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ON THE GEOMETRY OF SYMMETRIC R-SPACES

PETER QUAST AND MAKIKO SUMI TANAKA

Abstract. In this survey article we report on our recent work [9, 35], partially in collab-
oration with Jost-Hinrich Eschenburg, on geometric properties of symmetric R-spaces and
their submanifolds. But this paper also contains a new result, Theorem 12, on the convex-
ity of certain reflective submanifolds in simply connected irreducible compact symmetric
spaces of Dynkin type a.

1. Introduction and Preliminaries

1.1. Riemannian symmetric spaces. Important isometries of a euclidean space E are
reflections through affine subspaces. They generate the full isometry group of E. A par-
ticular reflection is the symmetry sp through a point p ∈ E. It reverses the orientation of
oriented straight lines (geodesics) emanating in p. Analogously, if S is a connected Rie-
mannian manifold and p a point in S, an isometry sp of S that fixes p and reverses the
orientations of all geodesics emanating in p is called (geodesic) symmetry of S through p.
A generic Riemannian manifold does, of course, not admit any geodesic symmetry.

A (Riemannian) symmetric space is a connected Riemannian manifold S such that for
each point p ∈ S the geodesic symmetry sp exists. Locally symmetric spaces are char-
acterized by the property that their Riemannian curvature tensor is covariantly constant
(parallel). From this point of view symmetric spaces are generalizations of euclidean space.

Symmetric spaces were introduced by Élie Cartan in the 1920s (see [3, Chap. IV] and [1,
§6.7–§6.9] for interesting historical accounts). Classical references on symmetric spaces
include Sigurdur Helgason’s monograph [16] and Ottmar Loos’ two volumes [24, 25]. We
refer to these books for further details and proofs.

To a symmetric space S one associates two transitively acting closed subgroups of the full
isometry group Iso(S) : the symmetry group Sym(S) generated by all geodesic symmetries,
and the transvection group Trans(S) generated by compositions of two geodesic symmetries.
If S is compact, the transvection group of S is actually the identity component of Iso(S).
We choose a base point o ∈ S and denote byK the identity component of the isotropy group
{g ∈ Iso(S) | g(o) = o}. The group K acts effectively on ToS. This action is called isotropy
representation. A symmetric space is called irreducible, if its isotropy representation is
irreducible. Further we say that a symmetric space is of compact type, if its universal
Riemannian cover is still compact.
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An important tool for studying symmetric spaces are flats. A flat F of a symmetric
space S is a maximal connected complete totally geodesic submanifold F ⊂ S of vanishing
sectional curvature. Any two flats of a symmetric space S can be identified by an isometry
of S. Thus the dimension of any two flats of S coincide. This dimension is called the rank
of S, rank(S) = dim(F ).

If a symmetric space S is compact, then any flat of S is a flat torus. The unit lattice of
a compact symmetric space S is the unit lattice of one of its flats. Let F be a flat of S
and let o ∈ F, then the unit lattice of S with respect to F and o is

Γ = Γ(ToF ) := {X ∈ ToF | Expo(X) = o},

where Expo : ToS → S denotes the Riemannian exponential map of S with respect to the
point o. We say that Γ is rectangular (resp. cubic), if there exists an orthogonal (resp.
orthonormal) basis {e1, . . . , er} of ToF such that

Γ = spannZ(e1, . . . , er) =

{
r∑
j=1

λjej

∣∣∣∣∣ λ1, . . . , λr ∈ Z

}
.

1.2. Symmetric R-spaces. Symmetric R-spaces were introduced by Tadashi Nagano [31]
and Masaru Takeuchi [39] in 1965 as compact symmetric spaces which are at the same time
R-spaces. This means that they also admit a transitive action of a centre-free non-compact
semisimple Lie group and the corresponding stabilizer of a point is a certain maximal
parabolic subgroup. For a geometric interpretation of this non-compact transformation
group of a symmetric R-space we refer to [42] and [15]. We call a symmetric R-space
indecomposable, if it is not a (global) Riemannian product of two symmetric R-spaces.
Symmetric R-spaces appear in various geometric contexts.

Shoshichi Kobayashi and Tadashi Nagano classified symmetric R-spaces in [18]. It turns
out that every indecomposable symmetric R-space P can be obtained as follows: Let S be
a simply connected irreducible compact symmetric space and let o ∈ S. We take an element
ξ ∈ ToS such that the linear operator ToS → ToS, X 7→ R(ξ,X)ξ has precisely spectrum
{0,−1}. Those elements ξ are called extrinsically symmetric. The extrinsically symmetric
elements in ToS can be read off from the Satake diagram (see [18, Section 6]) or from the
Dynkin diagram (see e.g. [28, Lemma 2.1]) of S. Every connected component of the set
of all extrinsically symmetric elements in ToS is an orbit of the isotropy representation
and an indecomposable symmetric R-space. Vice-versa, every indecomposable symmetric
R-space is obtained in this way (see [18, 19] and also [17, 40]).

Using an algebraic description of symmetric R-spaces in terms of so called compact
Jordan triple systems, Ottmar Loos characterized symmetric R-spaces among all compact
symmetric spaces as those whose metric on irreducible factors can be rescaled in such a
way that the unit lattice gets cubic (see [26, 27]).

An important subclass of symmetric R-spaces are the hermitian symmetric spaces of
compact type. A hermitian symmetric space is a symmetric space that also carries a
Kähler structure such that all geodesic symmetries are holomorphic. Moreover, Masaru
Takeuchi showed that every real form (that is a totally real totally geodesic submanifold
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of half dimension) of a hermitian symmetric space of compact type is a symmetric R-space
and that every symmetric R-space can be realized in such a way (see [41] and also [23],
[45, proof of Theorem 4.3] and [36]).

Raoul Bott used symmetric R-spaces to prove his famous periodicity theorem for the
stable homotopy of unitary, orthogonal and symplectic groups (see [4] and [30, Sections 23,
24]). There is also a periodicity result for some typical embeddings of symmetric R-spaces
into each other (see [29]).

1.3. Extrinsically symmetric spaces. A connected submanifold P ⊂ E of a euclidean
space E is called an extrinsically symmetric space if for all p ∈ P the submanifold P is
invariant under the reflections ρp ∈ Iso(E) through the affine normal space of p + NpP of
P at p.

While Riemannian symmetric spaces are locally characterized by the parallelism of their
Riemannian curvature tensors, extrinsic symmetric spaces are characterized by the paral-
lelism of their second fundamental form α (w.r.t. the induced connection on the normal
bundle). Unlike in the case of Riemannian symmetric spaces, the parallelism of the sec-
ond fundamental form α of P ⊂ E characterizes extrinsically symmetric spaces globally,
if one assumes that P is connected and complete, as shown by Wolf Strübing (see [38]
and [14]). Moreover, for compact submanifolds of euclidean space this characterization
is stable in the sense that compact submanifolds of euclidean space with almost parallel
second fundamental form are just small deformations of extrinsically symmetric ones (see
[34]).

Dirk Ferus classified extrinsically symmetric spaces by showing that every extrinsically
symmetric space is a product of a compact extrinsically symmetric space and an affine
subspace. Further, every compact extrinsically symmetric space is a symmetric R-space,
realized as a connected component of the set of extrinsically symmetric elements in the
tangent space of some symmetric space of compact type (see [12, 14] and also [7]). Vice-
versa, every symmetric R-space realized in this manner is extrinsically symmetric (see
[11, 14]).

By the very definition of an extrinsically symmetric space P ⊂ E, any element f ∈
Sym(P ) is the restriction to P of an isometry f̂ of E. Recently Jost-Hinrich Eschenburg
and the authors have shown that this holds for any isometry of P :

Theorem 1 ([8, 10]). Every isometry f of a compact extrinsically symmetric space P ⊂ E

is the restriction of a linear1 isometry f̂ of E.

Unfortunately, in the case of non-hermitian extrinsically symmetric spaces our proof uses
the classification of compact extrinsically symmetric spaces and a case-by-case verification.

A beautiful standard reference for extrinsically symmetric spaces and related topics is
[2].

1.4. Intrinsically and extrinsically reflective submanifolds. A reflective submani-
fold M in a Riemannian manifold N is a connected component of the fixed point set of

1We may always assume that the barycentre of P is the origin of E.
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an involutive isometry σ of N. This isometry σ will be called reflection of N through
M. Reflective submanifolds are automatically totally geodesic. Reflective submanifolds in
symmetric spaces have been studied and classified by Dominic S. P. Leung in the series of
papers [20, 21, 22, 23]. They include important totally geodesic submanifolds such as po-
lars, meridians (see below) and centrioles, which were introduced and extensively studied
by Bang-Yen Chen and Tadashi Nagano and their students (see e.g. [5, 6] or [32]).

A totally geodesic submanifold M ⊂ N of a submanifold N ⊂ E of a euclidean space
E is called extrinsically reflective, if M is a connected component of the intersection of N
with the fixed set of an involutive isometry of E that leaves N invariant.

Proposition 2 ([9, Theorem 2]). An extrinsically reflective submanifold M ⊂ P of an
extrinsically symmetric space P ⊂ E is extrinsically symmetric in E.

Observation 3. In view of Theorem 1, every reflective submanifold of a compact extrinsi-
cally symmetric space is actually extrinsically reflective, and thus extrinsically symmetric.
In other words, any reflective submanifold of a symmetric R-space is a symmetric R-space.
This generalizes a claim in [43, Lemma 3.1].

1.5. Meridians. Let S be a compact symmetric space. We choose an origin o ∈ S and a
fixed point p ∈ S of the geodesic symmetry so with p 6= o Then the geodesic symmetries so
and sp commute. The meridian of S corresponding to o and p, often denoted by S−, is the
connected component of the fixed point set of the involutive isometry so ◦ sp that contains
p. The terminology ‘meridian’ was introduced by Bang-Yen Chen and Tadashi Nagano in
[5].

Remark. If p is an isolated fixed point of so, then sp = so and so ◦ sp = id and the
corresponding meridian S− coincides with S. Unless p is an isolated fixed point of so we
have dim(S−) < dim(S).

Proposition 4 ([5, Lemma 2.3]). The rank of a compact symmetric space S coincides with
the rank of any of its meridians S−, that is rank(S−) = rank(S). In particular, any flat of
S− is also a flat of S.

If S is a compact extrinsically symmetric space in E, then the involutive isometry so ◦sp
is the restriction to S of the linear isometry ρo ◦ ρp. If we assume that S is full in E, then
ρo ◦ ρp is has order two. With Proposition 2 we conclude:

Observation 5. Any meridian P− of a compact extrinsically symmetric space P ⊂ E is
itself extrinsically symmetric in E.2

2. The unit lattice of compact extrinsically symmetric spaces

In this section we report on our recent work [9] joint with Jost-Hinrich Eschenburg.
Using algebraic techniques Ottmar Loos [26, 27] proved that symmetric R-spaces are

precisely the compact symmetric spaces whose unit lattice is cubic, after a suitable rescaling

2Although this is just a special case of Observation 3, our proof does not use classification and case-by-
case verification.
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of the metric on irreducible factors. In [9] Jost-Hinrich Eschenburg and the authors gave
a purely differential geometric proof of the following statement originally due to Ottmar
Loos:

Theorem 6 ([26, 27]). The unit lattice of a compact extrinsically symmetric space P ⊂ E
is rectangular.

Although this fact is well known, we think that some methods used in [9] might still
be interesting. A first statement for which we provide a detailed and elementary proof
concerns extrinsically symmetric flat tori:

Theorem 7 ([14, Theorem 3], [9, Theorem 3]). A full d-dimensional extrinsically sym-
metric flat torus F ⊂ E is an extrinsic product torus. This means that F is a Riemannian
product of planar round circles S1(ri) ⊂ Ei, i = 1, . . . , d, of possibly different radii ri
in affine 2-dimensional subspaces of Ei ⊂ E, which are perpendicular to each other3. In
particular, the unit lattice of F is rectangular.

Proof. This proof is a detailed elaboration of the arguments given [14] and [9].
Let f : Rd → E be the isometric immersion given by the universal covering of F. By ∂i

we denote the partial derivative operator ∂
∂xi
. Similarly ∂ij and ∂ijk denote the operators

∂2f
∂xi∂xj

and ∂3f
∂xi∂xj∂xk

respectively. Notice that {∂if | i = 1, . . . , d} is an orthonormal tangent

frame on F. Since constant vector fields on Rd are parallel and f is an isometric immersion,
the tangent vectors fields ∂if on F are parallel, too. Thus ∂ijf = α(∂if, ∂jf) =: αij is a
normal vector field on F for any i, j ∈ {1, . . . , d}.

As F is extrinsically symmetric, its second fundamental form α is parallel. By fullness,
the normal space of F is generated by the αij, i, j ∈ {1, . . . , d}. Moreover ∂ijkf = −Aαij

∂kf
are tangent vector fields on F.

We observe that the linear endomorphisms Aαij
are parallel and commute with each

other. Thus there is an orthogonal decomposition TF = E1 ⊕ · · · ⊕Er, r ≤ d, of TF into
parallel common eigendistributions of the Aαij

. We may assume that the parallel tangent
vector fields ∂if are common eigenvectors of the Aαij

. Thus we get ∂ijkf = −Aαij
∂kf =

λijk∂kf. The eigenvalues λijk are constant, because the endomorphisms Aαij
are parallel.

Since the partial derivatives commute, we see that the eigenvalues λijk must vanish, if at
least two indices i, j, k are distinct. The only possible non-zero eigenvalues are therefore
λi := λiii. We are left with the differential equations ∂iiif = λi∂if for i = 1, . . . , d. From
〈αij, αij〉 = 〈Aαij

∂if, ∂jf〉 = 0 if i 6= j, we conclude that αij = ∂ijf = 0 for i 6= j. In a
similar way we observe that αii is everywhere perpendicular to αjj for i 6= j.

Summing up we get the following system of differential equations

∂iiif − λi∂if = 0 for i = 1, . . . , d,(1)

∂ijf = 0 for i 6= j.(2)

3Although the radii of the planar round circles can be distinct, such a torus is sometimes still called a
Clifford torus.
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Solving Equation (1) yields

∂if =


ci1 + ci2 · xi, if λi = 0
ci1 exp(

√
λixi) + ci2 exp(−

√
λixi), if λi > 0

ci1 sin(
√
−λixi) + ci2 cos(

√
−λixi), if λi < 0

where the functions ci1 : Rd → E and ci2 : Rd → E do not depend on the i-th variable xi.
But, by Equation (2), the functions ∂if : Rd → E only depend on xi. Thus ci1 and ci2 are
constant functions.

Since ∂if has everywhere length one, only the following two cases are possible:

∂if =

{
ci1, if λi = 0
ci1 sin(

√
−λixi) + ci2 cos(

√
−λixi), if λi < 0

By integrating ∂if in the direction of xi we see that only λi < 0 for all i ∈ {1, . . . , d} can
occur, because f(Rd) = F is compact; that is

∂if = ci1 sin(
√
−λixi) + ci2 cos(

√
−λixi).

In particular no αii has zeros. Thus the set {∂if | i = 1, . . . , d} ∪ {∂iif | i = 1, . . . , d} is
at each point an orthogonal basis of E. In particular dim(E) = 2d. As ∂if has constant
length one, ci1 and ci2 are unit vectors.

Recall that ∂if is everywhere perpendicular to ∂jf for i 6= j. By taking appropriate
values for xi and xj, we observe that cik is perpendicular to cjl for i 6= j and k, l ∈ {1, 2}.
Moreover, since ∂if and

∂iif = ci1
√
−λi cos(

√
−λixi)− ci2

√
−λi sin(

√
−λixi)

are everywhere perpendicular, we see, if we take xi = 0 and xi = π
2
√
−λi

, that the unit

vectors ci1 and ci2 are perpendicular. Summing up, {ci1 | i = 1, . . . , d}∪{ci2 | i = 1, . . . , d}
is an orthonormal basis of E.

By integration we get

f(x1, . . . , xd) = v +
d∑
i=1

1√
−λi

(
− cos(

√
−λixi)ci1 + sin(

√
−λixi)ci2

)
for some v ∈ E. This shows that F = f(Rd) is an extrinsic product torus. �

Sketch of proof of Theorem 6. We are now able to sketch our proof of Theorem 6.
Using Proposition 4, we lower the dimension of the submanifold while keeping the rank by
the following iteration: Starting with P ⊂ E, we take a meridian P− of P. By Observation 5
P− is again extrinsically symmetric in E. Next we consider a meridian of P− and then take
meridians again and again, until we reach a fixed point of this iteration scheme. This fixed
point must be a compact extrinsically symmetric space all of whose geodesic symmetries
only have isolated fixed points. In other words, we could have assumed right away that
the geodesic symmetries of our compact extrinsically symmetric space P ⊂ E only have
isolated fixed points.

Considering a compact covering where all euclidean factors split off, we could show:
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Proposition 8 ([9, Lemma 7]). A compact symmetric space P all of whose geodesic sym-
metries only have isolated fixed points is a Riemannian product of a simply connected
symmetric space P ′ of compact type and possibly a flat torus T, that is P = P ′ × T.

If the root system of a simply connected irreducible symmetric space P ′ of compact
type has not type a1, then there is a closed geodesic γ in P ′ admitting a Jacobi-field J
that vanishes at the starting point o = γ(0) of γ but not at the antipodal point p of o
in the circle γ. Looking at the variation of closed geodesics defined by J, we see that the
connected component of Fix(so) ⊂ P ′ that contains p has positive dimension. This yields:

Theorem 9 ([9, Theorem 9]). The only simply connected irreducible symmetric spaces of
compact type whose geodesic symmetries only have isolated fixed points are round spheres.4

At this point we may assume that our compact extrinsically symmetric space P ⊂ E is
intrinsically a Riemannian product of k round spheres S1, . . . ,Sk and possibly a flat torus
T, that is

P = S1 × · · · × Sk × T.
Obviously, a maximal torus of P has the form

F = C1 × · · · × Ck × T,
where Cj is a great circle in Sj for j = 1, . . . , k, and it is a reflective submanifold of
P.5 Theorem 6 follows directly from Theorem 7 if k = 0. If P contains even-dimensional
spheres, we split them off as follows: Assume w.l.g. that S1 has even dimension and set
P ′ := S2 × · · · × Sk × T. We choose a point x1 ∈ S1. The geodesic symmetry sx1 of S1

at x1 lies in the transvection group of S1. Therefore the involution sx1 × idP ′ lies in the
identity component of Iso(P ), which is Trans(P ). Thus sx1 × idP ′ extends to an extrinsic
reflection, and the connected component {x1} × P ′ ∼= P ′ of Fix(sx1 × idP ′) is extrinsically
symmetric by Proposition 2. We are left to show that P ′ has a rectangular unit lattice.
Applying the above argument recursively, we may assume that all sphere factors of P ′ have
odd dimensions.

In other words, we may assume that our extrinsically symmetric space P ⊂ E is intrin-
sically a Riemannian product

P = S1 × · · · × Sk × T
of odd dimensional round spheres S1, . . . ,Sk and perhaps a flat torus T. For each j ∈
{1, . . . , k} we now choose a great circle Cj in Sj. The reflection rj of Sj through Cj is a
transvection of Sj, since Sj has odd dimension. Thus the involutive isometry r1 × · · · ×
rk × idT is a transvection of P and therefore extends to an extrinsic involutive isometry.
With Proposition 2 we conclude that the maximal torus F = C1 × · · · × Ck × T of P is
extrinsically symmetric and has rectangular unit lattice by Theorem 7.

4This was already known before as a consequence of the classification of polars in compact symmetric
spaces (these are connected components of the fixed point set of a geodesic symmetry) due to Bang-Yen
Chen and Tadashi Nagano (see [5, 6, 32]). But our proof is purely conceptional.

5If one uses Observation 3 (for which we unfortunately only know a proof using classification and which
is therefore not in the spirit of [9]), then Theorem 6 follows directly from Theorem 7.



8 PETER QUAST AND MAKIKO SUMI TANAKA

Question. At RIMS Workshop we were asked by Professor Yoshihiro Ohnita if our method
can be adapted to show that the unit lattice of an indecomposable symmetric R-space is
actually cubic. Unfortunately, we cannot answer this question.6

3. Convexity of reflective submanifolds of symmetric R-spaces

In this section we give an overview of our work published in [35].
A geodesically complete submanifold M ⊂ N in a Riemannian manifold N is called

(geodesically) convex, if the Riemannian distance between any two points m1,m2 ∈ M
measured within M coincides with the Riemannian distance between m1 and m2 measured
within N, or, equivalently, if any shortest geodesic arc in M is still shortest in N. One
might think of convexity as a ‘global version’ of being totally geodesic.

Reflective submanifolds certainly form a very important class of totally geodesic sub-
manifolds of compact symmetric spaces. One may therefore wonder whether reflective
submanifolds in compact symmetric spaces are geodesically convex. Already in the fairly
easy example of a flat 2-torus R2/Γ, whose unit lattice Γ is rhombic and not rectangular,
the long diagonal is an example of a reflective but non-convex submanifold. This is bad
news! Indeed, adapting results of Takashi Sakai [37] on the cut locus of compact symmetric
spaces, Hiroyuki Tasaki showed that convexity is already detected on the level of flats.

Proposition 10 ([46, Lemma 2.2]). Let M ⊂ S be a reflective submanifold in a compact
symmetric space S. Let FM be a flat of M and FS a flat of S containing FM , that is
FM ⊂ FS. Then M is convex in S if and only if FM is convex in FS.

It turns out that the situation described above appears in the symmetric space S =
SU3/Z3, whose unit lattice is rhombic. The flat FM of the reflective submanifold M which
isomorphic to SO3 in S = SU3/Z3 is the long diagonal in FS (see [35]). This example
works in all dimensions: The reflective submanifold given by the complex conjugation in
S = SUn/Zn is never convex for n ≥ 3. On the other hand, Felix Platzer and the first
author have shown using case-by-case arguments:

Theorem 11 ([33]). Every reflective submanifold in a special unitary group SUn is convex.

As a consequence we get:

Theorem 12. Let S be a simply connected irreducible symmetric space of compact type
and of rank r ≥ 2, whose root system is of type ar.

7 Let M ⊂ S be a reflective submanifold
that has the following property:

(∗) There exists ξ ∈ ToFM ⊂ ToFS which is regular w.r.t. the root system of S.8

6At this point we recall that Dirk Ferus has shown in [13] that the shape operator in the direction of
the mean curvature vector field of a compact indecomposable extrinsically symmetric space is a multiple
of the identity.

7 This means that S is SUr+1 or SUr+1/SOr+1 or SU2r+2/Spr+1 or E6/F4 (see e.g. [16, Chapter X]).
8Here we use the notation introduced in Proposition 10 with o ∈ FM . A vector ξ ∈ ToFS is called regular

w.r.t. the root system of S, if α(ξ) 6= 0 for all roots α of S. For details on root systems of symmetric spaces
we refer to the standard literature such as [25] or [16]. An equivalent formulation of condition (∗) is that
FS is the unique extension of FM to a flat of S.
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Then M is convex in S.

Proof. Set t := ToFS and a := ToFM ⊂ t for short. Choose a maximal abelian subspace t̂
of the Lie algebra sur+1

∼= TISUr+1 and denote by FŜ the flat of the special unitary group

Ŝ := SUr+1 satisfying t̂ = TIFŜ. Since the symmetric spaces S and Ŝ both have rank r

and root systems of type ar, there exists (for a suitably scaled bi-invariant metric on Ŝ) an
orthogonal linear map ι∗ : t→ t̂ that identifies the root system of S with the root system
of Ŝ. Since the unit lattice of a simply connected irreducible symmetric space is generated
by its system of inverse roots (see e.g. [25, pp. 25, 69, 77]), which in the case ar coincides
with the set of root vectors, ι∗ induces an isometry ι : FS → FŜ with ι(o) = e.

The reflection σ of S through M leaves FS invariant (see [44, Lemma 3.1], [35, Obser-
vation 4]), and its differential σ∗ : t→ t restricted to t = ToFS is an involutive orthogonal
map that leaves the root system of S invariant. Consider

σ̂∗ := ι∗ ◦ σ∗ ◦ ι−1
∗ : t̂→ t̂.

This is an involutive orthogonal map that leaves the root system of Ŝ invariant and satisfies
â := Fix(σ̂∗) = ι∗(a). Moreover, by condition (∗), σ̂∗ fixes the regular element ξ̂ := ι∗(ξ) ∈ â

and therefore the Weyl chamber t̂+ in t̂ that contains ξ̂. Thus σ̂∗ leaves the system of positive
simple roots of sur+1 defining t̂+ invariant. Since Ŝ = SUr+1 is a simply connected simple
compact Lie group, σ̂∗ induces an involutive Lie group automorphism σ̂ of Ŝ = SUr+1 that
leaves FŜ invariant (see [25, Proposition 3.4, p. 128]).

Let M̂ ⊂ Ŝ be the connected component of Fix(σ̂) containing the identity I. We claim

that FM̂ := ι(FM) ⊂ FŜ is a flat of M̂. Indeed, let â′ be a maximal abelian subspace of

TIM̂ ⊂ sur+1 that contains â. By condition (∗), ξ̂ := ι∗(ξ) ∈ â is a regular element w.r.t.

the root system of Ŝ. Thus t̂ is the unique maximal abelian subset of sur+1 that contains

ξ̂ and therefore also the unique maximal abelian subset of sur+1 that contains â′. But the
intersection of t with TIM̂ is â. Hence â′ = â and ι(FM) is a flat of M̂.

The reflective submanifold M̂ is convex in SUr+1 by Theorem 11, and thus FM̂ is convex
in FŜ. Since ι is an isometry, FM is also convex in FS. Proposition 10 eventually implies
the claim. �

Now the following question arises:

Question. Can one drop the somewhat technical condition (∗) in Theorem 12?

More generally on may ask:

Question. How can one describe the class formed by the compact symmetric spaces all of
whose reflective submanifolds are convex?

The authors have shown that the symmetric R-spaces form a subclass of this class:

Theorem 13 ([35]). Every reflective submanifold in a symmetric R-space is convex.

Outline of proof. Let σ be an involutive isometry of a symmetric R-space P and let M be
a connected component of its fixed point set. In view of Proposition 10 we take a flat FM
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of M and a flat FS of S with FM ⊂ FS. Recall that σ leaves FS invariant (see [44, Lemma
3.1], [35, Observation 4]). We have to show that FM is convex in FS. For this we choose
an origin o ∈ FM . Then we have to prove that

dFM
(o, x) = dFS

(o, x)

holds for all x ∈ FM , where dFM
and dFS

denote the Riemannian distances in FM and FS
respectively.

As a consequence of Theorem 6 one can show that there exists an orthogonal basis
B = {e1, . . . , er} of ToFS such that

• the unit lattice Γ of S is generated by B, that is

Γ =

{
r∑
j=1

λjej

∣∣∣∣∣ λj ∈ Z, j = 1, . . . , r

}
;

• there exists p ∈ {1, . . . , r} and q ∈ {2p, . . . , r} such that

ToFM =

{
r∑
j=1

λjej

∣∣∣∣∣ λ2j−1 = λ2j for 1 ≤ j ≤ p and λq+1 = · · · = λr = 0

}
(see [44, Proposition 3.3] for a differential geometric proof and [35, Proposition 5] for an
elementary linear algebraic one).

Given x ∈ FM we take an element X ∈ ToFM such that x = Expo(X), where Expo
denotes the Riemannian exponential map of P at o. Then dFS

(o, x) = min
Y ∈Γ
‖X + Y ‖. One

easily constructs an element Z ∈ ToFM∩Γ such that ‖X+Z‖ = min
Y ∈Γ
‖X+Y ‖. We conclude

that dFM
(o, x) = dFS

(o, x). �
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