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AMORPHOUS THIN FILM GROWTHSIMULATION METHODS FORSTOCHASTIC DEPOSITION EQUATIONS�Martin Raible, Stefan J. Linz and Peter HänggiTheoretishe Physik I, Institut für Physik, Universität Augsburg86135 Augsburg, Germany(Reeived November 27, 2001)Di�erent methods for the numerial solution of a stohasti growthequation apturing the essene of amorphous thin �lm growth are presentedand ompared. We show numerially that the �nite di�erene approxima-tion and the spetral Galerkin method yield the same results within thesame auray and roughly omparable omputation time. We also explainhow stohasti �eld equations an be solved using �nite element approxi-mations.PACS numbers: 02.60.Cb, 02.60.Lj, 02.50.Ey, 68.55.�a1. IntrodutionThe topi of formation and spatio-temporal evolution of surfaes gen-erated by deposition proesses has reently developed into a highly ativeresearh area of statistial physis (see Ref. [1℄). Spei�ally, the growthproess of the surfae of the deposited �lm, as it appears in moleular beamepitaxy or physial vapor deposition experiments, is determined by the om-petition between roughening due to the deposition of partiles and smooth-ing due to surfae di�usion e�ets [2�6℄. Experimental studies on amorphous�lms deposited by eletron beam evaporation have revealed the formationof moundlike surfae strutures on a mesosopi length sale [7�10℄. Thisindiates that ontinuum models based on stohasti �eld equations of theform �tH = G(H) + � + F ; (1)an serve as a useful tool for the understanding of the growth dynamis.Here, H(~x; t) represents the height of the surfae above a given substrateposition ~x at time t, as shown in Fig. 1. G(H) represents a funtionalof the spatial derivatives of the height funtion H and inludes all surfae
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yFig. 1. Sketh of the vapor deposition of an amorphous �lm on a substrate.relaxation proesses and possible growth instabilities. F denotes the meandeposition rate, and � quanti�es the deposition noise that represents the�utuations of the deposition �ux around its mean F . These �utuationsare assumed to be Gaussian white, i.e.h�(~x; t)i = 0 ; h�(~x; t)�(~y; t0)i = 2DÆ2(~x� ~y)Æ(t � t0) ; (2)where the brakets denote ensemble averaging andD the �utuation strength.A transformation into a frame omoving with the deposition rate F , h(~x; t) =H(~x; t)�Ft, yields a orresponding evolution equation for the height pro�leh(~x; t) �th = G(h) + � : (3)A omparison with experimental data for amorphous Zr65Al7:5Cu27:5�lms deposited by eletron beam evaporation has reently evidened a goodquantitative agreement between numerial solutions of the model equation[11�13℄ �th = a1r2h+ a2r4h+ a3r2(rh)2 + a4(rh)2 + � (4)and experimental measurements up to the largest, experimentally observedlayer thikness of 480 nm [11℄. Moske [14℄ had already suggested the equa-tion �th = a2r4h+ a3r2(rh)2 + � as a model for amorphous �lm growth.This equation, however, is not able to apture the experimentally observedpattern-forming surfae struture. Based on mirosopi models [12�14℄ forthe governing surfae relaxation mehanisms, it has been found that theoe�ients a1, a2, and a3 in Eq. (4) are negative, whereas a4 is positive.The term a1r2h with negative a1 represents in ombination with the terma2r4h the same growth instability as in the Kuramoto�Sivashinsky equa-tion, that is known to trigger the formation of moundlike surfae strutures.For a mathematial proof of existene of a solution of Eq. (4) in the one-dimensional ase we refer to Ref. [15℄.



Amorphous Thin Film Growth: Simulation Methods : : : 1051Surfae growth equations of the form (3) and (4) are usually solved on aquadrati area [0; L℄2 subjet to periodi boundary onditions. The initialstate is given by h(~x; 0) = 0, orresponding to an initially �at substrate.In order to ompare the solutions of suh stohasti growth equations withexperimental results, experimentally aessible statistial quantities have tobe introdued. The orrelation length R(t) and the surfae roughness w(t)are suh harateristi quantities and are determined by the height�heightorrelation funtionC(r; t) = �� 1



1052 M. Raible, S.J. Linz, P. HänggiHere, h(n)i;j denotes the spatial average of the height funtion h at the timetn on one of N2 squares of a quadrati lattie on [0; L℄2, i.e.h(n)i;j = 1



Amorphous Thin Film Growth: Simulation Methods : : : 1053By using entral di�erene approximations in spae and an expliit Eulersheme in time we obtain the numerial proedureh(n+1)i;j = h(n)i;j + �tn
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Fig. 2. Correlation length R(t) and surfae roughness w(t) alulated from Eq. (4)using two di�erent numerial methods on an interval [0; L℄2 of the size L = 200subjet to periodi boundary onditions. The parameters were a1 = �0:1045,a2 = �0:4044, a3 = �0:13, a4 = 0:07, and D = 0:022. The results ensuing fromthe �nite di�erene method (13)�(15) with N2 = 2002 and N2 = 4002 grid pointsare depited by the dashed and the dash-dotted lines, respetively. The resultsthat were determined by the spetral Galerkin method (22)�(27), (29), (30) withN = 42 and N = 85 are represented by the dotted and the solid lines, respetively.Therefore, eah part of this �gure ontains four di�erent lines. As a result of thegood agreement between the di�erent simulation methods, the di�erene betweenmost of these lines is not visible.



Amorphous Thin Film Growth: Simulation Methods : : : 10553. Spetral Galerkin methodThe spetral Galerkin method is a numerial method to solve the spa-tial evolution of partial di�erential equations in Fourier spae. It is espe-ially e�ient in the time interval where the linear parts of the equationdominate. For analytial and numerial results on the onvergene of thespetral Galerkin method for the one-dimensional version of Eq. (4) we referto Ref. [15℄. In this paper, we fous on stohasti growth equations in twospatial dimensions. Then, Eq. (4) reads in Fourier spae�t~h(~k; t) = �(k)~h(~k; t) + (�a3k2 + a4)~v(~k; t) + ~�(~k; t) (17)with �(k) = �a1k2 + a2k4 ; (18)~h(~k; t) = Z d2xh(~x; t) exp(�i~k � ~x) ; (19)~v(~k; t) = Z d2x [rh(~x; t)℄2 exp(�i~k � ~x) ; (20)~�(~k; t) = Z d2x �(~x; t) exp(�i~k � ~x) : (21)For the time disretization usually a semi-impliit Euler sheme is applied~h(n+1)(~k) = ~h(n)(~k) + �tn�(k)~h(n+1)(~k)+�tn(�a3k2 + a4)~v(n)(~k) + ~q(n)(~k) ; (22)where ~h(n)(~k), ~v(n)(~k), and ~q(n)(~k) are a short hand notation for ~h(~k; tn),~v(~k; tn), and the noise ontribution: ~q(n)(~k) = R tn+�tntn dt ~�(~k; t). The wavevetor ~k is of the form ~k = 2�



1056 M. Raible, S.J. Linz, P. Hänggih[Re ~q(n)(~k)℄[Im ~q(n)(~k0)℄i = 0 ; (26)h[Im ~q(n)(~k)℄[Im ~q(n)(~k0)℄i = 8<: D�tnL2 if ~k = ~k0 6= 0 ;�D�tnL2 if � ~k = ~k0 6= 0 ;0 otherwise . (27)Here, it is interesting to note that the disrete Fourier transform of thestohasti ontribution to the �nite di�erene sheme (6)~q(n)�x(~k) = (�x)2Xj;l Pn�(n)j;l exp[�i(kxj�x+ kyl�x)℄ (28)has the same �rst and seond moments (23)�(27) if the wave vetors ~k =(kx; ky) are in the range ��=�x < kx < �=�x and ��=�x < ky < �=�x.This also on�rms that the deposition noise � has been given the orretweight in the �nite di�erene method (6).Equation (22) an only be solved in a �nite area A of the Fourier spaethat onsists of wave vetors ~k = 2�



Amorphous Thin Film Growth: Simulation Methods : : : 1057wave vetors ~k = 2�



1058 M. Raible, S.J. Linz, P. HänggiThese equations are multiplied with test funtions �i from the Sobolev spaeH1per([0; L℄2) and then integrated on [0; L℄2 [22℄. In order to simulate thetime evolution an impliit Euler sheme an be applied. The resulting om-putational sheme then readsZ �ih(n+1) = Z �ih(n) ��tn Z (r�i) � (rw(n+1))+�tna4 Z �i(rh(n+1))2 + Z(n)i ; (34)Z �iw(n+1) = a1 Z �ih(n+1) � a2 Z (r�i) � (rh(n+1))+a3 Z �i(rh(n+1))2; (35)Z(n)i = tn+�tnZtn dtZ d2x�i(~x)�(~x; t) ; (36)where h(n) and w(n) denote the funtions h and w at the time tn. Theequations (34)�(36) an atually only be solved for a �nite number of linearlyindependent test funtions �1; : : : ;�N 2 H1per([0; L℄2). Therefore, we try to�nd the solutions h(n+1) and w(n+1) in the subspae VN being spun by thefuntions �1; : : : ;�N .In order to �nd the test funtions �1; : : : ;�N we subdivide the area[0; L℄2 into triangles. The triangulation omplies with the periodi bound-ary onditions and the following rules. Two di�erent triangles should shareeither one edge or one orner or not a single point. Two mesh points ofthe triangulation should not be onneted by more than one edge. The testfuntions �i are de�ned by the properties, that (i) they are ontinuous fun-tions on [0; L℄2 and ful�ll periodi boundary onditions, (ii) they are linearfuntions on eah triangle, and (iii) that �i assumes the value 1 at the meshpoint Pi and the value 0 at all other mesh points Pk. As a result of thisde�nition, �i di�ers from zero only on the triangles that surround the meshpoint Pi.Before one an solve the system of the equations (34)�(35), the randomnumbers Z(n)i have to be generated. These random numbers are normallydistributed and have the momentsDZ(n)i E = 0; (37)DZ(n)i Z(n)k E = 2D�tn Z �i�k (38)



Amorphous Thin Film Growth: Simulation Methods : : : 1059for all i; k = 1; : : : ; N . This yields in ase i = k��Z(n)i �2� = 2D�tn1
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