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Abstract. – The effects of Macroscopic Quantum Tunneling (MQT) and Coulomb Blockade
(CB) in Josephson junctions are of considerable significance both for the manifestations of
quantum mechanics on the macroscopic scale and potential technological applications. These
two complementary effects are shown to be clearly distinguishable from the associated noise
spectra. The current noise is determined exactly and a rather sharp crossover between flux noise
in the MQT and charge noise in the CB regions is found as the applied voltage is changed.
Related results hold for the voltage noise in current-biased junctions.

Generally, noise is considered undesirable and one searches for ways to suppress it. How-
ever, occasionally the observation of noise may provide valuable information. The presence
of shot noise in electrical transport indicates the discreteness of the charge carriers and the
ratio between noise and current directly measures their charge. This fact was exploited to
demonstrate the fractional charge in the fractional quantum Hall effect [1, 2].

Noise may also be helpful in identifying a transport mechanism. Tunnel junctions often
display linear current-voltage characteristics and are therefore indistinguishable from an ohmic
resistor if only the current is measured. On the other hand, noise measurements exhibit clear
differences. One finds shot noise in the first and Nyquist noise in the second case corresponding
to discrete and continuous charge transport, respectively.

An even more interesting situation arises, when different physical mechanisms can occur as
is the case for ultrasmall Josephson junctions. Such systems have been proposed as building
blocks for quantum computers [3] and the operation of a superconducting box containing such
a tunnel junction as a qubit has been demonstrated [4].
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Fig. 1 – An ultrasmall Josephson junction is characterized by its critical current Ic and a capacitance
C. a) Junction and ohmic resistor in series are voltage-biased. b) Junction and ohmic resistor in
parallel are current-biased.

For a single ultrasmall Josephson junction at low temperatures, it has been theoretically
predicted that one may change from transport dominated by macroscopic quantum tunnel-
ing (MQT) to the regime of Coulomb blockade (CB) just by changing the applied voltage [5].
These two regimes are qualitatively different as in MQT the phase difference across the Joseph-
son junction is a good quantum variable while CB is governed by the conjugate charge variable.
We propose to study the noise properties in order to experimentally identify the transport
mechanism.

We will discuss the noise properties of a voltage-biased as well as a current-biased small
Josephson junction with the effective circuits shown in figs. 1a and b, respectively. The
Josephson junction may be characterized by its critical current Ic and its capacitance C
which lead to two energy scales governing the behavior of the junction. The Josephson energy
EJ = h̄Ic/2e determines the probability of Cooper pair tunneling while Ec = (2e)2/2C is the
charging energy of a capacitor carrying just one Cooper pair. The resistance R = ρRQ of the
external resistor may be taken relative to the resistance quantum RQ = h/4e2. Typically, the
resistance will be small, i.e. ρ � 1. In the following, we will be interested in the behavior
of the junction at voltages of the order of RIc much smaller than the superconducting gap.
Therefore, quasiparticle excitations may be neglected.

Exact results for the current-voltage characteristics and current noise are known [6–8]
for some one-dimensional systems with ohmic dissipation corresponding to an ideal ohmic
resistor. However, as can be seen from fig. 1, the external resistance is cut off by the junction’s
capacitance at high frequencies. For typical lead resistances, the cutoff frequency 1/RC is
much larger than the frequency (2e/h̄)RIc corresponding to the typical voltages of interest
and the assumption of an ohmic resistor is sufficient for these voltages. This implies an
overdamped junction characterized by a McCumber parameter βc = (2e/h̄)R2IcC � 1. In
the following, we will focus on the overdamped regime.

We start with a discussion of the voltage-biased case (fig. 1a). In the overdamped limit
and ρ < 1, the zero-temperature current-voltage characteristic displays an almost linear rise
of the current for small voltages reflecting the fact that nearly the entire applied voltage drops
across the external resistor. There are, however, deviations due to macroscopic quantum
tunneling which causes phase slips by quantum tunneling of the phase accoss the barrier of
the Josephson potential. This is responsible for the voltage drop across the junction captured
by a perturbation theory in Ec/EJ yielding the current-voltage characteristics [5]
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where

cn(ρ) = (−1)n−1 Γ(1 + ρn)Γ(3/2)
Γ(1 + n)Γ(3/2 + (ρ − 1)n)

(2)

and γ = 0.577 . . . is the Euler constant.
On the other hand, perturbation theory in EJ/Ec yields the current-voltage characteristics

〈IJ〉 =
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R
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)2nρ (
V

RIc
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, (3)

which describes incoherent tunneling of Cooper pairs across the oxide layer of the Josephson
junction. The leading-order behavior I ∼ V 2ρ−1 is typical for Coulomb blockade which for
ρ > 1 manifests itself in a suppression of the current at low voltages. For ρ < 1, this term
would correspond to a divergence at zero voltage and then (3) can only be valid for not too
small voltages.

In fact, the two series have a finite radius of convergence. For ρ < 1, the expansions (1)
and (3) converge for low and high voltages, respectively. They join smoothly and provide a
full description of a peaked current-voltage characteristic. To the left of the peak, transport is
therefore based on macrosopic quantum tunneling, while to the right of the peak, we find the
regime of Coulomb blockade. The two regimes, even though the underlying physics is very
different, are related to each other by a duality transformation [6–8]. A typical example for
the current-voltage characteristics is depicted in fig. 2a for a Josephson junction with Ec = EJ

and a small environmental resistance R = 0.1RQ. The peak at a voltage of order RIc is a
remnant of the dc Josephson effect of a classical Josephson junction.

The question now arises how to identify the two transport regimes without making use of
the theoretical results. We argue that a suitable way to achieve this goal is the observation
of current noise

SI =
∫ +∞

−∞
dt〈δIJ(t)δIJ(0) + δIJ(0)δIJ(t)〉 . (4)

Here, δIJ denotes the deviation of the current IJ from its mean value 〈IJ〉. The noise may
be determined by following the same line of reasoning employed previously to calculate the
noise in fractional quantum Hall bars [6–8]. The time evolution of the density matrix may
be written as a path integral on the Keldysh contour including an auxiliary field coupling to
the current operator. Arbitrary current expectation values are then determined as functional
derivatives of the path integral. Concrete results like the series (1) and (3) for the I-V curves
may be obtained in the so-called Coulomb gas representation [9] of the real-time path integral.
Second-order functional derivatives allow to determine the noise properties.

In the limit of zero frequency, the results can be expressed in closed form and one obtains
for the current noise

SI =
2eV

1 − ρ
(G − Gd). (5)

Apart from the external voltage V and the dimensionless resistance ρ, the noise depends on
the difference of absolute and differential conductance, G = 〈IJ〉/V and Gd = ∂〈IJ〉/∂V ,
where 〈IJ〉 is the time-averaged current. Note that in the case of an ideal supercurrent the
external voltage drops entirely across the resistor. Then, the current-voltage characteristic is
linear in the external voltage and the noise vanishes due to the fully coherent transport of
Cooper pairs. The result (5) allows us to obtain the current noise in the middle panel of fig. 2
from the current-voltage characteristic shown in the upper panel. The current noise in fig. 2c
has been plotted as two different Fano factors. As will be explained in the following, these
Fano factors are appropriate to identify the transport mechanisms.
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Fig. 2 – Current and current noise have been calculated for an ultrasmall Josephson junction with
Ec = EJ and an external resistance R = 0.1RQ. a) Current-voltage characteristic. b) Current noise
as a function of the voltage bias. c) Fano factors for flux noise (left scale) and charge noise (right
scale) appropriate in the MQT and CB regime, respectively.

Fig. 3 – The voltage noise (10) as a function of the bias current is shown for a junction with Ec = EJ

and two external resistances ρ = 0.1 (full line) and ρ = 0.02 (dashed line). The result (12) in the
limit ρ → 0 is represented by the dotted line.

The current noise both in the CB and MQT regimes may be understood in terms of
Poissonian shot noise where transport of the appropriate quantity occurs at uncorrelated
random times. The shot noise is given by the product of the transported quantity and the
corresponding current. In the CB regime, it is the charge flow of Cooper pairs which obeys
Poissonian statistics. The current noise, SI = 4e〈IJ〉, is therefore proportional to the charge
2e of a Cooper pair and the average current 〈IJ〉 through the Josephson junction. The Fano
factor

fI =
SI

4e〈IJ〉 (6)

plotted in fig. 2c clearly confirms the assumption of shot noise since it is very close to one in
the CB region. On the other hand, in the regime of MQT, the charge flow becomes continuous
and the corresponding shot noise is strongly suppressed. The change from the MQT to the
CB regime is indicated by a remarkably sharp rise of the Fano factor fI .

In the case of MQT, occasional phase slips lead to a voltage drop VJ = (h̄/2e)ϕ̇ across the
junction and to voltage noise

SV =
∫ +∞

−∞
dt〈δVJ(t)δVJ(0) + δVJ(0)δVJ(t)〉 . (7)
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Since VJ = V −RIJ and the external voltage does not fluctuate, the current noise is determined
by (7) via SI = SV /R2. The assumption of Poissonian statistics of the phase slips then allows
us to evaluate the current noise. During a phase slip the phase changes by 2π leading to an
integrated voltage pulse h/2e. The current noise thus becomes

SI =
1

R2

h

e
〈VJ〉 . (8)

The corresponding Fano factor

fV =
eR2

h

SI

〈VJ〉 (9)

therefore allows to identify MQT as is shown in the left part of fig. 2c. In contrast, in the CB
regime the phase is strongly fluctuating and shot noise due to phase slips can no longer be
detected. Again, the crossover between the two regimes is very distinct.

The results discussed so far for the voltage-biased case may be rewritten for a current-
biased junction (fig. 1b). The voltage-biased case with applied voltage V and current IJ

through the junction can be transformed to the current-biased case with applied current I
and voltage drop VJ across the junction by means of the relations I = V/R and VJ = V −RIJ.
Then, the current noise (5) turns into voltage noise

SV =
2eRI

1 − ρ

(
∂〈VJ〉
∂I

− 〈VJ〉
I

)
, (10)

which depends on the difference of the differential and the absolute resistance of the resistively
shunted junction.

It is instructive to make connection to results known in the limit ρ → 0, where the current-
voltage characteristics for I > Ic is given by [10,11]

VJ = R
(
I2 − I2

c

)1/2
. (11)

From (10) one therefore finds for the voltage noise

SV = 2eR2I2
c

(
I2 − I2

c

)−1/2
(12)

in agreement with the results of ref. [12]. While this result diverges when I approaches the
critical current Ic, the expression (10) for ρ > 0 yields a well-behaved voltage noise for the
entire range of applied currents. Figure 3 compares the voltage noise according to (10) for a
junction with Ec = EJ and finite shunt resistance R corresponding to ρ = 0.1 and ρ = 0.02
with the result (12) for ρ → 0. The divergence at I = Ic associated with the kink in the
voltage-current characteristics (11) is smoothed as the external resistance increases.

In conclusion, we have studied noise properties of voltage-biased small junctions, which
have been the subject of recent experimental investigations [13], as well as of the more stan-
dard current-biased junctions employed in SQUID technology [14]. Even though we started
from analytical results valid for the overdamped limit at zero temperature, the reasoning lead-
ing to the Fano factors was completely independent of these results. They were only needed to
confirm the validity of the assumption of Poissonian statistics for charge transport and phase
slips. One may therefore conclude that the observation of noise allows to determine the trans-
port mechanism independently of a theoretical result for the current-voltage characteristics
and the current noise. As a consequence, noise measurements may well be useful to identify
the transport mechanism beyond the overdamped limit and the limit of zero temperature.
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