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CEA, Service de Physique de l’Etat Condensé, Centre d’Etudes de Saclay, F-91191 Gif-sur-Yvette,
France

                     

                                                                             
                                                                            
                                                                          
                                                                         
                                                                                
                                                                            
                                        

                  
                                                          

1. Introduction
The Josephson effect beautifully embodies quantum tunneling and superconductivity [1, 2]. Josephson

systems have been a subject of fundamental research for decades, which have led to useful applications,
e.g. in highly sensitive magnetometry and metrology. Like in the Ginzburg–Landau theory for bulk
superconductivity, where the phase of the order parameter is considered as a quasiclassical variable, the
phase difference across a Josephson junction can frequently be treated classically. However, in the last ten
years or so, new lithography and low-temperature techniques have allowed the fabrication and measurement
of small Josephson junctions affected by the capacitive charging energy of single Cooper pairs [3, 4]. A large
charging energy will render the Cooper pair number on either side of the junction classical and, thus, cause
large quantum fluctuations of the conjugate phase variable.
In this article we show how the classical Josephson effect, that is a supercurrent I flowing at vanishing

voltage V , gradually evolves via the classical phase diffusion regime into the supercurrent peak in the
Coulomb blockade regime, where Cooper pairs tunnel incoherently across the Josephson junction. After
a brief review of the classical Josephson effect in Section 2 and phase diffusion in Section 3, we discuss
Cooper pair tunneling in the Coulomb blockade regime in Section 4. The turnover between the classical and
the quantum regimes is discussed in Section 5. Finally, Section 6 contains some concluding remarks.
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Fig. 1. A, Schematic view of a Josephson junction where two superconductors are separated by an insulating barrier. B, Equivalent
circuit with Josephson coupling EJ and capacitance C . The voltage across the junction is denoted by VJ.

2. Classical Josephson effect
A Josephson junction consists of two superconductors separated by a thin insulating barrier as shown

in Fig. 1A. Its dynamics may be described in terms of the phase difference ϕ of the two condensate
wavefunctions on the left and right sides of the junction and the number n of Cooper pairs on the capacitor
formed by the junction. These operators n and ϕ obey the commutation relation [n, ϕ] = −i , and the junction
Hamiltonian may be expressed as

HJ = Ecn2
− EJ cos(ϕ). (1)

The first term describes the charging energy associated with the capacitance C of the tunnel junction where
Ec = 2e2/C is the charging energy corresponding to a single Cooper pair. The second term arises from the
tunneling of Cooper pairs through the junction characterized by the Josephson coupling energy EJ. These
properties may be expressed in terms of the circuit shown in Fig. 1B.
The Josephson relations link the phase to the voltage across the junction

VJ =
~

2e
ϕ̇ (2)

and to the supercurrent
I = Ic sin(ϕ). (3)

The critical current Ic is related to the Josephson coupling energy by Ic = 2eEJ/~. These relations allow for
a supercurrent flowing at zero voltage if ϕ remains constant in time.

3. Phase diffusion in Josephson junctions
In the real world Josephson junctions are coupled to an electromagnetic environment which may be

described by an impedance Z(ω). For simplicity, we will in the following mostly consider the case of an
ohmic resistor [Z(ω) = R] but a more general case will be addressed in Section 4. The resistor will give rise
to Nyquist noise and therefore to a diffusive behavior of the phase difference ϕ.
To be specific, we consider the circuit shown in Fig. 2 where the Josephson junction is coupled to the

voltage source via an ohmic resistor. The voltages across the junction and the resistor are denoted by VJ and
VR, respectively. It is useful to introduce the dimensionless resistance ρ = R/RQ, where RQ = h/4e2 is the
resistance quantum for Cooper pairs.
In the classical limit this system can be described by the Langevin equation [1, 5]

C
(
~ϕ̈

2e
+

1
R

~ϕ̇

2e
+ Ic sin(ϕ) =

VR
R
. (4)
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Fig. 2. Circuit modelling a real experimental set-up: a Josephson junction characterized by the Josephson energy EJ and capacitance C
is coupled to a voltage source V via a resistor R. The voltage drops across the junction and the resistor are VJ and VR, respectively.
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Fig. 3. A, Cooper pair current–voltage characteristics I (V ) [eqn (5)] in the overdamped phase diffusion regime for βEJ = 1, 5, 50, and
∞ from the lower to the upper curve and B, corresponding characteristics I (VJ).

The term on the right-hand side represents the Nyquist noise with 〈δVR(t + τ)δVR(t)〉 = (2R/β)δ(τ ) for a
resistor at inverse temperature β = 1/kBT . Here, δVR denotes the fluctuation of the voltage about its average
value.
This problem has been solved by Ivanchenko and Zil’berman [6] in the overdamped limit where

2π2ρ2EJ � Ec. The stationary solution of the Fokker–Planck equation corresponding to eqn (4) can be
expressed in terms of modified Bessel functions of complex order and yields the Cooper pair current [6]

I
Ic
= Im

(
I1−iβEJv(βEJ)

I−iβEJv(βEJ)
(5)

as a function of the dimensionless applied voltage v = V/RIc. While the supercurrent at zero voltage is
destroyed by the fluctuations causing the phase diffusion, the current–voltage characteristics (5) display peaks
at small but finite voltages as shown in Fig. 3A. With decreasing temperature the I–V curve (5) becomes
closer to an ohmic line for voltages up to RIc, while the peak in the I–VJ curve in Fig. 3B moves towards
zero voltage.
We analyze the result (5) by considering the zero bias differential resistance

R0 =
∂VJ
∂ I VJ=0

=
∂V
∂ I V=0

−R. (6)



                                                     

R0 is defined with respect to the junction voltage VJ, and 1/R0 describes the slope at the origin in Fig. 3B.
From eqn (5) one obtains

R0
R
=

1
I 20 (βEJ)− 1

. (7)

For βEJ � 1, the I–V curve is very close to I = V/R with an exponentially small difference

R0
R
= 2πβEJ exp(−2βEJ). (8)

This shows that for temperatures much lower than the height of the periodic potential for ϕ in eqn (1), the
dynamics of the phase is thermally activated.
On the other hand, for βEJ � 1, one finds in the overdamped limit

R0
R
=

2
(βEJ)2

. (9)

In this case, the I–V curve becomes

I =
I 2c
2

RV
V 2 + (2eR/~β)2

(10)

which corresponds to a broad peak structure.

4. Coulomb blockade in Josephson junctions
We now turn to the case of ultrasmall tunnel junctions with spatial dimensions so small that Ec � EJ.

Then the phase can no longer be treated as a quasiclassical variable, rather the charge on the junction
capacitance will approximately follow classical statistics. As we have seen above, due to phase fluctuations, a
supercurrent at zero voltage is no longer possible. However, a Cooper pair current may flow at finite voltages
if the electromagnetic environment is able to absorb the energy 2eV gained by a Cooper pair tunneling
through the junction. In contrast to Section 3, it is now necessary to introduce the external impedance on the
quantum level. Due to its linearity the external impedance may be modeled by a possibly infinite number of
LC oscillators. The corresponding Hamiltonian then reads

Himp =
∞∑

n=1

q2
n

2Cn
+

(
~

2e

2 1
2Ln

(ϕR − ϕn)
2
]
. (11)

The external impedance in terms of the inductances Ln and capacitances Cn is given by

Z(ω) =
[∫
∞

0
dte−iωt

∞∑
n=1

cos(ωn t)
Ln

−1
, (12)

where ωn = (LnCn)
−1/2. The coupling between the external impedance and the phase difference ϕ appears

through the phase

ϕR =
2e
~

∫ t

0
dt ′(V − VJ) =

2e
~

V t − ϕ. (13)

This phase may formally be attributed to the resistance by making use of the Josephson relation (2).
Calculating the Cooper pair current from the Hamiltonian

H = HJ + Himp (14)
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Fig. 4. Cooper pair current–voltage characteristics I (V ) in the Coulomb blockade regime at zero temperature. The peak is sharpening
with increasing ρ = 2, 20, 100.

perturbatively to lowest order in EJ, one obtains [7, 8]

I =
πeE2

J
~

[P(2eV )− P(−2eV )]. (15)

Here, P(2eV ) and P(−2eV ) are the probabilities that the energy 2eV of the tunneling Cooper pair is
absorbed or provided by the environment, respectively. This probability depends on the external impedance
and on temperature through [9]

P(E) =
1

2π~

∫
+∞

−∞

dt exp
[

J (t)+
i
~

Et
]

(16)

with

J (t) = 2
∫
∞

−∞

dω
ω

ReZt(ω)

RQ

e−iωt
− 1

1− e−β~ω
. (17)

This expression contains the total impedance seen by the Josephson junction

Zt(ω) =
1

iωC + Z−1(ω)
(18)

which is given by the external impedance in parallel with the capacitance.
For an ohmic environment [Z(ω) = R = ρRQ] the result (15) may be evaluated further. At zero

temperature, one finds a zero bias anomaly given by I ∼ V 2ρ−1. This shows that at T = 0 the perturbative
result (15) is only valid for large ρ > 1/2 where the current remains small for all voltages. In this case the
I–V curve displays a peak near voltages of order e/C as shown in Fig. 4. This can easily be understood from
a simple Coulomb blockade picture. At V = e/C the voltage gain 2eV just equals the charging energy Ec.
However, the experimentally relevant situation is an environment of low impedance (ρ � 1) [10]. On the

one hand, it is difficult to fabricate large resistances at frequencies around Ec/~, which typically is of the
order of 10 GHz, and on the other hand the resistance should not be too large to avoid heating. Furthermore,
since charging effects are washed out by thermal fluctuations, we are interested in the regime of low but
finite temperatures βEc � 1. To proceed for parameters in this range, we first note that the function J (t)
is equivalent to the position autocorrelation function of a free damped particle and can be evaluated in
closed form for ohmic damping [11]. For long times, J (t) describes diffusive behavior linear in time for
finite temperatures and logarithmic in time at zero temperature. We therefore neglect exponentially decaying
terms. This restricts us to low voltages which is the regime of interest. Assuming furthermore ρ � βEc, in



                                                     

accordance with the above considerations, we arrive at [12]

J (t) = −2ρ
(
ln
[
βEc
π2ρ

sinh
(
π t
~β

+ γ + i
π

2
sign(t)

)
. (19)

Here, γ = 0.5772 . . . is the Euler constant. Inserting (19) into (16) and making use of (15) one finally
obtains [12–14]

I =
π

2
Ic

EJ
Ec
ρ2ρ

(
βEc
2π2

1−2ρ
exp[−2γρ]

0

(
ρ − i

βeV
π

)∣∣∣∣2
0(2ρ)

sinh(βeV ). (20)

This perturbative result is only correct if the current is not too large, which may be the case for very small
temperatures and very small damping. In fact, as noted above, at zero temperature one finds a divergence at
low voltages. Therefore, the validity is restricted to not too low temperatures βEJ � ρ. Since Ec � EJ,
this together with the upper bound on temperature [βEc � ρ] still leaves a rather large range where (20) is
applicable.
The current–voltage characteristics (20) is shown in Fig. 6 (see Section 5) as dashed line for βEJ = 2,

ρ = 0.04 and βEc = 1 and 105. It exhibits a peak at finite voltage which for small ρ is given by

Vmax =
πρ

eβ
(1+ 4ζ(3)ρ3 + . . .). (21)

Here ζ(3) = 1.202 . . . is a Riemann number. In the limit of small ρ, high temperatures and for βeV� 1 one
recovers the result of classical phase diffusion (10).
A nonohmic environment of practical interest is a finite LC transmission line terminated by an ohmic

load resistance RL [15, 16]. The transmission line is characterized by its resistance at infinite length R∞ =
(L0/C0)

1/2, where L0 and C0 are the specific inductance and capacitance per unit length. As a parameter
describing the finite length ` of the transmission line we choose the λ/4-frequency ω0 = (π/2)u/`, where
u = (L0C0)

−1/2 is the velocity of wavepropagation on the line.
Depending on the ratio between load resistance and resistance of the infinite transmission line, the

environment behaves quite differently. For RL = R∞ the impedance matching results in an ohmic impedance.
On the other hand, for RL very different from R∞, the impedance displays sharp resonances. According to
the above discussion, the properties of the external impedance should show up in the probability to absorb or
emit energy, i.e. in P(E), and therefore according to (15) in the Cooper pair current–voltage characteristics.
This is indeed the case as can be seen from Fig. 5. There we show the zero-temperature Cooper pair current
for RL/R∞ = 0.1 obtained from a direct numerical evaluation of eqns (15)–(17). The resonance peaks can
be identified as single or multiple excitations of various transmission line modes [12]. The measurement of
the Cooper pair current, thus, allows for a spectroscopy of the environmental modes.

5. Supercurrent peak: between the phase diffusion and Coulomb blockade regimes
So far, we have discussed the behavior of a Josephson junction in the classical overdamped limit (Section 3)

and in the quantum regime for charging energies much larger than the Josephson coupling energy (Section 4).
We now want to bridge the gap between these two limits by extending the perturbation theory presented in
the previous section to infinite order in EJ.
The summation of the perturbation series in EJ is only possible for an appropriate choice of the parameter

regime. Motivated by the above discussion, we will continue to consider the overdamped regime where
ωR = 1/RC is much larger than the Josephson frequency ωJ = (2e/~)RIc. This is identical to the condition
2π2ρ2EJ � Ec given in Section 3. In addition, the correlation function J (t) contains a thermal frequency
scale given by ν = 2π/~β as can be seen from the last denominator in eqn (17). In the following we assume
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Fig. 5. Cooper pair current–voltage characteristic for an ultrasmall tunnel junction coupled to a finite transmission line with RL/RQ =
0.01, RL/R∞ = 0.1, and ω0R∞C = 1 at zero temperature. The peaks correspond to excitations denoted by (N1N2N3N4), where Nk
is the number of quanta of the k-th mode excited. a, (1000), b, (2000), c, (3000), d, (0100), e, (1100), f, (2100), g, (0010), h, (1010),
i, (0001), j, (1001).

that ωJ � ν, so that we may neglect terms exponentially decaying in time with ν or faster. This results in the
approximation

J (t) = −2ρ
[
π

~β
|t | + S + i

π

2
sign(t)

]
(22)

valid for sufficiently high temperatures where ρβEJ � 1. Further, we have introduced the abbreviation

S = γ +
π2ρ

βEc
+ ψ

(
βEc
2π2ρ

, (23)

where ψ(x) denotes the logarithmic derivative of the gamma function.
For the correlation function (22) the Cooper pair current can be evaluated exactly and expressed in terms

of a continued fraction [17]

I = IcRe


sin(πρ)
2πρ

exp(−2ρS)
v + i/βEJ

1

1+
b1

1+
b2

1+ . . .

 (24)

with coefficients

bn =

(
βEJ
2πρ

2 sin(πρn) sin(πρ(n + 1)) exp(−2ρS)
n(n + 1)(n − ivβEJ)(n + 1− ivβEJ)

. (25)

Since the continued fraction converges rapidly, we may linearize the sine functions appearing in eqn (25) for
sufficiently small ρ. Then, the continued fraction may be evaluated with the help of a matrix recursion and
one finds [17]

I =
2e
~

E∗J Im
( I1−iβeV/πρ(βE∗J )

I−iβeV/πρ(βE∗J )
(26)

with an effective Josephson energy

E∗J = EJ exp(−ρ[ψ(1+ ~βωR/2π)+ γ ]). (27)

Here we have rewritten the quantity S defined in eqn (23) in terms of the frequency ωR and have neglected
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Fig. 6. The current–voltage characteristic of a Josephson junction with Josephson energy βEJ = 2 is shown for charging energies
βEc = 1 and 105 and external resistance ρ = 0.04. The full line corresponds to our result (24) while the dotted line gives the standard
Ivanchenko–Zil’berman result (5) and the dashed line depicts the prediction (20) for Coulomb blockade. The two sets of current–voltage
characteristics are vertically shifted with respect to each other by I/Ic = 0.3 for sake of clarity.

a term πρ/~βωR � 1 in the overdamped limit considered. Even though ρ has to be small for the
expression (27) to hold, the correction to the bare Josephson energy may be substantial because for low
temperatures the ψ function grows logarithmically and may become large. On the other hand, in the classical
limit where ~ → 0 and e → 0 such that the flux quantum h/2e remains constant, the effective Josephson
energy E∗J coincides with the bare Josephson energy EJ. We thus recover in the classical overdamped limit
the result (5).
In Fig. 6 we show how the result (26) bridges between the phase diffusion result (5) shown as a dotted line

and the Coulomb blockade result (20) depicted as a dashed line. The current–voltage characteristics have
been calculated for βEJ = 2 and ρ = 0.04. For large βEc, where charging effects should be important, one
obtains very good agreement with the Coulomb blockade result. With decreasing βEc the current–voltage
characteristics evolve differently and a crossover to the Ivanchenko–Zil’berman result is found.

6. Conclusions
We have studied the current–voltage characteristics of mesoscopic Josephson junctions focusing on the

modifications of the supercurrent as the junction parameters change. We have not discussed here the effect of
the charging energy on quasiparticle tunneling relevant at higher applied voltages only [18]. As the charging
energy Ec grows relative to the Josephson energy EJ, the supercurrent of the classical Josephson effect
was shown to evolve gradually into a supercurrent peak caused by incoherent Cooper pair tunneling. In the
Coulomb blockade regime two types of structures may appear for small junctions with EJ � Ec embedded
in a standard low impedance environment. The first structure, a peak at low voltages has recently been seen
in experiments on lithographically fabricated junctions [15, 16] as well as break junctions [19]. The second
structure, peaks in the current–voltage characteristics due to resonances in the environmental impedance
have also been seen in experiments [15, 16] with a well-defined environment consisting of two transmission
line segments allowing for a quantitative test of the theoretical predictions and good agreement was found.
Although detailed experimental studies of the region between the phase diffusion and Coulomb blockade
limits are absent, recent work [20] indicates quantum effects in qualitative accord with the predictions made.
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