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I. INTRODUCTION

The coupling of a system to environmental degrees of
freedom plays an important role in many areas of physics.
Already on a classical level it leads to fluctuations, as in
Brownian motion, and to damping.! In addition, in quantum
mechanics the environmental coupling induces decoherence,
which, for example, is of interest in the discussion of Schro-
dinger cats’ and quantum computation.’

An isolated quantum system has stable eigenstates and its
density of states is given by a series of delta functions. Cou-
pling to external degrees of freedom renders the original
states unstable, since in general we obtain a new set of eigen-
states for the entire system. When the number of degrees of
freedom introduced is very large and the coupling suffi-
ciently weak, the new spectrum, consisting of a series of
closely spaced delta functions, will be signed by the original
one. In particular, the reduced density of states, describing
the system coupled to a large number of degrees of freedom,
results from a smearing of that of the uncoupled case. The
smearing of the original eigenenergies due to the coupling to
an environment can be expressed as a level width which is
related to the lifetime of the state.

The example of an atom coupled to the electromagnetic
modes of the radiation field may help to illustrate the concept
of level width. If the atom were isolated from the field, there
would be no transitions from excited states to states lower in
energy. This changes if we take the coupling to the radiation
field into account. Then transitions between states may oc-
cur, and the finite lifetime of the excited states broadens the
spectral lines associated with the transition. As a conse-
quence of this mechanism a modification of the mode spec-
trum may influence the lifetime of atomic states.

In the following discussion of level widths we will fix the
environmental spectrum to be ohmic (for a definition see
Sec. II below). On the other hand, the system considered, a
particle moving in a one-dimensional power-law potential,
will be quite general. While the level width of a system
eigenstate will increase with increasing coupling to the envi-
ronment, the properties of the eigenstate will also be of rel-
evance. This leads to an interesting question: How do the
level widths depend on the quantum number of the eigen-
state? As we will see, such a rather general question has a

surprisingly simple answer if one restricts one’s self to the
limit of large quantum numbers where semiclassical methods
are applicable.

Semiclassical approaches were essential at the advent of
quantum mechanics and have ever since remained a privi-
leged tool for learning this subject, for developing our physi-
cal intuition on new problems, and for performing analytical
calculations.>® For a particle confined in a one-dimensional
(ID) potential, the semiclassical [Wentzel-Kramers—
Brillouin (WKB)] approximation yields closed expressions
for the eigenenergies and eigenfunctions.” The applicability
of the WKB approximation is restricted to large quantum
numbers, where the confining potential varies smoothly on
the scale of the de Broglie wavelength of the particle. In this
limit, the quantum properties of the system can be obtained
by means of classical trajectories.

A particularly simple case is that of a power-law potential
where the eigenenergies follow a simple scaling with the
quantum numbers (or the classical actions).*’ Restricting
ourselves to power-law potentials, and in the presence of an
ohmic environment, we are able to extend the scaling of
Refs. 8 and 9 to level widths and demonstrate that they are
simply proportional to quantum numbers. It is interesting to
note that this scaling of level widths with the quantum num-
ber is even simpler than that of the eigenenergies, despite the
fact that the latter are more basic quantities than the former.

The paper is organized as follows. We first present the
general formalism for describing the dissipative environment
and its effect on the level widths (Sec. II), and we recall the
well-known case of a particle in a harmonic potential. In Sec.
III, we establish the central result of this work, proving the
linear dependence of level widths on quantum number under
the assumptions specified above. In the concluding section
we analyze the experimental implications of our findings and
their possible extensions to higher dimensions. The example
of a confining potential with the shape of a half-harmonic
oscillator is discussed in detail in the Appendix.

II. LEVEL WIDTHS IN A DISSIPATIVE
ENVIRONMENT

As our model we consider a particle of mass M moving in
a one-dimensional potential V' (g). The spectrum of the cor-
responding Hamiltonian
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is assumed to consist of a discrete part at low energies which
may be followed by a continuous part at higher energies. It is
on the discrete part of the spectrum (consisting of eigenen-
ergies £,, n=0,1,2,...) that we focus our analysis.

Since we consider the limit of large quantum numbers, we
require that the number of discrete eigenstates is infinite or at
least can be made sufficiently large. This includes, for ex-
ample, the radial part of the Coulomb problem but excludes
the Morse potential.

The eigenstates acquire a finite width if we weakly couple
the particle to environmental degrees of freedom. We assume
that the environment consists of a set of harmonic oscillators
coupled bilinearly to the particle. This leads to the full
Hamiltonian
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implying a coupling between system and environment
through the Hamiltonian

_/ZO cixiq. (3)

By eliminating the environmental degrees of freedom we
obtain an effective operator equation of motion,’
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with damping kernel
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a spectral density of bath oscillators

o

J(w)=m 2

- /

w—w,;), (6)

and a fluctuating force &(¢) which we do not need to specify
further.

The special case of J(w)=Myw is of great importance
since the damping kernel becomes local in time: 7y(¢)
=2vy8(t). Noting that in Eq. (4) only half of the delta func-
tion contributes (the integral ends at s=¢), the second term
becomes yqg(t), describing the well-known classical damp-
ing proportional to the particle velocity. This type of damp-
ing is often referred to as ohmic because such a term also
appears in equations for electrical circuits containing an
ohmic resistor.

The previous approach provides a microscopic model for
dissipation in quantum systems in the sense that dissipation
is due to coupling to additional degrees of freedom. How-
ever, we should not conclude that in a real resistor we can
identify environmental oscillators microscopically. The
Hamiltonian (2) allows us to treat analytically the effect of
the environment and also provides a good description of
many realistic systems. It has been studied over the years'”
and more recently became known as the Caldeira—Leggett
model'! in the context of macroscopic quantum phenomena.

Assuming a weak coupling between the particle and its
environment, we calculate the zero temperature width of the
n-th level by means of the Fermi golden rule
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This expression describes the decay of the state n to an en-
ergetically lower state m by one excitation of the j-th envi-
ronmental mode that changes its occupation number from 0
to 1. Inserting the dipole matrix element
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of the j-th environmental oscillator we get
m.j=
where d,,,, = <m|q|n> is the dipole matrix element of the sys-
tem. The properties of the environmental modes appearing in

Eq. (9) can be expressed in terms of their spectral density
(6), and we may write for the level width
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The sum over the system eigenstates is restricted since an
environment at zero temperature cannot excite the system
into states of higher energy. The result (10) is valid for arbi-
trary bath density. If we used a cubic frequency dependence
for J(w), appropriate for the electromagnetic field, we
would obtain the natural decay width of an excited atomic
state due to spontaneous emission (apart from prefactors aris-
ing from a proper treatment of the polarization of the emitted
photons).

In the sequel we will concentrate ourselves on the impor-
tant case of ohmic damping where the level widths can be
written as
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This expression constitutes the starting point for a calcula-
tion of level widths that will be performed in the following
section. It represents, up to the factor vy, a sum over oscillator
strengths
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The finiteness of the upper limit prevents aPzplication of the
standard Thomas—Reiche—Kuhn sum rule© for oscillator
strengths: = _ /.= 1.

For sufficiently simple confining potentials V(g) the
evaluation of the level widths can easily be done. For in-
stance, a harmonic potential with frequency w, has dipole
matrix elements that only couple nearest neighbor states,

h
= Vaazas VW 18mit 8y, 0. (13)

This leads to the well-known result for the level widths of a
damped harmonic oscillator'?

I',=nvy. (14)
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Fig. 1. Density of states for a harmonic oscillator of frequency w, coupled
to an ohmic environment with y/2w,=0.1. The delta function correspond-
ing to the stable ground state at energy E(=%w,/2 is not shown.

In this case one can even go beyond the level widths and
calculate the reduced density of states p(E) in closed form.!*
As an illustration we show in Fig. 1 the result for ohmic
damping with y/2w,=0.1. A delta function corresponding to
the stable ground state has been omitted. The levels broaden
with increasing energies, according to Eq. (14). For the rela-
tively large coupling chosen, the regime where the eigen-
states of the system are completely smeared out is reached
for rather small quantum numbers.

The strength of coupling of a system to its environment
can vary widely according to the physical problem under
consideration. The theoretical analysis that we pursue in the
following addresses the situation where the coupling is much
weaker than that in Fig. 1. Thus we expect a large series of
broadened eigenstates before the level widths become of the
order of the mean level spacing.

III. LEVEL WIDTHS FOR POWER-LAW
POTENTIALS

In this section we establish the main result of our work,
the proportionality of level widths to quantum numbers for
the model described in Sec. II and power-law confining po-
tentials of the form V(q)=A4|q|*. The amplitude 4 and the
exponent « should have the same sign to allow for bound
states. The accessible classical region might be limited by an
infinite potential wall, and we assume that such a wall is
present at g =0 whenever a<<0. The case =0 will be ex-
cluded because it requires two walls and thus reduces to the
exactly solvable case of a particle in a box (see also @=0
in Table I). Furthermore, we will restrict the exponent to
a>—2. At a=—2 the action becomes independent of en-
ergy as will become clear from Eq. (21) below. Therefore we
must exclude this pathological case. We emphasize that an
attractive 1/¢g° potential for small ¢ can never appear in a
radial equation of motion in d>1 after elimination of the
angular degrees of freedom.

Since our semiclassical approach requires sufficiently
large energies, the discussion applies also to confinements
which effectively behave like a power-law potential at higher
energies, regardless of the shape at the bottom of the poten-

Table 1. Eigenenergies, dipole matrix elements, and level widths in the
semiclassical limit for 1D box (a=0 with two walls), half oscillator (a
=2), and radial part of the Coulomb problem (a=—1).

a En dn,n—l F,,/'yn
_ 7
0 ~n ~17? —U3)=085...
2 ~n ~nl2=2 FZO'SI
1/3
1 p2 2= ?[F(2/3)]2§(7/3)=0.47 ..

tial. For example, the quartic double-well potential is in-
cluded in our discussion since it has the form A¢* for large
energies.

According to Eq. (11) the n-dependence of the level
widths is determined by the dipole matrix element d,,,, and
the energy difference £, — E,, . We start the analysis of these
quantities by recalling some relations concerning energy
quantization in the semiclassical limit. The central quantity is
the action

S(E)y=M % dqq, (15)

taken over one cycle of the classical periodic motion. The
period T itself may be obtained by taking the derivative of §
with respect to energy, 7=dS/dE. Within semiclassical
quantization, the eigenenergies are determined by

S(E,)=2mh(n+ ), (16)

where u is a constant depending on the details of the poten-
tial. We are interested in large quantum numbers » and m
where n, m>I=n—m. Then we obtain for the energy dif-
ference
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The dependence of the energy E on quantum number n
can be obtained by using the scaling properties of the clas-
sical energy conservation condition

M
E= 7q2+Aq“. (18)

To this end we introduce dimensionless coordinate and time
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which simplifies Eq. (19) to the dimensionless form
1=1¢"?+sign(4)q' . (20)

Here, ¢'=dq’'/dt'. The quantization condition (16) in
scaled variables reads
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where again the integral runs over one period. On the right-
hand side we have omitted the constant u introduced in (16)



which becomes irrelevant for large n. With S’ =¢dq’'q’ we
then find for the energy eigenvalues
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in agreement with previous results for power-law
potentials® where S’ has been evaluated explicitly. Equa-
tion (22) is still correct for sufficiently large n if the potential
behaves like a power-law only asymptotically. Then, in gen-
eral, S’ can no longer be evaluated analytically.

In the semiclassical limit the dipole matrix elements can
be related to the Fourier components of the classical motion
of the particle:"
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Here the second line has been obtained by means of the
substitution dq=¢dt and partial integration.

Equation (23), first found by Debye in 1927, extends
Bohr’s correspondence principle, which states that in the
limit #—0 the frequencies of an atomic transition should
agree with electrodynamics, to intensities which are related
to the square of dipole matrix elements, Eq. (12). Equation
(23) is the leading-order approximation in #. Higher order
corrections have been derived in Ref. 16 but we will not
make use of them here.

In the presence of hard walls the WKB approximation is
still applicable and an extra phase in the semiclassical wave
function takes into account the infinite potential.” Therefore,
the semiclassical approximation to the dipole matrix element
is the same as for smooth potentials.

After scaling, the dipole matrix element (23) reads

E o ,
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where T’ denotes the period T scaled according to Eq. (19).
The entire dependence of the dipole matrix element on the
quantum number n is now contained in the energy factor
El/D(.

In view of Egs. (22) and (24), the level widths can be
expressed as

n
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Apart from the factor » this result still depends on the state
number z via the upper limit of the sum. As a last step, we
therefore have to consider the convergence properties of this
sum.

For @>0 and in the absence of an infinite potential wall,
the velocity of the particle as a function of time is continuous
and consequently the scaled dipole moment (25) will decay
at least as /2. This still holds for a wall with finite potential
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on one side since in that case the reflection will lead to a
triangular cusp singularity in the trajectory and the dipole
moment will decay as /2.

The case of negative exponent « with an infinite potential
wall at ¢ =0 where the potential diverges is more interesting.
Close to ¢ =0 we may neglect the constant on the left-hand
side of (20). Assuming that the reflection happens at ¢’ =0
we find for the trajectory close to the reflection point ¢’
~t"|#2= @) For sufficiently large /, this singular part yields
the asymptotic behavior d) ~1~“#~ /2~ for the scaled di-
pole matrix element. For a>—2 it follows that d; decays
always faster than />

As a consequence, the argument of the sum in Eq. (26)
decays faster than 1//% for all potentials under consideration.
Neglecting terms of order 1/n, as is consistent with our pre-
vious approximations, we may extend the upper summation
limit to infinity and arrive at our final result

o
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For sufficiently large energies, the level widths are therefore
proportional to the state number n. We point out that the
proportionality constant depends on « and 7y but not on M
and 4.

Apart from the harmonic oscillator discussed at the end of
Sec. II there exist a few more systems for which the level
widths can be evaluated exactly. Table I summarizes the re-
sults for the box, the radial part of the Coulomb problem
(with the dipole matrix element given in Ref. 17), and the
half-harmonic oscillator for which we sketch the calculation
in the Appendix. All quantities are given for large quantum
number 7. In addition, for the dipole matrix element the limit
of large [ with n>1 is taken, as was the case in the general
derivation given above. For these three examples, the table
shows that the linear dependence of the level widths on
quantum number results in a nontrivial way from the
n-dependences of the eigenenergies and the dipole matrix
elements.

While these properties are special to the case of ohmic
damping, an extension to other bath densities along the lines
presented here is straightforward. Often one assumes a
power-law behavior for the spectral density of bath oscilla-
tors J(w)~ w?. The behavior at large frequencies may lead
to divergencies and one is often forced to introduce a cutoff
which might be sharp or exponential in nature. If the cutoff
frequency is much larger than all other energies of interest,
one finds along the lines indicated above for the level widths
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This clearly shows that the universality found above is spe-
cial to the case of ohmic damping (8=1). For larger expo-
nent 3 the level widths may even decrease with increasing
quantum number n as is well known from the stability of
Rydberg atoms.

IV. CONCLUSIONS

Making use of a semiclassical expression for the dipole
matrix element in terms of the Fourier transform of the clas-
sical paths, we have shown that the level widths of a particle
in a power-law potential coupled to an ohmic environment
are proportional to the number n of the state. This result is



valid for sufficiently large n and can therefore be extended to
potentials possessing only an asymptotic power-law behav-
ior. The cases with one or two hard walls are also shown to
obey such a scaling. The proportionality of level widths with
the state number known for the harmonic oscillator is thus
generalized to a large class of one-dimensional potentials.
The prefactor of such a linear law depends on the specific
potential.

The applicability of our results to physically realizable
situations is limited by the following restrictions: (i) the mo-
tion of the particle whose state may decay has to be one-
dimensional; (ii) large quantum numbers are involved; (iii)
the coupling giving rise to the decay has to be dipolar and
the environment of ohmic density of bath modes; (iv) the
coupling has to be sufficiently weak in order to have well
defined states at large n. These conditions could be met on
the one hand in experiments on mesoscopic electronic de-
vices, which enable one to build quantum confined systems
of reduced spatial dimensionality. Other candidates are
trapped atoms: They can, e.g., be highly excited into elon-
gated (quasi 1D) Stark-type states and their coupling to the
environment can be measured with high precision. Hence,
experimental scenarios to test the simple general scaling of
the widths with quantum number appear possible.

One condition that would be interesting to be relaxed
among the above requirements is the one concerning the di-
mensionality of the system. In three dimensions there exists
a semiclassical treatment of radiative lifetimes in hydrogen-
like atoms'® which is relevant for spectroscopy of Rydberg
atoms. Apart from this special case, we are not aware of any
systematic study of level widths for a whole class of poten-
tials in the limit of large quantum numbers.

Multidimensional systems allow us to take into account
the rich behavior that the underlying classical mechanics
yields. Semiclassics is appropriate to treat such cases (in the
limit of large energies) and allows us to address the differ-
ences arising from the chaotic or integrable nature of the
classical motion. Therefore, an extension of the approach
presented here would contribute to the understanding of the
interplay between quantum chaos and dissipation.
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APPENDIX: HALF-OSCILLATOR

We discuss in this Appendix the case of a half-harmonic
oscillator, where the confining potential has the form of a
harmonic oscillator for ¢>0 and an infinite wall at g =0 (the
particle is then confined to ¢=0). The interest of treating
this nontrivial example separately stems from the fact that
both approaches, the direct calculation and the semiclassical
approximation, are feasible and can be compared. In contrast
to the case of the harmonic oscillator, the dipole matrix ele-
ments of the half-oscillator couple not only nearest neighbor
states. The eigenstates of the half-oscillator are given by the
odd eigenstates of the harmonic oscillator with the prefactor
adjusted to account for the restricted interval of normaliza-
tion. The dipole matrix element d,,, may then be evaluated

by expressing the Hermite polynomial with the higher quan-
tum number n>m by means of the Rodrigues formula,
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The semiclassical evaluation of the dipole matrix element
using Eq. (23) is considerably easier and leads to

4[ # N2 o1
S
Mw 4

I 4r—1"
For n>1 this agrees with the exact result up to an irrelevant
sign. For the level widths we then obtain

dn,n*l= - (AS)
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and thus the proportionality to the quantum number.
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UNIVERSAL GRAVITATION

Stanley and Emin and their followers trekked for several months to the east African coast, reach-
ing the sea at a small German post in today’s Tanzania.

A German battery fired an artillery salute in their honor, and officials gave the two of them a
banquet at the local officers’ mess. A naval band played; Stanley, Emin, and a German major gave
speeches. ‘‘The wines were choice and well-selected and iced,”” writes Stanley. Then the near-
sighted Emin, who had been moving up and down the banquet table, chatting with the guests and
drinking champagne, stepped through a second-floor window that he apparently thought opened
on a veranda. It didn’t. He fell to the street and was knocked unconscious. He had to remain in a
local German hospital for two months, and Stanley was unable to bring him back to Europe in
triumph. Most embarrassing of all for Stanley was that Emin Pasha, once he recovered, went to
work neither for his British rescuers nor for Leopold, but for the Germans.

Adam Hochschild, King Leopold’s Ghost—A Story of Greed, Terror, and Heroism in Colonial Africa (Houghton Mifflin,




