2-x}Sr_xCuO_4$ and $Bi_2Sr_2CaCu_2O_{8+\delta}$. This can be contrasted with $YBa_2(Cu_{1-z}Zn_z)_3O_{7-\delta}$ and $YBa_2(Cu_{1-z}Ni_z)_3O_{7-\delta}$ where T_c is rapidly suppressed by Zn and not by Ni, which has lead to Zn being interpreted in terms of superunitary scattering [6]. However, there is an evidence that in the case of $YBa_2(Cu_{1-z}Ni_z)_3O_{7-\delta}$, Ni is not fully substituted onto the CuO_2 planes [7].

⁸⁹Y The MAS NMR spectra from $YBa_2(Cu_{0.9825}Zn_{0.0175})_4O_8$ show two extra peaks which have been interpreted in terms of localized behaviour about the Zn impurity. This is apparent in Fig. 1 where we plot the ⁸⁹Y NMR shift from the main line (open circles), first satellite (open down triangles) and second satellite (open up triangles). Also shown is the ⁸⁹Y MAS NMR shift for pure YBa₂Cu₄O₈ (solid curve). We show by the dashed and dotted curves that the data can be fitted by the model of Mahajan et al. [8] where it is assumed that an additional Curie-like spin susceptibility arises from the four Cu sites that are nearest-neighbour to the Zn impurity. The ¹⁷O NMR spectra also display an evidence of localized behaviour near the Zn impurity. This can be contrasted with ⁸⁹Y MAS NMR measurements on YBa₂(Cu_{0.9825}Ni_{0.0175})₄O₈ (filled diamonds) where we find the satellite peaks not clearly defined which may be due to the effect of the Ni magnetic

^{*} Corresponding author. Fax: + 49-821-5983649.

E-mail address: ruedim@physik.uni-augsburg.de (R. Michalak)

Fig. 1. Plot of the ⁸⁹Y MAS NMR shift for the YBa₂(Cu_{0.9825}Zn_{0.0175})₄O₈ main peak (open circles), first satellite (open down triangles) and second satellite (open up triangles), the YBa₂(Cu_{0.9825}Ni_{0.0175})₄O₈ main peak (filled diamond), and the YBa2(Cu0.9825Zn0.00875Ni0.00875)4O8 main peak (filled circles) and first satellite (filled down triangles). The solid curve is the ⁸⁹Y MAS NMR shift for YBa₂Cu₄O₈ and the dashed and dotted curves are for the model described in the text. ^{17}O Also included is the NMR shift for YBa₂(Cu_{0.9825}Zn_{0.0175})₄O₈. Inset: T_c against impurity fraction for $YBa_2(Cu_{1-z}Zn_z)_4O_8$ (open up triangles), $YBa_2(Cu_{1-z}Zn_z)_4O_8$ (open down triangles) and $YBa_2(Cu_{1-z}Zn_{z/2}Ni_{z/2})_4O_8$ (filled circles). The solid curve is from the Abrikosov-Gorkov equation.

moment. Interestingly, the ⁸⁹Y MAS NMR spectra from $YBa_2(Cu_{0.9825}Zn_{0.00875}Ni_{0.00875})_4O_8$ also display additional satellite peaks where the shifts are plotted in Fig. 1 (filled circles and filled down triangles).

The Cu NQR spectra from $YBa_2(Cu_{1-z}Zn_z)_4O_8$ also display an extra peak which we interpret in terms of localized charge about the Zn impurity. A similar peak is not observed in the Cu NQR spectra from $YBa_2(Cu_{1-z}Ni_z)_4O_8$ consistent with the above interpretation where the Ni moment washes out the signal near the Ni impurity [9].

We show in Fig. 2 that there is no evidence of a local suppression of the antiferromagnetic spin fluctuations about the Zn or Ni impurities in contrast to similar measurements on $YBa_2(Cu_{1-z}Zn_z)_3O_{7-\delta}$ [6]. Here we plot ${}^{63}T_1T$, where ${}^{63}T_1$ is the ${}^{63}Cu$ spin-lattice relaxation time for $YBa_2(Cu_{0.975}Zn_{0.025})_4O_8$ (open down triangles), $YBa_2(Cu_{0.9813}Ni_{0.0187})_4O_8$ (open up triangles) and for the $YBa_2(Cu_{0.9813}Zn_{0.0187})_4O_8$ satellite peak (filled down triangle). It can be seen that the $YBa_2(Cu_{0.9813}Ni_{0.0187})_4O_8$ data closely follow those

Fig. 2. Plot of ${}^{63}T_1T$ from the main NQR peak against temperature for YBa₂(Cu_{0.975}Zn_{0.025})₄O₈ (open down triangles), YBa₂(Cu_{0.9813}Ni_{0.0187})₄O₈ (open up triangles), and the pure superconductor (open circles and filled circles [10,11]). Also included is ${}^{63}T_1T$ from the YBa₂(Cu_{0.9813}Zn_{0.0187})₄O₈ NQR satellite peak (filled down triangles). The dashed curve is the minimum ${}^{63}T_1T$ expected in the absence of antiferromagnetic correlations. Inset: Plot of ${}^{63}T_1T$ from YBa₂(Cu_{1-z}Ni_z)₄O₈ against impurity fraction at 293 K.

from YBa₂Cu₄O₈ (open and filled circles). While the YBa₂(Cu_{0.975}Zn_{0.025})₄O₈ data are above those for YBa₂Cu₄O₈, they are much lower than the dashed curve expected if Zn locally suppressed the antiferromagnetic correlation length of the Zn impurity. This dashed curve gives the minimum ⁶³T₁T expected in the absence of antiferromagnetic correlations.

References

- [1] J.L. Tallon et al., Phys. Rev. Lett. 79 (1997) 5294.
- [2] C. Bernhardet et al., Phys. Rev. Lett. 77 (1996) 2304.
- [3] G.V.M. Williams et al., Phys. Rev. B 57 (1998) 146.
- [4] G.V.M. Williams et al., Phys. Rev. B 57 (1998) 10984.
- [5] G.V.M. Williams, J.L. Tallon, R. Dupree Phys. Rev. B, submitted for publication.
- [6] K. Ishida et al., J. Phys. Soc. Japan 62 (1993) 2803.
- [7] F. Bridges et al., Phys. Rev. B 42 (1990) 3137.
- [8] A.V. Mahajan et al., Phys. Rev. Lett. 72 (1994) 3100.
- [9] G.V.M. Williams et al., Phys. Rev. B 60 (1999) 1360.
- [10] N.J. Curro et al., Phys. Rev. B 56 (1997) 877.
- [11] R.L. Corey et al., Phys. Rev. B 53 (1996) 5907.