
Algebraic Calculi

for

Separation Logic

Dissertation zur Erlangung des Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat)
an der Fakultät für Angewandte Informatik

der Universität Augsburg

vorgelegt von

Han Hing Dang

2014

Gutachter:

Erstgutachter: Prof. Dr. Bernhard Möller
Zweitgutachter: Prof. Dr. Bernhard Bauer

Tag der mündlichen Prüfung:

09. Dezember 2014

Love is not �nding someone to live with.

It's �nding someone you can't live without.

Rafael Ortiz

To my �ancée Olga

CONTENTS

Contents

Preamble 1

1 Introduction 5
1.1 Motivation . 5
1.2 Separation Logic . 7
1.3 Algebras for Pointer Structures . 9
1.4 Contributions and Organisation . 10

2 Separation Logic � An Overview 12
2.1 A Storage Model and Spatial Assertions 12
2.2 Program Constructs for Resource Manipulation 16
2.3 The Frame Rule . 20

3 Algebraic Spatial Assertions 23
3.1 A Denotational Model for Assertions 23

3.1.1 Related Work: BI Algebras . 31
3.2 Characterising Behaviour Abstractly 32

3.2.1 Intuitionistic Assertions . 33
3.2.2 Resource Independence . 36
3.2.3 Preciseness . 40
3.2.4 Full Allocation . 42
3.2.5 Supported Assertions . 44

3.3 Relationship to Separation Algebras 51

4 Relational Separation 57
4.1 Interpreting Commands Relationally 57
4.2 On Partial and Total Correctness . 61
4.3 Abstracting Modularity . 67

4.3.1 A Pointfree Frame Property . 72
4.3.2 Resource Preservation . 76

CONTENTS

4.3.3 A Calculational Proof of the Frame Rule 78
4.3.4 Related Algebraic Approaches 81

4.4 Applications to Concurrency . 85
4.4.1 Relations and Concurrent Separation Logic 85
4.4.2 Disjoint Concurrency . 94
4.4.3 Concurrent Kleene Algebras . 98

4.5 Pointfree Dynamic Frames . 109
4.5.1 Abstracting Dynamic Frames 110
4.5.2 Locality and Frame Accumulation 116

5 Transitive Separation Logic 123
5.1 The Algebraic Foundation . 123
5.2 A Stronger Notion of Separation . 127
5.3 An Algebra of Linked Structures . 132
5.4 Structural Properties of Linked Structures 134
5.5 Assertions and Program Commands 139
5.6 Inference Rules . 143

5.6.1 Selector Assignments . 143
5.6.2 Frame Rules . 144

5.7 Veri�cation Examples . 148
5.7.1 List Reversal . 148
5.7.2 Tree Rotation . 150

5.8 A Treatment of Overlaid Data Structures 154

6 Conclusion 161
6.1 Summary . 161
6.2 Future Work . 162

A Deferred Proofs and Properties 165
A.1 Deferred Proofs . 165
A.2 Further Properties of the Assertion Calculus 178
A.3 Deferred Figures . 184

Bibliography 185

List of Figures 199

Index 200

Curriculum Vitae 203

1

Preamble

Übersicht

Ein bedeutendes Forschungsthema für die moderne Softwaretechnik ist die Entwick-
lung von formalen Methoden, die Korrektheit von Computerprogrammen bzgl. ihrer
Spezi�kation sicherstellen. Diverse Verfahren wurden innerhalb der letzten Jahrzehnte
entwickelt, speziell im Fachgebiet der logischen Methoden. Eine der ein�ussreichsten
und bekanntesten Methodiken aus diesem Bereich ist die Separationslogik. Sie hat
sich aus der Hoare-Logik entwickelt, um speziell die Beweisführung auf Programmen
mit einer Vielzahl an Referenzen auf dynamisch reservierten Speicher zu vereinfachen.
Durch spezielle Mechanismen erlaubt sie einfache Formeln zur Charakterisierung der
Formen und Strukturen von Datentypen. Insbesondere hat sich diese Logik durch
die Möglichkeit einer kompositionellen Konstruktion von Korrektheitsbeweisen als
skalierbar erwiesen, speziell für komplexeren Programmcode. Während der letzten
Jahre wurde eine Vielzahl von Ausprägungen in diesem Forschungsbereich geschaf-
fen, die sich von Anwendungen für Nebenläu�gkeit bis hin zur Mechanisierung und
programmgestützten Veri�kation von imperativen und objektorientierten Program-
men erstrecken.

Jede dieser anwendungsspezi�sch entwickelten Separationslogiken erweitert den ur-
sprünglichen Kern, der skalierbare Beweisführung ermöglicht, um eine spezielle Se-
mantik und syntaktische Ausdrücke. Jedoch sind die meisten dieser Kalküle sehr kom-
plex und nicht weitreichend anwendbar oder sie verwenden allgemeingültige Abstrak-
tionen, die schwer zu verstehen sind und nur mühsam von Nicht-Experten gehand-
habt werden können. Im Vergleich dazu bieten algebraische Techniken einen ba-
lancierten Mittelweg für beide Probleme. Einerseits sind sie ausreichend abstrakt
und allgemein um Verhalten zu erfassen und darzustellen. Andererseits vereinfachen
sie Beweise durch einfache und (un)gleichungsbasierte Formeln, die Herleitungen von
nicht-trivialen Konsequenzen und Eigenschaften ermöglichen. Das Ziel der vorliegen-
den Dissertation besteht aus der Entwicklung von algebraischen Kalkülen für eine
uniforme Darstellung und Abstraktion von Verhalten in Separationslogiken. Dies er-

Preamble

möglicht im Speziellen generelle Resultate einer Theorie auf eine andere zu übertragen.
Darüber hinaus können durch die Verwendungen einfacher Formeln, auch auf abstrak-
ter Ebene, Programmwerkzeuge zur Unterstützung und Steuerung der Entwicklung
weiterer Theorien verwendet werden.

2

Abstract

A major research topic for the discipline of software engineering is the development
of formal methods that ensure correctness of computer programs w.r.t. their speci�-
cations. Various approaches have been developed over the last decades, especially in
the �eld of logical methods. One of the most in�uential and popular methodologies
in this area is separation logic. It has evolved from Hoare logic as a treatment that
facilitates reasoning about programs that massively work with references to dynami-
cally allocated storage. Due to special mechanisms it allows simple formulas for the
characterisation of shapes and structures of data types. Moreover, it has proven to be
scalable by enabling a compositional construction of correctness proofs in particular
for large program code. During the last years various developments in this research
area have been established ranging from applications within concurrency to mechani-
sation and tool-supported veri�cation of imperative and object-oriented programs.

Each application-speci�c separation logic introduces special syntax and semantics on
top of the original core that enables scalable reasoning. However, most of the calculi
are very complex and not widely applicable, or they involve general abstractions that
are di�cult to understand and handle for non-experts. By contrast, algebraic tech-
niques provide a balanced compromise for both problems. On the one hand they are
abstract and general enough to capture and represent behaviour in a concise and sim-
ple way. On the other hand they facilitate reasoning by formulas in an (in)equational
style that allow derivations of non-trivial consequences and properties. The aim of
the present thesis is to develop algebraic calculi for a uniform representation and ab-
straction of behaviour in separation logics. This yields in particular the possibility of
transferring general results between various separation logical theories. Moreover, due
to simple formulas expressed within �rst-order logic they also enable at the abstract
level a tool support for developing further theories.

3

Preamble

Acknowledgement

First of all, I am most grateful to my supervisor Prof. Dr. Bernhard Möller for giving
me the possibility to write a doctoral thesis. Without his support, motivation and
encouragements during the years I would never have �nished this work. Moreover, I
want to thank Prof. Dr. Bernhard Bauer for reviewing this thesis.

I am also very grateful to Dr. Peter Höfner who has already supported me at the time
when I �nished my diploma thesis. His never ending variety of ideas in discussions
always impressed me and enormously in�uenced my thinking in developing solutions
for research-related problems.

Moreover, I would like to thank my colleagues Dr. Markus Endres, Roland Glück, Dr.
Alfons Huhn, Prof. Dr. Werner Kieÿling, Dominik Köppl, Dr. Martin Müller, Patrick
Roocks and Florian Wenzel for an enjoyable atmosphere during the past years at the
Universität Augsburg and in particular Andreas Zelend and Alba vom Wolfschlag for
enjoyable conversations. I also thank Dr. Georg Struth for fruitful discussions and
all reviewers of the RAMiCS, MPC conferences, the ATE, PAAR workshops and of
the JLAP, JLAMP and SCP journals for helpful and inspiring comments.

For �nancial support I thank Prof. Dr. Bernhard Möller for providing me with
teaching assistant jobs during my �rst years. I would also like to thank Prof. Dr.
Werner Kieÿling and Prof. Dr. Dirk Hachenberger for bridging fundings with further
teaching assistant jobs. Moreover, I gratefully acknowledge the German research
foundation (DFG) for funding a position and especially many thanks to Prof. Dr.
Bernhard Möller and Dr. Peter Höfner for their e�orts in writing all of the proposals
over the last years. Finally, I am grateful to Sir Tony Hoare for the cooperation within
the DFG-project AlgSep.

Also I am most grateful to my family for any support during the last years. In par-
ticular, many thanks to my brothers Chi Tai and Han Kie for the endless discussions
about any computer science related topics and my sister Anna for always giving me
advice in any matter. Moreover, I am deeply grateful to my �ancée Olga for always
supporting me in any decisions I made and being there for me whenever I needed
someone in my life.

Finally, many thanks to my friends and all people who supported me during the past
years.

4

Chapter 1

Introduction

Separation Logic was developed to facilitate reasoning about shared mutable data
structures in a Hoare logic style. It comes with suitable operations and spatial predi-
cates that ensure for frequently used data structures central correctness properties as
the absence of sharing resources. There exists also a variety of algebraic approaches
that re�ect central concepts for the treatment of such data structures. In this section
we provide some historical background on separation logic and algebraic approaches
for pointer structures. Moreover, we give a short overview on recent developments
and conclude by summarising the structure and contributions of this thesis.

1.1 Motivation

Many formal methods have been developed during the past decades to ensure cor-
rectness of programs that heavily work with pointers, i.e., references to resources of a
program. This has been proven to be a di�cult and tedious task, especially with log-
ical calculi by Hoare and Dijkstra in their original forms [Hoa69, Dij76]. A reason for
this is that these treatments do not provide adequate and general enough constructs
for dealing with complex data structures. The problem therefore is that certain prop-
erties or invariants have to be de�ned in a fashion that is di�cult to understand and
read. This in turn makes the lengthy correctness proofs less reliable and the whole
approach usable only for experts, i.e., the minority of users.

Hence, Reynolds, O'Hearn and others introduced an extension of such calculi, called

Introduction

separation logic [Rey02], that provides operators to facilitate the task of specifying
the mentioned properties and invariants of data structures. The speciality of this
logic is a connective, called separating conjunction, that ensures disjointness of sets
of resources. This has the advantage that the resources of the disjoint sets cannot
be aliases of each other. In combination with recursively de�ned predicates it allows
relatively simple characterisations of shared mutable data structures such as singly
and doubly-linked lists or tree structures. In addition to that the logic also validates
a special inference rule called the frame rule, which allows under certain assumptions
local and modular reasoning about programs by focusing on relevant parts of the state
space. This makes the approach more scalable and hence also applicable for tackling
large programs by compositionally verifying procedures on smaller parts of storage
and then obtaining a global proof of the program by reassembling the proofs of the
parts.

Nowadays there exists a lot of research around separation logic, resulting in a mul-
titude of logical calculi (see e.g., [Par10]) for particular applications ranging from
information hiding [ORY09] to concurrency reasoning [O'H07] and rely/guarantee set-
tings [VP07]. All of these treatments include the basic concepts of separation. More-
over, a variety of theorem proving tools on a decidable fragment of separation logic has
been developed for automating the logic and veri�cation tasks [BCO06, JP08, Tue08].
A general disadvantage of most approaches is that each calculus and corresponding
theorem prover has to be developed anew, although their foundations and cores are
the same. This development is cumbersome, expensive and time-consuming. In par-
ticular, the knowledge of experts is often required for introducing special behaviour
in the setting. This can be facilitated by the abstraction from irrelevant details and
concentrating on the foundations that establish the advantages and characteristics of
separation logic.

Algebraic techniques have proved to be adequate for the abstraction of logical cal-
culi. The abstract and calculational proofs enable formal reasoning using simple
(in)equational laws as known from school algebra. Such laws can be used to describe
the main core of all separation logic-based calculi and moreover enable the derivation
of general and commonly used properties and inference rules. We develop such ab-
stract and general algebraic calculi where one can compositionally enrich the basic
setting with additional axioms that include special behaviour of various forms of sep-
aration logic calculi. Thus, the algebraic setting represents a compact and uniform
representation of such. We provide, in particular, abstract and general formulations
for the assertion language of separation logic which denote frequently reused parts.
Moreover we characterise in a relational and pointfree style the local behaviour that
establishes modularity of that approach, also in a concurrent environment. Moreover,
due to abstractness we can relate the core of separation logic also to the theory of
dynamic frames that is basically inspired by the concepts of separation. Using the

6

1.2 Separation Logic

established formalisations we develop an extension to separation logic that further
facilitates reasoning within graph structures by introducing several new operators.

A �nal advantage that comes with an algebraic treatment is that the obtained laws
can directly be fed into existing fully automated theorem proving systems as done e.g.,
in [HS07, HS08, DH08]. This allows a tool-supported and tool-guided development
of various separation-logical calculi without any need to construct proof systems for
every special problem domain. In particular, this approach makes use of the stepwise
evolving power of general-purpose theorem provers.

1.2 Separation Logic

The central concepts and ideas to keep resources of a program distinct appeared �rst in
Burstall's work [Bur72] in 1972. According to [Rey09] these represented the �rst steps
towards separation logic. A sound instance of that logic was introduced independently
in 1999 by the authors Ishtiaq and O'Hearn in [IO01] and Reynolds in [Rey00]. In their
works an intuitionistic version of the logic was developed that provides assertions with
a monotonicity property in the following sense: if an assertion holds for some parts of
the dynamically allocatable storage then it is also valid for any larger storage. The key
concept of both approaches was a �spatial conjunction� on assertions for expressing
separation between memory regions. Concretely, for arbitrary assertions p and q their
separating conjunction p ∗ q asserts that p and q both hold, but each for a separate
part of the storage.

In [IO01], Ishtiaq and O'Hearn also developed a variant within classical logic which is
more expressive than the intuitionistic version. More concretely, their work does not
incorporate the mentioned monotonicity property. In particular the starting point for
their assertion language was another theoretical foundation called the logic of bunched
implications, abbreviated by BI [OP99, Pym02]. This early approach was developed
by O'Hearn and Pym and represented a logical proof system that also included the
ideas for an abstract treatment of resources. In [OP99] a Kripke semantics for current
separation logic assertions was provided that described the intuition for the separating
conjunction and its adjoint, the separating implication alias the magic wand operation.

Building on this semantic foundation O'Hearn and others continued to develop an-
other important ingredient of separation logic, called the frame rule [ORY01]. That
special inference rule includes the concepts of separation and allows, in some circum-
stances, local reasoning about changing storage without a�ecting disjoint portions.
This expresses the main power of separation logic as correctness proofs become scal-
able. A semantic foundation for this inference rule has been established in [YO02]
yielding a denotational model for separation logic. Finally, the basic version of the

7

Introduction

logic was presented in [Rey02] and extended by Reynolds with a command language
that allows altering separate ranges and includes pointer arithmetic.

Starting from this, the logic had an immense in�uence on formal methods for reasoning
about program correctness. In [Yan01, Yan07], an algorithm that is frequently used
for garbage collectors is treated within separation logical approaches. The algorithm
is called the Schorr-Waite graph marking and has the advantage that it only requires
an extra bit per node to identify marked nodes [SW67]. A variant of separation logic
that presents a correctness of a copying garbage collector can be found in [TSBR08].
Moreover, separation logic has been extended with proof rules that are suitable for
information hiding in [ORY09]. As another application for the logic it has been
adapted to object-orientation [PB05] coping with JAVA-like classes and procedures
while maintaining modularity.

Further research considers separation logic and concurrency. First ideas to this have
been developed in [O'H07] by O'Hearn, resulting in concurrent separation logic. It
was used as a formal method to reasoning about concurrent programs that massively
involve pointers. A semantics to this approach that proved soundness of that logic
has been introduced by Brookes [Bro07]. A further proof that validates soundness by
an operational semantics was developed in [Vaf11]. A concrete veri�cation of a non-
blocking stack in a concurrent setting that used the special proof rules of concurrent
separation logic can be found in [PBO07]. There also exists another approach to
verifying concurrent algorithms by so-called rely/guarantee techniques [CJ00, VP07].
This setting facilitates reasoning about interference by providing adequate proof rules
and conditions under which assertions remain stable under certain interference, i.e.,
guarantee some behaviour. For this there exist also variants of separation logic that
include the concept of permissions [BCY06].

Moreover, also at the data structure level there exists a variety of treatments yield-
ing more suitable operators for reasoning about sharing [WBO08, HV13]. A modal
extension to verify data-parallel pointer programs has been considered [Nis06]. Fur-
thermore, a separation logic that copes with low-level programs has been intro-
duced [TKN07]. Moreover, for automating the veri�cation of program properties
a multitude of extensions has been considered [CS10], also incorporating aspects of
concurrency or enabling machine-supported veri�cation, e.g., in tools like Small-
foot [BCO06] which is implemented on a decidable fragment of separation logic
[BCO05], or the Verifast program veri�er [JP08]. In addition to this also higher-
order logic theorem proving tools such as Isabelle/HOL have been combined with
separation logic [Tue08]. Further research on automation considered shape analy-
sis methodologies [YLB+08, CDOY09b] that in particular allowed the extraction of
speci�cations and preconditions by the source code of a hardware driver and system
code [CDOY09a].

8

1.3 Algebras for Pointer Structures

A more theoretical view to extract the core behaviour of separation logical calculi
was provided in various other works. A �rst comprehensive and useful abstraction
is currently being explored in [DYBG+13] which provides a formal foundation and
additional ingredients to obtain several separation logical calculi. Similar generalised
approaches to this that are used to capture a wide range of models of separation logic
was developed in the treatment of local actions and abstract separation logic [COY07].
Moreover, relationships to other frameworks such as the theory of dynamic frames
has been discussed, since that approach was developed to tackle similar problems as
separation logic does [SJP09].

1.3 Algebras for Pointer Structures

Early approaches on an algebraic treatment of pointer structures have been inves-
tigated from 1990 on by Möller [Möl92, Möl93a, Möl93b]. An algebraic foundation
for pointer structures was introduced that already allowed the characterisation of
frequently required properties like the absence of cycles or disjointness of the set
of reachable nodes from a designated root node. The latter property corresponds
closely to the central concept of separation logic assertions that guarantee by separat-
ing conjunction spatial disjointness of sets of resources. This allowed a calculational
veri�cation of algorithms on lists like their concatenation or reversal [Möl97]. Fur-
ther investigations on this problem �eld led to observation on more complex data
structures as trees, forests and particularly cyclic lists [Möl99a] yielding concepts to
describe updates on pointer structures along speci�ed links and the characterisation
of sharing patterns and their exclusion.

Building on this algebraic approach, Ehm developed in 2003 a formal treatment of
pointer structures called pointer Kleene algebra based on the algebraic structure of
Kleene algebras [Ehm03, Ehm04]. These structures come with a special operation
for �nite iteration called the Kleene star and were introduced to model the theory
of regular events. They have been extensively studied by Conway [Con71] in 1971,
resulting in various axiomatisations of Kleene algebras based on quantales, which are
a special case of idempotent semirings. In the case of pointer structures iteration is
used to abstractly model reachability along arbitrarily many links. The approach of
Ehm also includes elements of the theory of L-fuzzy relations, i.e., Goguen categories
(e.g., [Win07]) to introduce labels on links and operations to extend the de�nitions
of reachability on such abstract structures. Moreover, it has been shown that the
algebraic treatment also allowed a derivational approach for obtaining correctness
preserving functional de�nitions of pointer algorithms [Ehm01]. The reverse direction
for a veri�cation purpose in sense of Hoare logics has also been sketched in [Ehm03].

There are algebraic approaches for the propositional fragment of Hoare logics [Koz00,

9

Introduction

MS06a] and the wp-calculus of Dijkstra [MS06b] that also consider Kleene algebras
and quantales. In particular, they have been used in various applications ranging from
concurrency control [Coh94, HMSW09a, HMSW09b] to program analysis [KP00] and
semantics [MHS06]. The algebraic approach achieved several goals. The view became
more abstract, which led to a considerable reduction of detail and hence allowed
simpler and more concise proofs. On some occasions also additional precision was
gained. Furthermore, the algebraic abstraction places the considered theories into a
more general context and therefore allows re-use of a large body of existing results.

The used algebraic structures, i.e., Kleene algebras and idempotent semirings, are
formulated in pure �rst-order logic. This further enables the use of o�-the-shelf au-
tomated theorem provers for verifying properties at the more abstract level [HS07,
HSS08]. A lot of feasibility and case studies have been investigated during the re-
cent years [Str07, Höf08], particularly for the case of pointer Kleene algebra [DM11].
Moreover, various theorem proving systems that can be found within the TPTP Li-
brary [SS98] have been evaluated with the mentioned algebraic structures. As one
result of this, Prover9 [McC05] turned out to be the most adequate system for
automating these tasks [DH08]. Most of the input �les can be found at the web
page [Höf] for the interested reader. However, the case of quantales is slightly di�er-
ent as it comes with axioms not expressive within �rst-order logic. An encoding of
an axiomatisation and some automated proofs of basic properties within higher-order
logic can be found in [DH12] with less promising results with nowadays standard
systems. Newer approaches on this topic use semi-automated proof assistants like
Isabelle/HOL [AS12, ASW13b] or Coq [BP12]. An extensive amount of proofs
using Isabelle/HOL can be found in [ASW13a].

1.4 Contributions and Organisation

The contribution of this thesis consists of three parts. We developed an abstraction
of the spatial assertion of separation logic based on quantales. For this we de�ned a
set-based variant of the separating conjunction that enabled simple algebraic proofs
of main properties. Moreover, by the abstraction to quantales this further allowed
pointfree inequational characterisations of assertion classes. The abstract develop-
ments also allow the transfer of the gained results to other separation logical theories.
As the second main contribution we developed a relational calculus to model the ef-
fects and behaviour of separation logic that guarantee its modularity and scalability in
program proofs. This allowed further formulations for other separation logical calculi
in a sequential and also concurrent setting. The last contribution that we present is
an algebraic extension of separation logic for a more suitable treatment of pointer or
linked object structures. This approach signi�cantly allows simple correctness proofs

10

1.4 Contributions and Organisation

of algorithms on linked data structures that split into one part guaranteeing preser-
vation of structural invariants and another preserving functional correctness.

The thesis is organised as follows:

Chapter 2 gives an overview of separation logic in its classical form. First, we provide
a standard storage model and main concepts of the assertion language. Moreover,
we present the programming layer of the logic itself and introduce de�nitions that
establish modularity within that approach.

In Chapter 3 we continue with a denotational model for the assertions of separation
logic based on sets of states. We further abstract this structure to general quantales
which allows the exclusion of irrelevant details of separation logic assertions. As our
�rst contribution we provide completely pointfree characterisations of well-known and
frequently used assertion classes. This yields fully algebraic and abstract proofs of
central properties in a calculational style.

The second contribution of this thesis can be found in Chapter 4. There, we pro-
vide a relational calculus extended to cope with separation. In particular, we give
formulations to include the fault-avoiding triple de�nition of separation logic into the
pointfree setting and developed characterisations of central properties and de�nitions
to establish soundness of the frame rule. Finally, we give a concise and algebraic
proof of that inference rule and extended the formulations to incorporate also con-
currency proof rules. As a �nal step for this chapter we provide relationships of the
relational treatment to other similar approaches as, e.g., concurrent Kleene algebras
in the case of concurrency and the dynamic frames theory as another approach that
involves framing.

Chapter 5 represents the third contribution of this thesis and gives an extension to
separation logic at its data structure level. In this chapter we replace the resources
of separation logic by elements of a modal Kleene algebra that abstractly capture
pointer or linked structures. By this we give de�nitions of operations and predicates
that allow simple proofs of preservation of tree-like structures. Moreover, we present
as case studies for that approach correctness proofs of algorithms for lists, trees and
in particular threaded trees that involve both data structures.

Finally, Chapter 6 provides a summary of this thesis and gives some open questions
for future work.

In the Appendix one can �nd all deferred proofs and properties for the interested
readers.

11

Separation Logic � A Short Overview

Chapter 2

Separation Logic

� A Short Overview

In this chapter we give basic de�nitions of the standard approach of separation logic
that was introduced in [Rey02]. We provide a standard storage model on which the
separation logical assertions are evaluated. Moreover, we give all standard de�nitions
of the spatial assertions and present some simple examples to demonstrate the main
concepts for establishing correctness of frequently used data structures. As another
important concept we give operational semantics for the program commands of that
logic and provide formulations that entail scalability of the whole approach.

2.1 A Storage Model and Spatial Assertions

As already mentioned, separation logic is an extension of Hoare logic and, besides
reasoning about explicitly named program variables, it comes with additional new
connectives for a �exible treatment of dynamically allocated storage. For this exten-
sion, a program state in separation logic consists of a store and a heap component.
In contrast, plain Hoare logic states only involve a store, since just values of used
program variables have to be remembered. In the remainder we consistently write s
for stores and h for heaps.

For a formal model of the underlying storage we �rst provide some de�nitions. In
the standard approach one de�nes values and addresses as integers, stores and heaps

12

2.1 A Storage Model and Spatial Assertions

as partial functions from variables or addresses to values and states as pairs of stores
and heaps:

Values = ZZ ,

{nil} ∪̇ Addresses ⊆ Values ,

Stores = V ; Values ,

Heaps =
⋃

A

(A; Values) , (A ⊆ Addresses, A �nite)

States = Stores ×Heaps ,

where V denotes the set of program variables, ∪̇ is with disjoint union on sets and
M ; N means the set of partial functions between arbitrary sets M and N . The
constant nil is handled as an improper reference like null in the imperative program-
ming language C . By the above de�nition, nil is not an address and hence heaps do
not assign values to nil , which is a natural requirement. The domain of a relation
modelling a partial function R is de�ned by

dom(R) =df {x : ∃ y : (x, y) ∈ R} .

More concretely, the domain of a store dom(s) denotes all variables currently used by
a program while dom(h) is the set of all allocated addresses on a heap h .

As in [Möl93b] and for later de�nitions of program commands we also need an update
operator to model changes in stores and heaps. Let f1 and f2 be partial functions.
Then we de�ne

f1 | f2 =df f1 ∪ {(x, y) : (x, y) ∈ f2 ∧ x 6∈ dom(f1)} . (2.1)

By this, f1 updates the partial function f2 with all possible pairs (x, y) of f1 in such
a way that f1 | f2 is again a partial function. The domain of the right argument of
∪ is disjoint from that of f1 . In particular, f1 | f2 can be seen as an extension of f1

to dom(f1) ∪ dom(f2) . We abbreviate an update {(x, y)} | f on a single variable or
address by omitting the set-braces and write (x, y) | f instead.

Now, expressions in separation logic are de�ned to be independent of the heap and
hence only need the store component of a given state for their evaluation. This entails
that their evaluation will not have any side e�ects. As in Hoare logic, they simply
denote values or Boolean conditions. Syntactically, we distinguish exp-expressions
which are arithmetical expressions over variables and values and bexp-expressions
which are Boolean expressions, i.e., comparisons and true, false :

var ::= x | y | z | ...
exp ::= 0 | 1 | 2 | ... | var | exp ± exp | ...
bexp ::= true | false | exp = exp | exp < exp | ...

13

Separation Logic � A Short Overview

Assuming that all free variables of an expression e are contained in dom(s) , the
semantics es of an expression e w.r.t. a store s is straightforward. For example,
∀ z ∈ Values : zs = z, trues = true or falses = false .

As a next step, we de�ne syntax and semantics of separation logic assertions. They
extend the Hoare logic ones with additional constructs to make assumptions about
the heap component of a state. Their syntax is de�ned by

assert ::= bexp | ¬ assert | assert ∨ assert | ∀ var . assert |
emp | exp 7→ exp | assert ∗ assert | assert −∗ assert .

The assertions in the upper row are known from predicate logic while the ones below
can be used to express spatial properties about the heap. In the following we use the
letters p, q and r for assertions. Note, the standard ones above can be supplemented
by the logical connectives ∧ , → and ∃ that are de�ned, as usual, by p ∧ q =df

¬ (¬ p ∨ ¬ q), p→ q =df ¬ p ∨ q and ∃ v : p =df ¬∀ v : ¬ p .
The semantics of assertions is given by a relation s, h |= p of satisfaction. Informally,
s, h |= p holds i� the state (s, h) satis�es the assertion p . The semantics is de�ned
inductively as follows (cf. [Rey09]):

s, h |= b ⇔df bs = true

s, h |= ¬p ⇔df s, h 6|= p
s, h |= p ∨ q ⇔df s, h |= p or s, h |= q
s, h |= ∀ v : p ⇔df ∀x ∈ ZZ : (v, x) | s, h |= p
s, h |= emp ⇔df h = ∅
s, h |= e1 7→ e2 ⇔df h = {(es1 , es2)}
s, h |= p ∗ q ⇔df ∃h1, h2 ∈ Heaps : dom(h1) ∩ dom(h2) = ∅ and

h = h1 ∪ h2 and s, h1 |= p and s, h2 |= q
s, h |= p−∗ q ⇔df ∀h′ ∈ Heaps : (dom(h′) ∩ dom(h) = ∅ and s, h′ |= p)

implies s, h′ ∪ h |= q .

Here, b is a bexp-expression and e1, e2 are exp-expressions. As mentioned, the �rst
four clauses do not consider the heap and are well known (e.g. [Hoa69]). The remain-
ing lines express the meaning of the new constructs: emp ensures that the heap h is
empty and hence contains no addressable cells. The assertion e1 7→ e2 characterises
the heap of a state to contain exactly one cell at the address es1 with value es2 . For
building up more complex heaps, the operator of separating conjunction ∗ is intro-
duced. It can conversely also be interpreted as a connective that ensures properties
on disjoint regions of the underlying heap. Finally, a state (s, h) satis�es the separat-
ing implication p−∗ q if h ensures that whenever it is extended with a disjoint heap
h′ with (s, h) |= p , the combined heap h ∪ h′ needs to satisfy (s, h ∪ h′) |= q . An
illustration of this can be found in Figure 2.1. This allows under some circumstances

14

2.1 A Storage Model and Spatial Assertions

the extraction of a disjoint subheap h′ from the larger heap h which is useful for a
variety of applications, e.g., in case of characterising unspeci�ed sharing within data
structures [HV13].

p −∗ q

h

p

h′

q

h ∪ h′

Figure 2.1: Illustration of separating implication.

There exists another special operation in separation logic although not mentioned in
the classic literature [Rey02]. It is called septraction and denotes an existential version
of the separating implication which quanti�es over all subheaps h′ . We will provide
its concrete de�nition later in Section 3 where we also give an algebraic version of that
operator. A concrete application for septraction can be found in [VP07] in concurrent
contexts. It is used to characterise stability of assertions, i.e., preservation of validity
under certain changes of resources by an environment or other threads.

As a next step we present some small examples with the new connectives in action
and to better understand their usage. In particular, we demonstrate the e�ectiveness
of separating conjunction for characterising commonly used data structures by the
example of lists and trees. Following [Rey09], we start with a predicate de�nition
for the former structure. First, we introduce some syntactic sugar by the assertion
i 7→ v1, v2 . It is a shorthand for (i 7→ v1) ∗ (i + 1 7→ v2) which characterises two
adjacent heap cells starting at address vs with contents vs1 , v

s
2 w.r.t. a store s .

Example 2.1.1 Lists can be structurally de�ned by an inductive predicate list α i

where i denotes a program variable and α is used as an abstract sequence of values
that represents the contents of the complete list. Assume ε denotes the empty word
then

list ε i ⇔df emp ∧ i = nil ,
list (a · α) i ⇔df ∃ j. (i 7→ a, j) ∗ list α j .

The upper case describes an empty list. The sequence and the corresponding heap
of the list predicate are empty. In particular, the variable i is required to hold the
improper reference nil . The second case is more interesting as it characterises a non-
empty list. In this, the head element asserted with i 7→ a, j of the list can be made
visible. With this de�nition the value a is stored in the �rst cell while an anonymous
address to the rest of the list is saved in the second cell denoted by the variable j .

15

Separation Logic � A Short Overview

Such addresses are generally realised in separation logic by existentially quanti�ed
variables in formulas. Note, that separating conjunction in this case implies that i

and j can not hold the same address, i.e., they are not aliases. Moreover, one can
easily use the following formula for sequences α, β

list α i ∗ list β j

to characterise two disjoint lists on the heap. By the usage of separating conjunction
and the recursive de�nition of the predicate list one can show that both lists can not
share some of their allocated heap cells. ut

Example 2.1.2 Another example is given by the following de�nition that charac-
terises the shape of a tree data structure. For representing the values of the data
�elds in a tree so-called S-expressions [Rey09] are used which we will not elaborate
here. Conceptually the recursive de�nition of tree predicates is similar to that of lists:

tree a i ⇔df emp ∧ i = a ,
tree (τ0 · τ1) i ⇔df ∃ i0, i1. i 7→ i0, i1 ∗ (tree τ0 i0) ∗ (tree τ1 i1) .

The base case is represented by an empty heap where the data value of the tree
is kept in the variable i . Compared to lists, the above base case in the de�nition
of trees implies that at least some value a , not necessarily nil, is contained in any
tree. The recursive case is similar as above for lists where tree τi ii represent the left
and right subtrees of the larger tree. Again, it can be seen that by the assertion
tree τ0 i0 ∗ tree τ1 i1 one can characterise two disjoint trees on the heap that do not
share any cells. Both trees occupy di�erent portions of storage. ut

2.2 Program Constructs for Resource Manipulation

We now introduce the program constructs associated with the original approach of
separation logic [Rey02]. Like in the assertion part, additional program constructs
are introduced for changing the dynamically allocated resources. Syntactically, the
program commands are given by

comm ::= var := exp | skip | comm ; comm
| if bexp then comm else comm | while bexp do comm
| newvar var in comm | newvar var := exp in comm
| var := cons (exp, . . . , exp)
| var := [exp] | [exp] := exp
| dispose exp .

16

2.2 Program Constructs for Resource Manipulation

We only give explanations for the heap changing commands since the other ones are
well-known from the theory of Hoare logic. In particular, we provide a small-step op-
erational semantics (see e.g., [Plo04]) given by a transition relation ; that describes
the e�ects of a command on an arbitrary input state according to [Rey02]. The result
of a computation either equals a state (s′, h′) or the execution aborts if it termi-
nates. Notationally, we write in former case 〈C, (s, h)〉 ; (s′, h′) and for the latter
〈C, (s, h)〉 ; abort where C is a program command formed according to the above
syntax, (s, h) an initial and (s′, h′) a �nal state of the execution. A non-terminating
command will lead to another con�guration 〈C ′, (s′, h′)〉 , where the command C ′

denotes a remaining execution and (s′, h′) is an intermediate state of the whole ex-
ecution. The case of program abortion will appear for example when referencing
non-allocated resources or assigning values to non-allocated heap cells. This treat-
ment with a distinguished behaviour of faulting and non-terminating commands is
needed to ensure validity of concepts that we introduce later.

Next, given a store s the command v := cons (e1, ..., en) allocates n cells with e si
as the contents of the i-th cell. The cells form an unused contiguous region on the
heap for which the starting address is chosen non-deterministically, hence it is un-
known [YO02]. The address of the �rst cell is then stored in v while the rest of the
cells can be addressed indirectly via the start address. Its operational semantics is
de�ned by

a, . . . , a+ n− 1 ∈ Addresses − dom(h)

〈v := cons (e1, ..., en), (s, h)〉; ((v, a) | s, {(a, es1), . . . , (a+ n− 1, esn)} |h)
.

The premise a, . . . , a + n − 1 ∈ Addresses − dom(h) of that inference rule ensures
that n unallocated addresses are available and can be allocated in h . By contrast to
the commands in the following, abortion is not considered for allocation commands.
The premise is ensured by the de�nition of an in�nite set of available addresses in
Addresses while heaps are de�ned to involve only a �nite domain or set of allocated
addresses. The reason for this de�nition is that the contiguous heap cells are chosen
non-deterministically to obtain soundness of a central inference rule of separation
logic that we introduce later.

We continue with commands of the form v := [e] which are dereferencing assignments.
The value es (corresponding to *e in the programming language C) needs to be a pre-
viously allocated address on the heap for a non-aborting execution of that command,
i.e., es ∈ dom(h) for an involved heap h . After its execution, the variable v on the
store holds the contents of the dereferenced heap cell:

es ∈ dom(h)

〈v := [e], (s, h)〉; ((v, h(es)) | s, h)
,

es 6∈ dom(h)

〈v := [e], (s, h)〉; abort
.

Conversely, an execution of the command [e1] := e2 for exp - expressions e1, e2 assigns

17

Separation Logic � A Short Overview

the value of e2 to the contents of the heap cell with address e1 :

es ∈ dom(h)

〈[e1] := e2, (s, h)〉; (s, (es1 , e
s
2) |h)

,
es 6∈ dom(h)

〈[e1] := e2, (s, h)〉; abort
.

Finally, the command dispose e is used for deallocating the heap cell at the address
es . The disposed cell is not valid any more on the heap, i.e., dereferencing the value
in es would cause a fault in the program execution. In particular, in the special case
where e is a single program variable v , the address of the invalid heap cell remains
stored there and hence is still saved in the store. The semantics is given by

es ∈ dom(h)

〈 dispose e, (s, h)〉; (s, h− (es, h(es)))
,

es 6∈ dom(h)

〈 dispose e, (s, h)〉; abort
.

With the semantics of the heap-manipulating program commands we now continue
with the concept and semantics of Hoare triples in separation logic. By the inclusion
of possibly aborting executions of commands, their semantics is slightly di�erent from
treatments of standard Hoare triples.

De�nition 2.2.1 (Hoare triples in separation logic)
For commands C and assertions p, q the Hoare triple {p}C {q} for partial correctness
holds i� for all states (s, h) |= p implies that

� ¬(〈C, (s, h)〉;∗ abort) ,

� 〈C, (s, h)〉;∗ (s′, h′) implies (s′, h′) |= q ,

where ;∗ denotes the re�exive transitive closure of ; .

Informally, a judgement {p}C {q} is valid if any executions of the involved command
C does not abort starting from any state that satis�es p . Moreover, if C terminates in
a �nal state (s′, h′) then that state has to further satisfy q . A variant of this de�nition
for the case of total correctness would additionally require that (s, h) |= p also implies
that any execution of 〈C, (s, h)〉 terminates. Examples for this de�nition of Hoare
triples with can valid pre- and postconditions for heap-manipulating commands given
in Figure 2.2.

In particular, almost all well-known and standard inference rules of Hoare logic are
still valid. A small collection of important and frequently used rules are listed in
Figure 2.3. Note, that all inference rules except the while - rule are valid in a partial
and total correctness interpretation. For the latter case and while - loops it is required
to add an additional termination argument to the premise of the corresponding rule.

18

2.2 Program Constructs for Resource Manipulation

{∃ v. e1 7→ v} [e1] := e2 {e1 7→ e2}
{ emp } v := cons (e1, e2) {v 7→ e1, e2}

{e 7→ v′} v := [e] {e 7→ v′ ∧ v = v′}
{e1 7→ e2} dispose (e1) { emp }

Figure 2.2: Examples of Hoare triples in separation logic.

{p1}C {q1} {p2}C {q2}
{p1 ∨ p2}C {q1 ∨ q2}

{p1}C {q1} {p2}C {q2}
{p1 ∧ p2}C {q1 ∧ q2} {p[e/x]}x := e {p}

{p}C {q}
{∃x. p}C {∃x. q}

{p}C {q}
{∀x. p}C {∀x. q} {p} skip {p}

p1 → p2 {p2}C {q2} q2 → q1

{p1}C {q1}
{p}C1 {r} {r}C2 {q}
{p}C1 ; C2 {q}

{p ∧ b}C1 {q} {p ∧ ¬b}C2 {q}
{p} if b then C1 else C2 {q}

{p ∧ b}C {p}
{p} while b do C {p ∧ ¬b}

Figure 2.3: Hoare logic inference rules.

An example of an inference rule that is valid in Hoare logic but false in separation
logic according to [Rey09] is the following rule of constancy :

{p}C {q}
{p ∧ r}C {q ∧ r} ,

where FV(r) ∩ MV(C) = ∅ . The side condition on the mentioned variables means
that the command C is not allowed to modify any variable occurring free in the
assertion r . A de�nition of MV(C) can be found in Appendix A.3. In a Hoare
logic setting this is valid, since the assertions involved only make assumptions about
store variables while in separation logic assertions of the form p ∧ r can also make
assumptions about the heap. In particular, the semantics of the logical conjunction is
that p as well as r hold on the same heap and thus e.g., in the concrete instantiation
x 7→ 3 ∧ y 7→ 3 the variable x and y would be aliases. By MV([x] := 4) = ∅
and y 7→ 4 ∧ y 7→ 3 ⇔ false it is therefore not di�cult to see that the following
instantiation is invalid in separation logic

{x 7→ 3} [x] := 4 {x 7→ 4}
{x 7→ 3 ∧ y 7→ 3} [x] := 4 {x 7→ 4 ∧ y 7→ 3} .

19

Separation Logic � A Short Overview

To overcome this issue in separation logic O'Hearn and others replaced the Boolean
conjunction in this rule with the separating conjunction ∗ . This resulted in a powerful
and central inference rule that enabled modular and local reasoning about parts of a
program which can be further embedded into a larger context under a mild restriction
on the set of involved variables. This basically re�ects the power of separation logic
and explains it impact on program veri�cation. We will take a closer look at that
inference rule in the next section.

2.3 The Frame Rule

The central tool of separation logic which makes that approach so popular and useful
for concrete veri�cation tasks is the so-called frame rule [ORY01]. It allows in combi-
nation with the separating conjunction, local reasoning about parts of the state that
get changed by a corresponding program, and further enables the embedding of the
resulting veri�cation into a larger or more global context. For assertions p, q, r and
command C it reads

{p}C {q}
{p ∗ r}C {q ∗ r}

assuming FV(r) ∩ MV(C) = ∅ as in the case of the rule of constancy, i.e., all free
variables of the assertion r are not modi�ed by the command C . First, the premise
of the rule ensures that any execution of C starting in a state satisfying p will end
in a �nal state that satis�es q if it terminates. Now, the conclusion considers such
executions in a consistent extension of the initial and �nal heaps with additional
disjoint heap cells that satisfy r . As a concrete example consider the following instance
of the frame rule using mutation commands:

{x 7→ v} [x] := k {x 7→ k}
{x 7→ v ∗ y 7→ l} [x] := k {x 7→ k ∗ y 7→ l} .

For the set of modi�ed variables we have MV([x] := k) = ∅ . Hence the side condition
is trivially satis�ed. The precondition of the conclusion implicitly states that the
addresses stored in x and y need to be di�erent from each other. Therefore, the
premise allows a local proof of the mutation command on the cell at address x without
any e�ects on the additional cell at address y . The main idea is that any execution
of C will not touch or modify any of the disjoint resources characterised by r since it
is not required for a non-aborting execution. Hence a �local� proof of {p}C {q} will
extend to a �global� proof in the larger context extended by a frame r . A standard
proof of that rule (see e.g. [YO02]) requires two further assumptions on the semantic
foundation:

20

2.3 The Frame Rule

safety monotonicity: If a command C does not abort when starting an execution
from a state (s, h) , then C can also successfully run on states with a larger heap
component, i.e., (s, h′) with h ⊆ h′ . This is formally expressed as

¬(〈C, (s, h)〉;∗ abort) ⇒ ¬(〈C, (s, h′)〉;∗ abort) .

frame property: Every execution of a command C can be tracked back to an
execution of C running on states with possibly smaller heaps. By this, untouched
allocated resources that do not a�ect any execution of C can be omitted. This reads
formally for heaps h0, h1 with dom(h0) ∩ dom(h1) = ∅ as

(¬(〈C, (s, h0)〉;∗ abort) ∧ 〈C, (s, h0 ∪ h1)〉;∗ (s′, h′)) ⇒
∃h′0 : 〈C, (s, h0)〉;∗ (s′, h′0) ∧ h′ = h′0 ∪ h1 ∧ dom(h′0) ∩ dom(h1) = ∅ .

For establishing validity of the frame rule there also exists another approach [Vaf11]
that uses a notion of con�guration safety that inductively ensures non-aborting exe-
cutions in terms of the operational semantics w.r.t. the steps a command can execute.
By this, validity of Hoare triples is given if a command can safely execute all of its
steps. We will consider for this thesis only the above de�ned properties and provide
fully algebraic and pointfree characterisations of them that will consequently enable
an abstract and generalised proof of the frame rule.

21

Chapter 3

Algebraic Spatial Assertions

An abstract and algebraic treatment of the assertion part of separation logic is pre-
sented, in particular of separating conjunction. For an adequate abstraction we start
with an embedding of assertions into a set-based model that allows a treatment in
a calculational style. In particular, we describe a translation of the spatial opera-
tors into that setting. This concrete model is further abstracted into the algebraic
structure of so-called quantales in which assertions are represented as elements of the
algebra. Using this algebra, di�erent behaviours of special classes of assertions are
characterised in a pointfree fashion by simple (in)equations. Moreover, this entails
abstract and simple proofs of properties which can be checked and largely automated
using general theorem proving systems. Another advantage of the algebraic view
is that it yields new insights on separation logic by the application of the obtained
results to a wide range of concrete models.

3.1 A Denotational Model for Assertions

A common methodology for providing a denotational model for logical assertions is
given by an embedding of the satisfaction-based semantics for single states into an
equivalent set-based and therefore pointfree setting. By this, every assertion will be
associated with the set of all states that satisfy the corresponding assertion. We basi-
cally follow the approach of [DHM09, DHM10]. Concretely, for an arbitrary assertion
p formed using the syntax given in Section 2.1 we de�ne its set-based semantics as

[[p]] =df {(s, h) : s, h |= p} .

Algebraic Spatial Assertions

Clearly, by this de�nition all well-known Boolean connectives on assertions directly
coincide with corresponding set-based operations where | denotes the update operation
on partial functions de�ned in Equation (2.1) and represents set complementation
w.r.t. the carrier set States, i.e., for a set of states X we have X = States −X . One
inductively obtains the following equations for the standard logic connectives,

[[¬ p]] = {(s, h) : s, h 6|= p} = [[p]] ,

[[p ∨ q]] = [[p]] ∪ [[q]] ,

[[p ∧ q]] = [[p]] ∩ [[q]] , [[p→ q]] = [[p]] ∪ [[q]] ,

[[∀ v : p]] = {(s, h) : ∀x ∈ Z : (v, x) | s, h |= p }
=

⋂
x∈Z
{(s, h) : ((v, x) | s, h) ∈ [[p]] } ,

[[∃ v : p]] = [[∀ v : ¬ p]] = {(s, h) : ∃x ∈ Z. (v, x) | s, h |= p }
=

⋃
x∈Z
{(s, h) : ((v, x) | s, h) ∈ [[p]] } .

As particular cases, [[true]] = States and [[false]] = ∅ . Similarly, set-based variants
for the assertion emp that characterises the empty heap and e1 7→ e2 that denotes a
single cell heap can be given by

[[emp]] = {(s, h) : h = ∅} and [[e1 7→ e2]] =
{

(s, h) : h =
{(
es1 , e

s
2

)}}
.

For an adequate reformulation of separating conjunction ∗ on sets of states expressing
heap disjointness we obtain

[[p ∗ q]] = [[p]] ·∪ [[q]] ,

where for sets P,Q ∈ P(States) we de�ne

P ·∪ Q =df {(s, h ∪ h′) : (s, h) ∈ P, (s, h′) ∈ Q, dom(h) ∩ dom(h′) = ∅} .

Assuming that the considered states involve the same stores and address-disjoint
heaps, this operator exactly renders the semantics of separating conjunction in a
set-based fashion. Generally, this construction yields an algebraic embedding of sep-
aration logic assertions into an abstract calculus by viewing the constructed sets of
states as elements of a speci�c structure that we discuss in the following. A central
requirement for this task involves the inclusion of algebraic counterparts of all the
above set-based operations. Especially due to the usage of possible in�nite intersec-
tions and unions it turned out that an appropriate algebraic structure for this purpose
are quantales which have been introduced in [Mul86, Ros90].

De�nition 3.1.1 (Quantale)

24

3.1 A Denotational Model for Assertions

(a) A quantale is a structure (S,≤, · , 1) such that

� (S,≤) is a complete lattice where, for T ⊆ S, the element
⊔
T denotes the

supremum of T and
d
T its in�mum,

� (S, · , 1) is a monoid,

� multiplication distributes over arbitrary suprema, i.e., for a ∈ S and T ⊆ S ,

a · (⊔T) =
⊔{a · b : b ∈ T} and (

⊔
T) · a =

⊔{b · a : b ∈ T} . (3.1)

The least and greatest element of a quantale w.r.t. ≤ are denoted by 0 and >,
resp. Binary in�ma and suprema of two elements a, b ∈ S are denoted by a u b
and a+ b, resp. We assume that u binds tighter than + .

(b) A quantale is called commutative i� a · b = b · a for all a, b ∈ S .

(c) A quantale is called Boolean i� its underlying lattice is distributive, i.e., for all
a, b, c ∈ S

a u (b+ c) = a u b+ a u c and a+ b u c = (a+ b) u (a+ c) ,

and is complemented. Complementation will be denoted by . Moreover, the
greatest element > is de�ned by 0 .

Note that by this de�nition + and u are commutative, associative and idempotent.
The former operator has the unit 0 and annihilator > while conversely u has > as
its unit and 0 as its annihilator. The natural order ≤ satis�es a ≤ b ⇔ a+ b = b ⇔
a u b = a for arbitrary elements a, b ∈ S .
Furthermore in a quantale one can derive that the least element satis�es

⊔ ∅ = 0 .
Due to Equation (3.1) this immediately implies that · is strict in both arguments, i.e.,
we have 0 · a = 0 = a · 0 for all a ∈ S and hence 0 is an annihilator.

The following equivalences are valid in quantales and will facilitate inequational rea-
soning in proofs provided in later sections:

a+ b ≤ c ⇔ a ≤ c ∧ b ≤ c and a ≤ b u c ⇔ a ≤ b ∧ a ≤ c . (3.2)

In the case of Boolean quantales we have

a u b ≤ c ⇔ a ≤ b→ c . (shu)

where b → c =df b + c . This property is called shunting and entails in particular,
a u b ≤ 0 ⇔ b ≤ a .

25

Algebraic Spatial Assertions

For easier readability we suppose that multiplication · binds tighter than u and + .

The assumption that (S,≤) is a complete lattice guarantees the existence of in�nite
suprema and in�ma as required for a complete algebraic treatment of separation logic
assertions. We can now conclude the following result.

Theorem 3.1.2 The structure AS =df (P(States), ⊆ , ·∪ , [[emp]]) is a commutative
and Boolean quantale with P +Q = P ∪Q .

Proof. First, it is not di�cult to see that (P(States), ⊆) forms a complete and dis-
tributive lattice where

⊔
and

d
coincide with

⋃
and

⋂
, respectively. Moreover,

that ·∪ is associative, commutative and has [[emp]] as its unit follows from the de�ni-
tions and pointwise lifting. Hence, (P(States), ·∪ , [[emp]]) represents a commutative
monoid. The distributivity laws of separating conjunction can also be lifted to the
set-based setting and extended in AS to arbitrary unions. Finally, Boolean comple-
ments in AS can be obtained using set-complementation . ut
By Theorem 3.1.2 it is obvious that [[true]] coincides with > and [[false]] with 0 .
Binary intersections and unions are abstracted to u and + , respectively. As already
mentioned a concrete instance of the in�nite distributivity laws in Equation (3.1) can
be found in logical formulas involving existential quanti�cations like p ∗ (∃ v. q) ⇔
∃ v. p ∗ q and its symmetric variant for arbitrary assertions p, q and variable v 6∈
FV(p) .

In the case of arbitrary in�ma, only validity of inequational variants of distributivity
laws can be obtained, i.e., for an abstract quantale (S,≤, · , 1) and subset T ⊆ S we
have

(
l
T) · b ≤

l
{a · b : a ∈ T} and a · (

l
T) ≤

l
{a · b : b ∈ T} . (3.3)

Special cases or instances of these abstract laws w.r.t. AS are given in separation logic
e.g., by

(p ∧ q) ∗ r ⇒ (p ∗ r) ∧ (q ∗ r) and (∀x. p) ∗ q ⇒ ∀x. p ∗ q .

A further useful property of quantales is that by the above inequational distributivity
laws, multiplication is isotone in both arguments, i.e., for elements a, b, c, d : a ≤
b ∧ c ≤ d ⇒ a · b ≤ c · d . This can be translated into separation logic for adequate
assertions p, q, r, s to the valid inference rule

p ⇒ r q ⇒ s

p ∗ q ⇒ r ∗ s .

More laws and examples can be found in [Dan09]. Next, we derive an algebraic
characterisation for the remaining separation logic operations. First, we start with a

26

3.1 A Denotational Model for Assertions

treatment of the separating implication. Its logic-based application is given in [Rey02,
Rey09] by instantiations of so-called currying and decurrying inference rules. For
arbitrary assertions p, q, r separating implication and separating conjunction satisfy
the following interplay:

p ∗ q ⇒ r

p ⇒ (q−∗ r) (currying)
p ⇒ (q−∗ r)
p ∗ q ⇒ r

(decurrying) .

From an algebraic viewpoint these laws are very similar to the Galois equivalences
characterising residuals in quantales [Bir67, Lam68]. Such elements represent the
greatest solutions x w.r.t. the order ≤ of the inequation a · x ≤ b for arbitrary
elements a, b of a quantale.

De�nition 3.1.3 (Residuals)

(a) In any quantale, the right residual a\b exists and is characterised by the Galois
connection

x ≤ a\b ⇔df a · x ≤ b . (3.4)

a\b as the greatest solution of the inequation a · x ≤ b denotes a pseudo-inverse
to multiplication.

(b) Symmetrically, the left residual b/a can be de�ned by

x ≤ b/a ⇔df x · a ≤ b . (3.5)

In the case of a commutative quantale both residuals coincide, i.e., a\b = b/a .

Note that in quantales residuals do always exist by the assumption of a complete
underlying lattice that guarantees the existence of arbitrary suprema. In the concrete
quantale AS, we will provide a proof that algebraic residuals coincide conceptually in
the set-based setting with separating implication which reads

[[p −∗ q]] = {(s, h) : ∀h′ ∈ Heaps : (dom(h) ∩ dom(h′) = ∅ ∧ (s, h′) ∈ [[p]])

⇒ (s, h ∪ h′) ∈ [[q]]} .

Residuals have been researched for already several decades and hence a large amount
of general results can be immediately applied to the concrete quantale AS and thus
become consequences in separation logic. For notational bene�t we use in the following
the same symbols for residuals in AS and abstract quantales.

Lemma 3.1.4 In AS, [[p−∗ q]] = [[p]]\[[q]] = [[q]]/[[p]] .

27

Algebraic Spatial Assertions

Proof. By set theory and de�nition of ·∪ , we have

(s, h) ∈ [[p−∗ q]]
⇔ ∀h′ : (dom(h) ∩ dom(h′) = ∅ ∧ (s, h′) ∈ [[p]] ⇒ (s, h ∪ h′) ∈ [[q]])
⇔ {(s, h ∪ h′) : dom(h) ∩ dom(h′) = ∅ ∧ (s, h′) ∈ [[p]]} ⊆ [[q]]
⇔ {(s, h)} ·∪ [[p]] ⊆ [[q]]

and therefore, for arbitrary set R of states,

R ⊆ [[p−∗ q]]
⇔ ∀ (s, h) ∈ R : (s, h) ∈ [[p−∗ q]]
⇔ ∀ (s, h) ∈ R : {(s, h)} ·∪ [[p]] ⊆ [[q]]
⇔ R ·∪ [[p]] ⊆ [[q]] .

Hence, by de�nition of right residuals, [[p−∗ q]] = [[p]]\[[q]] . The second equation
follows immediately since ·∪ in AS commutes (cf. Theorem 3.1.2). ut
A similar result was stated in [IO01]. There it was mentioned that the assertional part
of separation logic is an instance of an abstract approach called the logic of bunched
implications [OP99]. We will elaborate on this in Section 3.1.1.

In our setting, by Lemma 3.1.4 the currying and decurrying inference rules become
theorems in the assertion quantale AS , and hence also all well-known laws about −∗
are now theorems of the standard theory of residuals (e.g. [BJ72]). As an example a
frequently used inference rule in separation logic is

q ∗ (q−∗ p) ⇒ p

which describes the general behaviour of separating implication that whenever a heap
satisfying q gets combined with a disjoint for which q−∗ p holds then the whole heap
will satisfy p . Abstractly, we can show, as a direct consequence of the de�nition of
residuals, that for arbitrary elements a, b ∈ S the inequality b · (b\a) ≤ a holds.

Lemma 3.1.5 b · (b\a) ≤ a and symmetrically (a/b) · b ≤ a is valid.

Proof. By De�nition 3.1.3 we infer b · (b\a) ≤ a ⇔ b\a ≤ b\a ⇔ true . ut
Now, setting a = [[p]] and b = [[q]] one obtains validity of the inequation in AS and
hence also soundness of the above inference rule in separation logic.

For later calculational proofs we list a couple of helpful properties. Right residuals
are anti-disjunctive in their �rst argument and conjunctive in their second one, i.e.,
for a set T ⊆ S of quantale S

y\(
l
T) =

l
{y\x : x ∈ T} and (

⊔
T)\x =

l
{y\x : y ∈ T} .

28

3.1 A Denotational Model for Assertions

In the semantics of separation logic this entails as an example validity of the logical
equivalence p−∗ (∀ v. q) ⇔ ∀ v. p−∗ q where v 6∈ FV(p) . Abstractly, the above laws
immediately imply for arbitrary elements z the following consequence

x ≤ y ⇒ z\x ≤ z\y ∧ y\z ≤ x\z .

Another law involves e.g., a further characterisation of > by y\> = > = 0\x . Many
of these laws are proved algebraically in [Dan09] and have also been automated.

As a last ingredient and for completeness reasons we include into AS another oper-
ator that is closely related to separating implication. It is called septraction in the
separation logic literature e.g. in [VP07] and is de�ned as follows.

De�nition 3.1.6 (Septraction)
For assertions p, q septraction is de�ned by p −� q ⇔df ¬(p −∗ (¬q)) .

The intuition of this operator can be given by the following lemma. We provide its
pointwise meaning using the carrier set States.

Lemma 3.1.7 s, h |= p −� q ⇔ ∃ ĥ : h ⊆ ĥ ∧ s, ĥ− h |= p ∧ s, ĥ |= q .

The proof of Lemma 3.1.7 is deferred to Appendix A. Informally, if a heap h satis�es
p −� q , then it can be extended with a heap that satis�es p so that q holds for the
resulting one. Equivalently, one can also quantify over the existence of a remaining
disjoint heap satisfying p . In contrast to separating implication it comes with angelic
behaviour since it only quanti�es existentially over the remaining heap portion where
p holds while in the case of the implicational version its condition needs to be ful�lled
by all heaps. Due to this one often refers to septraction as the existential separating
implication.

Using the above de�nitions we can analogously derive a set-based version of sep-
traction in AS . Interestingly, its logical pointfree de�nition directly coincides in AS
with so-called detachment operators [Bir67] that also do exist in arbitrary Boolean
quantales. As in the case of residuals we notationally also use the same symbol for
detachments in AS and arbitrary Boolean quantales.

De�nition 3.1.8 (Detachments)
In a Boolean quantale, the left detachment can be de�ned based on the left residual
for elements a, b by

acb =df a\b .

Symmetrically the right detachment is de�ned by abb =df a/b . If the underlying
quantale is commutative acb = bba .

29

Algebraic Spatial Assertions

Therefore, in the quantale AS one obtains by Theorem 3.1.2

[[p −� q]] = [[¬(p−∗(¬q))]] = [[p]]\[[q]] = [[p]] c [[q]] .

As in the case of residuals and separating implication, a large amount of already
known laws for detachments immediately applies to the assertion quantale AS and
thus to the assertional part of separation logic.

Detachments are isotone in both arguments. Moreover, from the characterising Galois
connection of residuals one obtains by de Morgan's laws the exchange properties

abb ≤ x ⇔ x · b ≤ a and acb ≤ x ⇔ a · x ≤ b . (exc)

Another important consequence are the Dedekind rules [JT51]

a u b · c ≤ (abc u b) · c and a u b · c ≤ b · (bca u c) . (Ded)

In separation logic these inequations would translate for adequate assertions p, q, r to
validity of the implication p ∧ q ∗ r ⇒ q ∗ ((q −� p) ∧ r) . Concretely, it asserts that
if some heap h that satis�es p can be split into disjoint portions for which q and r
hold then h can also be split into one part satisfying q and a remaining disjoint one
for which r and q −� p hold. In the following section we will provide more properties
for septraction and separating implication interacting with assertions that come with
special behaviour. In particular, this will demonstrate the simplicity and bene�ts of
our approach for deriving several frequently required theorems in a pointfree style.
Finally, to round o� our derivations on the algebraic structure we provide in Table 3.1
a notational overview of the concrete powerset structure modelling spatial assertions
and the correspondences between the operations of separation logic and the abstract
algebra.

Name in Logic SL AS Quantales

disjunction ∨ ∪ +
conjunction ∧ ∩ u
negation ¬
implication ⇒ ⊆ ≤
separating conjunction ∗ ·∪ ·
separating implication −∗ \ \
septraction −� c c

Figure 3.1: Notations of operators in separation logic, AS and abstract quantales.

30

3.1 A Denotational Model for Assertions

3.1.1 Related Work: BI Algebras

Abstract and algebraic structures for the spatial assertions of separation logic have
also been investigated in earlier approaches. Originally, in 1999 O'Hearn and Pym
developed a logical approach called the logic of bunched implications (BI) [OP99]. It
introduced the general ideas of the structure of today's separation-logical assertions.
The standard interpretations depending on the carrier set States was considered as an
model of a Boolean variant of BI [IO01]. In contrast to classical logical approaches,
BI comes with two di�erent conjunction and implication operations, i.e., concretely
they coincide in separation logic with ∧ , ∗ and → ,−∗ . The spatial operations ∗ ,−∗
are also called multiplicative connectives while the remaining ones are named additive
in the literature. Algebraic presentations of BI use as a starting base the structure of
a Heyting algebra (S,≤) , i.e., a lattice containing a greatest and least element w.r.t.
≤ and binary meets denoted by a u b that are residuated. They represent a lower
adjoint and have a corresponding upper adjoint→ that is characterised by the Galois
connection

a u b ≤ c ⇔ a ≤ b→ c .

Note that in any Boolean algebra this condition is always satis�ed and stated in the
present quantale-based approach as shunting (cf. (shu)). More interestingly, in addi-
tion to the assumed Heyting algebra one requires a further residuated commutative
monoid structure denoted by (S, ∗, emp) that similarly to the above satis�es

a ∗ b ≤ c ⇔ a ≤ b−∗ c .

Its purpose is to abstractly model the substructural part of separation logic given by
separating conjunction. Concretely ∗ does not satisfy the weakening and contraction
rules

a ∗ b ≤ a and a ≤ a ∗ a (3.6)

in contrast to u , since otherwise both operations would coincide (cf. [OP99]). In sum,
the full algebraic structure is called a BI algebra. Since separation logic in its early
developments was provided as an intuitionistic logic [Rey00] and Heyting algebras
model propositional versions of such logics, an adequate abstraction [Pym02, POY04]
is found by these algebras. An approach to propositional versions of classical logics,
e.g., separation logic in its nowadays version [Rey02] requires the extension of BI to a
Boolean algebra by replacing the underlying Heyting algebra by a Boolean one. That
approach is called a Boolean BI algebra and it di�ers from the algebraic treatment
based on commutative Boolean quantales in not requiring the following structural
assumptions:

� an underlying complete lattice involving in�nite meets and joins,

31

Algebraic Spatial Assertions

� the associated in�nite (semi)distributivity laws w.r.t. ∗ .

Due to the characterisation of ∗ as a lower adjoint in the above Galois connection
the second property would be immediately implied if arbitrary (in�nite) meets and
joins are available (e.g. [EKMS92, Möl99b]). Further considerations of Boolean BI
algebras extended to complete lattices can be found in [BBTS05, BBTS07]. In par-
ticular, similar powerset constructions as presented in Section 3.1 are discussed and
provided in those papers within a categorical setting called BI hyperdoctrines. More
category theory related approaches involving in�nite distributivity laws are discussed
in [Pym02, POY04, Bie04] where especially topological representations are considered
that also involve complete BI algebras.

The presented approach will stay within an algebraic treatment. Its main focus com-
prises, in addition to its abstract character, the further possibility of calculating a
large set of theorems in fully pointfree way especially in combination with algebraic
characterisations of special behaviour of certain assertion classes [Rey09] which are
presented in the subsequent section. Due to the simple representations and largely
�rst-order logic formulated (in)equations that setting also comes with the advantage
to easily generate mechanised and (semi)automated proofs. This in turn guarantees
more safety and con�dence in the correctness of the presented derivations.

Finally, we also remark that, based on the logic of BI, abstract resource semantics
and interpretations in a Kripke-style have been already derived in [Pym02]. These
model-theoretic considerations entailed a pointwise de�nition of the separating im-
plication that corresponds in a particular case to the de�nition based on the carrier
set States [IO01]. Hence Lemma 3.1.4 expresses exactly the expected equalities by
interpreting separating implication as residuals within Boolean quantales.

3.2 Characterising Behaviour Abstractly

With the developed foundation of the previous section we can now move one step
further and consider the algebraic approach for characterising di�erent classes of as-
sertions in separation logic as presented in [Rey02, Rey09]. Motivated by the fact
that certain consequences of such classes can be described in a pointfree fashion, the
question arises whether it is possible to obtain a completely algebraic treatment of the
assertion classes. As an example so-called pure assertions characterise on states (s, h)
only conditions that do not involve the heap component, i.e., exclusively properties
about store variables are expressed. This implies e.g., that logical and separating
conjunction coincide for pure assertions P,Q , i.e.,

P ∗Q ⇔ P ∧ Q .

32

3.2 Characterising Behaviour Abstractly

By results of the previous section it is an easy task to abstract this law to arbitrary
quantales. In what follows, investigations are presented for the most common as-
sertion classes to �nd suitable algebraic abstractions that enable the derivation of
properties at the propositional level of separation logic as above. This immediately
facilitates assertional reasoning, especially in the case of purely �rst-order logical
characterisations that enable automation or at least mechanised proofs.

3.2.1 Intuitionistic Assertions

We start by considering the class of intuitionistic assertions. They re�ect the in-
tuitionistic behaviour of assertions in the early developments of [Rey00]. In more
abstract settings as in the logic of BI, the intuitionistic behaviour is called Kripke
monotonicity and assumed for Kripke interpretations that abstract heaps to the se-
mantics of possible worlds [POY04]. In the concrete setting of States the behaviour is
given in [IO01] as a monotonicity condition and can be described in the sense that in-
tuitionistic assertions do not characterise the domain of a heap or the set of allocated
heap cells exactly. Hence, an imprecision is introduced due to some additional set of
anonymous cells that may reside on the heap. This can happen in the case when e.g.,
pointer references to some prior allocated storage are lost.

Following [Rey09], an assertion p is called intuitionistic i�

∀ s ∈ Stores, ∀h, h′ ∈ Heaps : (h ⊆ h′ ∧ s, h |= p) ⇒ s, h′ |= p . (3.7)

Intuitively, if a heap h that satis�es an intuitionistic assertion p then any larger heap,
i.e., extended by arbitrary cells, still satis�es p . It turned out that this particular
closure condition can be characterised within the quantale AS in a pointfree style.

Theorem 3.2.1 In AS an element [[p]] is intuitionistic i� it satis�es

[[p]] ·∪ [[true]] ⊆ [[p]] .

Proof. By de�nition of true, set theory, using for (⇒) h′′ = h′−h and for (⇐) that
dom(h) ∩ dom(h′′) = ∅ ∧ h′ = h ∪ h′′ ⇒ h′′ = h′ − h, a logic step, de�nition of ∗ ,

∀ s, h, h′ : (h ⊆ h′ ∧ s, h |= p) ⇒ s, h′ |= p
⇔ ∀ s, h, h′ : (h ⊆ h′ ∧ s, h |= p ∧ s, (h′ − h) |= true) ⇒ s, h′ |= p
⇔ ∀ s, h, h′ : (s, h |= p ∧ s, (h′ − h) |= true ∧ dom(h) ∩ dom(h′ − h) = ∅

∧ h′ = h ∪ (h′ − h)) ⇒ s, h′ |= p
⇔ ∀ s, h, h′ : (∃h′′ : s, h |= p ∧ s, h′′ |= true ∧ dom(h) ∩ dom(h′′) = ∅

∧h′ = h ∪ h′′) ⇒ s, h′ |= p

33

Algebraic Spatial Assertions

⇔ ∀ s, h′ : (∃h, h′′ : s, h |= p ∧ s, h′′ |= true ∧ dom(h) ∩ dom(h′′) = ∅
∧h ∪ h′′ = h′) ⇒ s, h′ |= p

⇔ ∀ s, h′ : s, h′ |= p ∗ true ⇒ s, h′ |= p .

Now, the claim follows from the translation of assertions into AS given in Section 3.1.
ut

Thus, Theorem 3.2.1 yields the following de�nition by the abstraction of its result to
arbitrary Boolean quantales.

De�nition 3.2.2
In an arbitrary Boolean quantale S an element a is called intuitionistic i� it satis�es

a · > ≤ a .

Note that this inequation can be strengthened to an equation since its converse holds
for arbitrary Boolean quantales by neutrality of 1 and the fact that multiplication is
isotone. Hence, > is characterised as a neutral element w.r.t. multiplication on the set
of intuitionistic elements. Clearly, > is intuitionistic. In the case of separation logic,
> coincides with true as a unit for separating conjunction ∗ . This result is stated as
a consequence e.g. in [IO01]. Abstractly, elements of the form a · > are also called
in the literature vectors or ideals. Those elements are well known, and therefore one
can easily transfer many properties (e.g. [SS93, Mad06]) to this particular application
domain without any additional e�ort. We list some of them to show again the advan-
tages of the algebraic approach and start by some intuitive closure properties which
can also be found in [Rey02].

Lemma 3.2.3 Consider a commutative Boolean quantale S, intuitionistic elements
a, ai ∈ S with i ∈ IN and an arbitrary element b ∈ S. Then the following composed
elements are also intuitionistic:

(a) a · b , hence also a · > ,

(b) b\a , hence also >\a ,

(c)
d{ai : i ∈ IN} ,

(d)
⊔{ai : i ∈ IN} .

Proof. The proof of part (a) is immediate from commutativity of · and the assump-
tion. For part (b) we have (b\a) · > ≤ b\a ⇔ b · (b\a) · > ≤ a by De�nition 3.1.3
and the claim follows from b · (b\a) ≤ a by Lemma 3.1.5 and the assumption that a
is intuitionistic. The remaining parts follow from Equation (3.3), Equation (3.1) and
the assumptions. ut
Note, that weaker assumptions in Lemma 3.2.3 can be used than e.g. provided
in [Rey02]. We continue by particular laws that describe the interaction of · and
u involving intuitionistic assertions.

34

3.2 Characterising Behaviour Abstractly

Lemma 3.2.4 Consider a commutative Boolean quantale S, intuitionistic elements
a, a′ ∈ S and arbitrary elements b, c ∈ S . Then

(a) (a u b) · c ≤ a u b · c ,

(b) (a u b) · > ≤ a ,

(c) a · b ≤ a u b ·> ,

(d) a · a′ ≤ a u a′ .

Proof. To show (a) we calculate (a u b) · c ≤ a · c u b · c ≤ a · > u b · c ≤ a u b · c .
Setting c = > in (a) the inequation of (b) follows from isotony of u . For a proof of
(c) we know a · b ≤ a · > ≤ a and a · b ≤ > · b = b · > by isotony and commutativity
of · . Again, Equation (3.2) shows the claim. Trivially (d) follows from (c) setting
b = a′, applying the de�nition of intuitionistic elements and using isotony of u . ut
Note that part (b) implies by isotony of multiplication the weakening rule for ∗ of BI
algebras (cf. Equation (3.6)), i.e., a ∗ b ≤ a assuming a is intuitionistic. Moreover, it
is not di�cult to see that the reverse inequations of the above given laws can not be
obtained for the quantale AS considering translations of adequate separation logical
assertions. In particular, part (d) above only validates an inequation on intuitionistic
elements characterising the interplay of multiplication and meet, or concretely separa-
tion and logical conjunction, respectively. A counterexample for the opposite direction
in that case is easily constructed with a = a′ = [[x 7→ 1 ∗ true]] = [[x 7→ 1]] ·∪ [[true]] .
Obviously a and a′ are both intuitionistic. Hence the de�nitions (cf. Section 2.1)
immediately imply that a ∩ a′ = a 6= ∅ and a ·∪ a′ = [[x 7→ 1]] ·∪ [[true]] ·∪ [[x 7→
1]] ·∪ [[true]] = ∅ since ·∪ is commutative and [[x 7→ 1]] ·∪ [[x 7→ 1]] = ∅ .
This further implies that even for intuitionistic elements, the contraction law a ≤ a ·a
does not hold. We show in the subsequent section that a strengthening of the interplay
given in part (d) to an equation can be guaranteed for assertions whose validity is
independent of the underlying heap component within arbitrary states.

Finally, we remark that similar abstract characterisations as given in De�nition 3.2.2
can also be found in [BBTS05, BBTS07] within a higher-order and also abstract
setting of separation logic, called BI-hyperdoctrines. Intuitionistic assertions q can
be found there under the de�nition of monotone assertions w.r.t. heaps h of states
(s, h) ∈ States. A pointfree characterisation is given by a quanti�cation over arbitrary
assertions p in ∀ p. p ∗ q → q . This closely correlates to our compact characterisation
by interpreting p, q as elements of a commutative Boolean quantale and → as its
associated natural order ≤ . Then one can easily conclude

(∀ p. p · q ≤ q) ⇔ q · > ≤ q ,

where ⇒ follows by commutativity of · and setting p = > and the reverse direction
⇐ directly holds by isotony of multiplication.

35

Algebraic Spatial Assertions

3.2.2 Resource Independence

In this section special attention is paid to a particular class of assertions for which
the behaviour can simply be described by not making any assumptions about the
heap component of states, i.e., assertions that are valid for arbitrary heaps. Con-
crete instances within separation logic are given by any bexp - expression (cf. Sec-
tion 2.1) like false, true or e = e′ which coincide with assertions of usual Hoare logic
approaches [Hoa69]. Originally, in the separation logic literature such assertions ap-
peared in [IO01, Rey02] under the notion of pure assertions . They are syntactically
described there as assertions that do not contain emp and 7→ (w.r.t. the syntax given
in Section 2.1). An exclusion of the spatial operations ∗ and −∗ making assumptions
about the underlying heaps in formulas is not required since these operations will
collapse with logical conjunction and implication, respectively. A complete algebraic
proof of this fact will be provided later.

Another application of pure assertions can be found in [PS11, PS12]. The setting in
those papers considers an extended carrier set where each state is equipped with a map
for modelling permission to access certain �elds of objects. Separating conjunction is
de�ned there to split permission maps while only allowing states with equal stores and
heaps. An abstraction of pure assertions to an algebraic setting will also incorporate
such particular models.

For establishing an algebraic characterisation of pure assertions we turn back to the
standard setting based on the carrier set States . First we provide a common de�nition
of pure assertions given by the following formula

p is pure ⇔df (∀ s ∈ Stores : ∀h, h′ ∈ Heaps : s, h |= p ⇔ s, h′ |= p) . (3.8)

First, we immediately infer from the above de�nition that if p holds for any state
at all then especially s, ∅ |= p holds. Trivially, then p is also satis�ed by any heap
larger than the empty one. Both facts will be used to derive a pointfree characterisa-
tion of pure assertions. Following the ideas introduced in [DHM09, DHM11] we can
characterise pure assertions in the quantale AS follows.

Theorem 3.2.5 In AS an element [[p]] is pure i� it satis�es

[[p]] = ([[p]] ∩ [[emp]]) ·∪ [[true]] .

Proof. The following logical formula is a pointwise version of the above equation
following Section 3.1.

∀ s ∈ Stores, ∀h ∈ Heaps : (s, h |= p ⇔ s, h |= (p ∧ emp) ∗ true) . (3.9)

36

3.2 Characterising Behaviour Abstractly

We show that it is equivalent to the de�nition given in (3.8). For better readability
we omit the universal quanti�cation over stores in the remainder. First, we simplify
s, h |= (p ∧ emp) ∗ true . Using the de�nitions of Section 2.1, we get for arbitrary
h ∈ Heaps

s, h |= (p ∧ emp) ∗ true

⇔ ∃h1, h2 ∈ Heaps : dom(h1) ∩ dom(h2) = ∅ ∧ h = h1 ∪ h2

∧ s, h1 |= p ∧ s, h1 |= emp ∧ s, h2 |= true

⇔ ∃h1, h2 ∈ Heaps : dom(h1) ∩ dom(h2) = ∅ ∧ h = h1 ∪ h2

∧ s, h1 |= p ∧ h1 = ∅
⇔ ∃h2 ∈ Heaps : h = h2 ∧ s, ∅ |= p
⇔ s, ∅ |= p .

Now, Equation (3.8) implies

∀h, h′ ∈ Heaps : (s, h |= p ⇔ s, h′ |= p)
⇒ ∀h ∈ Heaps : (s, h |= p ⇔ s, ∅ |= p)
⇔ ∀h ∈ Heaps : (s, h |= p ⇔ s, h |= (p ∧ emp) ∗ true) .

For the converse direction, we conclude for arbitrary s, h, h′ using Equation (3.9) and
the above result twice that s, h |= p ⇔ s, ∅ |= p ⇔ s, h′ |= p . ut
Hence, any pure assertion p also satis�es the logical formula p ⇔ (p ∧ emp) ∗ true

which includes the above mentioned facts that the empty heap and any extension of it
also satisfy it. Moreover, the characterisation of Theorem 3.2.5 immediately enables
a lifting to the abstracter level of arbitrary Boolean quantales yielding the following
result.

De�nition 3.2.6
In an arbitrary Boolean quantale S an element a is called pure i� it satis�es

a = (a u 1) · > .

This equation characterises pure elements as �xed points of the function f(a) =
(a u 1) · > . Since f is built from isotone operations it is also isotone. Now, by the
assumptions of an underlying complete lattice, the Knaster-Tarski theorem [Tar55]
immediately implies that the set of pure elements is also a complete lattice. By the
in�nite distributivity laws and the assumption of a Boolean quantale, we get for any
set of pure elements X that also

⊔
X and

d
X is pure.

As a next step we can use De�nition 3.2.6 to give further characterisations of pure
elements in arbitrary commutative and Boolean quantales. We list some of them in
the following.

37

Algebraic Spatial Assertions

Lemma 3.2.7 In any commutative Boolean quantale, an element a is pure i� one of
the following equivalent properties is satis�ed.

(a) a · > ≤ a and a · > ≤ a ,

(b) a · > ≤ a and a u b · c ≤ (a u b) · (a u c) for all b, c ∈ S ,

(c) (a u b) · c = a u b · c for all b, c ∈ S .

A proof can be found in Appendix A.

The advantages of these characterisations are that part (a) also holds in the setting of
non-commutative quantales as it provides a simple characterisation of pureness that
immediately reveals that pure elements and their complements are also intuitionistic.
We summarise

Corollary 3.2.8 Every pure element of a Boolean quantale is also intuitionistic.

In particular, in any Boolean quantale 0 = > and therefore we can conclude that

Corollary 3.2.9 > and 0 are the greatest and smallest pure elements, respectively.

Part (b) of Lemma 3.2.7 states that in addition to being intuitionistic, pure elements
also entail an inequational distributivity property. An upper bound of the intersection
of an arbitrary product with a pure element a is obtained by multiplying the possible
smaller intersections of a with the arguments of the product. Finally, part (c) is
stated as a property of pure elements in [Rey02] which is now fully algebraically
derived in the abstract setting. By setting b = > and c = 1 it is not di�cult to see
that De�nition 3.2.6 is a special case of it. Note that since the underlying quantale is
commutative, it is also possible to use the dual of part (c), namely b · (auc) = a u b ·c
as a characterisation of pure assertions.

We note that a similar result for a pointfree characterisation of pure assertions has also
been derived in [BBTS05, BBTS07]. The characterisation is given within a higher-
order logic setting in category theory. It semantically corresponds very much to what
is presented in part (c).

Another characterisation for pure elements involves detachments, i.e., in concrete
separation logic the septraction operator.

Lemma 3.2.10 In a commutative Boolean quantale, the distributivity law a u b · c ≤
(a u b) · (a u c) is equivalent to ab> ≤ a and >ca ≤ a .

38

3.2 Characterising Behaviour Abstractly

A proof of this lemma is deferred to Appendix A. The element >ca can be interpreted
in AS as the ⊆ - downward closure of a w.r.t. the heap component of states, i.e., by
removing parts of the allocated resources in the heap, the respective state will remain
in a.

To conclude the paragraph concerning pure elements we list a few properties which
can be easily proved completely in our algebraic approach.

Corollary 3.2.11 Pure elements form a Boolean lattice, i.e., they are closed under
+ , u and . Moreover the lattice is complete.

The following lemma shows that in the complete lattice of pure elements meet and
join coincide with composition and sum, respectively.

Lemma 3.2.12 Consider a commutative Boolean quantale S, pure elements a, a′ ∈ S
and arbitrary elements b, c ∈ S. Then

(a) a · b = a u b · > ,

(b) a · a′ = a u a′ , in particular a · a = a and a · a = 0 .

Proof. For a proof of part (a) we calculate, using Lemma 3.2.7(c), a u b · > =
a u > · b = (a u >) · b = a · b . To show part (b), we use again Lemma 3.2.7(c) and
neutrality of 1 w.r.t. multiplication and obtain a · a′ = a u a′ · 1 = a u a′. ut
Many further properties, in particular, for the interaction of pure assertions with
residuals and detachments, can be found in Appendix A.2. It is possible to obtain
similar connections for separating implication and septraction interacting with pure
assertions like in Lemma 3.2.7(c) where the case for separating conjunction is stated.

We conclude this section with a consideration of pure elements from an algebraic
viewpoint. There exists a relationship of pure elements and particular ones that can
be found below 1 w.r.t. ≤ . In the concrete assertion quantale AS, such elements
coincide with sets that characterise states involving empty heaps. Generally, these
elements are called tests [MB85, Koz97] and come with special behaviour which we
sum up in the following de�nition.

De�nition 3.2.13 (Tests)
We de�ne a test in a quantale S as an element t ≤ 1 that has a complement ¬t relative
to 1 , i.e., t + ¬t = 1 and t · ¬t = 0 = t · ¬t . The set of all tests of S is denoted by
test(S) . It is closed under + and · , where the former coincides with t and the latter
corresponds to u . Moreover, it forms a Boolean algebra with 0 and 1 as its least and
greatest elements.

39

Algebraic Spatial Assertions

Note that in any Boolean quantale the element a u 1 for each a is a test where
¬(a u 1) = a u 1 holds for its relative complement. In particular, every element
below 1 is a test. Now, consider the characterising equation a = (a u 1) · > of pure
elements. It exactly renders the relationship of pure elements and test elements in
that there exists for each a a corresponding test a u 1 . Clearly, the same holds for
the complements. In AS such sets of states involve empty heaps and contain exactly
all information and assumed conditions on the store variables of a pure assertion.
Conversely, for each test t ≤ 1 there exists also a pure element given by t · > (cf.
Lemma A.2.1 in the Appendix). Note that in any Boolean quantale the complements
satisfy t · > = (t u 1) · > (e.g. [DM01a]).

3.2.3 Preciseness

The previously discussed assertion classes come with the behaviour that assertions are
satis�ed on some heap and unspeci�ed extensions of it, i.e., they are given in an intu-
itionistic fashion. However, concrete veri�cation tasks in separation logic frequently
require the ability to point out a unique part of the heap. Examples can be found in
applications that provide particular frameworks for reasoning about information hid-
ing [ORY09] or that establish special proof rules allowing unspeci�ed sharing within
graph structures [HV13].

The concept of precise assertions has turned out to be adequate for such reasoning
tasks [Rey09]. These assertions ensure the existence of a unique subheap which is
relevant to their predicate. A pointwise de�nition for precise assertions is given by
the formula

∀ s, h, h1, h2 : (s, h1 |= p ∧ s, h2 |= p ∧ h1 ⊆ h ∧ h2 ⊆ h) ⇒ h1 = h2 .

By this there exists for all states (s, h) at most one subheap h′ of h which already
contains the allocated resources that p requires, i.e., for which we have (s, h′) |= p .
Concrete examples in separation logic are emp , the single cell assertion i 7→ j for
program variables i, j and the recursive list predicate list α i of Example 2.1.1 where
α denotes a sequence of values.

Since we are again mainly interested in deriving pointfree formulas for arbitrary
Boolean quantales that abstractly re�ect the behaviour of this assertion class, we
follow a result given in [ORY09]. It is stated there that the above de�nition for
precise assertions is equivalent to the logical formula

(p ∧ q) ∗ (p ∧ r) ⇔ p ∗ (q ∧ r) ,

where p is precise and q, r are arbitrary assertions. The formula states that separating
conjunction distributes of over logical conjunction for precise assertions p . Note that

40

3.2 Characterising Behaviour Abstractly

the ⇐ - direction is always valid due to logical weakening and thus can be dropped.
Applying the previous results on interpreting formulas of separation logic in AS we
can immediately state the following theorem.

Theorem 3.2.14 In AS an element [[p]] is precise i� it satis�es, for all [[q]] and [[r]],

([[p]] ·∪ [[q]]) ∩ ([[p]] ·∪ [[r]]) ⊆ [[p]] ·∪ ([[q]] ∩ [[r]]) .

Hence, for arbitrary Boolean quantales we can algebraically characterise precise as-
sertions as follows.

De�nition 3.2.15
In an arbitrary Boolean quantale S an element a is called precise i� for all b, c ∈ S

a · b u a · c ≤ a · (b u c) .

Obviously, the above inequation can again be strengthened in quantales to an equation
by isotony of u and · . In that form it is also called determinacy known from relation
algebras (e.g., [DM01a]). The above de�nition algebraically characterises preciseness
by distributivity of multiplication over binary in�ma. A similar characterisation for
preciseness within a higher-order logic approach to separation logic can also be found
in [BBTS05, BBTS07].

Depending on the used model and application it is also possible to extend De�ni-
tion 3.2.15 for completeness issues to distributivity over arbitrary non-empty in�ma
like e.g. in [COY07, RG08], i.e.,

X 6= ∅ ⇒
l
{a · x : x ∈ X} ≤ a ·

l
X .

In [COY07] the above characterisation involving arbitrary in�ma is used to abstractly
characterise the structure of programs. These are modelled by functions or more
concretely state transformers that output strongest postconditions represented as sets
of states w.r.t. a given input state satisfying a considered precondition.

For our purposes one can replace the characterisation of Theorem 3.2.14 in AS with a
more general one involving arbitrary intersections if required. In the case of separation
logic assertions, a concrete instance of such distributivity law can then be found in
the formula

∀x. (p ∗ q) ⇔ p ∗ (∀x. q)
assuming p is precise and variable x does not occur free in p (cf. [Rey09]).

Since for most purposes the case for binary in�ma su�ces, we stay with the above
de�nition. In particular, this has the advantage that reasoning about preciseness

41

Algebraic Spatial Assertions

can be supported by �rst-order logic theorem proving systems which allow proofs to
be derived fully automatically. We continue our algebraic considerations by giving
some closure properties for this assertion class which can be proved completely in the
algebraic setting.

Lemma 3.2.16 If a and a′ are precise then so is a · a′, i.e., precise assertions are
closed under multiplication.

Proof. The proof is by straightforward calculation. For arbitrary elements b, c and
precise elements a, a′, we have

(a · a′) · b u (a · a′) · c = a · (a′ · b) u a · (a′ · c) ≤ a · (a′ · b u a′ · c) ≤ a · a′ · (b u c) .
ut

Lemma 3.2.17 If a is precise and a′ ≤ a then a′ is precise, i.e., precise assertions
are downward closed.

Corollary 3.2.18 For an arbitrary assertion b and precise a, also a u b is precise.

Lemma 3.2.19 a is precise i� a · b ≤ a · b for arbitrary b .

The latter lemma gives a characterisation of preciseness using Boolean complements.
For precise elements it is therefore possible to state some general behaviour that
characterises the interaction of multiplication (separating conjunction) and Boolean
complementation (logical negation). Proofs of above results are not di�cult to obtain
and can be found e.g., in [DM01a]. Further useful properties are again listed and
proved in Appendix A.2.

3.2.4 Full Allocation

We now turn to the question of whether there exist assertions that satisfy both prop-
erties, preciseness and intuitionisticness. At �rst sight trying to �nd such assertions
does not seem to be sensible for the standard storage model of separation logic given
in Section 2.1, since an assertion p that holds for any larger heap cannot unambigu-
ously point out an exact heap portion [Rey09]. However, by the use of the tool
Mace4 [McC05] an abstract counter model to this fact was discovered. A reinterpre-
tation of it in separation logic revealed that completely allocated heaps, i.e., heaps
that do not allow any further allocation of resources are at the same time precise and
intuitionistic. Algebraic proofs for this will be provided in the sequel.

Note that this is not contradicting any statement in [Rey09] where allocation of re-
sources is de�ned there to never abort. The idea to this is that according to Section 2.1

42

3.2 Characterising Behaviour Abstractly

heaps are partial functions with �nite domain while the set of addresses is in�nite.
Hence, for allocation commands there exists always a �nite sequence of unallocated
addresses that can be used and therefore will be selected non-deterministically.

For the purpose of abstraction the consideration of assertions capturing completely al-
located heaps establishes for the presented developments the inclusion of non-standard
models, thus making the approach more general. The discovered assertion class with
the described property will be called fully allocated. They might be helpful in an
algebraic treatment for detecting memory leaks in programs. Moreover they provide
a simple approach to characterise programs that will eventually abort or show non-
deterministic behaviour resulting from any further attempts to allocate heap storage
that might not be possible due to an increasing loss of references to allocated resources.

Assuming the set of addresses Addresses is �nite and the existence of an appropriate
de�nition of the allocation command we can characterise such assertions pointwise by

p is fully allocated ⇔df (∀ s, h : s, h |= p ⇒ dom(h) = Addresses) .

Theorem 3.2.20 In AS an element [[p]] is fully allocated i� it satis�es

[[p]] ·∪ [[emp]] ⊆ ∅ .

Proof.

∀ s, h : s, h |= p ⇒ dom(h) = Addresses
⇔ ∀ s, h : (s, h |= p ⇒ (∀h′. h ⊆ h′ ⇒ h′ ⊆ h))
⇔ ∀ s, h, h′ : (s, h |= p ⇒ (h ⊆ h′ ⇒ h′ ⊆ h))
⇔ ∀ s, h, h′ : (s, h |= p ⇒ ¬(h ⊆ h′ ∧ h′ − h 6= ∅))
⇔ ∀ s, h′ : ¬(∃h : s, h |= p ∧ h ⊆ h′ ∧ h′ − h 6= ∅)
⇔ ∀ s, h′ : ¬(∃h, h′′ : s, h |= p ∧ h′′ 6= ∅ ∧ dom(h) ∩ dom(h′′) = ∅

∧h′ = h ∪ h′′)
⇔ ∀ s, h′ : s, h′ |= p ∗ ¬emp ⇒ false .

ut
Consequently in the quantale-based algebraic setting we can characterise this class as
follows.

De�nition 3.2.21
In an arbitrary Boolean quantale S an element a is called fully allocated i�

a · 1 ≤ 0 .

Lemma 3.2.22 Every fully allocated element is also intuitionistic.

43

Algebraic Spatial Assertions

Proof. Let a be a fully allocated element, then a·> = a·(1+1) = a·1+a·1 ≤ a·1 = a .
These (in)equations hold by Boolean algebra, distributivity, p being fully allocated
and neutrality of 1 w.r.t. multiplication. ut

Lemma 3.2.23 If a is fully allocated then a is also precise.

For the proof we need an auxiliary property.

Theorem 3.2.24 If a is fully allocated then a · b = a · (b u 1) holds.

Proof. We calculate

a · b = a · ((b u 1) + (b u 1)) = a · (b u 1) + a · (b u 1) = a · (b u 1)

which follows from Boolean algebra, distributivity and since a · (b u 1) ≤ a · 1 ≤ 0 by
isotony of · and the assumption. ut
Intuitively, adding extra storage to the heap of fully allocated element a is only
possible if it is empty. In particular, by this only the store component of a is a�ected
by b .

We note again that in any Boolean quantale S elements of the form a u 1 are tests
(cf. De�nition 3.2.13). Moreover, according to [Möl07] we have

t · (a u b) = t · a u b = t · a u t · b . (testdist)

for arbitrary tests t and elements a, b ∈ S . And as a direct consequence, one gets
validity of the equation t1 · a u t2 · a = t1 · t2 · a for any tests t1, t2 and arbitrary
element a ∈ S .
Now we are ready to show Lemma 3.2.23.

Proof of 3.2.23. For a fully allocated element a and arbitrary b and c, we get

a · b u a · c = a · (b u 1) u a · (c u 1) = a · (b u 1) · (c u 1) ≤ a · (b u c) .

Again this holds by applying Theorem 3.2.24 twice, the consequence of (testdist),
isotony of · , u and the fact that multiplication coincides with u on test elements. ut

3.2.5 Supported Assertions

The last class of assertions we turn to is the set of so-called supported assertions. They
ensure that the set of subheaps that satisfy such an assertion has a least element. This

44

3.2 Characterising Behaviour Abstractly

condition is more liberal compared to preciseness. Generally, these assertions also
establish the often required full distributivity property of ∗ over ∧ with a restriction
of all other occurring assertions to intuitionistic ones. A simple point-free proof of
this will be presented later.

We start with a pointwise de�nition of supported assertions which can be found e.g.,
in [Rey09]. An assertion p is called supported i�

∀ s, h1, h2 : h1, h2 are compatible ∧ s, h1 |= p ∧ s, h2 |= p
⇒ ∃h′ : h′ ⊆ h1 ∧ h′ ⊆ h2 ∧ s, h′ |= p .

By assuming that h1 and h2 are compatible, it is meant that they agree on their
intersection, i.e., h1 ∪ h2 is a partial function again. For an algebraic characterisation
of supported elements in arbitrary Boolean quantales we �rst show the following
result.

Theorem 3.2.25 In AS an element [[p]] is supported i� it satis�es, for all set of
states [[q]] and [[r]] ,

([[p]] ·∪ [[q]]) ∩ ([[p]] ·∪ [[r]]) ⊆ [[p]] ·∪ ([[q]] ·∪ [[true]] ∩ [[r]] ·∪ [[true]]) .

This inequation is similar to the characterisation of preciseness except that the right-
hand side is weakened to the intersection of ideals or vectors. The binary case can
also be generalised to arbitrary non-empty (in�nite) intersections, i.e., a complete
characterisation depending on the application and model used.

The key idea to prove Theorem 3.2.25 is to use special assertions p which describe
a set [[p]] that contains exactly a single state (s, h) . For this we use the denotation
[[(s, h)]] = {(s, h)} . The proof requires an auxiliary lemma with some simple properties
of the predicate (s, h) .

Lemma 3.2.26 Assume arbitrary heaps h, h′ and store s then

(a) s, h′ |= (s, h) ⇔ h = h′. In particular, s, h |= (s, h) .

(b) If h ⊆ h′ then s, h |= p ⇔ s, h′ |= p ∗ (s, h′ − h) for any assertion p .

(c) s, h′ |= (s, h) ∗ true ⇔ h ⊆ h′ .

The lengthy, but straightforward proof can be found in Appendix A. We continue
with a proof of Theorem 3.2.25.

Proof of Theorem 3.2.25. For the ⇒ - direction we assume p is supported.
Let s, h |= p ∗ q ∧ p ∗ r . Then

45

Algebraic Spatial Assertions

s, h |= p ∗ q ∧ p ∗ r
⇔ {[de�nition of ∗]}
∃h1, h2 : h1 ⊆ h ∧ h2 ⊆ h ∧ s, h1 |= p ∧ s, h− h1 |= q

∧ s, h2 |= p ∧ s, h− h2 |= r

⇒ {[p supported, h1 ∪ h2 ⊆ h is a function]}
∃h1, h2, h

′ : s, h′ |= p ∧ h′ ⊆ h1 ⊆ h ∧ h′ ⊆ h2 ⊆ h
∧ s, h− h1 |= q ∧ s, h− h2 |= r

⇒ {[h− h1 ⊆ h− h′, s, h1 − h′ |= true, analogously h2]}
∃h′ : s, h′ |= p ∧ s, h− h′ |= q ∗ true ∧ s, h− h′ |= r ∗ true

⇔ {[de�nition of ∗]}
s, h |= p ∗ (q ∗ true ∧ r ∗ true) .

For the other direction we assume, for arbitrary assertions q, r and states (s, h) that

s, h |= p ∗ q ∧ p ∗ r ⇒ s, h |= p ∗ (q ∗ true ∧ r ∗ true) (3.10)

as well as s, h1 |= p and s, h2 |= p for arbitrary heaps h1, h2 with h1∪h2 is a function.
From this we calculate

s, h1 |= p ∧ s, h2 |= p

⇔ {[h1 ⊆ h1 ∪ h2 and h2 ⊆ h1 ∪ h2 and Lemma 3.2.26(b)]}
s, h1 ∪ h2 |= p ∗ (s, (h1 ∪ h2)− h1) ∧ s, h1 ∪ h2 |= p ∗ (s, (h1 ∪ h2)− h2)

⇒ {[Assumption (3.10)]}
s, h1 ∪ h2 |= p ∗

(
(s, (h1 ∪ h2)− h1) ∗ true ∧ (s, (h1 ∪ h2)− h2) ∗ true

)

⇔ {[de�nition of ∗]}
∃h′ : h′ ⊆ h1 ∪ h2 ∧ s, h′ |= p ∧

s, (h1 ∪ h2)− h′ |= (s, (h1 ∪ h2)− h1) ∗ true ∧ (s, (h1 ∪ h2)− h2) ∗ true
⇔ {[de�nition of ∧]}
∃h′ : h′ ⊆ h1 ∪ h2 ∧ s, h′ |= p

∧ s, (h1 ∪ h2)− h′ |= (s, (h1 ∪ h2)− h1) ∗ true
∧ s, (h1 ∪ h2)− h′ |= (s, (h1 ∪ h2)− h2) ∗ true

⇔ {[Lemma 3.2.26(c) (twice)]}
∃h′ : h′ ⊆ h1 ∪ h2 ∧ s, h′ |= p ∧ (h1 ∪ h2)− h1 ⊆ (h1 ∪ h2)− h′

∧ (h1 ∪ h2)− h2 ⊆ (h1 ∪ h2)− h′
⇔ {[by h′ ⊆ h1 ∪ h2 ∧ (h1 ∪ h2)− hi ⊆ (h1 ∪ h2)− h′ ⇒ h′ ⊆ hi]}
∃h′ : h′ ⊆ h1 ∪ h2 ∧ s, h′ |= p ∧ h′ ⊆ h1 ∧ h′ ⊆ h2

⇔ {[logic step]}
∃h′ : s, h′ |= p ∧ h′ ⊆ h1 ∧ h′ ⊆ h2 .

ut

46

3.2 Characterising Behaviour Abstractly

As for the assertion classes before, this characterisation can be lifted to the abstract
level of quantales.

De�nition 3.2.27
In a Boolean quantale S an element a is supported i� it satis�es for arbitrary b,c

a · b u a · c ≤ a · (b · > u c · >) .

Following this characterisation of supported assertions we can now abstractly derive
various useful properties as direct consequences in a completely algebraic fashion.

Lemma 3.2.28 If a is supported and b, c are intuitionistic then

a · b u a · c ≤ a · (b u c) .

Proof. Immediately from the de�nitions. ut
Again this result describes the common usage of supported assertions. They are
less strict than precise ones and at the same time enable the frequently required
distributivity law.

Lemma 3.2.29 If a is pure then it is also supported. In particular, 0 and > are
supported.

Proof. By Lemma 3.2.12(a) twice, associativity, commutativity, idempotence of u ,
isotony and Lemma 3.2.12(a) again,

a · b u a · c = (a u b · >) u (a u c · >)
= a u (b · > u c · >)
≤ a u (b · > u c · >) · >
= a · (b · > u c · >) .

ut
For pure assertions a least subheap is identi�ed with the empty heap and hence it is
clear that they are also supported.

Lemma 3.2.30 a is precise implies a is supported.

Proof. By the de�nition of precise elements and isotony we infer

a · b u a · c ≤ a · (b u c) ≤ a · (b · > u c · >) .

ut

47

Algebraic Spatial Assertions

Lemma 3.2.31 Supported elements are closed under · .

Proof. Assume supported elements a and a′ then

a · a′ · b u a · a′ · c ≤ a · (a′ · b · > u a′ · c · >)
≤ a · a′ · (b · > · > u c · > · >)
≤ a · a′ · (b · > u c · >) .

ut

Corollary 3.2.32 If a is supported and b is precise or pure then a · b is supported.

Lemma 3.2.33 a · > is supported implies that also a is supported.

Proof. Assuming a is supported, we infer from isotony, commutativity and >·> = >
a · b u a · c ≤ a · > · (b · > u c · >) ≤ a · (> · b · > u > · c · >) = a · (b · > u c · >) .

ut
In summary, we can conclude that

Corollary 3.2.34 a is supported i� a · > is supported.

Next we continue with a so-called precising operation (e.g. in [Rey08]) introduced
by Yang. Is used to clarify the concrete relationships of precise assertions with the
ones being at the same time supported and intuitionistic. The operation is de�ned in
separation logic by the mapping Pr(p) =df p ∧ ¬(p ∗ ¬ emp) . Intuitively, it removes
all non-empty resources of states that are not required for satisfying an assertion p .
Since Pr(_) is already given in a pointfree form we can immediately abstract it to the
setting of commutative Boolean quantales S by

Pr(a) = a u a · 1
for an element a ∈ S . In the sequel we will require additional assumptions for man-
aging algebraic proofs of properties for this mapping. The assumptions characterise
speci�c behaviour of the carrier set States but are still general and natural for rea-
soning about resources.

We begin with a special property for the emptiness assertion emp . It reads in sep-
aration logic ¬emp ∗ ¬emp ⇒ ¬emp and intuitively states that each heap that can
be split into at least two non-empty subheaps still remains non-empty. For arbitrary
Boolean quantales this abstracts to

1 · 1 ≤ 1 (nonemp)

and does not generally hold. As a consequence of this we summarise

48

3.2 Characterising Behaviour Abstractly

Lemma 3.2.35 1 · > = 1 and 1 ≤ 1 · 1 .

Proof. First, by Boolean algebra, distributivity, neutrality and (nonemp)

1 · > = 1 · (1 + 1) = 1 · 1 + 1 · 1 = 1 .

The second inequation follows from shunting. ut
Hence, assuming (nonemp) also 1 turns into an intuitionistic element. In the liter-

ature, the element 1 · 1 has also been used in the context of temporal logics [VK98,
Höf09] and is called there step . Although it is interpreted by progress in time, results
of these works are abstractly provided within an algebraic approach and hence can
be transferred and reinterpreted into a separation logical setting.

We continue with pointfree proofs of properties related to Pr(_) which can also be
found in [Rey08].

Lemma 3.2.36 Pr(1 + a) = 1 . In particular, Pr(>) = 1 .

Proof. By de�nition of Pr(_), Boolean algebra and distributivity

Pr(1 + a) = (1 + a) u (1 + a) · 1 = (1 + a) u 1 · 1 + a · 1
= (1 + a) u (1 u a · 1) = (1 u a · 1) + (a u 1 u a · 1)

= 1 u a · 1 .

Clearly, Pr(1 + a) ≤ 1 . For the other direction we calculate using Lemma 3.2.35 that

1 = 1 u 1 = 1 u > · 1 ≤ 1 u a · 1 . ut

Lemma 3.2.37 If a is precise then Pr(a) = a .

Proof. Setting b = 1 in Lemma 3.2.19 one obtains a · 1 ≤ a . This is equivalent to

a ≤ a · 1 and hence Pr(a) = a u a · 1 = a . ut

Lemma 3.2.38 If a is precise then Pr(a · >) = a .

Proof. Lemma 3.2.35 simpli�es a · > u a · > · 1 = a · > u a · 1 . By Boolean algebra

we infer a · > u a · 1 = (a+ a · 1) u a · 1 = a u a · 1 ≤ a . Lemma 3.2.19 implies the

converse a = a u a · > ≤ a · > u a · 1 . ut
This means that the precising operation does not modify precise elements. More-
over, note that by Lemma 3.2.30 and Corollary 3.2.34 elements of the form a · > are
intuitionistic and supported for a precise a. Hence Pr(_) turns supported and intu-
itionistic elements built from precise ones back into that original form. In [Rey08]

49

Algebraic Spatial Assertions

it is shown in separation logic that the logical mapping (_) ∗ true conversely has the
same behaviour on assertions Pr(p) if p is intuitionistic and supported.

Unfortunately an algebraic proof of this fact requires again an additional assumption
for a property of supported assertions that can not be generally derived in arbitrary
Boolean quantales from De�nition 3.2.27. A reason for this is that the abstraction
to quantales also includes concrete algebras besides AS that come with di�erent be-
haviour excluding such speci�c properties. It is therefore necessary to restrict the
setting to a subset of algebras to manage the required properties.

The concrete property is formulated in [Rey08] by a result that states that the def-
inition for supported assertions p is equivalent to assuming that for arbitrary s, h :
whenever {h′ : h′ ⊆ h, (s, h′) |= p} 6= ∅ then it has a least element. The inclusion
of this behaviour within the algebraic approach requires that supported elements a
additionally satisfy

a ≤ (a u a · 1) · > . (suppleast)

Intuitively this means in separation logic that heap cells characterised by Pr(p) are
contained in any heap of states characterised by supported assertions p . In the
concrete model, it also represents the least heap that satis�es p . To see this we give
Equation (suppleast) in a pointwise form for arbitrary s, h

s, h |= p ⇒ ∃h1 : h1 ⊆ h ∧ s, h1 |= p ∧
(∀h′ : h′ ⊆ h1 ∧ s, h′ |= p ⇒ h1 − h′ = ∅) .

Instead of assuming (suppleast) in addition to De�nition 3.2.27, another possibility
would be to use an equivalent characterisation for supported elements that involves
Pr(_) and implies (suppleast).

Lemma 3.2.39 a is supported and satis�es (suppleast) i� a · b u a · c ≤ Pr(a) · (b ·
> u c · >) .

Proof. The ⇒ - direction follows from isotony, assumptions and > · (b · > u c · >) ≤
> · b · > u > · c · > = b · > u c · > . For the reverse implication we infer by Pr(a) ≤ a
that a is supported and setting b = c = 1 yields (suppleast). ut
This means in particular that under the assumption of (suppleast) the original al-
gebraic de�nition of supported elements is equivalent to the new one involving the
precising operation. Finally, we conclude

Lemma 3.2.40 Pr(a) · > = a when a satis�es (suppleast) and is intuitionistic.

Proof. By isotony and a is intuitionistic, we have Pr(a) · > ≤ a · > ≤ a . Moreover,
the other inequation follows from (suppleast). ut

50

3.3 Relationship to Separation Algebras

As future work on this topic, it would be interesting to investigate the algebraic cal-
culus whether there exists a more suitable axiomatisation that represents an adequate
abstraction of supported assertions, especially for the case of quantales similar to AS .
Lemma 3.2.39 can be used as a starting point but unfortunately is not suitable for
obtaining simple and concise derivations of properties. There still exist properties for
which it is not known if they can be shown from that characterisation. This could be
due to the lack of laws for characterising an interplay of multiplication and complemen-
tation or due to undecidability results on propositional separation logic [BK10]. The
conclusions of latter approach are formalised within the context of proof systems for
BI logics. Corresponding algebras are closely related to the algebraic approach based
on quantales (cf. Section 3.1.1). There might also be some relationships to [BV14].
An extension of Boolean BI algebras is introduced there that allows the characteri-
sation of basic and frequently required properties within the algebra which was not
possible using the former approach.

Example properties which we were not able to infer are closure of the characterisation
in Lemma 3.2.39 under multiplication like in Lemma 3.2.31, where it is shown under
the assumption of De�nition 3.2.27. Furthermore, it is not known if Lemma 3.2.39
implies in arbitrary commutative Boolean quantales that Pr(a) is precise assuming
that a is supported as stated in [Rey08]. Only a stronger result stating that Pr(a) is
supported can be immediately inferred.

3.3 Relationship to Separation Algebras

We showed that a large part of the assertions and their behaviour in separation
logic can be lifted to a point-free and algebraic setting that allowed simple proofs of
non-trivial properties in a calculational style due to the abstraction from irrelevant
details. The obtained (in)equations of the previous sections generally re�ect the
abstract behaviour of the speci�c assertion classes without depending on structural
properties of the concrete considered model. Hence the characterisations can also be
used for other separation logics.

Another approach that abstracts from the concrete de�nition of states as pairs of
stores and heaps has been taken by Calgagno and others in [COY07]. In their work,
states are seen as arbitrary resources of a program which themselves come with an
algebraic structure. They form elements of a so-called separation algebra or resource
algebra. Assertions are given like in AS using a powerset structure, i.e., as sets of
states.

In the following, we give a de�nition and concrete examples of such algebras. More-
over, we relate the standard store and heap model of Section 2.1 with such structures

51

Algebraic Spatial Assertions

and explain how the results on pointfree algebraic characterisations for assertions can
be interpreted for resource algebras.

De�nition 3.3.1 (Separation algebra [COY07])
A separation algebra is a cancellative and partial commutative monoid that we denote
by (Σ, • , u) . Elements of the algebra are called states or resources and denoted by
σ, τ, . . . ∈ Σ . Due to partiality two terms are de�ned to be equal i� both are de�ned
and equal or both terms are unde�ned. This induces a combinability relation # de�ned
by

σ0 # σ1 ⇔df σ0 • σ1 is de�ned

and a substate relation given for σ0, σ1 ∈ Σ by

σ0 � σ1 ⇔df ∃σ2. σ0 • σ2 = σ1 .

By writing σ • τ for states σ, τ we will implicitly assume σ # τ in the sequel if it is
not explicitly stated. The empty state u is the unit of the partial binary operator •
which satis�es cancellativity in the sense that σ1 • τ = σ2 • τ ⇒ σ1 = σ2 for arbitrary
states σ1, σ2, τ .

Next we provide some concrete examples for separation algebras to get an idea for
applications of those structures.

Example 3.3.2

a) A standard example is given by the set of heaps represented as partial func-
tions. The corresponding separation algebra is denoted by (Heaps, ∪ , ∅) where
combinability for heaps h0, h1 is de�ned by

h0 #h1 ⇔ dom(h0) ∩ dom(h1) = ∅ .

Clearly, ∪ is used in this context as the disjoint union of partial functions as in
the standard carrier set States. For the purpose of abstraction one can deviate
to arbitrary sets of addresses and values instead of using the instances Addresses
and Values of Section 2.1.

b) Another simple model is the algebra (States, ∗S , {(∅, ∅)}) where

(s0, h0) ∗S (s1, h1) =df (s0 ∪ s1, h0 ∪ h1) .

By this de�nition, the involved stores are also treated like heaps, i.e.,

(s0, h0) # (s1, h1) ⇔ dom(s0) ∩ dom(s1) = ∅ ∧ dom(h0) ∩ dom(h1) = ∅ .

52

3.3 Relationship to Separation Algebras

The e�ect of this combinability relation is that using a lifted version of ∗S to
assertions, store variable de�nitions are only kept locally. Hence assignments to
variables are not globally visible. In sum, states in this model can only be uni�ed
i� the domains of partial functions modelling stores and heaps are disjoint.

ut

Example 3.3.3 (Permission Algebras)
More interestingly, heaps as partial functions can also be extended to carry for each
of their cells an additional value that signalises if reading and/or writing to that cell
is permitted [Boy03, BCOP05]. Applications for such algebras can be found e.g.,
in approaches involving concurrency [Vaf11]. Permissions allow heaps to overlap on
some of their addresses, i.e., sharing parts of their resources. The values modelling
permission form an algebraic structure called permission algebra, given by a partial
commutative semigroup (P, ?) . For this separation algebra heaps are de�ned as
partial functions A; (V × P) that map a set of addresses A to pairs consisting of a
value of V and an element of a permission algebra P . Combinability is given by

h0 #h1 ⇔ h0(a) ? h1(a) is de�ned for all a ∈ dom(h0) ∩ dom(h1)

where ? is lifted to V × P by

(v0, p0) ? (v1, p1) =df

{
(v0, p0 ? p1) v0 = v1 ∧ p0 ? p1 is de�ned
unde�ned otherwise.

Hence all overlapping addresses of the considered heaps need to agree on the values
in V and have combinable permissions in P . In sum, the combinator ∪? for heaps
h0, h1 is de�ned by

(h0 ∪? h1)(a) =df




h0(a) a ∈ dom(h0)− dom(h1)
h1(a) a ∈ dom(h1)− dom(h0)
h0(a) ? h1(a) otherwise.

The basic idea is that shared heap cells that might belong to di�erent threads of a
program should not be changed arbitrarily to exclude inconsistencies and therefore
non-deterministic program behaviour. Depending on the permission values involved
either read and write access or only read access is granted to certain threads. For a
better intuition we provide some prominent examples of permission algebras that can
be found the literature.

Fractional permissions [Boy03] are rational values v in the interval (0, 1] . They are
interpreted as follows: If v = 1 , full permission to read and write a particular cell is
given while any value< 1 , only grants read access. Concretely, one has v0?v1 = v0+v1

53

Algebraic Spatial Assertions

and clearly this is only de�ned i� v0 +v1 ≤ 1 . The advantage of this approach is that
full permission to each cell can be split in�nitely often for transferring read accesses
to arbitrarily many threads.

Counting permissions [BCOP05] are used to keep track of the set of threads that
maintain read permission to a resource. In this setting each allocated resource keeps
the value v = 0 at the beginning which grants total permission. Now, read access is
transferred to a thread which receives the value −1 while v gets increased by 1 and
thus v denotes the number of read permissions that has been split o�. Summarised,
counting permissions are elements of Z and for integers i, j the combination i?j = i+j
is de�ned i� either i < 0 ∧ j < 0 or when one of the values is ≥ 0 then also i+ j ≥ 0 .
Intuitively for each resource there exists only one positive permission and it is not
possible that more read permissions have been transferred than tracked in the positive
one. ut

More examples of separation and permission algebras can be found in [COY07]. Gen-
erally, this formalism captures a variety of interesting models. An exploration of the
concrete relationships to the quantale-based treatment of separation logic assertions
would immediately extend the application range of that approach.

First, it can be seen that the standard model used in separation logic that used store-
heaps pairs as states is not listed in the examples above. Instead, one either misses
the store component or it is treated in the same way as the heap, i.e., it is split into
disjoint parts (cf. Example 3.3.2). In fact, if we would de�ne the ·∪ of Section 3.1 on
states by

(s, h) ·∪ (s′, h′) =df (s, h ∪ h) ⇔ s = s′ ∧ dom(h) ∩ dom(h′) = ∅

that model would not form a separation algebra according to De�nition 3.3.1 since
·∪ would not have a unit element in States. It is possible to �nd a unit for a subset
of states by a restriction to a �xed store s in S(s) =df {(s, h) : h ∈ Heaps}. The
unit w.r.t. ·∪ would then be (s, ∅) . Hence, by the only consideration of states with
equal stores in ·∪ an asymmetry in the treatment of resources within a separation
algebra is introduced. Such a resource model would correspond to a so-called multi-
unit separation algebra as de�ned in [DHA09]. Such algebras come with the same
axioms as in De�nition 3.3.1 with the di�erence that there exists a set of units U
satisfying ∀σ ∈ Σ : ∃ui ∈ U : ui • σ = σ . Hence the standard model on the carrier
set States can be seen as the union of single-unit separation algebras as provided
in De�nition 3.3.1. Each of these individual single-unit separation algebras can be
distinguished by its store s .

Following [DHA09] there exists a possibility to get the standard model into the form
of single-unit separation algebra. This is abstractly provided by the de�nition of a

54

3.3 Relationship to Separation Algebras

lifting operator for multi-unit separation algebras. Its basic idea is to remove all unit
elements and replace them by a new distinct element that will represent the unit of
the resulting separation algebra. Concretely, in the particular case of store and heap
pairs, we do this by restructuring the carrier set States. We de�ne a particular set to
include all units while all other states become singleton sets and further rede�ne ·∪
on these elements. Concretely, we de�ne the lifted setting by

LStates =df {{(s, h)} : (s, h) ∈ States, h 6= ∅} ,
empL =df {(s, ∅) : s ∈ Stores}

and additionally set for p, q ∈ LStates ∪ {empL}

p ·t q =df {(s, h ∪ h′) : (s, h) ∈ p ∧ (s, h′) ∈ q} , where
p # q ⇔ ∃ (s, h) ∈ p , (s′, h′) ∈ q : dom(h) ∩ dom(h′) = ∅ ∧ s = s′ .

It is not di�cult to verify that p ·t empL = p = empL ·t p for arbitrary p ∈ LStates ∪
{empL} . In the case of p 6= empL the resulting set is again a singleton set and otherwise
equals empL . Moreover, ·t remains commutative, associative and clearly satis�es
cancellativity. Hence, the structure (StatesL ∪ {empL}, ·t , empL) forms a separation
algebra and thus can be used within treatments that use this form of abstraction.

Now, for modelling assertions using separation algebras one can use a straightforward
lifting to sets of elements, like in Section 3.1. This is done in the powerset model
given in [COY07]. Assuming a separation algebra (Σ, •, u) , the carrier set is given by
P(Σ) and one de�nes for P,Q ∈ P(Σ)

P ∗Q =df {σ • τ : σ # τ, σ ∈ P, τ ∈ Q} ,
emp =df {u} .

By similar argumentations as given in the proof of Theorem 3.1.2, (P(Σ), ⊆ , ∗, emp)
also forms a Boolean commutative quantale. Moreover, due to the abstract behaviour
of the pointfree characterisations, the results on the assertion classes can simply be
applied for this particular model and thus for separation algebras.

For obtaining corresponding pointwise formulas interpreted on abstract resource al-
gebras, one can identify occurrences of states (s, h) and single heaps h with adequate
elements of an underlying separation algebra (Σ, • , u) . A formulation of preciseness
can be found e.g., in [COY07].

55

Chapter 4

Relational Separation

An algebra for the program part of separation logic is developed based on the cal-
culus of relations. For this we extend the relational structure with a connective to
adequately model separation that in particular allows a further reuse of abstract de-
rived results on the assertion part. Moreover relational interpretations of program
commands and formulations of abstract behaviour are provided. This enables point-
free soundness proofs of the frame rule in a calculational and concise way. Moreover,
we give further general formulations and relationships to approaches that involve con-
currency like concurrent separation logic and concurrent Kleene algebras. Finally, we
derive by the use of the relational structure compositional and pointfree abstractions
for the framework of dynamic frames.

4.1 Interpreting Commands Relationally

As a starting point for setting up a calculus based on relations for separation logic we
begin with deriving a relational interpretation of all commands from the small-step
operational semantics given in Section 2.2. For managing this, one obtains from the
semantics the general e�ects of each execution of a single command starting from an
arbitrary con�guration by relating any adequate input state with some altered output
one. We generally follow the approach of [DHM11] to model program commands as
relations between states and provide interpretations for the case of a partial and total
correctness setting as in [DGM+14]. Clearly, since the latter additionally requires
that termination needs to be ensured, the concrete treatment of such commands

Relational Separation

di�ers from the partial correctness one. Moreover, note that the basic assumptions
for establishing validity of the frame rule distinguish non-termination from program
abortion which results from prohibited memory access (cf. Section 2.3). Hence for
an abstract treatment it is also required to include the additional state abort in the
partial correctness case while it is not needed for a treatment in a total correctness
setting since program abortion and non-termination are identi�ed and interpreted as
the empty relation ∅ there.

De�nition 4.1.1 (Relational commands)
A command in a total correctness setting is a relation

C ∈ TCmds =df P(States × States) .

In the case of partial correctness it is given by

C ∈ PCmds =df P((States × (States ∪ { abort })) ∪ {(abort , abort)})

where abort 6∈ States represents a distinct state.

Note that commands in PCmds that start from abort will remain in that state. By
this there can not exist a transition to some state (s, h) starting from an erroneous
one, i.e., the program will get stuck whenever a memory error occurs in the program
execution. Both settings yield a denotational model for the commands of separation
logic by inductively assigning a formal semantics, i.e., a relation [[C]] ∈ PCmds or
[[C]] ∈ TCmds, to every syntactic command C formed by the grammar comm given
in Section 2.2. As a particular case one de�nes [[skip]] =df I where I denotes the iden-
tity relation de�ned by σ I σ′ ⇔ σ = σ′ for σ, σ′ ∈ States ∪ { abort } . Moreover, for
the remaining commands we additionally specify all required correctness conditions
like e.g., all values of free occurring variables being de�ned within the domains of the
stores involved or that only allocated heap cells are accessible. In the Appendix A.3,
a de�nition of the functions FV(C), the set of free variables and MV(C), the set of
modi�ed variables w.r.t. a command C is provided. In the case of (Boolean) expres-
sions we assume that a corresponding function FV is prede�ned. The interpretations
for the commands that are not heap-dependent can be found in Figure 4.1.

For a more compact notation, we abbreviate the semantic de�nition by the use of a
convention similar to that of the re�nement calculus provided e.g. in [BvW98]. A
relation R will be de�ned by a formula F linking input states (s, h) with output ones
(s′, h′) , i.e., we de�ne that R =̂ F abbreviates the clause (s, h)R (s′, h′) ⇔df F .
As a particular case, it is required for the denotational model that we also assign to
Boolean expressions b a relational semantics to manage the de�nition of the com-
mands involving if - conditionals and while - loops. We view them abstractly as as-
sertion commands assume b that only output the unchanged input state that satis�es

58

4.1 Interpreting Commands Relationally

the condition b and otherwise it does not contain such a pair of states as a relation
and hence behaves as the empty relation.

[[v := e]] =̂ {v} ∪ FV(e) ⊆ dom(s) ∧ s′ = (v, es) | s ∧ h′ = h ,

[[b]] =̂ FV(b) ⊆ dom(s) ∧ bs = true ∧ s′ = s ,

[[P ;Q]] =̂ FV(P) ∪ FV(Q) ⊆ dom(s) ∧ (s, h)S (s′, h′)

where S = [[P]] ; [[Q]] ,

[[if b thenP elseQ]] =̂ FV(b) ∪ FV(P) ∪ FV(Q) ⊆ dom(s) ∧ (s, h)S (s′, h′)

where S = [[b]] ; [[P]] ∪ ¬[[b]] ; [[Q]] ,

[[while b doP]] =̂ FV(b) ∪ FV(P) ⊆ dom(s) ∧ (s, h)S (s′, h′)

where S = ([[b]] ; [[P]])∗ ; ¬[[b]] ,

[[newvar v inP]] =̂ v ∈ dom(s) ∧ ∃ i ∈ Values : ((v, i) | s, h) [[P]] (s′′, h′)∧
s′ = (v, s(v)) | s′′ ,

[[newvar v := e inP]] =̂ v ∈ (dom(s)− FV(e)) ∧ FV(e) ⊆ dom(s)∧
((v, es) | s, h) [[P]] (s′′, h′) ∧ s′ = (v, s(v)) | s′′ .

Figure 4.1: Relational semantics of heap-independent commands.

The formulas for assignments to variables and newvar constructs ensure that the ex-
pressions involved are de�ned, i.e., the considered stores contain a de�nition for all its
free variables. The latter construct is rarely used as ambiguities on variables are often
resolved by renaming. Sequential composition of commands is translated into relation
composition and is de�ned in the standard way by σ R;S σ′ ⇔ ∃σ′′ : σ Rσ′′ ∧ σ′′ S σ′
for states σ, σ′, σ′′ and relations R,S . The denotations of the remaining commands
are derived from more abstract results which are given in the setting of a Kleene alge-
bra with tests, e.g., [FL79, Koz00]. Conditional statements are de�ned using ∪ which
would correspond in programs to non-deterministic choice. For modelling the branch
condition assertional commands are applied. The de�nition for while - loops is similar.
As long as b holds the command [[b]] ; [[P]] is repeated. This coincides denotationally
with re�exive transitive closure (_)∗ of the command. After the execution of the
loop, the command ¬[[b]] ensures that the �nal state satis�es the assertion ¬b . Note,
that the interpretations of the commands given avoid the use of abort and hence can
be used for a partial as well as for a total correctness treatment.

Next we continue with relational interpretations of the remaining heap manipulating
commands which can produce memory faults. In a total correctness treatment the
behaviour of faulting and non-terminating commands is identi�ed. Hence we can

59

Relational Separation

simply use the semantics with the same notation (cf. Figure 4.2). The situation is
a bit di�erent for a partial correctness treatment. Note that =̂ only de�nes non-
aborting executions of commands. Hence, for partial correctness it is necessary to
additionally de�ne (s, h) [[C]] abort for a state (s, h) and command C i� the condition
on the domain of the heap h involved is not satis�ed as in the operational semantics of
Section 2.2. Moreover, we assume for each such relation R that {(abort , abort)} ⊆ R,
i.e., the image of abort is abort .

[[v := cons (e1, ..., en)]] =̂ {v} ∪ FV(e1) ∪ . . . ∪ FV(en) ⊆ dom(s)∧
∃ a ∈ Addresses : s′ = (v, a) | s ∧
a, . . . , a+ n− 1 6∈ dom(h) ∧
h′ = {(a, es1), . . . , (a+ n− 1, esn)} |h ,

[[v := [e]]] =̂ {v} ∪ FV(e) ⊆ dom(s) ∧ s′ = (v, h(es)) | s ∧ h′ = h ,

∧ es ∈ dom(h) ,

[[[e1] := e2]] =̂ FV(e1) ∪ FV(e2) ⊆ dom(s) ∧ s′ = s ∧ h′ = (es1 , e
s
2) |h

∧ es1 ∈ dom(h) ,

[[dispose e]] =̂ FV(e) ⊆ dom(s) ∧ s′ = s ∧ es ∈ dom(h)∧
h′ = h− {(es, h(es))} .

Figure 4.2: Relational semantics of heap-dependent commands.

A similar denotational model for separation logic using a relational approach can also
be found in [ORY09] given in a partial correctness setting. The relational interpreta-
tions are equivalent to the above ones except for the case of faulting. It is handled
there in a di�erent and non-standard way. Before discussing the di�erence to our
approach we �rst recapitulate that by the use of relations for modelling the program-
ming semantics of separation logic, some care has to be taken for a correct treatment
of executions that might abort. The reason is that relation composition generally be-
haves angelically, i.e., whenever there exists a possibility that an execution can �nish
successfully such a transition will be taken.

Example 4.1.2 As an example consider the relation R = {(σ, abort), (σ, σ′)} that
allows from a state σ both a successful execution ending in a �nal state σ′ and one
that aborts. We further assume for a state σ′′ 6= abort a relation S = {(σ′, σ′′)}
that, deviating from our treatment for relational interpretations of partial correctness
semantics, ignores aborting executions. Then the composition R ; S yields the result
{(σ, σ′′)} ignoring the erroneous execution of R . ut

60

4.2 On Partial and Total Correctness

Generally, to obtain validity of the frame rule the converse behaviour is required
in separation logic, i.e., considering Example 4.1.2, only the aborting execution of
R should remain in the composed relation R ; S . Now a treatment of abort with
relational composition leads in [ORY09] to a setting that involves non-standard and
more complex de�nitions for sequential composition of programs and within a proper
de�nition for loops. The relational calculus we use in the following rather takes a
di�erent direction. For managing faulting executions we assume additional structure
on the commands involved so that relation composition and re�exive transitive closure
as well as all general well-known results of these operations can be reused.

Another treatment that deals with the possibility of program faults is provided by
the approach of demonic relational semantics that can be found e.g. in [Ngu91,
BvdW93, DBS+95, DMN97]. As can be imagined from its name that approach uses
non-deterministic choice of programs in a demonic fashion, i.e., whenever the pro-
gram has the possibility of faulting then it will go wrong. A more abstract and
algebraic treatment for that structures can be found in [DMT06] in terms of idempo-
tent semirings and Kleene algebras. Semirings are a special case of quantales where no
underlying complete lattice is assumed. A total correctness view is taken in that work
in the following sense: a state σ only belongs to the domain of a command relation
i� no execution starting from σ may lead to an error. Hence, using this semantics it
is not needed to include abort into the carrier set of states. But relation composition
operators within that approach become in a demonic treatment more complex, since
one has to use the demonic variants of the usual (angelic) operators of union and
sequential composition.

An alternative would be to use monotonic predicate transformers [Pre09]. However,
this would step outside the current relational framework and the aim for a simple
algebraic calculus.

We will see in the following that in the provided algebraic treatment a distinguishing
of partial and total correctness will not be essential. The reason for this is that in
the abstract treatment of commands all involved properties will be given within a
so-called fault-avoiding behaviour [YO02].

4.2 On Partial and Total Correctness

All subsequent results are formalised abstractly in terms of arbitrary separation al-
gebras. The relationships of the standard model based on the carrier set States to
(multi-unit) separation algebras denoted by (Σ, •, U) where U is a set of units. Their
structure is provided at the end of Section 3.3. By this, all abstractions and results
that we introduce in the sequel are applicable for the concrete resource model w.r.t.

61

Relational Separation

the carrier set States . Since the set of single-unit separation algebras is a strict sub-
set of the set of multi-unit ones, we give all de�nitions in the following on the latter
algebras.

We start with all basic de�nitions and notations for the used relational structure. A
command now essentially is a relation R ⊆ Σ×Σ , except for the treatment of faults.
Clearly, all well-known operations including sequential composition ; , given by

R ; S =df {(σ1, σ2) : ∃σ3 : (σ1, σ3) ∈ R ∧ (σ3, σ2) ∈ S}
and re�exive transitive closure (_)∗ are available, assuming a separation algebra
(Σ, • , U) with σi ∈ Σ . We introduce a distinct element σ⊥ 6∈ Σ that abstractly
models program abortion in the relational structure for partial correctness which is
given by

(P(Σ× (Σ ∪ {σ⊥}) ∪ {(σ⊥, σ⊥)}, ⊆ , ; , I)

while for total correctness it is given by the simpler structure (P(Σ×Σ), ⊆ , ; , I) . Con-
crete examples of that structures are (PCmds, ⊆ , ; , I) and (TCmds, ⊆ , ; , I) applying
the structural transformations de�ned in Section 3.3. Both abstract structures form
Boolean quantales with identity relations I w.r.t. their corresponding carrier set, i.e.,
I = {(σ, σ) : σ ∈ Σ} in the total correctness case and I = {(σ, σ) : σ ∈ Σ ∪ {σ⊥}} in
the other case. The greatest element > of each structure coincides with the universal
relation, again w.r.t. the underlying carrier set.

We continue with modelling Hoare triples {p}C {q} of separation logic (cf. De�ni-
tion 2.2.1) using the relation-based denotation. For this we follow a standard algebraic
approach given in [Koz00]. There, Hoare logic is algebraically modelled using more
abstract structures like semirings or quantales. The role of the pre- and postcondi-
tions p and q are played in that approach by tests (cf. De�nition 3.2.13), i.e., in the
concrete relational quantales elements that coincide with subsets of the identity re-
lation. Note that on tests relation composition ; and binary intersection ∩ coincide.
Tests are also given by relations of the form

[̂[p]] = {(σ, σ) | σ ∈ [[p]] } (4.1)

for arbitrary set of states [[p]] as de�ned in Section 3.1. This immediately yields a
direct embedding of elements of the assertion quantale AS as tests into a relational
quantale. By this we can directly reuse all results of the previous section also for
the relational structure. It is clear that the above subidentities and sets of states are
in one - to - one correspondence. The set [[p]] can be retrieved from [̂[p]] by [[p]] =

dom([̂[p]]) . We will write pC in the following for a command C to denote ̂dom(C) ,
i.e., its domain in a relational subidentity structure. It is characterised pointfree by
the universal property (e.g. [DMS06])

pR ⊆ p ⇔ R ⊆ p ;R , (reldom)

62

4.2 On Partial and Total Correctness

where p ranges over the set of tests. The locality property p(R ; pS) ⊆ p(R ; S), which
is independent of the above equivalence, is satis�ed for the concrete case of relations.
It states that the domain of a composed relation R ; S depends only on the domain
of S , but not on S itself. Symmetrically, one can also de�ne the codomain operation
Rq for relations R . In what follows we will write [[p]] to denote to the corresponding
subidentity instead of a set of states. A related approach on relational interpretations
for assertions can be found in [TBY12]. Their approach di�ers to the present one in
using n - ary relations with applications in information hiding. For our purposes we
do not require such a lift.

As a next step, we turn to a relation-algebraic characterisation of Hoare triples in
separation logic beginning with partial correctness behaviour. Note that according to
De�nition 2.2.1 the semantics of these triples is di�erent from that of standard Hoare
logic approaches. An additional assumption is required to guarantee that none of the
executions of a considered command aborts from any state satisfying the involved pre-
condition. The idea behind this is that the semantics is treated as resource-sensitive
to obtain proper triples and in particular validity of the frame rule. As an example,
one cannot obtain for the triple { emp } v := [e] { ? } a valid postcondition expressible
with the syntax of the assertion language given in Section 2.1. Moreover, this means
that the Hoare triples in separation logic are de�ned to be fault-avoiding.

We now continue to extend a prior and well-known algebraic approach for proposi-
tional Hoare logic triples with this particular behaviour so that program abortion is
also considered. For this we implicitly assume for notational abbreviation an arbitrary
translation of syntactical commands and assertions to relations and tests respectively.
A denotational semantics of Hoare triples {p}C {q} in a partial correctness setting
for standard Hoare logic (e.g. [Koz02]) can be given for relations by

p ; C ⊆ C ; q ⇔ p ; C ; ¬q ⊆ ∅ ⇔ p ; C = p ; C ; q (4.2)

where p, q are suitable subidentities. The formula involving test negation can be
di�cult to use for our purposes since there we have only general laws for the interplay
of concrete assertions of the form p ∗ q and logical negation. The �rst formula
compared to the last one allows inequational reasoning which is often easier to handle.
Hence we will mainly use the �rst version as an adequate formulation in calculations.

For an extension of the approach to incorporate faulting executions of programs we
start by de�ning a special test ⊥ =df {(σ⊥, σ⊥)} as in [DGM+14]. It is used in the
sequel for pointfree formulations of conditions involving program abortion.

De�nition 4.2.1
A relation C respects ⊥ i� ⊥ ; C = ⊥ .

This law states that ⊥ is a left annihilator on the set of ⊥ - respecting relations. In

63

Relational Separation

a pointwise form this corresponds to relations C satisfying σ⊥ C σ ⇒ σ = σ⊥ . Note
that for the tests p arising in Section 4.1 we have p ∩ ⊥ = ∅ . This allows a relational
characterisation of heap-dependent commands. Concrete examples are the mutation,
dereferencing and disposal commands of Section 2.2. Clearly, the identity relation
also respects ⊥ .

Lemma 4.2.2 σ⊥ - respecting relations are closed under ∪, ; and Kleene star ∗ .

The proof is an easy calculation using the well-known star induction law R;S ⊆ R ⇒
R;S∗ ⊆ R for any relations R,S (e.g., [Con71]). This guarantees that aborting exe-
cutions will not be ruled out by union or composition of abort respecting commands.
For characterising the above mentioned safety condition that ensures the absence of
aborting executions we de�ne that a state σ is safe w.r.t. a relation C i� ¬(σ C σ⊥)
holds. In a pointfree fashion, this can be formalised by p(C ; ⊥) ⊆ ∅ or equivalently
p ;p(C ;⊥) ⊆ ∅ for arbitrary tests p . Intuitively, p includes at most the states where C
will not abort if it starts from them. For a more compact and intuitive representation
we now introduce special modal operators that re�ect behaviour more concisely (cf.
e.g. [MS06a]). We give de�nitions for our concrete relation-based setting although it
is not di�cult to lift all subsequent results and handle them more abstractly within
modal Kleene algebras.

De�nition 4.2.3 (Forward diamond and box)
For an arbitrary relation C and test p we de�ne

|C〉 p =df
p(C ; p) and |C] p =df ¬|C〉¬p = ¬p(C ; ¬p) .

The forward diamond |C〉 p denotes the test that represents all initial states from
which p can be reached within one execution step of C while the forward box |C] p
dually describes a demonic variant where p must be reached within every single C -
step.

With the help of these de�nitions we can immediately infer

p ; p(C ;⊥) ⊆ 0 ⇔ p ⊆ ¬p(C ;⊥) ⇔ p ⊆ ¬p(C ; ¬(¬⊥)) ⇔ p ⊆ |C]¬⊥ .

Hence we can give a pointfree characterisation of the set of safe states using the
modal box operator. For better readability we introduce for a test p the abbreviation
p̃ =df p ; ¬⊥ . This corresponds to the abort - free part of p . As a particular case we

get Ĩ = ¬⊥ .

De�nition 4.2.4
For a relation C we de�ne safe (C) =df |C] Ĩ = ¬p(C ;⊥) . By this we characterise all
safe states of a relation C. We call a test p safe for C i� p ⊆ safe (C) .

64

4.2 On Partial and Total Correctness

As an immediate consequence of this we give the following lemma.

Lemma 4.2.5 For any relations C,D we have safe (C ∪ D) = safe (C) ∩ safe (D) .

Moreover, if D respects ⊥ then safe (C ;D) = safe (C) ; safe (C ; Ĩ ;D) . Hence, safe (C ;
D) = safe (C) ; safe (C ;D) .

Proof. The �rst claim follows since box operations are antidisjunctive in the �rst
argument. For the second we calculate

safe (C ;D) = ¬p(C ;D ;⊥)

= ¬(p(C ; Ĩ ;D ;⊥) ∪ p(C ;⊥ ;D ;⊥))

= ¬p(C ; Ĩ ;D ;⊥) ∩ ¬p(C ;⊥ ;D ;⊥)

= safe (C ; Ĩ ;D) ∩ ¬p(C ;⊥ ;⊥)

= safe (C ; Ĩ ;D) ; safe (C)

using the de�nition, distributivity of p_ , De Morgan and idempotence of tests, and
that ; and ∩ coincide on tests. ut
As discussed at the end of Section 4.1, this again re�ects a demonic treatment of
abort respecting relations. Note that the test |C〉 Ĩ as an angelic variant would not
be adequate to characterise safe states since it only represents the set of all initial
states for which there exists a non-faulting execution of C . To see this, consider
Example 4.1.2 involving the relation C = {(σ, σ⊥), (σ, σ′)}. Clearly, we have (σ, σ) ∈
|C〉 Ĩ , but still σ can lead to program abortion. However, the box operator is exactly
what we need in this case. It rules out σ by only including only all initial states of
the execution paths of C that can not abort.

Finally, we can now discuss some candidates for a relational characterisation of Hoare
triples in separation logic. For the forward box and the backward diamond operation
de�ned by 〈C|p =df (p ; C)q there exists a relationship given by the Galois connection

p ⊆ |C] q ⇔ 〈C| p ⊆ q . (4.3)

As a particular case, we get p ⊆ |C] Ĩ is equivalent to 〈C| p ⊆ Ĩ . Note that
equivalently to (4.2) we can also use 〈C| p ⊆ q involving the backward diamond
operation for a relational treatment of Hoare triples (e.g. [MS06a]) that are not re-
source sensitive. Hence, by the characterisation of binary in�ma we immediately
infer 〈C| p ⊆ q ∧ 〈C| p ⊆ Ĩ ⇔ 〈C| p ⊆ q̃ . This form is still not fully adequate
for our purposes due to the asymmetry by just excluding ⊥ in the postcondition q .
One problem with this form is that will particularly falsify validity of the Hoare logic
while - inference rule. Thus, we de�ne

65

Relational Separation

De�nition 4.2.6 (Partial correctness with abortion)
A partial correctness Hoare triple in separation logic is relationally given by

{p}C {q} ⇔df 〈C| p̃ ⊆ q̃

⇔ p̃ ; C ⊆ C ; q̃ .

Another possibility for De�nition 4.2.6 would be to use 〈C| p ⊆ q ∧ q ⊆ Ĩ which
implies the above condition and therefore is stronger. We will stay with the above
de�nition since it is more compact and simpler to use. Moreover, it structurally
coincides with the original form of relational Hoare triples ignoring program abortion.
Therefore we can immediately instantiate existing proofs (e.g. [MS06a]) without any
further need for recalculations and state the following result.

Theorem 4.2.7 All partial correctness inference rules of propositional Hoare logic
remain valid under the partial correctness interpretation of Hoare triples respecting
program abortion.

Note that the proof can be lifted to the more abstract setting of a modal Kleene
algebras as in [DGM+14]. Hence we can again get (semi)automated and calculational
soundness proofs of the Hoare logic proof rules by the use of theorem proving systems.
Another advantage of the encoding of the Hoare triples in De�nition 4.2.6 is that it
also implies that the involved precondition p only characterises safe states.

Lemma 4.2.8 {p}C {q} implies p̃ is safe for C .

Proof. By (4.3), isotony of box in its second argument, and de�nition of safe (_) :

〈C| p̃ ⊆ q̃ ⇔ p̃ ⊆ |C] q̃ ⇒ p̃ ⊆ |C] Ĩ ⇔ p̃ ⊆ safe (C) .

ut
As a last result we state that the de�nitions provided in Section 4.1 in fact satisfy
De�nition 4.2.6 and hence can be used for a relational treatment for Hoare triples of
separation logic.

Lemma 4.2.9 The relational denotations [[_]] for commands and assertions in Sec-
tion 4.1 satis�es the partial correctness interpretation of Hoare triples respecting pro-
gram abortion, i.e., {p}C {q} ⇔ [[p]] ; [[C]] ⊆ [[C]] ; [[q]] .

Proof. By de�nition of the interpretations [[p]] and [[q]] we can conclude that

[̃[p]] = [[p]] ; ¬⊥ = [[p]]

66

4.3 Abstracting Modularity

since [[p]] ∩ ⊥ ⊆ ∅ and ∩ coincides with ; on tests. ut
Next we turn to the case of total correctness. We recapitulate the semantics in this
approach: A state σ only belongs to the domain of a relation i� there exists an ex-
ecution starting from σ that does not abort and terminates in some �nal state τ .
Hence, program abortion and non-termination are identi�ed and coincide denotation-
ally with divergence, i.e., the empty relation ∅ . Therefore we need to state for total
correctness Hoare triples that the precondition p ensures termination of a command
C by assuming relationally p ⊆ pC .

De�nition 4.2.10 (Total correctness)
We de�ne a total correctness Hoare triple in separation logic by

[p]C [q] ⇔df 〈C| p ⊆ q ∧ p ⊆ pC

⇔ p ; C ⊆ C ; q ∧ p ⊆ pC .

Theorem 4.2.11 All total correctness inference rules of standard Hoare logic remain
valid under the total correctness interpretation of Hoare triples.

Proof. It is only required to show closure of the termination condition p ⊆ pC for
each rule. As an example we prove that condition for the sequential composition
rule {p}C {r} ∧ {r}D {q} ⇒ {p}C ;D {q} . By p being a test, property of domain,
{p}C {r} and isotony of domain, {r}D {q} and isotony of domain, and locality of
domain:

p ⊆ pC ⇒ p ⊆ p;pC ⇔ p ⊆ p(p;C) ⇒ p ⊆ p(C ;r) ⇒ p ⊆ p(C ;pD) ⇔ p ⊆ p(C ;D) .

Proofs for the remaining inference rules can easily be calculated and automated within
the abstract setting of modal Kleene algebras. ut
Note, that the while - inference rule needs an extra termination argument. An ade-
quate condition is expressed relationally by (b ; C)∗ ⊆ (b ; C)∗ ; ¬b which states that
each loop of C that starts in a state for which b holds will eventually end in a state
where b is false after �nitely many C - steps.

It can be seen that beside the well-known Hoare logic inference rules a pointfree
validity proof of the central frame rule of separation logic is still missing. In the
subsequent section we provide a relational treatment of that inference rule and give
pointfree abstractions of properties for establishing it.

4.3 Abstracting Modularity

The frame rule (cf. Section 2.3) allows veri�cation tasks to be performed locally on
the required set of resources of a program. The main advantage is that program

67

Relational Separation

proofs become scalable and easier to read and understand. Conversely it allows the
embedding of procedure veri�cations into larger contexts for obtaining global proofs.
This behaviour is established by assuming validity of two crucial properties, called the
frame property and safety monotonicity. We recapitulate that, intuitively, commands
that satisfy the former property include program executions that may run on a pos-
sibly smaller set of resources. The program can be tracked back to a minimal set of
resources that guarantees that it will not abort. Moreover, the latter property states
that when at least the required allocated resources are available then the considered
command can also be executed from any larger states with additional non-relevant
resources without aborting.

The objective of this section is to derive relation-algebraic counterparts for the men-
tioned conditions. This would allow a simpler and abstract soundness proof of the
frame rule in a calculational style. We start with some fundamental de�nitions that
yield a relational variant of the separating conjunction. For this we follow the treat-
ment of [DHM11, DM12a] and introduce an extension of the relational structure
from the previous section so that an independent treatment of arbitrary partitions of
states is possible. For the purpose of abstraction we give all de�nitions in the sequel
on arbitrary separation algebras capturing all models of Section 3.3. We will use the
notation of the more generalised multi-unit separation algebras (Σ, • , U) and refer
to them in the following just by the term �separation algebra�. Moreover, depending
on a total or partial correctness treatment we will use Σ or the extended carrier set
Σ⊥ =df Σ ∪ {σ⊥} . For an appropriate treatment of state splittings within Σ⊥ we
need to extend the separation algebra operation • to also capture σ⊥ by

σ • τ = σ⊥ ⇔df σ = σ⊥ ∨ τ = σ⊥ , (abortext)

i.e., each state denoting program abortion yields again σ⊥ in the join. Hence, we
always have for any state σ that σ⊥ # σ .

De�nition 4.3.1 (Split and Join)
Assume a separation algebra (Σ, • , U) where U denotes a set of units. The split
relation � ⊆ Σ× (Σ× Σ) , respectively Σ⊥ × (Σ⊥ × Σ⊥) , is given by

σ� (σ1, σ2) ⇔df σ1 #σ2 ∧ σ = σ1 • σ2 .

The join relation � is the converse of split, i.e.,

(σ1, σ2)� σ ⇔df σ1 #σ2 ∧ σ = σ1 • σ2 .

We introduce a special symmetric symbol for it, rather than writing �˘ where _̆
denotes the converse, to ease reading.

68

4.3 Abstracting Modularity

The general idea with this de�nition is to enable calculations on state partitions by
extending the setting from relations between states to state pairs.

De�nition 4.3.2 (Pairs of relations)
Union, inclusion and composition of pairs of relations are de�ned componentwise. The
Cartesian product R × S ⊆ (Σ× Σ)× (Σ× Σ) , respectively R × S ⊆ (Σ⊥ × Σ⊥)×
(Σ⊥×Σ⊥) , of two appropriate relations R,S ⊆ Σ×Σ , respectively R,S ⊆ Σ⊥×Σ⊥ ,
is de�ned by

(σ1, σ2) (R× S) (τ1, τ2) ⇔df σ1Rτ1 ∧ σ2 S τ2 .

We assume in the sequel that ; binds tighter than ∩ and × while ∩ binds tighter
than × . It is clear that id =df I × I is the identity of composition on pairs while
>×> is the largest pair relation where > denotes the universal relation.

De�nition 4.3.3
Tests in the set of product relations are again sub-identities; as before they are idem-
potent and commute under ; . The Cartesian product of tests is a test again. However,
there are other tests, such as the combinability check # ⊆ (Σ×Σ)× (Σ×Σ) , respec-
tively (Σ⊥ × Σ⊥)× (Σ⊥ × Σ⊥) , on pairs of states, given by:

(σ1, σ2) # (τ1, τ2) ⇔df σ1 #σ2 ∧ σ1 = τ1 ∧ σ2 = τ2 .

This relation acts as a �lter since only combinable pairs of states pass it while all
other pairs are not considered.

Lemma 4.3.4 We have # = �;� ∩ id and hence # ⊆�;� . Moreover # ;� = �
and symmetrically � ; # = � . Finally, � ;� = I.

It is well known that × and ; satisfy an equational exchange law:

(R1 ×R2) ; (S1 × S2) = (R1 ; S1)× (R2 ; S2) . (×/;)

Next we lift the operation • and the relation # on states to the setting of relations.

De�nition 4.3.5
The ∗ - composition R∗S of relations R,S ⊆ Σ×Σ , respectively Σ⊥×Σ⊥ , is de�ned
by the formula

R ∗ S =df � ; (R× S) ;� .

Intuitively by this de�nition, the relation σ (R ∗ S) τ holds i� σ can be split as
σ = σ1 • σ2 with combinable partitions σ1, σ2 on which R and S can act and produce

69

Relational Separation

results τ1, τ2 that are again combinable and yield τ = τ1 • τ2. For a concrete example
consider the separation algebra (States, ·∪ , emp) . We can interpret the semantics of
the split relation w.r.t. that carrier set as follows: a state (s, h) can be split into
states (s, h1) and (s, h2) with h = h1 ·∪h2 i� dom(h1) ∩ dom(h2) = ∅ . Clearly, we
can also embed the operation ·∪ into a lifted version on tests, for that we also write

·∪ , by P̂ ·∪ Q̂ =df P̂ ·∪Q for P,Q ⊆ States and ̂ as de�ned in (4.1). Assuming
the separation algebra States, the product p ·∪ q of tests p, q would coincide with
� ; (p× q) ;� .

In particular, we remark that De�nition 4.3.5 re�ects angelic behaviour in the sense
that, whenever σ1 and σ2 are not combinable or disjoint, R and S are prevented from
starting, since these states are eliminated by the de�nition. The same happens if σ1

and σ2 are combinable but R and S produce non-combinable output states τ1 and τ2 .

We will see in the following that the relations of the form R ∗ S can be either used
to characterise the structure and behaviour of programs or can be conceptually inter-
preted as a parallel execution of programs within a concurrent setting. The former
case will be discussed in the subsequent section. For now we continue by some con-
sequences of De�nition 4.3.5.

First, by de�nition of separation algebras the partial operator • is associative and
commutative. Hence, the lifted operation ∗ is also associative and commutative.
Moreover, it has the test e =df {(u, u) : u ∈ U} as its unit. For tests p, q the
∗ - composition p ∗ q is a test again, irrespective of the underlying separation algebra.

Lemma 4.3.6 I is idempotent w.r.t. ∗ , i.e., I ∗ I = I.

Proof. We calculate, using the de�nitions and Lemma 4.3.4,

I ∗ I = � ; (I × I) ;� = � ; id ;� = � ;� = I.

ut
For a partial correctness treatment we can immediately infer the following lemma
from (abortext).

Lemma 4.3.7

(a) ¬⊥ ;� = � ; (¬⊥ × ¬⊥) ,

(b) ⊥ ;� = � ; (⊥× I) ∪ � ; (I ×⊥) ,

(c) ⊥ = C ∗ ⊥ for arbitrary relations C .

70

4.3 Abstracting Modularity

The proof can be found in Appendix A. Clearly, symmetric laws hold for the converse
relation � . We can now calculate useful laws that provide characteristics of the
interplay between ⊥ and ∗ - products.

Lemma 4.3.8 For arbitrary tests p, q we have p̃ ∗ q = p̃ ∗ q̃ .

Proof. By de�nition, Lemma 4.3.7(a) and exchange (×/;), we calculate
¬⊥ ; (p ∗ q) = ¬⊥ ;� ; (p× q) ;� = � ; (¬⊥ ; p × ¬⊥ ; q) ;� = (¬⊥ ; p) ∗ (¬⊥ ; q) . ut
This means that whenever a ∗ - composition of two tests p, q is free of the state denoting
program abortion then already p and q themselves do not involve that state and vice
versa.

Lemma 4.3.9 ⊥ - respecting relations are closed under ∗ .

Proof. Assume C,D are ⊥ - respecting relations. We need to show ⊥ ; (C ∗D) = ⊥ .
The claim follows from the relational de�nition of ∗, Lemma 4.3.7(b), distributivity,
exchange (×/;), the assumption and Lemma 4.3.7(c). ut
By interpreting ∗ as a parallel composition of programs the composed program will
respect abortion if its constituent programs do. We will elaborate on this in the next
section.

Finally, there is the following interplay between ∗ and the domain operator.

Lemma 4.3.10 For relations R,S we have p(R ∗ S) ⊆ pR ∗ pS.

The proof can be found in the Appendix. Generally the reverse inclusion is not valid
since in the right-hand side of the inequation there can exist executions of R and S
that come with combinable starting states but also involve �nal states that are not
combinable as required for the relation R ∗ S . We will later provide a condition that
guarantees an equational relationship.

Finally, we state for readers familiar with fork algebras (e.g. [FBH97]) that there exists
some relationship to the provided split and join relations. Generally, fork algebras
allow more expressibility than standard relation algebras by extending them with a
fork operation given by

R∇S =df {(x, ?(y, z)) : xRy ∧ xSz} ,

where ? denotes an abstract and injective binary pairing function. In our concrete case
this is given by ?(σ, τ) = (σ, τ) for states σ, τ . An approximation of the join and split
relations can be given by ((�)∇ (�)) ; # = {(σ, (σ1, σ2)) : σ � σ1, σ � σ2, σ1 #σ2} ,
where � denotes the converse of � . This relation only models a superset of � since

71

Relational Separation

it does not relate combinable substates σ1, σ2 � σ in the sense that σ1 • σ2 = σ as in
the case of � . Moreover, the Cartesian products of De�nition 4.3.2 coincides with
direct products of fork algebras, i.e., P ×Q = P ⊗Q .

As a further related approach we mention that [GLW06] also considers splitting and
joining of states by a ternary relation within the notion of a relational frame for
providing an alternative semantic foundation for Boolean BI. However, for our appli-
cations in the following these relations are rather used for characterising behaviours
of programs in separation logic.

4.3.1 A Pointfree Frame Property

We are now in the position to derive a relational and pointfree characterisation of the
frame property (cf. Section 2.3). First, we start by brie�y recapitulating the frame
property. It expresses that any execution of a command C can be tracked back to
a possibly smaller heap portion that is su�cient for a non-aborting execution. This
reads formally for heaps h0, h1 with dom(h0) ∩ dom(h1) = ∅ as follows

¬(〈C, (s, h0)〉;∗ abort) ∧ 〈C, (s, h0 ∪ h1)〉;∗ (s′, h′) ⇒
∃h′0 : 〈C, (s, h0)〉;∗ (s′, h′0) ∧ h′ = h′0 ∪ h1 ∧ dom(h′0) ∩ dom(h1) = ∅ .

The �rst conjunct of the premise asserts that the command C will not abort starting
from the state (s, h0), i.e., it is a safe state for C . For a pointfree form of this part we
can use De�nition 4.2.4 as an adequate candidate for a partial correctness treatment
and pC for the case of total correctness. The second assumption states that any
execution on a larger heap h0 ∪ h1 ending in a �nal state (s′, h′) can be resolved as
follows: h0 is modi�ed by C and results in a subheap h′0 ⊆ h′ while h1 represents
that part that is not modi�ed and left untouched by C, i.e., the frame of C .

At this point we can use the extended relational structure involving pairs of relations
for a pointfree characterisation of that behaviour. The idea is to interpret the con-
�guration 〈C, (s, h0 ∪ h1)〉;∗ (s′, h′) relationally by (s, h0 ∪ h1)C (s′, h′) and further
rewrite this execution into (s, h0)C (s′, h′0) as in the conclusion and (s, h1) ? (s′, h1)
where we unfortunately cannot use skip instead of the place holder ? since store vari-
ables may be modi�ed by C as s = s′ does not generally hold. This means that the
behaviour of assignments to store variables is di�erent from the case of heap cells,
since the e�ects become globally visible. Hence, care has to be taken when reassem-
bling the overall �nal state from the computation on the smaller portion. We can
model changes on the store component by a special relation that we introduce as
follows.

72

4.3 Abstracting Modularity

De�nition 4.3.11
Let H be a relation that preserves all heaps while being liberal about the involved
stores:

(s, h)H (s′, h′) ⇔df h = h′ .

It can be seen that H is re�exive, transitive and symmetric, i.e., an equivalence
relation. For abstracting this approach we will later use parts of these properties to
give a more general characterisation. For now we can use the relation H to formulate
a pointfree version of the frame property for the carrier set of States.

De�nition 4.3.12 (Relational frame property)
A relation C satis�es the relational frame property in a total correctness setting i�

(pC × I) ;� ; C ⊆ (C ×H) ;� .

The partial correctness version can be obtained by replacing pC in the above inequation
with safe (C) and I with ¬⊥, i.e.,

(safe (C)× ¬⊥) ;� ; C ⊆ (C ×H) ;� .

Note that we have (s, h) I (s, h) and respectively (s, h) ¬⊥ (s, h) for any state (s, h)
since both relations are subidentities. Now pre�xing the join operator with pC × I or
safe (C)×¬⊥ on the left-hand side asserts that the initial state can be split into two
substates with disjoint heaps. In particular, pC and safe (C) denotes the partitions on
which C can be safely executed while I and ¬⊥ represents the unchanged remaining
resources. As a check of adequacy, we further provide a pointwise form of the above
inequation for total correctness. The partial correctness frame property can be given
analogously. For arbitrary s, s′ ∈ Stores and h0, h1, h

′ ∈ Heaps we have

(s, h0) pC (s, h0) ∧ dom(h0) ∩ dom(h1) = ∅ ∧ (s, h0 ∪ h1) C (s′, h′)
⇒ ∃h′0, h′1 : dom(h′0) ∩ dom(h′1) = ∅ ∧ h′ = h′0 ∪ h′1

∧ (s, h1) H (s′, h′1) ∧ (s, h0) C (s′, h′0) .

By the de�nition of H the conclusion simpli�es to the equivalent condition

∃h′0 : dom(h′0) ∩ dom(h1) = ∅ ∧ h′ = h′0 ∪ h1 ∧ (s, h0) C (s′, h′0) .

This corresponds to the conclusion given in the de�nition of the frame property, in a
relational fashion.

As mentioned, the derivation of the frame property relies on the concrete relation
H which is de�ned on the states of the carrier set States and thus makes the treat-
ment less general. Therefore as a next step we give an abstraction from the relation
H to more general relations satisfying suitable properties that ensure the required
behaviour [DHM11].

73

Relational Separation

De�nition 4.3.13 Given a separation algebra (Σ, • , U), a relation K ⊆ Σ × Σ ,
respectively Σ⊥ ×Σ⊥ , is called a compensator i� it satis�es the following properties:

(a) I ⊆ K ,

(b) K ;K ⊆ K ,

(c) # ; (I ×K) ; # ⊆ # ,

(d) ¬⊥ ;K ⊆ K ; ¬⊥ , in the case of partial correctness.

The requirements (a) and (b) together denote that every compensator is a preorder.
By this, arbitrarily long sequences of relational commands can be �accompanied� by
equally long compensator sequences. Requirement (c) can be explained by interpret-
ing K as an environment that restricts the allowed behaviour of a relation or more
concretely of a command that is acting on combinable parts of a considered state.
Now the meaning of (c) is that it will not restrict a command that does not mod-
ify anything, i.e., it acts as the identity relation on its combinable part of the state.
The last requirement states that compensators does not produce memory or program
faults. Note that for a total correctness treatment, one can replace ⊥ with ∅ in that
inequation which makes it trivially satis�ed. These requirements are used amongst
others to establish closure of properties involving compensators, in particular the
frame property.

There exists a relationship of compensators to so-called interference relations provided
within a concurrent context in [DYBG+13]. That relations also provide a characteri-
sation of the environment that restrict allowed behaviour e.g., of threads running in
parallel. Concrete details for this approach remain as future work. We continue by
stating some immediate consequences.

Lemma 4.3.14 The relations H and I are compensators.

The proof follows immediately from the de�nitions.

Lemma 4.3.15 If K1,K2 are compensators then also K1 ∩ K2 is a compensator.

Proof. For requirement (a) of De�nition 4.3.13 it is clear while (b) follows imme-
diately from isotony. The third property is calculated by (sub)distributivity and
assumptions:

; (I × K1 ∩K2) ; # = # ; ((I ×K1) ∩ (I ×K2)) ;
⊆ # ; (I ×K1) ; # ∩ # ; (I ×K2) ; #
⊆ # ∩ #
= # .

74

4.3 Abstracting Modularity

Finally, for a test p we always have that p ; (R ∩ S) = p ; R ∩ p ; S , (e.g. [Möl07]).
Hence, we can calculate

¬⊥ ; (K1 ∩ K2) = (¬⊥ ;K1) ∩ (¬⊥ ;K2) ⊆ (K1 ;¬⊥) ∩ (K2 ;¬⊥) = (K1 ∩ K2) ;¬⊥ .

ut
Finally, we present a generalised frame rule that is parametric w.r.t. partial or total
correctness and the considered compensation relation K.

De�nition 4.3.16 (Generalised frame property)
Assume a compensator K. Then a relation C has the generalised frame property for
total correctness i�

(pC × I) ;� ; C ⊆ (C ×K) ;�

and in the case of partial correctness i�

(safe (C)× ¬⊥) ;� ; C ⊆ (C ×K) ;� .

Note that both inequations are equivalent to respective formulas with # ; (C×K) ;�
as the right-hand side. In particular, it can be seen that the frame property has for
both treatments the same relational structure which allow soundness proofs in the
following in a largely uni�ed fashion.

Lemma 4.3.17 I has the frame property. In the case of total correctness all tests
have the frame property.

Proof. By de�nitions, (s × I) ; � ; p = (I × I) ; � ⊆ (I ×K) ; � in the case of
total correctness. Moreover, the other case follows from safe (I) = ¬⊥ ⊆ I. ut
Since more complex commands are built up from simpler ones using the ∪ and ;
operators, we further show that, subject to suitable conditions, the frame property is
closed under them.

Lemma 4.3.18 Assume a compensator K. The generalised frame property is closed
under union, composition. For partial correctness the frame property propagates from
C and D only to C ;D if additionally D respects ⊥ .

The proof can be found in Appendix A. In particular, it can be seen that the proofs
for partial and total correctness are nearly the same. Both tests p_ and safe (_) satisfy
the required laws that are used for a uni�ed proof of these closure conditions. The
additional assumption that the composed command D respects ⊥ is required since we
use the standard de�nition of relational composition. All executions of C that produce

75

Relational Separation

a program fault need to be maintained in C ;D. Since relation composition behaves
angelic we therefore assume ⊥ - respecting relations. The relational denotation pro-
vided in [ORY09] uses, compared to our approach, a di�erent de�nition of relational
composition that exactly takes these e�ects into account. In the total correctness
treatment this is not required since only complete and non-faulting runs of programs
are considered like in the formal approach to separation logic given in [YO02].

Corollary 4.3.19 The frame property for total correctness propagates for a compen-
sator K from relations C and D to if b then C else D for arbitrary tests b.

Unfortunately, for a partial correctness treatment an analogue result cannot be ob-
tained. The reason for this is that I and ∅ are the only tests that satisfy the frame
property. However, one still obtains a (stronger) variant that can be applied for the
corresponding inference rules. Assume a relation C satis�es the frame property then
for arbitrary tests b

(b ; safe (C) × ¬⊥) ;� ; b ; C ⊆ (b ; C ×K) ;� .

4.3.2 Resource Preservation

A further ingredient is still needed for a pointfree soundness proof of the frame rule.
Note that the frame rule comes with a side condition on the variables involved, i.e.,
FV(r) ∩ MV(C) = ∅ . It ensures that the variables modi�ed by the command C
are distinct from the free variables of the untouched part r . It remains to express
algebraically the requirement that a command preserves certain variables. For this
we can avoid an explicit mentioning of syntax and free variables by �nding a suitable
purely algebraic condition instead. The main idea of that property is to relationally
express that a test r, which represents the untouched part within the frame rule, will
not be changed by a considered compensator K within × - products of relations.

De�nition 4.3.20
A relation C preserves a test r w.r.t. a compensator K i�

� ; (C × r ;K) ; # ⊆ > ;� ; (I × r) .

The informal explanation is as follows: when C is executed on parts of the state
distinct from combinable part that satis�es r then every re-assembled �nal state
must contain an r - part, too. Equivalently, we can replace the right-hand side by
> ;� ; (I × r) ; # which states the �nal parts have to be # - combinable. Moreover
the de�nition of preservation is also equivalent to

; (C × r ;K) ; # ⊆ # ; (>× > ; r) ; # . (4.4)

76

4.3 Abstracting Modularity

A proof of this is deferred to Appendix A. This characterisation does not use the
� - and � - relations and will be simpler to use for a pointwise derivation of proper-
ties. Other variants that allow similar characterisations of preservation can be found
in [DH11]. Next we show that our notion of preservation �ts well with the original side
condition of the frame rule. It is trivially satis�ed for all assertions r if MV(C) = ∅ .
Concrete commands with this property are in separation logic, e.g., mutation com-
mands [e1] := e2 and dispose . We show that this condition implies our notion of
preservation, so that it is adequate, but also more liberal than the original one.

Lemma 4.3.21 Consider the compensator H and the carrier set States . If MV(C) =
∅ for a command C then its relational denotation preserves all tests r .

Proof. The assumption implies that C cannot change the store part of any state, but
only heap parts. For states σ, τ 6= abort we formally have

∀σ, τ : σ C τ ⇒ sσ = sτ , (4.5)

where sσ denotes the store of the state σ . By applying the pointwise de�nitions, r is a
subidentity, τ1 # τ2 ∧ σ1 #σ2 and assumption (4.5) imply sσ2 = sτ2 , the de�nition of
H and sσ2 = sτ2 further imply σ2 = τ2 , logic step and omitting conjuncts, de�nition
of > , and again pointwise de�nitions, we infer:

(σ1, σ2) # ; (C × r ;H) ; # (τ1, τ2)
⇔ σ1 #σ2 ∧ σ1 C τ1 ∧ σ2 r ;H τ2 ∧ τ1 # τ2
⇔ σ1 #σ2 ∧ σ1 C τ1 ∧ σ2 r σ2 ∧ σ2 H τ2 ∧ τ1 # τ2
⇔ σ1 #σ2 ∧ σ1 C τ1 ∧ σ2 r σ2 ∧ σ2 H τ2 ∧ sσ2

= sτ2 ∧ τ1 # τ2
⇒ σ1 #σ2 ∧ σ1 C τ1 ∧ σ2 r σ2 ∧ σ2 = τ2 ∧ τ1 # τ2
⇒ σ1 #σ2 ∧ τ2 r τ2 ∧ τ1 # τ2
⇔ σ1 #σ2 ∧ σ1 > τ1 ∧ σ2 > τ2 ∧ τ2 r τ2 ∧ τ1 # τ2
⇔ (σ1, σ2) # ; (>× > ; r) ; # (τ1, τ2) .

ut
A similar treatment of the general condition MV(C) ∩ FV(r) = ∅ for arbitrary C is
possible and can be obtained analogously. We continue with some direct consequences
of the de�nition of preservation.

Lemma 4.3.22 Assume a compensator K. I preserves every test r and it is pre-
served by any relation.

Proof. By neutrality of I and exchange (×/;), # and I × r are tests, de�nition of
compensators (Def. 4.3.13(b)), isotony,

77

Relational Separation

; (I × r ;K) ;
= # ; (I × r) ; (I ×K) ; #
= # ; (I × r) ; # ; (I ×K) ; #
⊆ # ; (I × r) ; #
⊆ # ; (>× > ; r) ; # .

Every command preserves I follows immediately from isotony and neutrality of I. ut

Lemma 4.3.23 Preservation of a test r w.r.t. a compensator K is closed under
union and pre-composition with a test. If

; (C ;D ×K) ; # ⊆ # ; (C ×K) ; # ; (D ×K) ; # (4.6)

for relations C,D then preservation of r propagates from C and D to C ;D.

The proof can be found in Appendix A. Equation (4.6) means that the �local� inter-
mediate state of the composition C ;D induces a �global� intermediate state; it means
a �modular� way of composition. Consider e.g., the triple {p ∗ r}C ;D {s ∗ r} which
can be shown if one can infer {p ∗ r}C {q ∗ r} and {q ∗ r}D {s ∗ r} . The existence of
such a q is ensured by the insertion of an intermediate # relation in (4.6).

Corollary 4.3.24 Preservation w.r.t. a compensator K propagates from relations C
and D to if b then C else D for arbitrary tests b .

4.3.3 A Calculational Proof of the Frame Rule

All basic assumptions for providing a validity proof of the frame rule have now been
established. In the following we give a completely algebraic soundness proof of a
generalised form of the frame rule abstracted to arbitrary separation algebras for a
partial and total correctness setting. We start with some consequences for the state
splitting relations that in particular will allow a simpler characterisation of Hoare
triples using the universal relation > and thus a more concise and intuitive proof of
the frame rule.

Lemma 4.3.25

(a) > ;� = � ; (>×>) ; # .

(b) For arbitrary tests p, q we have > ; � ; (p × q) ; # = � ; (> ; p × > ; q) ; # .
Therefore, > ; (p ∗ q) = (> ; p) ∗ (> ; q) .

78

4.3 Abstracting Modularity

Proof.

(a) First,
σ (> ;�) (ρ1, ρ2) ⇔ ∃ ρ : σ> ρ ∧ ρ1 # ρ2 ∧ ρ = ρ1 • ρ2

⇔ ρ1 # ρ2 ∧ ∃ ρ : ρ = ρ1 • ρ2

⇔ ρ1 # ρ2 .

Second,

σ (� ; (>×>) ; #) (ρ1, ρ2)
⇔ ∃σ1, σ2 : σ1 #σ2 ∧ σ = σ1 • σ2 ∧ σ1> ρ1 ∧ σ2> ρ2 ∧ ρ1 # ρ2

⇔ ∃σ1, σ2 : σ1 #σ2 ∧ σ = σ1 • σ2 ∧ ρ1 # ρ2

⇔ ρ1 # ρ2 ,

since we can choose σ1 = σ and σ2 = u .

(b) Straightforward from Part (a), exchange (×/;) and the de�nition of ∗ on relations.
ut

Hence by the use of the universal relation > we can now give the following useful
equivalent formulations for executions of Hoare triples.

Lemma 4.3.26 For arbitrary tests p, q and relation C we have

p ; C ⊆ C ; q ⇔ > ; p ; C ⊆ > ; q ⇔ p ; C ⊆ > ; q .

The proof can be found in Appendix A. The right-hand sides of the inequations are
more liberal than in the original formulation. In particular this form is appropriate
for our purposes comparing it with the structure of the preservation property that
also involves the universal relation in its right-hand side. Next, we derive some further
consequences from the de�nitions that will be applied in a pointfree proof of the frame
rule.

Lemma 4.3.27 Assume a compensator K.

(a) Suppose a relation C has the generalised frame property. Then for all tests p, r
we have

p ⊆ pC ⇒ (p ∗ r) ; C ⊆ (p ; C) ∗ (r ;K) ,
p ⊆ safe (C) ⇒ (p ∗ r̃) ; C ⊆ (p ; C) ∗ (r̃ ;K) .

The former applies to total correctness while the latter to partial correctness.

(b) Suppose relation C preserves a test r . Then for all tests q we have

(C ; q) ∗ (r ;K) ⊆ > ; (q ∗ r) .

79

Relational Separation

The proof can be found in Appendix A. Note again that the proof for total and
partial correctness can be given in a largely uni�ed fashion parametric w.r.t. the set
of safe states and the domain of a considered relation. The generalised frame rule
now reads as follows.

Theorem 4.3.28 (Generalised Frame Rule) Assume a compensator K, a test r
and a relation C that has the frame property. If C preserves r̃ then the partial cor-
rectness frame rule is valid:

{p}C {q}
{p ∗ r}C {q ∗ r} .

If C preserves r and additionally pC ∗ I ⊆ pC then the total correctness frame rule
holds:

[p]C [q]

[p ∗ r]C [q ∗ r]
.

Proof. First, Lemma 4.2.8 and {p}C {q} imply p̃ ⊆ safe (C) . By Lemma 4.3.8,
Lemma 4.3.27(a), isotony and assumption, i.e., p ; C ⊆ C ; q, Lemma 4.3.27(b), and
Lemma 4.3.8:

p̃ ∗ r ;C = (p̃ ∗ r̃) ;C ⊆ (p̃ ;C) ∗ (r̃ ;K) ⊆ (C ; q̃) ∗ (r̃ ;K) ⊆ > ; (q̃ ∗ r̃) ⊆ > ; q̃ ∗ r .

Second, we have by the assumption p ⊆ pC and isotony that p ∗ r ⊆ pC ∗ I ⊆ pC .
Moreover, we infer by Lemma 4.3.27(a), the assumption and Lemma 4.3.27(b) that

(p ∗ r) ; C ⊆ (p ; C) ∗ (r ;K) ⊆ (C ; q) ∗ (r ;K) ⊆ > ; (q ∗ r) .

ut
One di�erence of both proofs is that we need to apply Lemma 4.3.8 twice in the case
of partial correctness to guarantee ⊥ - freeness on the involved assertions. Moreover,
the proof of the frame rule in the total correctness case unfortunately requires the
additional assumption pC ∗ I ⊆ pC as a point-free variant of a property called ter-
mination monotonicity in the common literature [YO02]. Intuitively, if C terminates
starting from a state σ it also will terminate from any possibly larger initial state σ•τ
assuming σ# τ . The partial correctness case di�ers in its algebraic treatment as it
does not require an additional pointfree variant of safety monotonicity property (cf.
Section 2.3). The reason for this is that the required part of this property is implicitly
incorporated in the relational variants of the Hoare triples in combination with the
frame and preservation properties. Their application in the above proofs guarantee
that all considered executions of the conclusion will not abort, i.e., end in the �nal
state σ⊥ . There exist further approaches using state and predicate transformers as a
semantic approach to separation logic [YO02, COY07, HHM+11]. These approaches

80

4.3 Abstracting Modularity

also come with simple formulations that involve a built-in safety monotonicity condi-
tion.

Note that in the above rules the preservation property on the test r denotes the
relational counterpart of the side condition stating that the modi�ed variables of C
and the free variables of r have to be distinct. This required a modelling of the
side e�ects on r by introducing the notion of a compensator. For the purpose of
simpli�cation, related approaches in the literature as e.g., [COY07, HHM+11] does
not require and use an appropriate substitute for that. The main reason for this
is that the resource models that are considered for those treatments are extended
by a permission framework (cf. Example 3.3.3) that handles the variable conditions
within the semantics of logic itself rather than using syntactical conditions. The
concrete approach to this can be found in [BCY06] and for the case of Hoare logics
in [PBC06]. The idea by this is to prevent a command C from modifying a set of
variables by restricting its behaviour in the sense that at most a read permission
for those variables is held by C so that it can only perform a read access. Since
our abstract and general treatment also includes separation algebras that involve
permissions we can simplify our relational framework, too. For this, note that by
Lemma 4.3.14 I is a compensator. Moreover, by Equation (4.4) we can calculate
using neutrality and isotony that

; (C × r ; I) ; # = # ; (C × r) ; # ⊆ # ; (>× > ; r) ; # .

Therefore, using the identity relation as a compensator the preservation condition is
always satis�ed. Hence we can also conclude with a simpler version of the frame rule.

Corollary 4.3.29 (Frame Rule on Permission Algebras) Assume a test r and
a relation C that has the frame property w.r.t. the compensator I. Then the partial
correctness frame rule is valid:

{p}C {q}
{p ∗ r}C {q ∗ r} .

If additionally pC ∗ I ⊆ pC then the total correctness frame rule holds:

[p]C [q]

[p ∗ r]C [q ∗ r]
.

4.3.4 Related Algebraic Approaches

We conclude this section by a discussion on related approaches that use non-relational
settings to formalise the framing behaviour of separation logic. The �rst treat-
ment [COY07] involves the usage of so-called local actions de�ned on the concept

81

Relational Separation

of separation algebras. Basically, local actions are special state transformers, i.e.,
particular functions that map states to sets of states or to a distinguished element
>1. The element > is used to denote program abortion, e.g., due to dereferencing of
non-allocated resources.

There is also an order v de�ned on sets of states and >. The special case for arbitrary
sets of states p, q ∈ P(Σ) excluding > is de�ned by p v q =df p ⊆ q . Moreover, for
arbitrary p ∈ P(Σ)∪{>} one always has p v > , i.e., > is the greatest element w.r.t. v .
One can extendv pointwise to state transformers f, g by f v g ⇔df ∀σ. f(σ) v g(σ) .

Moreover separating conjunction ∗ on sets of states p, q is given by

p ∗ q =df

{
{σ1 • σ2 : σ1 #σ2, σ1 ∈ p, σ2 ∈ q} if p, q ∈ P(Σ)
> otherwise .

The semantics of these functions are given as forward strongest postcondition state
transformers. A proper de�nition of ∗ on such functions, like in the relational case,
leads to the problem that it generally does not entail associativity. The reason for
this is that for obtaining strongest postconditions one would require distributivity
of ∗ over arbitrary intersections which does only hold for precise assertions. The
approach avoids this by directly de�ning a property called locality that is used to
model the behaviour of the frame property and safety monotonicity. It is given for a
state transformer f by

σ1 #σ2 ⇒ f(σ1 • σ2) v f(σ1) ∗ {σ2} . (4.7)

All state transformers that satisfy locality are called local actions. This property
has similar behaviour as our relational version of the frame property. It states that
f locally acts on σ1 while leaving σ2 unchanged. A di�erence can be seen in the
handling of program faults. In the case when f(σ1) = > , i.e., σ1 is not safe for f , the
right-hand side of the locality property will evaluate to f(σ1) ∗ {σ2} = > ∗ {σ2} = > .
In this case it is trivially satis�ed, i.e., an explicit assumption of involved safe states
is not needed. In the relational case it is asserted that σ1 represents a safe state
and hence any execution starting from it will not lead to program abortion. Both
treatments handle the possibility of faulting in a demonic fashion, i.e., states that
assert successful and aborting executions are excluded from the treatment of local
actions and relations with the frame property.

As further work to this it would be interesting to investigate the characterisations of
footprints given in [RG08] within the relational setting. Footprints are elements of
an underlying separation algebra that are essential for a complete speci�cation of the
behaviour of local actions.

1> does not denote the universal relation in this context.

82

4.3 Abstracting Modularity

Another approach [HHM+11] involves a more meaningful structure given by so-called
monotone predicate transformers, i.e., functions of type P(Σ) → P(Σ) . Di�erently
from the approach of local actions, the semantics are dually provided as backward
weakest precondition predicate transformers. This yields a de�nition of separating
conjunction directly on such functions as in the case of relations:

(F1 ∗ F2)(Y) =df

⋃{F1(Y1) ∗ F2(Y2) : Y1 ∗ Y2 ⊆ Y } ,
(F1 ; F2)(Y) =df F1(F2(Y)) ,

Id (Y) =df Y.

Note that ∗ is used in the �rst equation on sets of states on the right-hand side and
in an overloaded form on functions on the left-hand side. A locality property for
predicate transformer F is given for a set of states P by

F (P) =
⋃
{F (X) ∗R : X ∗R = P} . (4.8)

The set X describes the set of safe states for the function F while R denotes again the
untouched set of substates w.r.t. P . Note that predicate transformers entail more
expressiveness than state transformers. Interestingly, it has been shown in [HHM+11]
that Equation (4.8) is equivalent to the more compact form:

F ∗ Id = F .

This means in particular that each execution of the program F can be replaced by
one that only operates on the necessary and possible smaller part of the state while
the rest of it remains unchanged (abstractly denoted by the function Id). It would
be interesting to obtain a similar characterisation in the relational model. In the
following, we derive some formulations and relationships to the semantics of the above
formula by the use of the relational setting. Hence, we denote by the operator ∗ in
what follows its relational version.

First remember that e as de�ned before Lemma 4.3.6 is the unit of ∗ and e ⊆ I . Thus
we can immediately conclude:

Lemma 4.3.30 For arbitrary relation C we have C ⊆ C ∗ I.

Proof. By isotony, we infer C = C ∗ e ⊆ C ∗ I . ut
The other inclusion, i.e., C ∗ I ⊆ C , does not generally hold. For this we need an
additional assumption about C . This inequation can be derived from a stronger form
of test preservation given in De�nition 4.3.20:

� ; (C × r) ; # ⊆ C ;� ; (I × r) . (4.9)

83

Relational Separation

The semantics of this inequation in a total correctness treatment is as follows: when
C is executed on a part of the state such that the remainder of the state satis�es
r one can also run C on the complete state and still obtains an r - part in the �nal
state. A partial correctness interpretation would not exclude initial unsafe states,
i.e., aborting executions. Note that one obtains from Equation (4.9) by isotony the
specialisation of De�nition 4.3.20 to K = I. Conceptually, Equation (4.9) assumes
the existence of local executions of C leaving state portions of r unchanged. The
relational frame property conversely talks about the structure of C in that it can be
divided into subexecutions. Finally, we summarise:

Lemma 4.3.31 C ∗ I ⊆ C i�s Equation (4.9) holds for all tests r .

The proof can be found in Appendix A. It can be seen that there are some proof-
theoretic relationships between our relational de�nitions for proving soundness of
the frame rule and the concept of the locality condition C ∗ I ⊆ C . However, for
that particular domain it does not seem very realistic to relate locality to that form
of test preservation. By using the compensator I , one implicitly assumes that the
underlying separation algebras handle the involved side conditions of the frame rules,
e.g., by permission equipped variables. In that case the preservation property should
always be satis�ed since it is used as an abstraction of the property that a command
C does not modify the free variables of an assertion r .

Finally, we compare the structure of the relational proofs with the corresponding ones
in [HHM+11]. First, note that predicate transformers are ordered with the reversed
pointwise inclusion order, i.e., F v G ⇔ ∀X : F (X) ⊇ G(X) . It was shown that
the frame rule is equivalent to the inequation

(F ∗G) ;H v (F ;H) ∗G

for adequate predicate transformers F,G,H using a generalised characterisation of
Hoare triples. This inequation, also called the small exchange law, was previously
introduced within the approach of concurrenct Kleene algebras [HMSW11]. We will
elaborate on this algebraic structure later in Section 4.4.3.

In the relational setting, that inequation is not generally valid using the standard
subset order on relations. However, as can be seen in Lemma 4.3.27 a structurally
similar variant has been established with the pointfree version of the frame property.
By choosing the compensator K = I this yields for tests p, r and a relation C with
the frame property:

p ⊆ pC ⇒ (p ∗ r) ; C ⊆ (p ; C) ∗ r ,
p ⊆ safe (C) ⇒ (p ∗ r̃) ; C ⊆ (p ; C) ∗ r̃ .

84

4.4 Applications to Concurrency

Although the test p is restricted in the premise of the implications, the relational
proofs of the frame rule become as simple as the one for the predicate transformer ap-
proach in [HHM+11]. As a further remark, the approach of [HHM+11] requires special
functions for the semantics of Hoare triples. They are called best predicate transform-
ers and are used as an adequate substitute for assertions. Intuitively, these functions
simulate the allocation of resources that are characterised by pre- and postconditions.
In the relational calculus, assertions can simply be handled with the subalgebra of
tests. Another advantage of the relational approach is that ∗ distributes over arbi-
trary suprema while this is not the case for predicate transformers. By monotonicity
one can only obtain a super-distributivity law for that treatment.

4.4 Applications to Concurrency

In De�nition 4.3.5 we provided a general operation ∗ on arbitrary relations that, de-
pending on the underlying separation algebra, captures as a special case the semantics
of the separating conjunction. This extended operation allowed relational formula-
tions that characterised the behaviour and structure of separation logical commands in
a sequential setting. As already mentioned, one can also interpret general ∗ - products
C ∗ D of relations C,D as their parallel execution on # - related parts of resources.
This will be the main topic of this section. We start by presenting some central
concepts and proof rules of concurrent separation logic (CSL) [Bro07, O'H07]. CSL
has proved to be an e�ective methodology for scalable reasoning about concurrency.
Moreover, we provide relational abstractions of this and pointfree validity proofs as
in [DM12a, DM14]. As a next step we derive several relationships to other approaches
that also involve algebraic semantics by modelling concurrent composition as separa-
tion of programs. This yields, besides further concrete applications for the presented
relational abstractions, also new insights for future considerations about relations and
concurrency reasoning.

4.4.1 Relations and Concurrent Separation Logic

We start this section with concrete de�nitions of the semantics of CSL and brie�y
explain the concepts of the concurrency extension of separation logic. After this
relational denotations and formulations will be provided to model e�ects of separating
resources within concurrent programs. These yield a fully pointfree proof of a central
inference rule in CSL that we introduce in the sequel.

CSL is an extension of its sequential version with additional concepts and proof
rules for reasoning about pointer manipulating programs in a concurrent environ-

85

Relational Separation

ment [O'H07]. A soundness proof of this logic in a partial correctness treatment is
provided in [Bro07] that uses a trace-based denotation with interleaving semantics.
Starting from this approach we derive in the sequel relational abstractions of this.
We begin by introducing extended separation logic triples in proof rules of CSL that
come with an additional construct for controlling access to shared resources in a con-
current environment. It is called the resource context and is denoted by Γ. It is
used to safeguard identi�ers or program variables that belong to a critical resource r
with a corresponding invariant. Such resources can usually be accessed concurrently
and therefore require some care to avoid non-deterministic behaviour. Contexts are
appended to formulas involving separation logic triples, i.e.,

Γ ` {p}C {q} .

Programs C that use resources of Γ need to maintain the invariants involved after
execution. As a concrete example of such a resource one can think of a shared queue,
implemented as a list. The invariant can be given by list α i (cf. Example 2.1.1) and
the protected variable by i . The ghost variable α is not protected by Γ since it is not
visible within the program itself. Now any execution accessing the list by a dequeue
or enqueue of elements needs to maintain the linking structure of the list.

Generally, soundness of the proof rules in CSL require that resource invariants are
precise assertions. Another soundness proof that comes with a weaker requirement
can be found in [Vaf11]. We will not go into any further details on resource contexts
since intuition su�ces to grasp the central ingredient of CSL, namely the concurrency
rule, which allows a parallel composition of programs:

Γ ` {p1}C {q1} Γ ` {p2}D {q2}
Γ ` {p1 ∗ p2 }C ‖ D { q1 ∗ q2} (concrule)

where pi, qi are separation logic assertions and C,D denote commands. There are
additional side conditions for this proof rule on the variables involved: FV(p1, q1) ∩
MV(D) = FV(p2, q2) ∩MV(C) = ∅ , and that FV(C) ∩MV(D) and FV(D) ∩MV(C)
need to be subsets of the identi�ers protected by the resource context Γ . The former
side condition is similar as in the frame rule and requires that assertion variables
of the untouched resources should not be modi�ed. The latter condition asserts
that modi�ed variables occurring free in a parallel program must be used inside a
critical region, i.e., protected by the resource context. Otherwise races can occur,
i.e., simultaneous accesses of parallel running programs to the same resources. Such
races may induce uncontrolled behaviour and therefore need to be excluded. The
concurrency rule informally allows, under the described circumstances, to compose
programs in parallel, each of them running on ∗ - separated regions of storage.

86

4.4 Applications to Concurrency

The semantics of CSL provided in [Bro07] is quite complex. In what follows we brie�y
present the basics that are needed to state the central theorem of that approach for
showing soundness of the concurrency rule. For the trace semantics of CSL, one de�nes
that a trace, denoted by α , is a non-empty �nite or in�nite sequence of actions, that
are denoted by λ . Such traces are also called action traces. Concatenation of traces
α1 and α2 is written α1α2 . Moreover, a special action abort is introduced that is a
left annihilator, i.e., α1 abort α2 = α1 abort . Intuitively, it signalises the occurrence
of a race. Actions λ are given by a subset of the standard separation logic commands
(cf. Section 2.2), i.e., heap lookup, mutation, allocation, disposal and store variable
assignment.

Additionally, for the treatment of critical resources, special resource actions are de-
�ned by try(r), acq(r) and rel(r), i.e., waiting for a resource r to be available, ac-
quiring and releasing it, respectively. By the use of actions λ , CSL de�nes a resource

enabling relation
λ−→ on pairs (A1, A2) of disjoint resource name sets A1, A2 . Its gen-

eral purpose is to track in the �rst component of the pairs the critical resources that
are acquired or released by any executed action while A2 includes resource names
that are acquired e.g., by other concurrently running threads. The enabling relation
is de�ned by

(A1, A2)
acq(r)−−−−→ (A1 ∪ {r}, A2) if r 6∈ A1 ∪ A2 ,

(A1, A2)
rel(r)−−−−→ (A1 − {r}, A2) if r ∈ A1 ,

(A1, A2)
λ−→ (A1, A2) if λ = try(r) or λ is not a resource action.

Informally, acq(r) adds a resource name r to A1 if it is not contained in any of the
sets Ai while rel(r) deletes r from A1 only if it is contained in A1 . All other actions
λ will leave such pairs unchanged. The resource enabling relation can be generalised
to arbitrary traces α . This allows the de�nition of an operator to interleave action
traces. Assume resource name sets Ai for i ∈ {1, 2} that denote initial acquired sets of
resources that are held by programs executing the trace αi . For traces α1, α2 we write
α1 ‖A1 A2

α2 for the set of all possible interleavings of α1 and α2 w.r.t. the resources
name sets Ai . Before we give a concrete de�nition of the interleaving operation we
require a notion for the case when actions might interfere with each other's execution:
An action λ1 interferes with another action λ2 i�

FV(λ1) ∩ MV (λ2) 6= ∅ ∨ FV(λ2) ∩ MV (λ1) 6= ∅ ,

i.e., one or both actions can produce a race which may yield non-deterministic be-
haviour by modifying the free variables of the parallel executed action. The de�nition
of the sets FV(λ) and MV (λ) for an action λ can be found in Appendix A.3 (by
identifying λ with commands over which the actions range).

87

Relational Separation

Finally the set of interleaved traces of α1, α2 can be recursively given as in Figure 4.3
where ε denotes the empty sequence. The �rst two equations are the base cases where
one of the parallel executed program can not execute any further action. We have e.g.,
α1 ‖A1 A2

ε = {α1} only if (A1, A2)
α1−→ (A′1, A2) , i.e., α1 can be executed with the

initial set A1 and ends with A′1 . Otherwise α1 ‖A1 A2
ε = ∅ . The last case recursively

interleaves the leading actions λ1, λ2 with the subsequent traces α1 and α2 by the use
of the resource enabling relation. The sets A′i again denote the acquired resources
after the execution of each λi .

α1 ‖A1 A2
ε =df {α1 : (A1, A2)

α1−→ (A′1, A2) } ,
ε ‖A1 A2

α1 =df {α2 : (A2, A1)
α2−→ (A′2, A1) } ,

λ1α1 ‖A1 A2
λ2α2 =df { abort : λ1 interferes with λ2}

∪ {λ1β : (A1, A2)
λ1−→ (A′1, A2), β ∈ (α1 ‖A′

1 A2
λ2α2) }

∪ {λ2β : (A2, A1)
λ2−→ (A′2, A1), β ∈ (λ1α1 ‖A1 A′

2
α2) } .

Figure 4.3: Recursive de�nition of interleaving traces.

Note that the trace abort above signalises the possibility of a race and can also occur
within the merge in the recursive cases. The subsequent sets recursively build all
other possible traces respecting the resource name sets A1, A2 . Programs in CSL are
de�ned to initially start with the empty set of resource names, i.e., at the beginning
there are no resources acquired and hence A1 = A2 = ∅ . We abbreviate ‖∅ ∅ to ‖ .
Moreover, we set MV (α) =df

⋃
1≤i≤n MV(λi) for a trace α = λ1 . . . λn , i.e., the

set of variables that are modi�ed within any action of α . Using this, we denote by
s\MV (α) the substore of a store s whose domain equals dom(s)−MV (α2) .

Now, the key ingredient for establishing soundness of the concurrency rule is a local
enabling relation given by σ

α−→
Γ
σ′ . It states that the local execution of a trace α from

an initial state σ is enabled and will end in the �nal state σ′ . In particular, it needs
to be consistent with the resource context Γ in the sense that only accesses to unpro-
tected identi�ers (program variables) or those of acquired resources can occur while
respecting the corresponding resource invariants. Concretely, the states σ involved
are of the form (s, h,A) , where A denotes the set of resource names that a program
holds at this state. As particular cases, one de�nes for arbitrary state σ, e.g.,

σ
skip−−→
Γ

σ , σ
abort−−−→

Γ
abort , (s, h,A)

[l]:=v−−−→
Γ

(s, (l, v) |h,A) if l ∈ dom(h) ,

where l ∈ Addresses and v ∈ Values . For a complete de�nition of this relation
involving the remaining concrete actions we refer to [Bro07]. Note that the validity
statement |= (cf. Section 2.1) of separation logic assertions can easily be de�ned on

88

4.4 Applications to Concurrency

the resource name set of extended states. For abbreviation, we also write (s, h) for
states with an empty set of acquired resources, i.e., (s, h, ∅) .
Finally, we are able to state the parallel decomposition theorem of [Bro07] from which
we start the derivation of relational abstractions. By tr(C) we denote the set of
traces of a syntactically given command C. Again we refer to [Bro07] for the concrete
de�nitions to derive the corresponding traces of such commands.

Theorem 4.4.1 (Parallel Decomposition) Assume for syntactic commands C,D
that the sets FV(C) ∩ MV(D) and FV(D) ∩ MV(C) are subsets of the identi�ers
protected by a resource context Γ . Moreover, let α ∈ (α1 ‖ α2) where α1 ∈ tr(C),
α2 ∈ tr(D) and h = h1 ∪ h2 with dom(h1) ∩ dom(h2) = ∅ .

� If (s, h)
α−→
Γ

abort then (s\MV (α2), h1)
α1−→
Γ

abort or (s\MV (α1), h2)
α2−→
Γ

abort ,

� if (s, h)
α−→
Γ

(s′, h′) then (s\MV (α2), h1)
α1−→
Γ

abort or (s\MV (α1), h2)
α2−→
Γ

abort

or there are heaps h′1, h
′
2 with h′ = h′1 ∪ h′2, dom(h′1) ∩ dom(h′2) = ∅ and

� (s\MV (α2), h1)
α1−→
Γ

(s′\MV (α2), h′1) ,

� (s\MV (α1), h2)
α2−→
Γ

(s′\MV (α1), h′2) .

The assumption on the free and modi�ed variables of the involved commands are
required to guarantee that critical variables are protected by the resource context.
More interestingly, the central conclusion of this theorem is that any interleaving
of α1 ‖ α2 basically only depends on the locally executed traces α1, α2 besides the
cases of abortion. This gives us enough information to develop relationships between
the abstract formalised ∗ - operation on relations modelling denotations for syntactic
commands C,D and their interleaved parallel execution C ‖ D .

First, assume a resource context Γ . We de�ne relational abstractions of syntactic
CSL commands parameterised by Γ as follows:

[[C]]Γ =df {(σ, σ′) : σ
α−→
Γ
σ′, α ∈ tr(C), α is �nite } .

The parametrisation w.r.t. Γ is required due to the structure of the proof rules. They
globally assume the same resource context for all involved triples. We only consider
�nite traces for [[C]]Γ since we stay with the developed approach of identifying non-
termination with divergence. Thus, (σ, σ′) ∈ [[C]]Γ i� there exists some �nite trace
α ∈ tr(C) that enables the transition. The set of traces of the parallel execution
C ‖ D is given by tr(C ‖ D) =df

⋃{α1 ‖ α2 : α1 ∈ tr(C), α2 ∈ tr(D)} . Hence, we

89

Relational Separation

immediately infer

[[C ‖ D]]Γ = {(σ, σ′) : σ
α−→
Γ
σ′, α ∈ α1 ‖ α2, α1 ∈ tr(C), α2 ∈ tr(D), α is �nite } .

Finally, we can derive from Theorem 4.4.1 pointfree relational abstractions. First, by
the use of the concepts provided in Section 4.3 we can model changes on the variables
involved by adequate compensator relations. Concretely, we can de�ne e.g., for a
syntactical command C the compensator HC by

(s, h,A) HC (s′, h′, A′) ⇔df MV(C) ⊆ dom(s) ∧ MV(C) ⊆ dom(s′)

∧ h = h′ ∧ A = A′ .
(4.10)

It is not di�cult to see that HC is in fact a compensator. It changes the modi�ed vari-
ables of a syntactic command C arbitrarily while maintaining the heap and resource
name components. The modelling of a substore s\MV(C) w.r.t. a command C with
stores where MV(C) is arbitrarily changed will not invalidate the approach since both
treatments will generate program faults in the case when the variable conditions are
not satis�ed. Clearly, this concept can be abstracted as before. The condition on the
variables protected by the environment cannot be modelled. We suppose that this
could be incorporated by an adequate modi�cation of the concrete model of [Bro07]
by variables equipped with permissions. The details remain as future work. For
simplicity we suppose for the purpose of abstraction that this condition is implicitly
satis�ed in the sequel as it is required for the concurrency rule (concrule). Moreover,
program states of the form (s, h,A) , extended by resource name sets A, can also be
treated within the setting of multi-unit separation algebras. The concrete combin-
ability relation is de�ned by (s, h,A) # (s′, h′, A′) ⇔df s = s′ ∧ dom(h) ∩ dom(h′) =
∅ ∧ A ∩ A′ = ∅ . As in the case of heaps, resource name sets are treated by disjoint
union and hence with each store s a unit is given by (s, ∅, ∅) .
For better readability, we will omit in the following de�nitions and calculations the
braces [[_]]Γ and denote by C,D and C ‖ D the corresponding relational denotations
in Σ⊥×Σ⊥ due to a partial correctness treatment instead of the syntactical commands.

De�nition 4.4.2 (Relational Decomposition)
Assume commands C,D and associated compensators KC ,KD , respectively. Then
pointfree formulations of Theorem 4.4.1 are obtained by

C ‖ D ⊆ ((KD ; C) ∗ (KC ;D)) ;⊥ ∪ (safe (C) ∗ safe (D)) ; (C ‖ D)

and

(safe (C)× safe (D)) ;� ; (C ‖ D) ⊆ (KD ; C ;KD × KC ;D ;KC) ;� .

90

4.4 Applications to Concurrency

The �rst inequation describes the fact that either the command C or D or both will
abort, e.g., due to a race or memory fault. Note that by Lemma 4.3.7 the relation
((KD ; C) ∗ (KC ; D)) ; ⊥ includes all these cases, since it is equal to (KD ; C ; ⊥) ∗
(KC ; D) ∪ (KD ; C) ∗ (KC ; D ; ⊥) . Assuming states σ, σ′ we provide for a better
intuition the pointwise form for one of the relations:

σ (KD ; C ;⊥) ∗ (KC ;D) σ′

⇔ ∃σ1, σ2, σ
′
2, τ1, τ2 : σ1 #σ2 ∧ σ = σ1 • σ2 ∧ σ1 KD τ1 ∧ σ2 KC τ2

∧ ∃α1 ∈ tr(C) : τ1
α1−→
Γ

σ⊥ ∧ ∃α2 ∈ tr(D) : τ2
α2−→
Γ

σ′2 ∧ σ′ = σ⊥ .

In the non-aborting case, the initial state can be split into two substates that are
safe for C and D , i.e., the execution will not lead to a program abortion, and any
interleaved execution of them can be split into two subexecutions acting on the sub-
states. This case is stated in a style similar to the case of the frame property in
De�nition 4.3.16 using products of relations. Note that in CSL syntactical commands
C satisfy [[C ‖ skip]]Γ = [[C]]Γ while a relational abstraction of skip would translate to
the identity relation I. By setting D = I and KD = I, we get the partial correctness
frame property as a special case of the second inequation of De�nition 4.4.2 since
safe (I) = ¬⊥ and compensators are transitive. Hence, De�nition 4.3.16 can be seen
as an extension of the frame property. Moreover, we can immediately infer from this
the following result.

Lemma 4.4.3 Assume commands C,D and associated compensators KC ,KD, re-
spectively. Suppose C,D satisfy De�nition 4.4.2. Then for all tests p1, p2 we have

p1 ⊆ safe (C) ∧ p2 ⊆ safe (D) ⇒
(p1 ∗ p2) ; (C ‖ D) ⊆ (p1 ;KD ; C ;KD) ∗ (p2 ;KC ;D ;KC) .

A proof of this can be given similarly as for Lemma 4.3.27. We continue with a
relational formulation of the variable side conditions of the concurrency rule. Un-
fortunately the general notion of preservation (cf. Section 4.3.2) cannot be directly
applied in its original form for this setting. The reason for this is that Equation (4.4)
only considers pairs of relations with combinable initial and �nal states. This cannot
be established in ∗ - products of arbitrary ; - composed relations. It is therefore put
as an assumption e.g., in Lemma 4.3.23. We will use a stronger variant that implies
Equation (4.4) and only involves a compensator and hence not the corresponding
relational denotation of the command.

De�nition 4.4.4 (Strong preservation)
A compensator KC of a command C strongly preserves a test p i� p ;KC ⊆ KC ; p .

91

Relational Separation

This corresponds to a standard and well-known relational characterisation of invari-
ants in the literature. It states that p has to hold before and after the execution of
KC . For concrete separation logic assertions, assume KC = HC as in (4.10). Then
by preservation, C will modify at most irrelevant variables of an assertion p . By
Lemma 4.3.26 this form of preservation is equivalent to

p ;KC ⊆ > ; p , (strong pres)

where > denotes the universal relation. As before, this form of preservation is also
closed under union and relation composition. Moreover, any test q strongly preserves
any test p . In particular, I strongly preserves any test p .

For a pointfree and calculational proof of concurrency rule, it remains as a last step to
provide a characterisation of the triples Γ ` {p}C {q} in CSL. Therefore we consider
the concrete semantics according to [Bro07].

De�nition 4.4.5 (CSL Triples)
Assume a resource context Γ, assertions p, q and a syntactical command C . Then
Γ ` {p}C {q} is valid if for all traces α ∈ tr(C) and all states (s, h), σ′ we have that
(s, h) |= p and (s, h)

α−→
Γ
σ′ implies ¬((s, h)

α−→
Γ

abort) and σ′ |= q . In particular, all

free variables of the syntactical command C and resource invariants of Γ without the
identi�ers protected by Γ need to be contained in dom(s) .

We implicitly assume in the sequel that the additional constraint in De�nition 4.4.5
on the variables involved are satis�ed. By this, we can reuse De�nition 4.2.6, due to
abstraction, also for the triples of CSL by the use of the relational abstractions [[_]]Γ
of commands and [[_]] for assertions (cf. Section 4.2) to obtain appropriate tests. By
Lemma 4.3.26 we therefore concretely de�ne

Γ ` {p}C {q} ⇔df [̃[p]] ; [[C]]Γ ⊆ > ; [̃[q]] . (CSL triples)

Now, we can give an abstract and pointfree proof of the concurrency rule of CSL.

Theorem 4.4.6 (Concurrency Rule) Assume a resource context Γ and syntactic
commands C,D with relational denotations [[C]]Γ, [[D]]Γ satisfying De�nition 4.4.2
with corresponding compensators KC ,KD . Moreover, assume that KC strongly pre-
serves tests p2, q2 and KD strongly preserves tests p1, q1 . Then the concurrency rule
is valid, i.e.,

Γ ` {p1}C {q1} Γ ` {p2}D {q2}
Γ ` {p1 ∗ p2 }C ‖ D { q1 ∗ q2} .

Proof. For easier readability we omit the brackets [[_]]Γ, [[_]] . First, Lemma 4.2.8,
the assumptions and (CSL triples) imply p̃1 ⊆ safe (C) and p̃2 ⊆ safe (D) . By

92

4.4 Applications to Concurrency

Lemma 4.3.8, Lemma 4.4.3, KC strongly preserves p2 and KD strongly preserves p1

w.r.t. (strong pres), assumptions and (CSL triples), isotony, KC strongly preserves
q2 and KD strongly preserves q1 w.r.t. (strong pres), isotony, Lemma 4.3.25(b), and
Lemma 4.3.8:

˜(p1 ∗ p2) ; (C ‖ D)
= (p̃1 ∗ p̃2) ; (C ‖ D)
⊆ (p̃1 ;KD ; C ;KD) ∗ (p̃2 ;KC ;D ;KC)
⊆ (> ; p̃1 ; C ;KD) ∗ (> ; p̃2 ;D ;KC)
⊆ (> ; q̃1 ;KD) ∗ (> ; q̃2 ;KC)
⊆ (> ; q̃1) ∗ (> ; q̃2)
⊆ > ; (q̃1 ∗ q̃2)

⊆ > ; ˜(q1 ∗ q2) .

ut
As in the case of the frame rule it can be seen that an algebraic proof of validity of
the concurrency rule is not di�cult. Moreover, since the proof is expressible in �rst-
order logic this further allows an automated and mechanised soundness proof of this
inference rule. A further advantage of our approach is that it is not di�cult to obtain
from the provided de�nitions further formulations for a total correctness treatment
of CSL.

Note that in the case of separation algebras with an additional permission structure
on the store variable as in [BCY06] we can use the compensator I and simplify the
concurrency rule and its pointfree assumptions used in the proof.

Corollary 4.4.7 Assume relations C,D has the compensator I. Suppose C,D satisfy
De�nition 4.4.2. Then for all tests p1, p2 we have

p1 ⊆ safe (C) ∧ p2 ⊆ safe (D) ⇒ (p1 ∗ p2) ; (C ‖ D) ⊆ (p1 ; C) ∗ (p2 ;D) .

Corollary 4.4.8 Assume a resource context Γ and syntactic commands C,D with
relational denotations [[C]]Γ, [[D]]Γ and compensator KC = KD = I satisfying De�-
nition 4.4.2. Then the concurrency rule is valid, i.e.,

Γ ` {p1}C {q1} Γ ` {p2}D {q2}
Γ ` {p1 ∗ p2 }C ‖ D { q1 ∗ q2} .

This is the general form of the concurrency rule used in the literature (e.g. [COY07,
HMSW11, HHM+11]). A semantic and abstract approach for the concurrency rule can
also be found in [COY07]. That treatment is based on special state transformer w.r.t.
elements of an abstract separation algebra. This makes that approach more general

93

Relational Separation

and not speci�c to the state model of CSL. Moreover, they handle races di�erently
than the approach of [Bro07] which is the base of our treatment. However, there are
relationships to our approach, e.g., the simpli�ed version of parallel decomposition
in [COY07] closely corresponds to our pointfree substitute in Corollary 4.4.7. In both
approaches any interleaved parallel execution depends on the local executions of the
individual commands themselves.

4.4.2 Disjoint Concurrency

In the previous section we used for a proof of the concurrency rule relational deno-
tations of the form [[C ‖ D]]Γ to model interleaved concurrency. Related approaches
that provide algebraic abstractions to concurrency (e.g. [HMSW11, HHM+11]) de�ne
a special operation for modelling concurrent composition. The central question that
arises for our relational treatment is: Can we use the generalised ∗ - operation to model
concurrent composition in an interleaved fashion ?

For simplicity we assume in the sequel separation algebras that incorporate variable
preservation by permission structures and thus use I as a compensator for any com-
mand. By this, De�nition 4.4.2 yields

[[C ‖ D]]Γ ⊆ ([[C]]Γ ∗ [[D]]Γ) ;⊥ ∪ (safe ([[C]]Γ) ∗ safe ([[D]]Γ)) ; [[C ‖ D]]Γ

and
(safe ([[C]]Γ)× safe ([[D]]Γ)) ;� ; [[C ‖ D]]Γ ⊆ ([[C]]Γ × [[D]]Γ) ;� .

By the de�nition of ∗ and isotony, this immediately implies that

[[C ‖ D]]Γ ⊆ [[C]]Γ ∗ [[D]]Γ .

Unfortunately, the other inclusion does not follow generally. To see this, assume a
resource context Γ and consider the concrete denotation of the right-hand side that
is given by

[[C]]Γ ∗ [[D]]Γ = {(σ1 • σ2, σ
′
1 • σ′2) : ∃α : σ1 • σ2

α−→
Γ
σ′1 • σ′2 , σ1 #σ2 , σ

′
1 #σ′2 ,

σ1
α1−→
Γ

σ′1, α1 ∈ tr(C), α1 is �nite,

σ2
α2−→
Γ

σ′2, α2 ∈ tr(D), α2 is �nite } .

The de�nition of ∗ does not include any details about the transition α from σ1 • σ2

to σ′1 • σ′2 . It can only be inferred that an independent execution of α1 and α2

on combinable or disjoint portions of the heap will lead to a composed �nal state.
However, the denotation [[C ‖ D]]Γ requires α ∈ α1 ‖ α2 that can include traces

94

4.4 Applications to Concurrency

that have a race and therefore yields di�erent executions. This means concretely that
∗ - compositions of relations basically model disjoint concurrency with no interference
or at most successfully synchronised interaction on shared resources between parallel
programs. Executions that might include races are excluded and treated as non-
termination erroneous programs.

There are still concrete applications for this kind of concurrency (e.g. [O'H07]). In
the sequent we continue by abstract consideration and consequences for the case of
disjoint concurrency. We formulate them for simplicity in terms of arbitrary relations
C,D ⊆ Σ × Σ in a total correctness fashion as in [DM12a, DM14]. The resulting
properties can be further used to prove a variant of concurrency rule. First, we start
by a version of the decomposition theorem w.r.t. the generalised ∗ - operator.

De�nition 4.4.9
We de�ne that relations C,D have the disjoint decomposition property i�

(pC × pD) ;� ; (C ∗D) ⊆ (C ×D) ;� .

The semantics are as follows: whenever two combinable initial states σ1 and σ2 provide
enough resources for the execution of commands C,D then each of them will be able
to acquire its needed resource from the joined state σ1 • σ2 without any interference.
For concrete commands, consider the simple separation algebra based on heaps of
Example 3.3.2. We de�ne relational denotations for heap mutation commands and
single cell heaps by

[[[l] := v]] =df {(h, (l, v) |h) : l ∈ dom(h)} ,
[[l 7→ −]] =df

⋃
v∈IN{({(l, v)}, {(l, v)})} . (4.11)

Intuitively, the command [l] := v ensures that after any terminating execution the
heap cell at address l contains the value v while l 7→ − describes heaps containing a
single cell at address l with arbitrary contents. In particular, we have p[[[l] := v]] =
[[l 7→ −]] ∗ I. By setting C = [[[1] := 2]] and D = [[[2] := 1]] , one obtains an instance
of De�nition 4.4.9. As before we can immediately infer the following results.

Lemma 4.4.10 Let relations C and D have the disjoint decomposition property and
assume p1 ⊆ pC ∧ p2 ⊆ pD . Then (p1 ∗ p2) ; (C ∗D) ⊆ (p1 ; C) ∗ (p2 ;D) .

Corollary 4.4.11 Let C and D have the disjoint decomposition property. Then

[p1]C [q1] [p2]D [q2]

[p1 ∗ p2]C ∗D [q1 ∗ q2]
.

95

Relational Separation

For a better intuition we further provide a counterexample involving commands that
do not satisfy De�nition 4.4.9.

Example 4.4.12 Consider

C =df [[[1] := 1]] ∪ [[[2] := 1]] and D =df [[[2] := 1]] ∪ [[[2] := 2]] ,

where ∪ can be interpreted by non-deterministic choice. Clearly, the commands show
interference with each other, since both may access the same heap locations. In fact,
C and D do not satisfy the concurrency property. Note that pC = pD = {(h, h) :
1 ∈ dom(h) ∨ 2 ∈ dom(h)} . Now, choose heaps h1 = {(1, 0)} and h2 = {(2, 0)} .
By (h1, h1) ∈ pC, (h2, h2) ∈ pD and h = h1 • h2, we have (h, h) ∈ p(C ∗ D). A
possible execution of C ∗D is e.g., (h, {(1, 2), (2, 1)}) . Hence, ((h1, h2), {(1, 2), (2, 1)})
is included in the left-hand side of the instantiated disjoint decomposition property
but not in the right-hand side, since that relation only allows ((h1, h2), {(1, 1), (2, 2)}) .

ut

This example shows that non-determinism in combination with commands working
on di�erent heap locations may introduce undesired behaviour. This yields a charac-
terisation of commands that rule out that behaviour. We will see in the sequent that
a su�cient concept to guarantee this is provided by preciseness (cf. Section 3.2.3).
For better readability, we abbreviate for a test p the formula (σ, τ) ∈ p by σ ∈ p since
one generally has (σ, τ) ∈ p ⇔ (σ, σ) ∈ p ∧ σ = τ . We repeat in the context of a
separation algebra: A test p is called precise i� for all states σ, there exists at most
one substate σ′ for which σ′ ∈ p, i.e.,

∀σ, σ1, σ2 : (σ1 ∈ p ∧ σ2 ∈ p ∧ σ1 � σ ∧ σ2 � σ) ⇒ σ1 = σ2 . (4.12)

It turned out that precise tests can also be de�ned by the use of the split and join
relations with tests. We start by an intermediate structural result that facilitates the
proof of Lemma 4.4.14.

Lemma 4.4.13 σ1 ∈ p ∧ σ1 � σ ⇔ ∃σ2 : ((σ1, σ2), σ) ∈ (p× I) ;�.

Proof. By de�nition of � , logic, σ2 ∈ I ⇔ true, and de�nition of �:

σ1 ∈ p ∧ σ1 � σ
⇔ σ1 ∈ p ∧ ∃σ2 : σ1 #σ2 ∧ σ1 • σ2 = σ
⇔ ∃σ2 : σ1 ∈ p ∧ σ2 ∈ I ∧ σ1 #σ2 ∧ σ1 • σ2 = σ
⇔ ∃σ2 : ((σ1, σ2), σ) ∈ (p× I) ;� .

ut

96

4.4 Applications to Concurrency

Lemma 4.4.14 If a test p satis�es

(p× I) ;� ;� ; (p× I) ⊆ p× I (4.13)

then it is precise.

Proof. Using Lemma 4.4.13 we rewrite (4.12). Now by a logic step, Lemma 4.4.13
and� is the converse of� , de�nition of ; and of tests and ×, and again a logic step

∀σ, σ1, σ2 : (σ1 ∈ p ∧ σ2 ∈ p ∧ σ1 � σ ∧ σ2 � σ) ⇒ σ1 = σ2

⇔ ∀σ1, σ2 : (∃σ : σ1 ∈ p ∧ σ2 ∈ p ∧ σ1 � σ ∧ σ2 � σ) ⇒ σ1 = σ2

⇔ ∀σ1, σ2 : (∃σ : (∃ τ1 : ((σ1, τ1), σ) ∈ (p× I) ;�)∧
(∃ τ2 : (σ, (σ2, τ2)) ∈� ; (p× I)) ⇒ σ1 = σ2

⇔ ∀σ1, σ2, τ1, τ2 : (((σ1, τ1), (σ2, τ2)) ∈ (p× I) ;� ;� ; (p× I)) ⇒ σ1 = σ2

⇐ ∀σ1, σ2, τ1, τ2 : (((σ1, τ1), (σ2, τ2)) ∈ (p× I) ;� ;� ; (p× I))
⇒ ((σ1, τ1), (σ2, τ2)) ∈ p× I

⇔ (p× I) ;� ;� ; (p× I) ⊆ p× I .

By cancellativity, i.e., for arbitrary σ, τ1, τ2. σ • τ1 = σ • τ2 ⇒ τ1 = τ2 , the above
implication turns into an equivalence. ut
As a sanity check, we can prove with this result the algebraic ∗ - distributivity char-
acterisation used in De�nition 3.2.15.

Lemma 4.4.15 If p satis�es Equation (4.13) then for arbitrary tests q, r

p ∗ (q ∩ r) = p ∗ q ∩ p ∗ r .

The proof is deferred to Appendix A. We come back to our primary goal to charac-
terise a subset of commands that entail validity of the disjoint decomposition property.

De�nition 4.4.16 (Domain Preciseness)
A relation C is called domain-precise i� pC is precise.

Lemma 4.4.17 Let C be a domain-precise relation and D any arbitrary relation.
Then both relations satisfy De�nition 4.4.9.

Proof. By (×/;) and neutrality, de�nition of ∗ , property of p, (×/;) and neutrality,
Lemma 4.4.14, again (×/;) and neutrality, (×/;) and pR ;R = R for any relation R ,

(pC × pD) ;� ; (C ∗D)
= (I × pD) ; (pC × I) ;� ; (C ∗D)

97

Relational Separation

= (I × pD) ; (pC × I) ;� ;� ; (C ×D) ;�
= (I × pD) ; (pC × I) ;� ;� ; (pC × I) ; (C ×D) ;�
= (I × pD) ; (pC × I) ; (C ×D) ;�
= (pC × pD) ; (C ×D) ;�
= (C ×D) ;� .

ut

Corollary 4.4.18 If C is domain-precise then it validates with any other relation D
the disjoint concurrency rule for total correctness of Corollary 4.4.11. In particular,
all pairs of domain-precise commands validate that inference rule.

Note, that the reverse direction of Lemma 4.4.17 does not hold as can be seen in
Example 4.4.12. The involved commands are not domain-precise since their domain
equals [[l 7→ −]] ∗ I . A precise versions of mutation commands can be obtained by
setting [[[l] := v]] = {({(l, n)}, {(l, v)}) : n ∈ IN} . Another instance of a domain pre-
cise command is dalloc (l) =df {(∅, {(l, n)}) : n ∈ IN} that deterministically allocates
at address l a new heap cell only for initial empty heaps.

4.4.3 Concurrent Kleene Algebras

A further abstract and general algebraic structure for concurrency is provided by a
Concurrent Kleene Algebra (CKA) [HMSW11]. A central concept of that algebra is
that it allows simple and short soundness proofs of important inference rules like the
concurrency and frame rules used in logics for modular reasoning about concurrency.
We motivate CKAs in the following by a standard model of it to explain the main
basics and central concepts of the algebraic structure. The present form of this model
needs to be further re�ned for incorporating real programs. However, it su�ces
for our purposes to get an intuition for the abstract concepts. Another concrete
model employs predicate transformers to abstractly capture program behaviour of
CSL within the setting of CKAs [HHM+11]. It validates a particular part of the CKA
laws that already allow a simple soundness proof of the concurrency rule also for that
calculus. But unfortunately, that model fails to satisfy other frequently required laws
needed for program proofs as, e.g., laws in connection with non-deterministic choice.
For any further details we refer to [HHM+11]. Now, the purpose of this section is to
investigate the relationally based structure with respect to the laws of a CKA that
enable the simple soundness proofs. As a relational structure it also copes well with
non-determinacy and moreover allows the re-use of a large and well studied body of
algebraic laws in connection with assertion logic. In what follows we largely follow
the approach of [DM12a, DM14].

98

4.4 Applications to Concurrency

Basically, a starting point for the standard model of [WHO09, HMSW11] is the as-
sumption of a set of events denoted by EV. Concrete examples for this can be simple
assignments to variables, a request for shared resources or other communication ac-
tion between various threads. On the set of events, one de�nes a dependence relation
→⊆ EV× EV that is used to express that certain events have to occur before others
can be executed. As an example, for modifying a critical resource it �rst needs to be
ensured that the required rights for this are granted. Now a trace tp is de�ned as a
set of events, i.e, tp ∈ P(EV) while programs P form sets of traces in that model, i.e.,
P ∈ P(P(EV)) . Moreover, we de�ne that a trace tp is independent of a trace tq by

tp 6← tq ⇔df ¬∃ e ∈ tp, f ∈ tq : f → e ,

i.e., if there are no dependence arrows from events of tp to events of tq . Based on this,
one can de�ne various composition operations. We will only enumerate the relevant
ones for out purposes. For programs P,Q and ◦ ∈ {∗ , ; , | }

P ◦Q =df {tp ∪ tq : tp ∈ P, tp ∈ Q, tp (◦) tq } ,

where
tp (∗) tq ⇔df tp ∩ tq = ∅ ,
tp (;) tq ⇔df tp ∩ tq = ∅ ∧ tp 6← tq ,
tp (|) tq ⇔df tp ∩ tq = ∅ ∧ tp 6← tq ∧ tq 6← tp .

Intuitively, for that model the operation ∗ denotes �ne-grained concurrent composi-
tion allowing dependencies in both direction while ; denotes sequential composition
where P must be independent of Q . Finally, | describes disjoint concurrency with no
dependencies in any direction.

Next we describe the algebraic structure of this model. Clearly, (∗) and (|) are
symmetric and hence the corresponding operators are commutative. Moreover, the
program ∅ is an annihilator and {∅} neutral for all operations. The former can be
seen as an erroneous program as in the case of relations while the latter that does
nothing and therefore can be interpreted as the program skip . Due to the de�nitions,
one also has the relationship

P |Q ⊆ P ;Q ⊆ P ∗Q

for programs P,Q . In [HMSW11] it was shown that (P(P(EV)), ⊆ , ∗ , {∅}) and also
(P(P(EV)), ⊆ , ; , {∅}) form quantales (cf. De�nition 3.1.1). Moreover, they are con-
nected by the so-called exchange law :

(P ∗Q) ; (R ∗ S) ⊆ (P ;R) ∗ (Q ; S) (exchange)

for programs P,Q,R, S . Intuitively, the program on the left-hand side has more
dependencies that require that both programs P and Q has to be executed before R

99

Relational Separation

and S can start while the right-hand side program only states that R needs to be
executed after P and S after Q . Hence, S might be executed there before P or R
before Q . Both programs of the exchange laws and their dependencies are depicted
in Figure 4.4.

Q

P

S

R

Q

P

S

R

Figure 4.4: Dependencies in the exchange law.

In fact, this inequation is the key ingredient to a simple proof of the concurrency rule
in that setting. For presenting that proof we �rst give a de�nition of a treatment for
Hoare triples within CKAs. For programs P,Q,R, the general Hoare triple [HMSW11]
is de�ned as

P {Q}R ⇔df P ;Q ⊆ R . (4.14)

This states that any legal extension of a P - trace by Q - trace yields a trace of R .
Deviating from standard Hoare triples, pre- and postconditions are treated in that
setting uniformly as programs. Intuitively, one can think of P as a program that
asserts the allocation of the required resources for Q while R abstracts the whole
program and only guarantees that the postcondition is satis�ed at the end. We will
later provide the concrete relationship to standard Hoare triples of the relational
approach. In this setting, the concurrency rule has the form

P1 {Q1}R1 P2 {Q2}R2

P1 ∗ P2 {Q1 ∗Q2} R1 ∗R2
,

where all Pi, Qi, Ri denote programs. A further essential feature of this rule is that
parallel composition is modelled by separation or disjointness ∗ of the involved traces
is used to model of programs. The proof is as follows: Assume by (4.14) and the
premise of the inference rule Pi ;Qi ⊆ Ri . Using (exchange) we immediately infer

(P1 ∗ P2) ; (Q1 ∗Q2) ⊆ (P1 ;Q1) ∗ (P2 ;Q2) ⊆ Q1 ∗Q2 .

Additionally, it was shown in [HHM+11] that validity of the concurrency rule is equiv-
alent to validity of the exchange law. In the same fashion validity of the frame rule
is equivalent to validity of the small exchange law

(P ∗Q) ;R ⊆ (P ;R) ∗Q

100

4.4 Applications to Concurrency

which follows from (exchange) by setting S = {∅} since it is neutral for both operations
∗ and ; .

For the rest of this section we return to the relational model and denote by P,Q, . . .
relations. Note that by interpreting the operations ∗ and ; of the CKA model rela-
tionally, we do not have the same neutral element for both operators. Assuming an
underlying (single-unit) separation algebra, the neutral element for ∗ is e =df {(u, u)}
while in the case of ; it is given by the identity relation I. Generally, we only have
the inclusion e ⊆ I since I is the largest test. If we would assume validity of the
exchange laws in our relational model this would immediately imply I ⊆ e by setting
P = R = I and Q = S = e in (exchange). By antisymmetry of the order, I and e
would be equal, a contradiction. Therefore, the relational exchange law cannot be
valid. For a more concrete analysis of this problem, we provide a simple example with
commands de�ned on the heap model in (4.11). We will provide for the rest of this
section all examples on this particular separation algebra.

Example 4.4.19 A concrete counterexample of the exchange law can be given by
setting P = [[1 7→ 2]] , Q = [[2 7→ 3]] , R = [[[2] := 4]] , S = [[[1] := 5]]
in (exchange). By de�nition we have P ∗ Q = {({(1, 2), (2, 3)}, {(1, 2), (2, 3)})} and
({(1, 2), (2, 3)}, {(1, 5), (2, 4)}) ∈ R ∗ S. Hence the left-hand side of the exchange law
is non-empty. Now, the right-hand side of the law resolves to

P ;R = [[1 7→ 2]] ; [[[2] := 4]] = ∅ = Q ; S = [[2 7→ 3]] ; [[[1] := 5]] .

Therefore the composed relation equals the empty set and thus the rule is violated.
ut

Note that in the above example, although P ∗Q provides the required set of resources
for R∗S, the re�ned program coincides with divergence. It can be seen that the heap
cells at addresses 1 and 2 are distributed to the wrong commands, respectively. This
is due to the angelic semantics of the inclusion order on relation. Hence, an idea to
validate the exchange law with relations could be to use a di�erent ordering. In fact,
and surprisingly, it is possible to show validity of a restricted variant of the exchange
law with the reversed inclusion order. This gives the behaviour of the order a demonic
�avour. The proof for this uses a restriction on pairs (P,Q) of relations: when P and
Q start from combinable pairs of input states they will produce combinable pairs of
output states, or the other way around. This is formalised as follows.

De�nition 4.4.20 We de�ne that relations P and Q are forward compatible i�

; (P ×Q) ⊆ (P ×Q) ; # .

101

Relational Separation

Symmetrically P and Q are backward compatible i� (P ×Q) ; # ⊆ # ; (P ×Q) . Two
relations are called compatible i� they are forward and backward compatible, i.e.,
; (P ×Q) = (P ×Q) ; # .

Example 4.4.21 For an intuition of the concept of forward compatible commands
we additionally de�ne for the separation algebra of heaps the relational denotation

[[dalloc (l)]] =df {(h, {(l, n)} ∪ h) : x 6∈ dom(h), n ∈ IN} (4.15)

that allocates a fresh heap cell at address l with arbitrary contents. Now, consider
heaps h1 = {(1, 1)}, h2 = ∅ and h′1 = h′2 = {(1, 2)}. Recall that # holds if the
considered heaps have disjoint domains. Clearly, h1 #h2 and ((h1, h2), (h′1, h

′
2)) ∈

; ([[[1] := 2]]×[[dalloc (1)]]). But h′1 #h′2 does not hold and thus ((h1, h2), (h′1, h
′
2)) 6∈

([[[1] := 2]]× [[dalloc (1)]]) ; # .

By changing dalloc (1) to dalloc (l) for l 6= 1 , one would end up with compatible
commands. In that case, the two compatible commands would work on disjoint
portions of the heap and hence ensure disjointness before and after their execution.
Such a condition needs to ensured e.g., when a resource context is considered in the
environment. ut

The notion of compatibility entails some useful properties that we list below. For bet-
ter readability, a few proofs and auxiliary results have been moved to the Appendix A.

Lemma 4.4.22 Assume P,Q are forward compatible. Then pP ∗ pQ = p(P ∗Q), i.e.,
∗ distributes over domain.

A proof can be found in the Appendix. Note that without the concept of compatibility,
it was only possible to show an inclusion (cf. Lemma 4.3.10).

Lemma 4.4.23 All tests are compatible with each other. In particular, I is compat-
ible with itself.

Proof. For test p, q the relation p × q is a test in the algebra of relations on pairs.
Since # is a test there, too, they commute, which means forward and backward
compatibility of p and q . ut
Finally, by the use of forward or backward compatible relations we are able to prove
validity of the exchange law using the reversed inclusion order.

Theorem 4.4.24 (Reverse Exchange) If P,Q are forward compatible or R,S are
backward compatible then

(P ;R) ∗ (Q ; S) ⊆ (P ∗Q) ; (R ∗ S) .

In particular, if P,Q or R,S are tests the inequation holds.

102

4.4 Applications to Concurrency

Proof. We assume that P and Q are forward compatible. By de�nition of ∗ , (×/;),
Lemma 4.3.4, forward compatibility, Lemma 4.3.4, and de�nition of ∗ :

(P ;R) ∗ (Q ; S)
= � ; (P ;R×Q ; S) ;�
= � ; (P ×Q) ; (R× S) ;�
= � ; # ;(P ×Q) ; (R× S) ;�
⊆ � ; (P ×Q) ; # ;(R× S) ;�
⊆ � ; (P ×Q) ;� ;� ; (R× S) ;�
= (P ∗Q) ; (R ∗ S) .

The proof for backward compatibility and R,S is symmetric. ut
The reverse exchange law expresses an increase in granularity: while in the left-hand
side programs P ; R and Q ; S are treated as indivisible, they are split in the right-
hand side program, at the expense of a �global� synchronisation point marked by the
semicolon (cf. Figure 4.5).

P

Q

R

S

σ1

σ2

#

P

Q

R

S

σ

Figure 4.5: Compatibility in the reverse exchange law.

The possibility of such a synchronisation point is established on the left-hand side by
the compatibility requirement, i.e., in Figure 4.5, the output states σ1 of P and σ2 of
Q allow their combination into a global state σ, as in the right-hand side program.
In other words, the implicit split in the left-hand side is one of the possible splits
admitted by � ; � in the right-hand side. Still another way of viewing the rule
is that the right-hand side �forgets� information about splits and therefore is more
liberal.

Example 4.4.25 As an example, we can de�ne programs produce(l) to produce some
resource at address l and consume(l) for consuming the corresponding resource at
address l. The programs can be relationally realised e.g., by [[dalloc (l)]] from Equa-
tion (4.15) and [[delete (l)]] =df {(h, h− {(l, n)}) : (l, n) ∈ h, n ∈ IN}. Next, consider
for an l ∈ IN the composed program

(produce(l) ; consume(l)) ∗ (produce(l + 1) ; consume(l + 1)) .

103

Relational Separation

In this program, each producer and its corresponding consumer are treated together as
an indivisible program. Since the producers and consumers work on disjoint resources,
they are compatible and we can use the reverse exchange law to reorder the program
above into

(produce(l) ∗ produce(l + 1)) ; (consume(l) ∗ consume(l + 1)) .

This version represents a program where all resource allocations need to be executed
concurrently before any of the resources can be consumed. The synchronisation point
denoted by ; re�ects an intermediate state that includes the produced resources at
the addresses l and l + 1 . ut

As a further step we connect the de�nition of generalised Hoare triples (4.14) that ad-
mit programs as assertions with a well-known one for Hoare logic (cf. Equation (4.2)),
i.e., p ; Q ⊆ Q ; r for any relation Q and tests p, r . The major di�erence of both
de�nitions is that the former approach does not impose any structural restriction on
the denotations for modelling pre- and postconditions.

As shown in Lemma 4.3.26, we have the relationship

p ;Q ⊆ Q ; r ⇔ > ; p ;Q ⊆ > ; r ⇔ (>; p){Q} (>; r) .

This allows in particular to immediately translate results for standard Hoare triples
into ones for general triples. The composition > ; p maps a test p to a more general
relation that makes no assumption about its initial starting states, i.e., any execution
from an arbitrary state will end up in one contained in p . Trivially, the symmetric
relation p ;> makes no restriction on �nal states or its codomain.

Unfortunately, the modi�ed exchange law introduces an inconsistency, since the order
for the proved exchange rule is reversed in contrast to the order of the relational
interpretation for general Hoare triples. However, one can obtain some further results
by this, which from a theoretical point of view might help for future considerations
about the exchange law and relational models.

As a �rst approach we note that for a relational treatment of faulting within a sep-
aration logic, we added in the total correctness approach to the semantics of Hoare
triples (cf. De�nition 4.2.10) an enabledness condition p ⊆ pQ as additional conjunct.
We will see that reversing this condition, i.e., stating pQ ⊆ p entails a soundness proof
of a variant of the concurrency rule using the reverse exchange law. The condition
states that Q enforces the precondition p in that all of its initial states need to satisfy
p . With this we de�ne for tests p, r and relation Q

{p}Q{r} ⇔df p ;Q ⊆ Q ; r ∧ pQ ⊆ p . (4.16)

This yields some useful properties and conditions. The following observation is trivial,
but useful for our �rst variant of the concurrency rule.

104

4.4 Applications to Concurrency

Lemma 4.4.26 {p ; q}Q{r} ⇔ {p} q ;Q{r} ∧ pQ ⊆ p .

Proof. By de�nition and associativity we immediately infer (p ; q) ; Q ⊆ Q ; r ⇔
p ; (q ;Q) ⊆ Q ; r . Moreover, pQ ⊆ p ; q ⊆ p and pQ = p(pQ ;Q) ⊆ p(q ;Q) ⊆ p . ut
This lemma specialises in a number of ways. Since tests are idempotent we obtain by
setting q = p that

Corollary 4.4.27 {p}Q{r} ⇔ {p} p ;Q{r} ∧ pQ ⊆ p .

The relation p ;Q can be viewed as an execution that �rst asserts the precondition p
before executing Q . Next, we may set p = I = [[true]] in Lemma 4.4.26 to get

Corollary 4.4.28 {q}Q{r} ⇔ {true} q ;Q{r} .

Note that the condition pQ ⊆ p of the involved triples is equivalent to the formula
Q ⊆ p ;Q . This can be further strengthened to an equation, i.e., Q = p ;Q . Hence,
we can conclude

Theorem 4.4.29 For tests p1, p2, r1, r2 and relations Q1, Q2 we have

{p1}Q1 {r1} {p2}Q2 {r2}

{true}Q1 ∗Q2 { r1 ∗ r2}
.

Proof. By [[true]] = I , {pi}Qi {ri} implies Qi ⊆ pi ;Qi , by {pi}Qi {ri}, and reverse
exchange law (Lemma 4.4.24) with tests r1 and r2 :

I ;(Q1∗Q2) = Q1∗Q2 ⊆ (p1 ;Q1)∗(p2 ;Q2) ⊆ (Q1 ;r1)∗(Q2 ;r2) ⊆ (Q1∗Q2);(r1∗r2) .

ut
Note that compatibility of the commands Qi is not needed for instantiating the re-
verse exchange law. Hence, the compatibility requirement is not a restriction for this
application. In particular, Theorem 4.4.29 states that these inference rules are very
liberal w.r.t. the involved preconditions, also in combination with disjoint concurrent
compositions. The requirement by this is that all executions of each relation Qi have
to be enabled by the precondition. We can bring this inference rule into a form closer
to the original and more common version:

Corollary 4.4.30 Theorem 4.4.29 is equivalent to

{p1}Q1 {r1} {p2}Q2 {r2}

{p1 ∗ p2}Q1 ∗Q2 { r1 ∗ r2}
.

105

Relational Separation

Proof. By the second proof step above, reverse exchange and p1 ∗ p2 ⊆ I we have

Q1 ∗Q2 ⊆ (p1 ;Q1) ∗ (p2 ;Q2) ⊆ (p1 ∗ p2) ; (Q1 ∗Q2) ⊆ Q1 ∗Q2 .

Hence Q1 ∗Q2 = (p1 ∗ p2) ; (Q1 ∗Q2) , so that Corollary 4.4.28 shows the claim. ut
The following result provides together with Theorem 4.4.29 the analogue of the equiv-
alence between the exchange law and the concurrency rule as shown in [HHM+11] also
for the relation-based treatment.

Lemma 4.4.31 Validity of Theorem 4.4.29 implies a special case of the reverse ex-
change law: for arbitrary commands Pi and tests ri ,

(P1 ; r1) ∗ (P2 ; r2) ⊆ (P1 ∗ P2) ; (r1 ∗ r2) .

The proof can be found in Appendix A.

We remark that the de�nition of the triples provided in Equation (4.16) unfortunately
does not validate unrestricted strengthening of the precondition p as it has to include
at least the domain of the relation Q . Therefore, we continue with another possi-
bility to interpret the reversed order of the exchange law that allows the mentioned
weakening or strengthening of proof rules. The idea is to link that law with a dual
de�nition of triples w.r.t. one of standard Hoare triples. By this we will again see
that the concurrency and frame rules for those triples can easily be derived using the
reverse exchange law. First, we give a de�nition of [Hoa11].

De�nition 4.4.32
For relations P,Q,R we de�ne Plotkin triples by

〈P,Q〉 → R ⇔df R ⊆ P ;Q

and dual partial correctness triples by

P [Q]R ⇔df P ⊆ Q ;R .

Note that in comparison with generalised Hoare triples the ; - composed relation is on
right-hand side of the inclusion order. Intuitively, the former characterises a set of
possible �nal states satisfying the postcondition R after execution of Q from initial
states of the precondition P . For this one can think of labelled transition systems,
where Q represents some sequence of actions that possibly leads from a con�guration
or state in P to some �nal con�guration of R . The semantics of such triples is rather
angelic since it states only that such a transition may exists. The notation is inspired
by Plotkin's structural operational semantics [Plo04] in which 〈s, C〉 → t means that
evaluation of term C starting in state s may lead to a term t .

106

4.4 Applications to Concurrency

The dual partial correctness triples describe possible starting states of P that end in
R after some execution of Q. According to [Hoa11], dual partial correctness triples
can, e.g., be used as a method for the generation of test cases. Assuming that R
represents erroneous �nal states of Q , then P characterises some conditions that will
lead to such error situations. Plotkin triples can be used for a dual application.

Using again the relationship of Lemma 4.3.26 the dual partial correctness triples
transform for tests p, q into

(p ;>) [Q] (q ;>) ⇔ p ;> ⊆ Q ; (q ;>) ⇔ p ⊆ (Q ; q) ;> ⇔ p ⊆ p(Q ; q)

and, symmetrically, Plotkin triples transform into

〈> ; p ,Q〉 → > ; q ⇔ > ; q ⊆ (> ; p) ;Q ⇔ q ⊆ > ; (p ;Q) ⇔ q ⊆ (p ;Q)q ,

where _q denotes the symmetric codomain operator. We concentrate on dual partial
correctness triples and use the abbreviation

p [[Q]] q ⇔df (p ;>) [Q] (q ;>) ⇔ p ⊆ p(Q ; q) . (4.17)

The dual results can be similarly calculated for Plotkin triples. Since the order within
these triple de�nitions works in the same direction as in the reverse exchange laws we
can immediately state the following result.

Lemma 4.4.33 The concurrency rule for dual partial correctness or Plotkin triples
holds i� the reverse exchange law holds.

A proof for this lemma can be derived dually to the proof of [HHM+11] stating that
the exchange law is equivalent to the concurrency rule involving general Hoare triples.
Unfortunately, in our setting the reverse exchange law does only hold conditionally
w.r.t. the assumption of compatible pairs of relations. In contrast to the approach that
used the triple de�nition of Equation (4.16), the compatibility assumption is required
for a soundness proof of the concurrency rule involving the triples of Equation (4.17).

Theorem 4.4.34 If Q1, Q2 are forward compatible then the concurrency rule for dual
partial correctness triples holds, i.e., for tests p1, p2, q1, q2

p1 [[Q1]] q1 p2 [[Q2]] q2

p1 ∗ p2 [[Q1 ∗Q2]] q1 ∗ q2
.

Again this is also valid when Q1 and Q2 are backward compatible and Plotkin instead
of dual partial correctness triples are used.

107

Relational Separation

Proof. By assumption we have p1 ⊆ p(Q1;q1) , p2 ⊆ p(Q2;q2) and the restricted variant
of the reverse exchange law. Hence, by isotony and Lemma 4.4.22 we calculate

p1 ∗ p2 ⊆ p(Q1 ; q1) ∗ p(Q2 ; q2) = p((Q1 ; q1) ∗ (Q2 ; q2)) ⊆ p((Q1 ∗Q2) ; (q1 ∗ q2)) .

ut
Note that an advantage of this relational treatment is that it allows the simple usage
of tests for modelling pre- and postconditions while the standard model of CKAs only
has a trivial test algebra consisting of the elements ∅ and {∅} .
As a further result, it was shown in [HHM+11] that using general Hoare triples, the
frame rule is equivalent to the small exchange law, i.e., (P ∗Q) ;R ⊆ (P ;R) ∗Q for
programs P,Q,R . This form could be obtained from the exchange law if ∗ and ; would
have the same unit. This is not the case for relations since we generally only have one
in equation (cf. Lemma 4.3.30). If we would assume similar as in [HHM+11] relations
satisfying the compact characterisation of Lemma 4.3.31 we can also conclude

Corollary 4.4.35 If Q ∗ I = Q and Q is forward compatible with I then the frame
rule for dual partial correctness triples holds, i.e., for tests p, q, r

p [[Q]] q

p ∗ r [[Q]] q ∗ r .

(A dual result again holds for Plotkin triples).

The behaviour of the triples of De�nition 4.4.32 is called �dual� on purpose, since
the calculations given above are symmetric to the algebraic approach of [HHM+11].
Both provided inference rules have the restriction that compatible pairs of involved
relations are needed. The reason for this is that, by Lemma 4.3.4 only # ⊆ � ;�
is valid. The restriction could be excluded if I × I ⊆ � ; � could be established.
In particular, this would yield non-restricted validity of the reverse exchange law.
However this requires an arti�cial extension of the split and join relations to total
ones, i.e., � ;� needs to include an extra state as a result for non-combinable pairs
of states. This can be done by enriching the underlying separation algebra by a fresh
state σ and using a new combinator ◦ , instead of • , de�ned by

σ ◦ τ = σ ⇔df ¬ σ# τ

and σ ◦ τ = σ • τ in any other case. The extended carrier set can then be given
by Σ =df Σ ∪̇ {σ } . For theoretical considerations we can construct by this a
relational model that allows a connection to the algebraic structure of a locality bi-
monoid [HHM+11]. Its general purpose is to connect behaviour of CSL with the
structure of a CKA.

108

4.5 Pointfree Dynamic Frames

De�nition 4.4.36
A locality bimonoid is de�ned by (S,≤, ∗, 1∗, ; , 1;) where (S,≤) is partially ordered and
the operations ∗ , ; are monotone w.r.t. the carrier set S. Moreover, (S, ∗, 1∗) needs
to form a commutative monoid and (S, ; , 1;) a monoid. Additionally, the structure
has to satisfy the exchange law and 1; ∗ 1; = 1; .

By the use of the extended split and join relations, we can interpret≤ as the reverse set
inclusion order ⊇ since the reverse exchange law holds unconditionally. In summary,
using Lemma 4.3.6, we have the following result.

Lemma 4.4.37 (P(Σ × Σ), ⊇ , ∗ , e, ; , I) forms a locality bimonoid.

These considerations are rather of theoretical interest. Note that by reversing the
set inclusion order turns t and u into ∩ and ∪ . By using the test subalgebra
as algebraic counterpart to model logical assertions the interpretation of the notion
of a test becomes unnatural. The reason for this is that p ∧ q will be identi�ed,
unusually, with p t q and p ∨ q with p u q . From an algebraic viewpoint these
modi�cations entail simpli�cations, since no additional constraints are required to
validate the reverse exchange law. However, by considering the extra failure-state σ
one deviates from the usual angelic semantics of relations.

4.5 Pointfree Dynamic Frames

In this section we present another application for the derived algebraic abstractions of
the principles and concepts of separation logic. Besides allowing compact reasoning
about shared mutable data structures it also represents by its frame rule an adequate
solution to the frame problem [MH69]. Concretely, the frame problem asks for a
methodology that allows specifying which resources of a program can be changed and
which ones are left unchanged without naming them explicitly. Such a methodology
should additionally guarantee modularity and hence scalability in speci�cation and
correctness proofs of programs. A further popular approach to the frame problem is
the theory of dynamic frames [Kas11] that provides the mentioned modularity while
still being expressive enough to handle a variety of concrete programs. There exist
further variations of the theory that address the automation of program veri�cation
(e.g., [SJP09, Lei10, GGN11]).

Now, the main goal of the following considerations is to develop algebraic abstractions
for the theory of dynamic frames similar as we have provided for separation logic. In
particular, by including the former approach into the extended relational structure,
a more general treatment of resources within separation algebras (cf. Section 3.3) is

109

Relational Separation

possible. Moreover, pointfree characterisations of central properties will allow simple
proofs of crucial concepts in a calculational style. Generally, the provided relational
calculus for separation logic further extends towards a unifying approach including
also the theory of dynamic frames. In what follows we basically follow [Dan14].

4.5.1 Abstracting Dynamic Frames

The basic setting for resource states in the theory of dynamic frames are �nite
mappings from an in�nite set of locations Loc to an in�nite set of values Val that
comprises at least integers and Booleans. This closely corresponds to the (single-
unit) separation algebra based on simple heaps (cf. Example 3.3.2 a)). Hence,
we have a concrete instance of a separation algebra for which we formally write
DFSA =df (Loc ; Val, ∪̇ , ∅) where ∪̇ denotes union of location-disjoint functions, ∅
the completely unde�ned function and σ # τ ⇔ dom(σ) ∩ dom(τ) = ∅ . We write
dom(σ) for a mapping or state σ to denote its domain or more concretely all of its
allocated locations, i.e., a subset of Loc . Moreover, we use DFSA as an abbreviation
for the dynamic frames separation algebra and de�ne the substate σ

∣∣
X
that restricts

the domain of the state σ to a set of locations X.

Lemma 4.5.1 For a state τ assume dom(τ) = X. Then for arbitrary σ we have
(σ • τ)

∣∣
X

= τ .

We concentrate for this section only on single-unit separation algebras as we do not
require multi-unit ones. It is not a di�cult task to extend the treatment to sepa-
ration algebras involving multi-units. As a next step, we provide abstractions for
the concrete dynamic frames resource setting and manage several central properties
of the approach within the abstraction to separation algebras. For this we require
additional assumptions given in [DHA09] and basically follow the approach of that
work. A separation algebra (Σ, • , u) satis�es disjointness i� for all σ, τ

σ • σ = τ ⇒ σ = τ (4.18)

and it satis�es cross-split i� for arbitrary states σi with i ∈ {1, 2, 3, 4}

σ1 • σ2 = σ3 • σ4 ⇒ ∃σ13, σ14, σ23, σ24 : σ1 = σ13 • σ14 ∧ σ2 = σ23 • σ24

∧ σ3 = σ13 • σ23 ∧ σ4 = σ14 • σ24 .
(4.19)

Disjointness in the presence of cancellativity implies that the only element that can
be combined with itself is the neutral element u , i.e.,

σ#σ ⇒ σ = u . (4.20)

110

4.5 Pointfree Dynamic Frames

Equivalently, non-unit elements cannot be combined with themselves since any allo-
cated resources will overlap in such products. Therefore, the condition of (4.18) is
called disjointness. For a proof of (4.20) assume a state σ that satis�es σ#σ . By
de�nition of # , Equation (4.18), and a logic step, we have:

σ#σ ⇔ (∃ τ : σ • σ = τ) ⇒ (τ = σ) ⇒ (σ • σ = σ) .

Now, by cancellativity we can infer u • σ = σ • σ ⇒ u = σ .

The idea of the cross-split assumption can be explained as follows: assume that a
state can be combined in two ways or that there exist two possible splits of a state.
Then there need to exist four substates that represent a partition of the original state
w.r.t. the mentioned splits. The partitions of the state can be depicted as follows:

σ =
σ1

σ2

= σ3 σ4 ⇒ σ =
σ23

σ13

σ24

σ14

Figure 4.6: Illustration of the cross-split assumption for a state σ .

For the remaining sections we assume separation algebras that satisfy disjointness and
cross-split. A concrete example of such a separation algebra can be found in [HV13].
The assumptions are required there to establish basic properties of operators for
reasoning about sharing within data structures. Note that the separation algebra
DFSA also satis�es disjointness and cross-split.

Dynamic frames are represented in concrete program speci�cations as speci�cation
variables, i.e., variables that serve only for veri�cation purposes and hence are not
physically visible in the program itself. Their usage is to cover a set of locations,
also called a region, of a state σ ranging over variables or allocated objects. By this
mechanism one obtains the expressiveness to specify what a program or a method is
allowed to modify and what remains untouched during its execution. Frequently used
examples of the theory of dynamic frames are the auxiliary speci�cation variables

used = usedσ =df dom(σ) and unused =df Loc− used .

The former denotes the set of locations to which the state σ assigns values while the
latter corresponds to all unallocated ones in that state. A dynamic frame f at a state
σ is de�ned as a subset of Loc satisfying f ⊆ used . Hence, dynamic frames are state
dependent and may vary with state transitions. Following the notation in [Kas11] a
dynamic frame f in a �nal state σ′ is denoted by f ′, i.e., it would correspond to fσ′ .

111

Relational Separation

module Rat
spec var rat_inv ∈ IB, rat, rep
rat_inv ⇒ rat ∈ Q
rat_inv ⇒ rat_rep ⊆ used ∧ rat_rep frames (rat_inv, rat)
proc double() : rat_inv ⇒ rat′ = 2 · rat ∧ rat_inv′
end module

Figure 4.7: Speci�cation of a rational number module with dynamic frames.

As a concrete example given in Figure 4.7, we present a rational number module
of [Kas11]. In that example rat_inv is a Boolean speci�cation variable and abstractly
speci�es the invariant of that module requiring in particular that rat has to be a
rational number. The speci�cation variables rep and rat_rep are dynamic frames
where the former belongs to the module and the latter to rational number itself.
By the keyword frames it is asserted that rat_rep covers all the locations of the
variables of rat_inv and rat . This mechanism is introduced to ensure that all variables
framed by rat_rep will remain unchanged as long as rat_rep is not changed, e.g., by
any other procedure that uses an implementation of the module Rat. Therefore,
the dynamic frames are also called representation regions. The speci�cation of the
procedure double() states that whenever the invariant of the rational number holds
then the procedure asserts after its execution that the �nal value of rat equals the
doubled initial value and the invariant of rat still holds.

For an abstraction of the theory of dynamic frames we start our considerations from
the concrete separation algebra DFSA. Since the theory of dynamic frames does not
need to distinguish program abortion from non-termination we will use the simpler
relational structures on the carrier set Σ×Σ . For a relational treatment we use a con-
stant sets of locations to represent initial dynamic frames f . The dynamic behaviour
within state transitions σQσ′ for a relation Q will be represented by relational and
pointfree formalisations rather than using functions or expressions that depend on
the states σ or σ′ as in the original approach. This will allow more concise structural
characterisations and pointfree proofs of basic properties involving dynamic frames.

More concretely, assuming an initial dynamic frame f to be a �xed set of locations
we de�ne

[[f]] =df {(σ, σ) : dom(σ) = f} ,

i.e., embedding f as a relation yields a subidentity or a test which characterises all
states where the allocated set of locations equals f . Note that [[f]] 6= ∅ , even if
f = ∅ , because then [[f]] = {(u, u)} . For better readability we will omit the [[_]]
brackets in the following. The context will disambiguate the usage. This embedding
of f implies that the corresponding test satis�es the special behaviour of precise tests

112

4.5 Pointfree Dynamic Frames

for which we use the pointfree characterisation of Lemma 4.4.14, i.e.,

(f × I) ;� ;� ; (f × I) ⊆ f × I.

This means that in any state τ a unique substate w.r.t. � that contains exactly the
locations of f can always be pointed out.

As the next step we introduce pointfree relational variants of framing requirements
that are crucial for the theory of dynamic frames [Kas11].

De�nition 4.5.2 (Framing Requirements) Assume a dynamic frame f . Then
the modi�cation ∆f and preservation Ξf are de�ned relationally by

∆f =df {(σ, σ′) : σ
∣∣
used−f = σ′

∣∣
used−f} ,

Ξf =df {(σ, σ′) : σ
∣∣
f

= σ′
∣∣
f
} .

The modi�cation requirement ∆f intuitively asserts that at most resources captured
by the frame f can be changed while any other resources remain untouched and hence
are not modi�ed. In particular, ∆f allows the allocation of fresh storage. Conversely,
Ξf asserts that at least the state parts characterised by f are not changed while
anything else can be changed arbitrarily.

Theorem 4.5.3 Assume a dynamic frame f . Then

∆f = (f ;>) ∗ I and Ξf = f ∗ > .

Proof. By de�nition of ∆_, de�nition of I, by set theory and de�nition of >, using
f is a test, de�nition of ; , and de�nition of ∗ :

σ (∆f) σ′

⇔ σ
∣∣
used−f = σ′

∣∣
used−f

⇔ σ
∣∣
used−f I σ

′∣∣
used−f

⇔ σ
∣∣
used−f I σ

′∣∣
used−f ∧ σ

∣∣
f
> σ′

∣∣
used′−(used−f)

⇔ σ
∣∣
used−f I σ

′∣∣
used−f ∧ σ

∣∣
f
> σ′

∣∣
used′−(used−f)

∧ σ
∣∣
f
f σ
∣∣
f

⇔ σ
∣∣
used−f I σ

′∣∣
used−f ∧ σ

∣∣
f

(f ;>) σ′
∣∣
used′−(used−f)

⇒ σ ((f ;>) ∗ I) σ′ .

For the reverse implication assume states σf , σI , σ> with σf ∈ f ∧ σ = σf •σI ∧ σ′ =
σ> •σI . Using Lemma 4.5.1 we get σ

∣∣
f

= (σf •σI)
∣∣
f

= σf . Hence, σ = σ
∣∣
f
•σ
∣∣
used−f

and cancellativity implies σI = σ
∣∣
used−f . Moreover, we can infer σ′

∣∣
used−f = (σ> •

113

Relational Separation

σI)
∣∣
used−f = (σ> • σ

∣∣
used−f)

∣∣
used−f = σ

∣∣
used−f . Now Lemma 4.5.1 implies σ> =

σ′
∣∣
used′−(used−f)

.

By de�nition of Ξ_ , f being a test, set theory, de�nition of > and de�nition of ∗ :

σ (Ξf) σ′

⇔ σ
∣∣
f

= σ′
∣∣
f

⇔ σ
∣∣
f
f σ′

∣∣
f

⇔ σ
∣∣
f
f σ′

∣∣
f
∧ σ

∣∣
used−f > σ′

∣∣
used′−f

⇒ σ (f ∗ >) σ′ .

The reverse implication can be proved analogously to the above case. ut
Hence the framing requirements can be completely described within the ∗ - extended
relational structure. Moreover, the algebraic embedding of dynamic frames as precise
tests and their use in pointfree characterisations of the framing requirements yield
the abstraction from the concrete DFSA separation algebra to arbitrary ones. We
will use the terms dynamic frame and precise test in the following as synonyms. The
abstraction further allows calculational proofs of fundamental properties that establish
the theory as a solution to tackle the frame problem. We begin with the following
result: Assume two initial disjoint sets of locations f, g where at most those of f can
be modi�ed. By this all locations of g will remain unchanged. The general idea of
this is that expressions depending on locations of f will not a�ect expressions that
depend only on locations in g. An abstraction of this fact is stated in the following
result.

Lemma 4.5.4 Assume dynamic frames f, g . Then

(f ∗ g ∗ I) ; ∆f ⊆ g ∗∆f .

Proof. By Theorem 4.5.3, de�nition of ∗ , neutrality of I and exchange (×/;), f
is precise (Equation (4.13)), I is neutral and exchange (×/;), de�nition of ∗ , and
commutativity of ∗ and Theorem 4.5.3:

(f ∗ g ∗ I) ; ∆f
= (f ∗ g ∗ I) ; ((f ;>) ∗ I)
= � ; (f × (g ∗ I)) ;� ;� ; (f ;> × I) ;�
= � ; (I × (g ∗ I)) ; (f × I) ;� ;� ; (f × I) ; (>× I) ;�
⊆ � ; (I × (g ∗ I)) ; (f × I) ; (>× I) ;�
= � ; (f ;> × (g ∗ I)) ;�
= (f ;>) ∗ g ∗ I
= g ∗∆f .

114

4.5 Pointfree Dynamic Frames

ut
Since a dynamic frame f covers a set of locations in a state, it can be concluded that
as long as f is not changed all variables and expressions that depend on its locations
will also remain unchanged. Expressions E can be abstracted relationally to tests
that only include the states that assign values to at least all free variables occurring
in E . Abstractly, we de�ne that a dynamic frame f frames a test E i�

(E ∗ I) ; Ξf ⊆ E ∗ > . (4.21)

Ξf states that dynamic frame f is preserved while the test E ∗ I ensures an initial
state σ that contains at least the required locations of E . Now re�ning the left-hand
side to E ∗ > means these locations will not be modi�ed in a �nal state σ′ since E is
a test.

Altogether we can now prove a central theorem of the dynamic frames theory, stating
that a dynamic frame will preserve its values while modi�cations on a disjoint frame
are performed.

Lemma 4.5.5 (Value preservation) Assume dynamic frames f, g . If g frames
test E then

(E ∗ I) ; (f ∗ g ∗ I) ; ∆f ⊆ E ∗ > .

Proof. By Lemma 4.5.4, isotony, Theorem 4.5.3 and g frames E (Equation (4.21)),

(E ∗ I) ; (f ∗ g ∗ I) ; ∆f ⊆ (E ∗ I) ; (g ∗∆f) ⊆ (E ∗ I) ; (g ∗ >) ⊆ E ∗ > .
ut

The abstraction of dynamic frames to sets of locations and representing them rela-
tionally as precise tests imply that they already come with the so-called self-framing
property. It is used in the program speci�cations of [Kas11] to maintain that initial
disjointness of dynamic frames is preserved in �nal states. Concretely it characterises
that a dynamic frame is preserved whenever the environment does not change its
value.

Lemma 4.5.6 Every dynamic frame frames itself.

Proof. Follows directly from f ∗ I ⊆ I, isotony of ; and Theorem 4.5.3. ut
Basically, dynamic frames in concrete veri�cation applications are always assumed to
be self-framing. Hence, this does not impose a restriction on the theory. We continue
with an auxiliary result that is required for later calculations.

Lemma 4.5.7 For a dynamic frame f we have p(∆f) = f ∗ I = p(Ξf) .

A proof can be found in the Appendix.

115

Relational Separation

4.5.2 Locality and Frame Accumulation

The relational structure of modi�cations (cf. Theorem 4.5.3) reveals that they are
related to the concept of locality [HHM+11] that is simply characterised by the equa-
tion Q ∗ I = Q for relations Q . A relationship to this characterisation within the
relational calculus has been derived in Lemma 4.3.31. In the present domain, the
behaviour of relations satisfying that equation can be described as follows: at most
resources in the footprint2 of a command are modi�ed while all other resources are
left unchanged. A formal de�nition of footprints in the setting of local actions can be
found in [RG08]. We immediately conclude as a next step

Lemma 4.5.8 Modi�cations ∆f satisfy locality.

Proof. By Theorem 4.5.3, associativity of ∗ , and I ∗ I = I (Lemma 4.3.6) :

∆f ∗ I = ((f ;>) ∗ I) ∗ I = (f ;>) ∗ (I ∗ I) = (f ;>) ∗ I = ∆f .

ut
This is closely related to the semantics of the frame rule of separation logic. For
ensuring soundness of a generalised version of that inference rule a pointfree relational
variant of the frame property (cf. De�nition 4.3.16) has been established, i.e.,

(pQ× I) ;� ;Q ⊆ (Q× I) ;� .

Note that we only consider the total correctness version of this property for the
present approach, since program abortion and non-termination is not distinguished
within the dynamic frames framework. In fact, it can be shown that relations with a
precise footprint satisfy the frame property as, e.g., in the case of modi�cations ∆f .

Lemma 4.5.9 Modi�cations ∆f have the frame property.

A proof can be found in the Appendix A.

For the present treatment, Lemma 4.5.9 can be applied to prove a relational version
of the frame accumulation law of [Kas11]. It is used in the original work a theorem
that is frequently used for correctness proofs of concrete programs. We �rst provide
the logical version of that law and describe its semantics. It is originally given as an
imperative speci�cation, i.e., a Boolean expression P that is relationally evaluated on
arbitrary pairs (σ, σ′) where σ denotes the initial and σ′ the �nal state of an execution
of P . The sequential composition of imperative speci�cations P,Q is de�ned by
P ; Q ⇔df ∃σ′′ : P (σ′′/σ′) ∧ Q(σ′′/σ) where σ′′/σ denotes the substitution of σ

2The minimal set of resources required for a successful execution.

116

4.5 Pointfree Dynamic Frames

with σ′′ , i.e., all variables will be evaluated on σ′′ instead of σ . Now, the accumulation
law reads as follows

(∆f ∧ g′ ⊆ f ∪ unused) ; ∆g ⇒ ∆f . (4.22)

In a pointwise relational fashion, the accumulation law is to be understood on arbi-
trary pairs (σ, σ′) as follows:

(∃σ′′ : σ ∆f σ′′ ∧ gσ′′ ⊆ fσ ∪ unused(σ) ∧ σ′′ ∆g σ′) ⇒ σ ∆f σ′

where σ denotes an initial state, σ′ a �nal state and σ′′ an intermediate state due
to the occurrence of ; . Note that we used gσ′′ above since the dynamic frame g′ of
Equation (4.22) denotes the �nal value of g on the intermediate state σ′′ instead of σ′ .
Intuitively this law describes that whenever g in the intermediate state is bounded
by f and can only increase by initially unallocated resources then the overall e�ect is
that at most locations in f are changed in the composition ∆f ; ∆g . Or equivalently,
all allocated resources that are initially disjoint from f are preserved.

For an algebraic proof of this we need a pointfree law to characterise bounds for
dynamic frames within modi�cations, which is of course not trivial to achieve since
dynamic frames are state-dependent.

De�nition 4.5.10 For dynamic frames f, g we say that g is bounded by f i�

; (f ;>× I) ;� ; (g ∗ I) ⊆ (f ;> ; (g ∗ I) × I) ;� .

Although that formula looks very complicated it is not di�cult to explain. We de-
scribe its meaning within the concrete separation algebra DFSA . Of course it can be
interpreted in any other adequate separation algebra, too. Assume an arbitrary pair
((σf , σI), σ

′) of the left-hand side of the above inequation. By this the premise reads
in pointwise form as

∃σ>, σg, τI : σf ∈ f ∧ σf #σI ∧ σ> • σI = σg • τI = σ′ ∧ σg ∈ g .

Intuitively the substate σf represents that part of the complete state σf • σI that
can be changed while σI corresponds to the untouched part in which any changes to
resources are not permitted. By assuming ∃σ′ : σ′ = σ> • σI we also know σ>#σI
and hence σI is also disjoint from any additionally allocated resources, i.e., dom(σI)
is disjoint from any locations of unused(σf • σI).
Now, the right-hand side states that

∃σrem : σf ∈ f ∧ σ′ = (σg • σrem) • σI ∧ σg ∈ g .

117

Relational Separation

This means by cancellativity of the underlying separation algebra that σ> = σg •σrem
and τI = σrem • σI . Hence, σg � σ> and σI � τI . In particular, we get σg #σI ,
i.e., σg is disjoint from σI which in turn implies that its allocated locations can only
cover locations of f and initially unallocated ones in unused(σf •σI) . The above state
partitions can be depicted as in Figure 4.8.

σ =
σ⊤

σI

=
σg

τI

⇒ σ =
σI

σg σrem

Figure 4.8: State partitions of a state σ for a bounded frame g .

Conversely, we can show using cross-split and disjointness that the underlying sepa-
ration algebra satis�es the inequation of De�nition 4.5.10, assuming σg #σI . First,
note that the premise asserts σ> • σI = σg • τI and hence σ>#σI . By cross-split,
i.e., Equation (4.19) we infer

∃σ1, σ2, σ3, σ4 : σ> = σ1 • σ2 ∧ σI = σ3 • σ4 ∧
σg = σ1 • σ3 ∧ τI = σ2 • σ4 .

Thus, σg #σI ⇔ (σ1 • σ3 # σ3 • σ4) ⇒ σ3 #σ3 and Equation (4.20) implies that
σ3 = u . By this we immediately have σg = σ1 ∧ σI = σ4 and therefore σ> =
σg • σ2 ∧ τI = σ2 • σI . Since σ>#σI we can instantiate σrem as σ2 .

Unfortunately, De�nition 4.5.10 is more complex than its logical variant which is due
to implicitly expressing the particular restriction of g to unallocated resources w.r.t.
f . However, with De�nition 4.5.10 we now have the possibility to abstractly relate
dynamic frames among each other and can continue by reasoning in an (in)equational
style. By this we can summarise a central result of dynamic frames within modi�ca-
tions.

Theorem 4.5.11 Assume dynamic frames where g is bounded by f . Then

∆f ; ∆g ⊆ (f ;> ; ∆g) ∗ I.

Proof. By Theorem 4.5.3, Lemma 4.3.4 and Lemma 4.5.7, g is bounded by f , I = I ;I
and exchange (×/;), Lemma 4.5.7, ∆g has the frame property and exchange (×/;)
again, and de�nition of ∗ :

∆f ; ∆g
= � ; (f ;>× I) ;� ; ∆g

118

4.5 Pointfree Dynamic Frames

= � ; # ;(f ;> × I) ;� ; (g ∗ I) ; ∆g
⊆ � ; (f ;> ; (g ∗ I) × I) ;� ; ∆g
= � ; (f ;> × I) ; ((g ∗ I)× I) ;� ; ∆g

⊆ � ; (f ;> × I) ; (p(∆g)× I) ;� ; ∆g
⊆ � ; (f ;> ; ∆g × I) ;�
= (f ;> ; ∆g) ∗ I .

ut
This characterises the behaviour that only the changes on the execution within f need
to be considered for ∆g if g is bounded by f , while all other allocated locations w.r.t
a starting state will remain unchanged.

Corollary 4.5.12 (Frame Accumulation) Assume dynamic frames f, g where g
is bounded by f . Then

∆f ; ∆g ⊆ ∆f .

Proof. By Theorem 4.5.11, isotony and de�nition of >, and Theorem 4.5.11:

∆f ; ∆g ⊆ (f ;> ; ∆g) ∗ I ⊆ (f ;>) ∗ I = ∆f .

ut
This result can be interpreted as a pointfree variant of the frame accumulation the-
orem of [Kas11] (cf. Equation (4.22)). It is applied to simplify correctness proofs
of speci�cations by eliminating occurrences of sequential composition in combination
with framing requirements.

In [Kas11] there is also the concept of strong dynamic frames. Such frames f come
with the additional restriction on a �nal state σ′ that fσ′ can only contain locations of
fσ for a starting state σ or unallocated ones w.r.t. σ . Since the given abstractions of
dynamic frames in this work imply that they are always self-framing, the modi�cations
∆f are only able to extend f in σ′ by previously unallocated locations as in [Kas11].
Hence, simple modi�cations ∆f already coincide with the stronger variant within our
abstraction.

As a �nal result for the abstracted theory we present the treatment also within the
context of related work, i.e., local actions (cf. Section 4.3.4). In [COY07] an abstract
approach to separation logic was presented that is built on separation algebras and
provides a model of programs in terms of so-called local actions. A relationship to the
relational approach and the corresponding de�nitions has already been provided in
Section 4.3.4. In contrast to the relational calculus the local action framework works
pointwise. We present in the following by the use of previous ideas about abstracting
dynamic frames local action formalisations of modi�cation and preservation framing
requirements. Moreover, we show that these de�nitions satisfy the locality property

119

Relational Separation

of local actions which is a substitute of the frame property in that approach. Finally,
we give a calculational proof of the frame accumulation law within the separation
algebra DFSA.

First, a state transformer de�nition for modi�cations can be obtained for a �xed set
of locations f with the same ideas as in Section 4.5.1 by

(∆f)(σ) =df

{
Σ ∗ {σ

∣∣
used−f} if f ⊆ used(σ)

> otherwise .

Intuitively, whenever all locations mentioned in f are allocated ones then all other
used locations in σ are preserved. Otherwise, an erroneous execution is signalled by
the special value > as in Section 4.3.4. Analogously, for the case of Ξf we de�ne

(Ξf)(σ) =df

{
Σ ∗ {σ

∣∣
f
} if f ⊆ used(σ)

> otherwise .

According to Lemma 4.5.9, the relational version of ∆f satis�es the frame property.
Similar behaviour is obtained for the state transformer de�nition of ∆f by the locality
property of [COY07], i.e.,

σ1 #σ2 ⇒ (∆f) (σ1 • σ2) v (∆f) (σ1) ∗ {σ2} . (4.23)

State transformers that satisfy Equation (4.23) are called local actions. The locality
property has similar behaviour as the relational versions of the frame property. Due
to its inclusion of > to signalise program abortion, locality is more related to the
partial correctness version of the pointfree frame property. In the inequation above
σ2 represents that part of the state σ1 • σ2 that will remain unchanged while σ1

includes the footprint of ∆f .

For a proof of Equation (4.23) a case distinction is needed. First assume σ1 #σ2. If
f 6⊆ used(σ1) then (∆f) (σ1) ∗ {σ2} = > ∗ {σ2} = > and the inequation holds. Now
assume f ⊆ used(σ1) , then

(∆f) (σ1 • σ2) = Σ ∗ {σ1 • σ2

∣∣
used(σ1•σ2)−f}

v Σ ∗ {σ1

∣∣
used(σ1)−f • σ2}

= Σ ∗ {σ1

∣∣
used(σ1)−f} ∗ {σ2}

= ∆f ∗ {σ2} .
Next we show that a treatment of the frame accumulation law is also possible using
local actions. For a translation of that law into the present setting we need to de�ne
local actions that models the following restricted modi�cation (cf. Equation (4.22))
which we provide in its logical variant by

∆(f, g) =df ∆f ∧ g′ ⊆ f ∪ unused(σ) .

120

4.5 Pointfree Dynamic Frames

Note that it is evaluated on executions, i.e., pairs of states (σ, σ′) where σ denotes
an initial and σ′ a �nal state, respectively. Moreover g′ = gσ′ generally implies the
existence of a set of locations g in each state σ′ of the result set (∆f) (σ) , if we
interpret modi�cations as local actions. By this we restrict the local action de�nition
of ∆f as follows to get a local action for ∆(f, g) :

(∆(f, g))(σ) =df

{ {σ′ : used(σ′) = g } ∗ Σ ∗ {σ
∣∣
used−f} if f ⊆ used(σ)

> otherwise .

The general idea with this is to restrict the output of ∆f to involve a �xed set
of locations g . Another possibility would be to de�ne a separate local action that
sequentially composed with ∆f restricts its output adequately. The above local action
for ∆(f, g) includes the behaviour described in De�nition 4.5.10 in which a bounding
between dynamic frames g and f is characterised. Analogously to ∆f , that state
transformer is also a local action. Now, the frame accumulation law for local actions
can be stated as follows:

∀σ. (∆(f, g) ; ∆g) (σ) v ∆f(σ) ,

where for arbitrary local actions f, g one pointwise lifts (f ;g) (σ) =df

⊔{ g(σ′) : σ′ ∈
f(σ)} if f(σ) 6= > and otherwise f ; g equals > . For a proof of the above inequation
we assume f ⊆ used(σ) and g ⊆ f ∪ unused(σ) and calculate

(∆(f, g) ; ∆g) (σ) =
⊔{∆g (σ′′) : σ′′ ∈ {σ′ : used(σ′) = g } ∗ Σ ∗ {σ

∣∣
used−f}}

=
⊔{∆g (σ′ • τ • σ

∣∣
used−f) : used(σ′) = g, τ ∈ Σ}

v ⊔{∆g (σ′) ∗ {τ • σ
∣∣
used−f} : used(σ′) = g, τ ∈ Σ}

=
⊔{Σ ∗ {τ • σ

∣∣
used−f} : τ ∈ Σ}

v ⊔{Σ ∗ {σ
∣∣
used−f}}

= Σ ∗ {σ
∣∣
used−f}

= ∆f (σ) .

As further work on the presented application of dynamic frames it would be inter-
esting to include the overlapping conjunction of [HV13] into this setting. Applied
to assertions, this operation allows an unspeci�ed portion of resources to be shared
among two predicates. For the presented relational calculus, this would enable an
abstract treatment of dynamic frames that share certain parts of their locations as
e.g., in the situation when two iterators are attached to the same list as described
in [Kas11]. Another possibility for this can be concrete considerations involving sep-
aration algebras that involve permissions [BCOP05]. As an example, for establishing
De�nition 4.5.10 with such algebras the conjecture is that the dynamic frames f, g

121

Relational Separation

would have to hold full permission to each of its captured resources. Moreover, the
relationships to concrete approaches [DYDG+10, PS11, JB12] and their integration
into this framework have to be investigated.

122

Chapter 5

Transitive Separation Logic

Separation logic has been developed to allow more �exible reasoning about heap por-
tions or, more concretely, about linked object/record structures than Hoare logic. In
this chapter we give an algebraic extension of separation logic at the data structure
level. We de�ne new operations that, in addition to guaranteeing heap separation,
make assumptions about the linking structure. Phenomena to be treated comprise
reachability analysis, (absence of) sharing, cycle detection and preservation of sub-
structures under destructive assignments. We demonstrate the practicality of this
approach with examples of in-place list-reversal, tree rotation and threaded trees.

5.1 The Algebraic Foundation

We start with a brief example to motivate the following developments. As discussed
before, the central connective of separation logic is the separating conjunction p ∗ q
of assertions p, q . It guarantees that the addresses of the resources mentioned by p
and q are disjoint. In simple settings where none of the resources of p depend on
those of q and vice versa, any simple assignment to resources of p does not yield any
changes of that in q . By this, one gets a compositional approach to reasoning about
programs. However, the situation becomes more complex when dependencies between
the set of resources exist. For a concrete example consider Figure 5.1. Clearly, from
the variables x and y two singly linked lists can be accessed. Now, let p mention the
starting addresses of the list records with contents 1, . . . , 5 and q those of the records

Transitive Separation Logic

x 1 2 3 4 5

◦

y 7 8

Figure 5.1: Sharing within two singly linked lists.

with contents 7, 8 . Note that p∗q holds, since separating conjunction only guarantees
that these address sets are disjoint. However, the contents of the consecutive mem-
ory cells contain references to records. For those addresses there is no disjointness
condition ensured. Now, if we would run, e.g., an in-place list reversal algorithm on
the list accessible from x, the contents of the list accessible from y would at the same
time inadvertently change, since the lists show the phenomenon of sharing. Therefore
the goal of the following developments is to de�ne in an abstract fashion connectives
stronger than separating conjunction ∗ that ensure the absence of sharing for situa-
tions as depicted above or that restrict sharing in a way that the absence of unintended
changes can be ensured. By this, we hope to facilitate reachability analysis within
separation logic as, e.g., needed in garbage collection algorithms, or the detection and
exclusion of cycles to guarantee termination in such algorithms.

The basic algebraic structure we start from is that of a modal Kleene algebra [DMS06],
since it allows simple proofs in a calculational style and has proved to represent a
suitable abstraction for pointer structures [Ehm04]. Another advantage is that it
further allows the application of �rst-order automated theorem provers [HS07] and
moreover captures a lot of models such as relations, regular languages or �nite traces.
We will introduce its constituents in several steps.

The basic foundation is given by an idempotent semiring denoted by (S,+, ·, 0, 1) ,
where (S,+, 0) forms an idempotent commutative monoid and (S, · , 1) a monoid. We
assume in the following that · binds tighter than + . Note that quantales form a special
case of semirings (cf. De�nition 3.1.1). We denote elements of S by a, b, c, An
intuitive example of an idempotent semiring is provided by the set of binary relations
over some carrier set X . In that case, + corresponds to relational union, · to relation
composition, 0 to the empty relation and 1 to the identity relation I. Clearly, +
induces the natural order given by a ≤ b ⇔df a+ b = b that relationally corresponds
to the inclusion order ⊆ . In particular, we assume the existence of a greatest element
that we denote by > . It is given concretely by the universal relation. In a concrete
application we can interpret elements of X as nodes of a linked data structure, such
as records or objects in a list. By this, subsets of the identity relation provide a

124

5.1 The Algebraic Foundation

uniform and adequate algebraic representation for sets of nodes of X . In general
semirings, this approach is mimicked by sub-identity elements p ≤ 1 , called tests
(cf. De�nition 3.2.13). We recapitulate that each of these elements is requested to
have a complement relative to 1 , i.e., an element ¬p that satis�es p + ¬p = 1 and
p · ¬p = 0 = ¬p · p .
With tests, the abstract product p · a can be used to restrict an element a to links
that start in nodes of p while, symmetrically, a · p restricts a to links ending in nodes
of p . Following [DMS06], these products can be used to axiomatise algebraic variants
of domain and codomain operators denoted by p_ and _q , respectively. Abstractly,
for an arbitrary element a and test p they are given by the axioms

a ≤ pa · a , p(p · a) ≤ p , p(a · b) = p(a · pb) ,
a ≤ a · aq , (a · p)q ≤ p , (a · b)q = (aq · b)q .

These imply fundamental properties such as additivity and isotony, among others (cf.
e.g [DMS06]). Note that we used the same symbol as in the concrete relational case
of (reldom) in Section 4.2 since the abstract operations in fact characterise in the
relational case sub-identities which are in one-to-one correspondence with the usual
domain and codomain. In particular, it can be shown that the �rst two axioms of
domain are equivalent to an abstract form of (reldom).

Built on these notions we also recapitulate the backward diamond operation (cf. Sec-
tion 4.2) in an more abstract form. It plays a central role for our reachability analyses
and is de�ned by 〈a|p =df (p · a)q . Since this is an abstract version of the diamond
operator from modal logic, an idempotent semiring with it is called modal. Con-
cretely, the backward diamond 〈a|p calculates all immediate successor nodes under a ,
starting from the set of nodes p , i.e., all nodes that are reachable within one a - step,
aka the image of p under a . This operation distributes through union and is strict
and isotone in both arguments.

Finally, to calculate reachability via arbitrarily many links or a - steps, we extend the
algebraic structure to a modal Kleene algebra [Koz94] by an iteration operator ∗ . It
can be axiomatised by the following unfold and induction laws:

1 + x · x∗ ≤ x∗ , x · y + z ≤ y ⇒ x∗ · z ≤ y ,
1 + x∗ · x ≤ x∗ , y · x+ z ≤ y ⇒ z · x∗ ≤ y .

This implies that a∗ is the least �xed-point µf of f(x) = 1 + a · x . By this we de�ne
the reachability function as follows:

reach(p, a) =df 〈a∗|p .
Among other properties, reach distributes through + in its �rst argument and is
isotone in both arguments. Moreover we have p ≤ reach(p, a) and the induction rule

125

Transitive Separation Logic

p ≤ q ∧ 〈a|q ≤ q ⇒ reach(p, a) ≤ q . Further properties within a fuzzy relation
algebra approach can be found in [Ehm03].

For the present chapter we basically follow the approach of [DM12b, DM13]. The
last ingredient that we introduce for an adequate treatment of pointer structures is a
special element within the algebra that represents the improper reference nil or null .
Relationally, we can express it as the singleton relation 2 =df {(O,O)} , where O is
a distinguished element of the set of nodes. Such singleton sub-identity relations can
abstractly be de�ned as atomic tests p .

De�nition 5.1.1
A test p is called atomic i� p 6= 0 and q ≤ p ⇒ q = 0 ∨ q = p for arbitrary tests q .
In particular, we assume 2 to be an atomic test.

Using 2 we also characterise the subset of elements that have no links emanating from
the pseudo-reference 2 to any other address 6= 2 . This is a natural requirement, since
the general purpose of 2 is to denote a terminator reference. We refer to this property
as properness.

De�nition 5.1.2
An element a is called proper i� 2 · a ≤ 2 .

Note that by properness 2 ·a is a test. We summarise some more consequences of this
de�nition.

Lemma 5.1.3 a1, a2 are proper i� a1 + a2 is proper.

Proof. Follows immediately from distributivity and the suprema split in (3.2). ut

Lemma 5.1.4 For an element a with 2 · pa = 0 the following properties hold:

1. a is proper , 2. 2 · a = 0 , 3. a = ¬2 · a .

Proof. For 1 and 2 we calculate 2 ·a = 2 ·pa ·a = 0 ·a = 0 ≤ 2 by domain axioms and
assumption. Finally, for 3 we have a = 1 · a = (2 + ¬2) · a = 2 · a + ¬2 · a = ¬2 · a
by neutrality, 2 being a test, distributivity and 2. ut

Lemma 5.1.5 If a is proper then reach(2, a) = 2 .

Proof. First, we always have 2 ≤ reach(2, a) . The other inequation reach(2, a) ≤ 2

is implied by 〈a|2 ≤ 2 using the reach induction rule. This is shown as follows:
(2 · a)q ≤ 2q = 2 by assumption and 2 being a test. ut

126

5.2 A Stronger Notion of Separation

5.2 A Stronger Notion of Separation

Following the example given in Section 5.1, we now continue with the given basics
to de�ne an adequate operation that excludes sharing within pointer structures. As
a motivation, we start by another simple sharing pattern in data structures that
cannot be excluded from the only use of separating conjunction ∗ as can be seen in
the Figure 5.2.

h1 x3x1 x2 h2 h1 x1 x2 h2

Figure 5.2: Examples of sharing patterns for addresses x1, x2, x3 .

Note that h1 and h2 satisfy the disjointness or combinability property, since ph1∩ph2 =
∅ . But still h = h1 ∪ h2 does not appear very separated from the viewpoint of reach-
able cells, since in the left example of Figure 5.2 both subheaps refer to the same
address x3 and in the right they form a simple cycle. This can be an undesired be-
haviour, since acyclicity of the data structure is a main correctness property required
for many algorithms, e.g., such on linked lists or tree structures. Hence, in many cases
the domain disjointness condition expressed by ph1∩ph2 = ∅ is too weak. Therefore we
want to �nd, based on the given algebraic approach a stronger disjointness condition
that takes such phenomena into account.

First, to simplify the description, for our new disjointness condition, we abstract from
non-pointer attributes of objects, since they do not play a role for reachability ques-
tions. One can always view the non-pointer attributes of an object as combined with
its address into a �super-address�. Therefore we give all de�nitions in the following
only on the relevant part of a state that a�ects the reachability observations.

With this abstraction, a linked object structure can be represented by an access rela-
tion between object addresses which we call nodes in the sequel. Again, we pass to the
more abstract algebraic view by using elements from a modal Kleene algebra to stand
for concrete access relations; hence we call them access elements. In the following we
will denote access elements by a, b, In this view, nodes are represented by atomic
tests. Extending preliminary work [Ehm04, Möl99a] we give a stronger separation
relation ©# on access elements.

De�nition 5.2.1 (Strong disjointness)
For access elements a1, a2, we de�ne the strong disjointness relation ©# by setting,
a = a1 + a2 ,

a1©# a2 ⇔df reach(pa1, a) · reach(pa2, a) ≤ 2 .

127

Transitive Separation Logic

Intuitively, a is strongly separated into a1 and a2 if each address except 2 that is
reachable from a1 is unreachable from a2 w.r.t. a , and vice versa. However, since 2

or, more concretely nil , is frequently used as a terminator reference in data structures,
it should still be allowed to be reachable. Note that, since the result of reach is
always a test, · coincides with the meet, i.e., intersection in the concrete algebra of
relations. Note that the condition of strong disjointness rules out the sharing patterns
of Figure 5.2. We summarise some immediate consequences.

Lemma 5.2.2 ©# is symmetric. Moreover, 0©# a and if a is proper then 2©# a .

Proof. The �rst claim follows from · coinciding with meet on tests. The rest follows
from strictness of reach in its �rst argument and p∗ = 1 for any test p and de�nition
of reach. ut
Since by de�nition we have for all tests p and access elements b that p ≤ reach(p, b) ,
the new separation condition indeed implies the analogue of the old one, i.e., both
parts are disjoint: a1©# a2 ⇒ pa1 · pa2 = 0 . Finally, we can conclude

Lemma 5.2.3 ©# is downward closed by isotony of reach, i.e., a1©# a2 ∧ b1 ≤ a1 ∧
b2 ≤ a2 ⇒ b1©# b2 .

It turns out that ©# can be characterised in a much simpler way without the implicit
use of the Kleene iteration operator ∗ . To formulate it, we de�ne p − q =df p · ¬q
and give an auxiliary notion.

De�nition 5.2.4
The nodes a of an access element a are given by a =df pa+ aq . A node in aq − pa is
called terminal in a, since it has no link to any other nodes.

From the de�nitions it is clear that a+ b = a + b and in particular 0 = 0 and 2 = 2 .
We show two further properties that link the nodes operator with reachability.

Lemma 5.2.5 For an access element a we have

(a) a ≤ reach(pa, a) ,

(b) 〈b| a ≤ a ⇒ reach(pa, a+ b) = a and hence a = reach(pa, a) .

The proof can be found in the Appendix. Trivially, the �rst law states that all nodes
in the domain and range of an access element a are reachable from pa , while the
second law denotes a locality condition: If the b successors of all nodes of a are again
at most nodes of a then b does not a�ect reachability via a . Using these theorems we
can give a simpler equivalent characterisation of ©# .

128

5.2 A Stronger Notion of Separation

Lemma 5.2.6 If a, b are proper then a©# b ⇔ a · b ≤ 2 .

Proof. (⇒): From Lemma 5.2.5.a and isotony of reach we infer a ≤ reach(pa, a) ≤
reach(pa, a+ b) . Likewise, b ≤ reach(pb, a+ b) . Now the claim is immediate.

(⇐): a · b ≤ 2 implies a ·pb ≤ 2. Hence, 〈b| a = (a ·b)q = (a · a ·pb · b)q ≤ (a ·2 · b)q ≤
(a ·2)q ≤ a , since b is proper and a,2 are tests. Symmetrically 〈a| b ≤ b holds. Now,

Lemma 5.2.5(b) tells us reach(pa, a+ b) · reach(pb, a+ b) = a · b , from which the claim
is again immediate. ut
The use of the condition in Lemma 5.2.6 instead of that in De�nition 5.2.1 will
considerably simplify the proofs to follow, since the Kleene ∗ induction and unfold
laws are no longer needed. Moreover, we can stay within the setting of a modal
idempotent semiring using the operator . The assumption of proper access elements
is not severe, since properness is a fundamental property of pointer structures.

Lemma 5.2.7 On proper access elements the relation ©# is bilinear, i.e., satis�es

(a+ b)©# c ⇔ a©# c ∧ b©# c and a©# (b+ c) ⇔ a©# b ∧ a©# c .

Proof. We use the characterisation of ©# from Lemma 5.2.6. First, we calculate

(a + b)©# c ⇔ a+ b · c ≤ 2 ⇔ (a + b) · c ≤ 2 ⇔ a · c ≤ 2 ∧ b · c ≤ 2 ⇔
a©# c ∧ b©# c . The other equivalence follows from commutativity of ©# . ut
This result implies several standard laws that are crucial for calculations with the
denotations for predicates or assertions, i.e., sets of states or access elements. In
particular, it enables a characterisation of the interplay between the new strong sepa-
ration operation and the usual separating conjunction. Similar as done in Section 3.1
for standard separation logic, the strong separation relation can be lifted to predicates.

De�nition 5.2.8
For predicates P1 and P2, we de�ne the separating conjunction ∗ and the strongly
separating conjunction ©∗ by

P1 ∗ P2 =df {a+ b : a ∈ P1 , b ∈ P2 , pa · pb ≤ 0 } ,
P1 ©∗ P2 =df {a+ b : a ∈ P1 , b ∈ P2 , a©# b } .

Moreover, we call a predicate proper if all its elements are proper.

Lemma 5.2.9 The operator ©∗ is commutative and associative. Moreover, P ©∗
emp = P where emp =df {0} .

129

Transitive Separation Logic

Proof. Commutativity is immediate from the de�nition. Neutrality of emp follows
from 0©# a and by neutrality of 0 w.r.t. + .

For associativity, assume a ∈ (P1 ©∗ P2) ©∗ P3 , say a = a12 + a3 with a12©# a3 and
a12 ∈ P1 ©∗ P2 and a3 ∈ P3. Then there are a1, a2 with a1©# a2 and a12 = a1 + a2

and ai ∈ Pi . By Lemma 5.2.7 a12©# a3 is equivalent to a1©# a3 ∧ a2©# a3 . Using
Lemma 5.2.7 again a1©# a2 ∧ a1©# a3 ⇔ a1©# a23 where a23 = a2 + a3 . Therefore
a ∈ P1 ©∗ (P2 ©∗ P3) . Hence (P1 ©∗ P2)©∗ P3 = P1 ©∗ (P2 ©∗ P3) . ut
The de�ned connectives are structurally similar to operations given in [HMSW09b].
Although the concrete application for that work is based on concurrency reasoning in
the setting of concurrent Kleene algebras, the results still can be interpreted for our
applications on pointer structures due to their abstractness. We present some of their
properties and use them to characterise the interplay between separating conjunction
and our stronger connective.

Lemma 5.2.10 (Exchange Laws [HMSW09b]) Assume a semigroup (A,+) and
de�ne for Pi ⊆ A the predicate P ©R Q =df {a+ b : a ∈ P , b ∈ Q , aR b } . Then for
bilinear relations R and S with R ⊆ S we have

P1©R P2 ⊆ P1©S P2 ,
(P1©S P2)©R P3 ⊆ P1©S (P2©R P3) ,

(P1©S P2)©R (P3©S P4) ⊆ (P1©R P3)©S (P2©R P4) .

Since ©# and the standard domain disjointness condition are bilinear and a1©# a2 ⇒
pa1 · pa2 = 0 as mentioned above, this immediately yields:

Corollary 5.2.11 For proper predicates Pi the following inequations hold:

P1 ©∗ P2 ⊆ P1 ∗ P2 ,
(P1 ∗ P2)©∗ P3 ⊆ P1 ∗ (P2 ©∗ P3) ,
P1 ©∗ (P2 ∗ P3) ⊆ (P1 ©∗ P2) ∗ P3 ,

(P1 ∗ P2)©∗ (P3 ∗ P4) ⊆ (P1 ©∗ P3) ∗ (P2 ©∗ P4) .

This provides useful laws for the interplay of strong separation and the standard sep-
arating conjunction. We conclude this section by some investigations on the question
that arose during our developments: why does classical separation logic get along with
the weaker notion of separation rather than the stronger one?

We will see that some aspects of our stronger notion of separation are in separation
logic implicitly welded into the recursively de�ned data structure predicates. For an
explanation of this, we concentrate on singly linked lists. They are de�ned according
to [Rey09] by the predicate list(x) (cf. Example 2.1.1) that states that the heap under

130

5.2 A Stronger Notion of Separation

consideration consists of the cells of a singly linked list with starting address x . Its
validity in a heap h is de�ned by the following clauses:

h |= list(nil) ⇔df h = ∅ ,
x 6= nil ⇒ (h |= list(x) ⇔df ∃ y : h |= [x 7→ y] ∗ list(y)) .

For simplicity, we omit the store component that records as in the de�nition of Ex-
ample 2.1.1 the values of the program variables. Hence h has to be an empty heap
when x = nil , and a heap with at least one cell at its beginning when x 6= nil , namely
[x 7→ y] .

First, note that using©∗ instead of ∗ in the de�nition above would not work, because
the heaps used are obviously not strongly separate, since their cells are connected by
forward pointers to their successor cells. In the next section we introduce an approach
to present such a connection within our algebra. For a more concrete description of
the relationship of strong separation and the usual separation condition we de�ne the
concept of closedness.

De�nition 5.2.12
An access element a is called closed i� aq ≤ pa+ 2 .

In a closed element a there exist no dangling references. As an example, the above
lists within heaps are closed as they are terminated by the value nil which abstractly
corresponds to the element 2 . We summarise a few consequences of De�nition 5.2.12.

Lemma 5.2.13 If a1 and a2 are closed then a1 + a2 is also closed.

Proof. Immediate from distributivity of domain and codomain. ut

Lemma 5.2.14 An access element a is closed i� aq − pa ≤ 2 .

Proof. As tests form a Boolean subalgebra we conclude aq − pa ≤ 2 ⇔ aq · ¬pa ≤
2 ⇔ aq ≤ pa+ 2 . ut

Lemma 5.2.15 For proper and closed a1, a2 with pa1 · pa2 = 0 we have a1©# a2 .

Proof. By distributivity and order theory we know

a1 · a2 ≤ 2 ⇔ pa1 · pa2 ≤ 2 ∧ pa1 · a2q ≤ 2 ∧ a1q · pa2 ≤ 2 ∧ a1q · a2q ≤ 2 .

The �rst conjunct holds by the assumption and isotony. Note that properness implies
2 · pai ≤ 2 . Hence for the second and analogously for the third conjunct we calculate

131

Transitive Separation Logic

pa1 · a2q ≤ pa1 · (pa2 + 2) = pa1 · pa2 + pa1 · 2 ≤ 2 . The last one reduces by distributivity
and the assumptions to 2 · 2 ≤ 2 which is trivial, since 2 is a test. ut
Domain-disjointness of access elements is ensured by the standard separating con-
junction. It can be shown, by induction on the structure of the list predicate, that all
access elements characterised by its analogue are closed, so that the lemma applies.
This is why for a large part of separation logic the standard disjointness property
su�ces.

5.3 An Algebra of Linked Structures

According to [Sim06], generally recursive predicate de�nitions, such as the list predi-
cate, are semantically not well de�ned in the classical form of separation logic. For-
mally, their de�nitions require the inclusion of �xpoint operators and additional syn-
tactic sugar. This often makes the used assertions more complicated as e.g., by ex-
pressing reachability via anonymous addresses stored in existentially quanti�ed vari-
ables, formulas often become very complex. To overcome this de�ciency we provide
operators and predicates that implicitly include such additional information, i.e., nec-
essary correctness properties like the exclusion of sharing and reachability.

In what follows we extend our algebra following precursor work in [Ehm04, Ehm03,
Möl99a, Möl92] and give some de�nitions to describe the shape of linked object struc-
tures, in particular of tree-like ones. We start by a characterisation of acyclicity.

De�nition 5.3.1
An access element a is called acyclic i� for all atomic tests p 6= 2 we have p·〈a+|p = 0 ,
where a+ =df a · a∗ .

For a concrete example of this de�nition, one can think of an access relation a where
each entry (x, y) in a+ denotes the existence of a path from address x to y within
a . Atomicity is needed to represent a single node; the de�nition would not work for
arbitrary sets of nodes. The element 2 is excluded, since it is used as a terminator
reference and no structural properties are needed for it. A simpler characterisation
can be given as follows.

Lemma 5.3.2 a is acyclic i� for all atomic tests p 6= 2 we have p · a+ · p = 0 .

Proof. p · 〈a+|p = 0 ⇔ (p · a+)q · p = 0 ⇔ (p · a+ · p)q = 0 ⇔ p · a+ · p = 0 since
codomain is strict. ut
Next, since certain access operations are deterministic, we need an algebraic charac-
terisation of determinacy. We borrow it from [DM01a]:

132

5.3 An Algebra of Linked Structures

De�nition 5.3.3
An access element a is deterministic i� ∀ p : 〈a||a〉p ≤ p , where the dual diamond is
abstractly de�ned by |a〉p =df

p(a · p) .

A further relational characterisation of determinacy of an access relation a is given by
ă · a ≤ 1 , where ˘ is the converse operator. Since in our basic algebraic structure of
semirings no general converse operation is available, we have to express the respective
properties in another way. We have chosen to use the well established notion of modal
operators. This way our algebra works also for other structures than relations. The
roles of the expressions ă and a are now played by 〈a| and |a〉, respectively.

Lemma 5.3.4 If a is deterministic and pa is an atom then also aq is an atom.

A proof can be found in Appendix A. Interestingly, that proof does not presuppose
that the set of all tests is an atomic lattice. Now we de�ne our model of linked object
structures.

De�nition 5.3.5 (Linked structures)
We assume a �nite set L of selector names and a modal Kleene algebra S.

� A linked structure is a family a = (al)l∈L of proper and deterministic access
elements al ∈ S . This re�ects that access along each particular selector is
deterministic. The overall access element associated with a is then Σl∈L al ,
by slight abuse of notation again denoted by a ; the context will disambiguate.
The set of all linked structures over L is denoted by SL . Since 2 is proper and
deterministic we will also view it as an element of SL although it does not have
any selectors.

� A linked structure a is a forest i� a is acyclic and injective, i.e., has maximal
in-degree 1 except possibly for 2 . Algebraically this is expressed by the dual of
the formula for determinacy, namely

∀ p : |a′〉〈a′|p ≤ p , where a′ =df a · ¬2 .

Moreover, we de�ne for forests a

roots(a) =df (pa− aq) + 2 · pa .

By properness and since 2 is atomic, the term 2 · pa equals 2 when 2 ≤ a and is
0 otherwise.

133

Transitive Separation Logic

� A forest a is called a tree i� r =df roots(a) is atomic and a = 〈a∗|r . In this
case r is called the root of the tree and denoted by root(a) . If additionally
L = {left, right} then a is a binary tree while singly linked lists arise as the
special case where we have only one selector, for instance next . In this case we
call a tree a chain. Finally, a tree a is called a cell if pa is an atomic test.

Note that 2 is a tree, while 0 is not, since it has no root. But at least, 0 is a forest.
For a tree a we de�ne root(a) , derived from the above de�nition on forests, by

root(a) =df

{
2 if a = 2

pa− aq otherwise .

5.4 Structural Properties of Linked Structures

As a further step we now de�ne another separation relation that permits restricted
sharing within linked structures. More precisely, we start with tree-like structures,
e.g. a1, a2 and de�ne them to be connected i� the root of a2 equals one of the leafs
of a1 . A main tool for expressing separateness and decomposability in such a fashion
is the following.

De�nition 5.4.1 (Tree combination)
Consider a selector set L . For trees a1, a2 ∈ SL we de�ne directed combinability by

a1 . a2 ⇔df pa1 · a2 = 0 ∧ a1q · a2q ≤ 2 ∧ a1q · pa2 = root(a2) .

•
a1

a2

Figure 5.3: Illustration of
. on trees.

This relation guarantees domain disjointness and excludes
occurrences of cycles, since pa1 · a2 = 0 ⇔ pa1 · pa2 =
0 ∧ pa1 ·a2q = 0 . Hence, there can be no link from a2 to a1 .
Moreover, it excludes links from non-terminal nodes of a1

to non-root nodes of a2 . Since a1, a2 are trees, it ensures
that a1 and a2 can be combined by identifying some non-
nil terminal node of a1 with the root of a2 (cf. Figure 5.3,
where the arrows with strokes indicate in which directions
links are ruled out by the de�nition). Note that the root
cannot occur more than once in a1 .

In particular, by Lemma 5.2.15 the second conjunct above
can be dropped when both arguments are singly linked lists. We summarise some
useful consequences of De�nition 5.4.1.

Lemma 5.4.2 If a is a tree then 2 . a ⇔ FALSE and a . 2 ⇔ 2 ≤ aq .

134

5.4 Structural Properties of Linked Structures

Proof. First, we have 2 . a ⇔ 2 · a = 0 ∧ 2 · aq ≤ 2 ∧ 2 · pa = root(a) . Now,
2 · pa = root(a) implies root(a) ≤ 2 by isotony and, since root(a) is atomic and
hence 6= 0 , it must equal 2 . By de�nition also a = 2 which immediately contradicts
2 · a = 0 .

Second, a . 2 ⇔ pa · 2 = 0 ∧ aq · 2 ≤ 2 ∧ aq · 2 = 2 . By the �rst result and since a is
a tree the �rst conjunct follows from properness, the second is obvious and the third
is equivalent to 2 ≤ aq . ut

Lemma 5.4.3 Suppose trees a1, a2 with a1 . a2 . Then root(a1 + a2) = root(a1) .

Proof. First observe that a1 6= 2 by Lemma 5.4.2 and a1 6= 0 by de�nition. This
implies a1 + a2 6= 2 , and we calculate

root(a1 + a2) = pa1 · ¬a1q · ¬a2q + pa2 · ¬a1q · ¬a2q .

The �rst summand reduces to pa1 · ¬a1q = root(a1) , since a1 . a2 implies pa1 · a2q = 0 ,
i.e., pa1 ≤ ¬a2q . The second summand is, by de�nition, equal to root(a2) ·¬a1q . Since
a1 . a2 implies root(a2) ≤ a1q , this summand reduces to 0 . ut
Summarised, for combinable trees a1, a2 the root of a1 +a2 is determined by a1 . Note
that we have not assumed that a1 + a2 forms a tree although root is only de�ned for
trees. We used root here instead of its concrete de�nition for better readability.

Since the directed disjointness relation . is de�ned only on tree-like structures, we
extend it now to arbitrary forests. For this we assume in the following that any forest
a can be represented by a �nite summation of trees ai , i.e., a =

∑
ai .

De�nition 5.4.4 (Forest combination)
Consider a selector set L and let a, b ∈ SL be forests with a =

∑
ai and b =∑

bj , where the ai and bj are the constituent trees with ai1©# ai2 (i1 6= i2) and
bj1©# bj2 (j1 6= j2) . Then we de�ne directed combinability by

a . b ⇔df ∃ i, j : ai . bj ∧
(∑

k 6=i
ak

)
©# bj .

Note that . on the constituent trees ai, bj is given by De�nition 5.4.1. We refer to
these components by numbers i ∈ IN and to a particular selector l ∈ L of its access
element by (ai)l . De�nition 5.4.4 requires at least two constituent trees of the forests
a and b to be connected w.r.t. . while all previously unconnected trees remain strongly
disjoint (cf. Figure 5.4). Moreover one has to exclude the case that another tree am
gets connected with bj as this would yield only a directed acyclic graph and introduce
prohibited sharing.

We now show that . guarantees preservation of linked structures under + .

135

Transitive Separation Logic

•
a2

b2

a1

b1

a

a3

b3

b

Figure 5.4: . - combination of forests a, b .

Lemma 5.4.5 Let a1, a2 be arbitrary elements of a modal semiring.

(a) If the ai are deterministic and pa1 · pa2 = 0 then also a1 + a2 is deterministic.

(b) If the ai are injective and a1q · a2q ≤ 2 then also a1 + a2 is injective.

(c) If the ai are acyclic and a2q · pa1 = 0 then also a1 + a2 is acyclic.

Proof.

(a) By distributivity, 〈a1 + a2||a1 + a2〉p ≤ p , since 〈ai||ai〉p ≤ p and 〈a2||a1〉p ≤
0 ∧ 〈a1||a2〉p ≤ 0 by pa1 · pa2 = 0 .

(b) By de�nition and distributivity we have (a1 +a2)′ = (a1 +a2) · ¬2 = a′1 +a′2 with
a′ as de�ned in De�nition 5.3.5. Now we can reason symmetrically to Part (a).

(c) Assume an arbitrary atomic test p 6= 2 . We show that p ·(a1 + a2)
+ ·p = 0 . First

note that if a2q · pa1 = 0 then (a1 + a2)
+

= a1
+ + a1

+ · a2
+ + a2

+ . This follows
using (x+ y)∗ = x∗ · (y · x∗)∗ , domain properties and the de�nition of _+ .

Hence, it remains to show p ·a1
+ ·p = 0 ∧ p ·a1

+ ·a2
+ ·p = 0 ∧ p ·a2

+ ·p = 0 . The
�rst and last conjuncts follow from the assumption. If the second conjunct would
be false, then necessarily 0 6= p · a1

+ = p · a1 · a∗1 and hence p · pa1 6= 0 . Likewise,
p · a2q 6= 0 . Since p is an atom, these two conditions are equivalent to p ≤ pa1

and p ≤ a2q , respectively, and hence imply p ≤ a2q · pa1 . This is a contradiction
to a2q · pa1 = 0 and atomicity of p .

ut

Corollary 5.4.6 Consider a selector set L . If a1, a2 ∈ SL are linked structures with
pa1 · a2 = 0 and a1q · pa2 ≤ 2 then also a1 + a2 is a linked structure in SL .

Proof. Properness of a1 + a2 follows from Lemma 5.1.3. The remaining properties
required of a1 + a2 are implied by Lemma 5.4.5. ut

136

5.4 Structural Properties of Linked Structures

Lemma 5.4.7 If a1, a2 are trees with a1 . a2 and then a1 + a2 is again a tree whose
root is that of a1 .

Proof. Since a1 .a2 implies the assumptions of Corollary 5.4.6, we know that a1 +a2

is a linked structure. Moreover, by Lemma 5.4.3 we have that root(a1 +a2) = root(a1)

and thus is atomic. It remains to show a1 + a2 = 〈(a1 + a2)
∗|root(a1) . We know that

a1 + a2 = a1 + a2 .

(≤): By the assumptions and isotony, a1 = 〈a1
∗|root(a1) ≤ 〈(a1 + a2)

∗|root(a1) .
Second, again by the assumptions, 〈b|〈a|p = 〈a · b|p and isotony, we obtain

a2 = 〈a2
∗|root(a2) ≤ 〈a2

∗| a1 = 〈a2
∗|〈a1

∗|root(a1)
= 〈a1

∗ · a2
∗|root(a1) ≤ 〈(a1 + a2)

∗|root(a1) .

(≥): For abbreviation, set q =df a1 + a2 = 〈a1
∗|root(a1) + 〈a2

∗|root(a2) . Using
diamond induction, 〈(a1 + a2)

∗|root(a1) ≤ q is implied by root(a1) ≤ q and 〈a1 +
a2|q ≤ q . The �rst conjunct is clear while the second is by distributivity and again
〈b|〈a|p = 〈a · b|p equivalent to
〈a1
∗ · a1|root(a1) + 〈a1

∗ · a2|root(a1) + 〈a2
∗ · a1|root(a2) + 〈a2

∗ · a2|root(a2) ≤ q .
By suprema split w.r.t. + the inequation for the �rst and last summands are clear.
The remaining ones are treated by

〈a1
∗ · a2|root(a1) = 〈a2|root(a1) + 〈a1

∗ · a1 · a2|root(a1)
= 〈a1

∗ · a1 · root(a2) · a2|root(a1)

= 〈a2|((root(a1) · a1
∗ · a1)q · root(a2))

≤ 〈a2|root(a2)

and 〈a2
∗ · a1|root(a2) = 〈a1|root(a2) + 〈a2

∗ · a2 · a1|root(a2) = 0 . ut

Corollary 5.4.8 Since lists are a special case of trees, Lemma 5.4.7 also holds for
lists.

Corollary 5.4.9 If a1, a2 are forests and a1 . a2 or a1©# a2 holds then also a1 + a2

is a forest.

Proof. Immediate from Lemma 5.4.7 and the de�nition of . on forests. ut
As before we can again lift the relation . to predicates. First, we de�ne the following
special predicates

[[cell]] =df {a : a is a cell } ,
[[list]] =df {a : a is a chain } ,
[[tree]] =df {a : a is a tree } ,

[[forest]] =df {a : a is a forest } .

137

Transitive Separation Logic

Clearly, [[cell]] ∩ Snext ⊆ [[list]] ⊆ [[tree]] ⊆ [[forest]] and [[cell]] ⊆ [[tree]] . Note
that we used the subset [[cell]] ∩ Snext since by de�nition no restriction on the set of
selectors L is mentioned.

De�nition 5.4.10 (Directed combination)
For a selector set L and P,Q ⊆ forest ∩ SL we de�ne directed combinability ©. by

P ©. Q =df { a1 + a2 : a1 ∈ P, a2 ∈ Q, a1 . a2 } .

To avoid excessive notation, in the sequel we tacitly assume that all predicates involved
in our formulas are restricted to the same set of selectors as in this de�nition. This
de�nition allows, conversely, also talking about decomposability: If a ∈ P1©. P2

then a can be split into two disjoint parts a1, a2 such that a1 . a2 holds. For better
readability we omit the braces [[_]] in what follows.

Lemma 5.4.11 forest©. forest ⊆ forest , tree©. tree ⊆ tree and list ©. list ⊆ list . As
particular cases we have cell ©. list ⊆ list , tree©. cell ⊆ tree and cell ©. tree ⊆ tree .

Lemma 5.4.12 Let P,Q,R ⊆ tree then

P ©. (Q©. R) ⊆ (P ©. Q)©. R ,
P ©. (Q©. R) ⊆ (P ©∗ R) ∗Q ,

(P ©. Q)©∗ R ⊆ P ©. (Q©∗ R) ,
P ©∗ (Q©. R) ⊆ (P ©∗ Q)©. R .

Proof. We start with the �rst two laws. Assume a1 ∈ P , a2 ∈ Q, a3 ∈ R and
a1 . (a2 + a3) and a2 . a3 . By Lemma 5.4.2 we know a1, a2 6= 2 . Moreover, by
Lemma 5.4.7 a2 + a3 is a tree with root(a2 + a3) = root(a2) . Now, a1 . (a2 + a3)
implies a1q · pa2 + a1q · pa3 = pa2 − a2q . Multiplying this equation by pa2 and using that
a2.a3 implies pa3 ·pa2 = 0 we obtain a1q ·pa2 = pa2−a2q = root(a2) . Hence, a1q ·pa3 = 0 ,
since root(a2) is atomic. By this we can immediately derive from distributivity and
the de�nitions that a1 . a2 ∧ (a1 + a2) . a3 and a1©# a3 ∧ p(a1 + a3) · pa2 ≤ 0 , which
shows the �rst two laws.

For the third law, assume a1 . a2 and (a1 + a2)©# a3 which is equivalent to a1©# a3 ∧
a2©# a3 . Note, that a2 + a3 is a forest. Hence by De�nition 5.4.4 the claim is
immediate.

Finally, the last inequation follows directly from bilinearity of ©# and the de�nition
of . on forests. ut

138

5.5 Assertions and Program Commands

5.5 Assertions and Program Commands

We now de�ne programming constructs to treat concrete veri�cation examples. As a
�rst step we extend our predicates by a possibility of directly addressing the roots of
the characterised structures. For this we de�ne, similar to standard separation logic,
so-called stores.

De�nition 5.5.1
A store is a partial mapping from program identi�ers to nodes, i.e., atomic tests. The
domain of a store s is denoted by dom(s) . A state is a pair (s, a) with a store s and
a linked structure a . For an identi�er i and a sequence l = l1 . . . ln ∈ L+ of selector
names, the semantics of the expression i.l w.r.t. a state (s, a) is de�ned as

[[i.l]](s,a) =df

{
〈al1 · ... · aln |s(i) if i ∈ dom(s)
0 otherwise .

Note that 〈al1 · ... · aln |s(i) is either an atomic test or 0 by determinacy of each access
element ali . In particular, we always have [[i.l]](s,a) ≤ aq .

De�nition 5.5.2
For an identi�er i and a predicate P ⊆ tree we de�ne its extension P (i) to states by

P (i) =df {(s, a) : a ∈ P, i ∈ dom(s), root(a) = s(i)} .

By this we can refer to the root of an access element a in predicates about tree-
like structures. If we are not interested in the root nodes we will, by slight abuse
of notation, simply write P also to mean the extension of P to states, i.e., P =df

{(s, a) : a ∈ P} . In particular, for an operator ◦ ∈ {=, 6=} and l,m ∈ L+, we de�ne
a denotational semantics for special predicates by

[[i ◦ 2]] =df {(s, a) : i ∈ dom(s), s(i) ◦ 2} ,
[[i.l ◦ 2]] =df {(s, a) : 0 6= [[i.l]](s,a) ◦ 2} ,

[[i.l = j.m]] =df {(s, a) : 0 6= [[i.l]](s,a) = [[j.m]](s,a)} .

The mechanism of predicate extension cannot be used with expressions e involving
selector chains. Simply setting P (e) =df {(s, a) : a ∈ P, root(a) = [[e]](s,a)} would,
for instance, not work in a formula like P (i)©. Q(i.l) , since by the de�nition of ©.
we cannot have s(i) ≤ pa with a ∈ Q due to the implicit separation condition. Hence,
we require a global view of the considered states and hence use P (i)©. Q(i.l) as an
abbreviation for (P (i)©. Q(j))∩ [[j = i.l]] where j is a fresh identi�er. Note that within
logical assertions ∩ coincides with ∧ and hence enables an evaluation of expression

139

Transitive Separation Logic

on the complete state. The predicate j = i.l is used to name an otherwise anonymous
node within the structure rooted in i . We remark that standard separation logic does
not allow heap dependent expressions (cf. Section 2.1). Hence they can be completely
evaluated on the store component. Our treatment rather follows the dynamic frames
approach [Kas11] (cf. Section 4.5) that also allows heap-dependent expressions as
e.g., stated in [PS12].

The extension of predicates to states with stores allows placing side conditions on
the root elements of predicates in formulas. This has many useful consequences. We
summarise a few association properties in the following.

Lemma 5.5.3 Let i, j, k be identi�ers and {2} 6⊆ P,Q,R ⊆ tree. Then

(a) (P (i)©. Q(j))©. R(k) = P (i)©. (Q(j)©. R(k)) if ∃ l ∈ L+ : j.l = k ,

(b) (P (i)©. Q)©∗ R(j) = P (i)©. (Q©∗ R(j)) if ∀ l ∈ L+ : i.l 6= j ,

(c) (P (i)©. Q(j))©. R(k) = P (i)©. (Q(j)©∗ R(k)) if j = i.l ∧ k = i.m ∧ l,m ∈ L ,

(d) (P (i)©∗ Q(j))©. R(k) = P (i)©∗ (Q(j)©. R(k)) if ∃ l ∈ L+ : j.l = k ,

where l ∈ L+ denotes that l is a non-empty sequences of selector names.

The proof can be found in the Appendix. The side conditions on the variables rep-
resent reachability requirements that are needed to obtain the other inclusion of
Lemma 5.4.12. As future work it would be interesting to investigate their integration
into suitable operations as this would facilitate the treatment. However, this form
su�ces for our purposes in proofs of programs. As a next step we consider the special
case of chains.

Corollary 5.5.4 For arbitrary P,Q,R ⊆ list and identi�er i we have

(P (i)©. Q(i.next))©. R(i.next.next) = P (i)©. (Q(i.next)©. R(i.next.next)) ,

i.e., ©. is associative on lists.

Proof. This follows from Lemma 5.5.3(a) by setting j = i.next and j.next = k . ut
Next we want to give semantics to program commands, in particular, to assignments
of the form i.l := e . To this end we enrich our algebraic setting by another ingredient,
namely by twigs, i.e., abstract representations of single edges in the graph correspond-
ing to a linked structure. Special assignments of the above form will add or delete
such twigs.

140

5.5 Assertions and Program Commands

De�nition 5.5.5 (Twigs)
Assume atomic tests with p ·q = 0 ∧ p ·2 = 0 . We de�ne a twig by p 7→ q =df p ·>·q
where > denotes the greatest element of the underlying modal Kleene algebra. The
corresponding update (cf. Equation 2.1) of a linked structure a is given by (p 7→
q) | a =df (p 7→ q) + ¬p · a . We assume that | binds tighter than + but less tight
than · .

We called the elements p 7→ q twigs as they intuitively corresponds to the least
non-nil components in trees or forests. Note, that by p, q 6= 0 also p 7→ q 6= 0 .
Intuitively, in (p 7→ q) | a , the single node of p is connected to the single node in
q , while a is restricted to links that start from ¬p only. Assuming the Tarski rule,
i.e., ∀ a : a 6= 0 ⇒ > · a · > = >, we can easily infer for a twig (p 7→ q)q = q and
p(p 7→ q) = p .

Lemma 5.5.6 p 7→ q = p+ q and root(p 7→ q) = p .

Proof. The �rst result is trivial. Second, root(p 7→ q) = p(p 7→ q) · ¬(p 7→ q)q =
p · ¬q = p , since p · q = 0 ⇔ p ≤ ¬q by shunting. ut
Note that by a = 0 ⇔ pa = 0 , cells are always non-empty.

Lemma 5.5.7 For a cell a we have root(a) = pa, hence ¬root(a) · a = 0 .

Proof. By de�nition root(a) ≤ pa and root(a) 6= 0. Thus root(a) = pa . ut

Lemma 5.5.8 Twigs p 7→ q are cells.

Proof. By assumption, p(p 7→ q) = p is atomic and 6= 2 , hence proper. Moreover,
reach(p, p 7→ q) = p 7→ q = p+q , acyclicity holds by p ·q = 0 . To show determinacy
we conclude for arbitrary tests s:

q · s ≤ q ⇒ q · s = 0 ∨ q · s = q ⇔ q · s = 0 ∨ q ≤ s .

Hence, 〈p 7→ q||p 7→ q〉s ≤ 〈p 7→ q|p ≤ q ≤ s . The calculation for injectivity is
analogous. ut
Now, we can summarise a few consequences that will be used in the examples to come.

Corollary 5.5.9 [[i 6= 2]] ∩ list (i) = cell (i)©. list and [[i = 2]] ∩ list (i) = {2}.

Proof. We only show list (i) = cell (i)©. list , since the second result is obvious. The
⊇ - direction follows from Lemma 5.4.7. For ⊆ we know by the assumption i 6= 2

141

Transitive Separation Logic

and the de�nitions that a 6= 2 for all (s, a) ∈ list (i) . Since a is a chain and therefore
acyclic, we can write a = (root(a) 7→ root(b)) + b where b =df ¬root(a) · a . Note
that by Lemma 5.5.8 (root(a) 7→ root(b)) ∈ cell . By this one can show b ∈ list and
(root(a) 7→ root(b)) . b . ut

Corollary 5.5.10 [[i.left 6= 2]] ∩ [[i.right 6= 2]] ∩ tree(i) = cell (i)©. (tree(i.left) ©∗
tree(i.right)) .

Proof. A proof can be constructed similarly as for Corollary 5.5.9. ut
Now, we are ready to provide de�nitions for the concrete meaning of program com-
mands. They are modelled denotationally as in Section 4 as relations between states.
For assignments of the form i.l := e , we use twigs (cf. De�nition 5.5.5) to describe
updates of linked structures by adding or changing links. In particular, we use ex-
pressions e of the form 〈var〉.l where var is an arbitrary variable and l ∈ L+ .

De�nition 5.5.11 (Commands on linked structures)
In the following we assume an identi�er i , a selector set L , a selector name l ∈ L and
an expression e for which [[e]](s,a) is always an atomic test. For a linked structure
a ∈ SL we abbreviate the subfamily (ak)k∈L−{l} by aL−l . Then we de�ne a relational
semantics for commands on linked structures by

[[i := e]] =df { ((s, a), (s[i← p], a)) : i ∈ dom(s), p = [[e]](s,a) } ,
[[i.l := e]] =df { ((s, a), (s, (s(i) 7→ [[e]](s,a))|al + aL−l) : i ∈ dom(s),

s(i) 6= 2, s(i) ≤ pal } ,
[[i := new cell ()]] =df { ((s, a), (s[i← p], (p 7→ 2)|a) : i ∈ dom(s), p ≤ ¬pa ,

p is an atomic test, p 6= 2 } ,
[[delete (i)]] =df { ((s, a), (s,¬p · a)) : p = s(i), p ≤ pa, i ∈ dom(s), p 6= 2 } .

The de�nitions closely corresponds to the total correctness semantics of the separation
logic commands given in Section 2.2 as we included identi�er and selector assignments,
single cell allocation and deletion. Similar to Section 4.1 we can obtain a partial
correctness version for validating the frame rule by adding a distinguished state that
denotes program abortion. This further requires an inclusion of aborting executions
to the commands of De�nition 5.5.11 whenever the conditions involving pa or pal are
not satis�ed.

One particular di�erence to standard separation logic is that we allow assignments of
the form i.l := j.m for identi�ers i, j and selectors l,m , i.e., a dereferencing on both
sides of the assignment operator := . In separation logic this can be mimicked by the
use of a temporal store variable. In general selector assignments do not preserve the
tree structure. We provide su�cient conditions for that in the form of Hoare triples
in the next section.

142

5.6 Inference Rules

5.6 Inference Rules

As already done in Section 4.2, we follow the presented relational approach for cor-
rectness proofs of our extension to separation logic. We encode sets of access elements
or predicates P as subidentity relations of the form {(σ, σ) : σ ∈ P } where σ = (s, a)
for some store s and linked structure a . For easier readability we will now omit
the [[_]] - brackets and do not distinguish assertions and commands from their corre-
sponding relations notationally. We will use Lemma 4.3.26 for a relational encoding
of Hoare triples, i.e., for predicates P,Q and command C we use

{P}C {Q} ⇔df P̃ ; C ⊆ C ; Q̃ ⇔ P̃ ; C ⊆ > ; Q̃ .

For concentrating on the main details of our extension to separation logic we facili-
tate the partial correctness treatment by excluding separate calculations on abort free
predicates P̃ as in Section 4.2. With the previous basics it is not di�cult to give
corresponding and analogous calculations within the present setting.

5.6.1 Selector Assignments

First, we abbreviate the following rules by introducing some syntactic sugar. For
expressions e, e′ and operators ◦ ∈ {∗ ,©# ,©. } , we replace formulas of the form Q ◦
P (e) ∧ e′ = e by Q ◦ P (e, e′) . By this we can explicitly show expressions that are
aliases for the same root node. For instance, we can abbreviate the rule

{ P (j)©. Q(j.l) }
i := j.l;
{ P (j)©. Q(j.l) ∧ i = j.l }

to
{ P (j)©. Q(j.l) }
i := j.l;
{ P (j)©. Q(j.l, i) } .

Lemma 5.6.1 For predicates P,Q,R ⊆ tree , identi�ers i, j and selector l ∈ L :

{ (P (i)©. Q(i.l))©∗ R(j) }
i.l := j;
{ (P (i)©. R(j, i.l))©∗ Q } ,

{ P (i)©∗ R(j) ∧ i.l = 2 }
i.l := j;
{ P (i)©. R(j, i.l) } ,

{ P (i)©. Q(i.l) }
i.l := 2;
{ P (i)©∗ Q ∧ i.l = 2 } .

Proof. We only give a proof of the leftmost rule. The remaining ones can be proved
similarly. Assume trees a1 ∈ P ∧ a2 ∈ Q ∧ a3 ∈ R with a1 .a2 ∧ a1©# a3 ∧ a2©# a3 ∧
a = a1 + a2 + a3 . We decompose each ai into its l-part bi =df (ai)l and the rest
ci =df (ai)L−l and show ((root(a1) 7→ root(a3))|b1 + c1)©# a2 . This is equivalent to
c1©# c2 ∧ (root(a1) 7→ root(a3))©# b2 ∧ (¬root(a1) · b1)©# b2 .

By assumption we know (root(a1) · b1)q = root(a2) . This implies by the injectivity
property of trees and atomicity that (¬root(a1) · b1)q · pa2 = 0 . Hence, together with

143

Transitive Separation Logic

a1©. a2 we have (¬root(a1) · b1)©# b2 . By determinacy and again the assumption on
the roots, a1q · pa2 = root(a2) is equivalent to b1q · pa2 = root(a2) ∧ c1q · pa2 = 0 . Hence,
c1©# c2 .

The rest follows from a1©. a2 and it remains to show ((root(a1) 7→ root(a3))|b1 +
c1)©. a3 . This can be calculated by similar considerations as above using a1©# a3 .
Therefore, ((root(a1) 7→ root(a3))|b1) + aL−l ∈ (P (i)©. R(j, i.l))©∗ Q . ut
The conjuncts i.l = 2 in the middle and right inference rules are useful, since they
show that the assignments involved do not introduce any memory leaks. To provide
more intuition of what is happening in the leftmost rule of Lemma 5.6.1, we depicted
the shapes of the trees in the pre- and postcondition in Figure 5.5.

{
•
•i

a

i.l j •
}

i.l := j

{
•
•i

j

a

•
}

Figure 5.5: Illustration of a selector assignment inference rule.

Note that after the execution of selector assignment the subtree a still resides un-
touched on the heap. However, unless there are links to it from elsewhere, it is
inaccessible and hence garbage. The other rules can be illustrated similarly.

5.6.2 Frame Rules

As a next step we introduce frame rules involving the newly introduced operators.
Moreover, we provide validity proofs of them in an algebraic fashion. For this we
mainly follow the relational treatment of Section 4.3. Concretely, the ©∗ and ©.
operators are lifted to relations by

(s, a) C ◦D (s′, a′) ⇔ ∃ a1, a2, a
′
1, a
′
2 : a = a1 + a2 ∧ a1 # a2 ∧ a′ = a′1 + a′2

∧ a′1 # a′2 ∧ (s, a1) C (s′, a′1) ∧ (s, a2) D (s′, a′2) ,

where ◦ ∈ {©∗ ,©. } and # ∈ {©# , . } , respectively. Note that this �ts into a treatment
within multi-unit separation algebras as provided in Section 3.3 by adequate de�ni-
tions of # on states rather than access elements. Cancellativity is ensured since both
combinability relations ©# , . involve domain disjointness and + denotes an abstract
form of union on access elements.

For validating the frame rules we need in particular to ensure according to Theo-
rem 4.3.28 that the new commands on access relations satisfy a corresponding version

144

5.6 Inference Rules

of the frame property (cf. De�nition 4.3.16) which we can use with the compensator
H (cf. De�nition 4.3.11) , i.e.,

(safe (C)× ¬⊥) ;� ; C ⊆ (C ×H) ;� .

Lemma 5.6.2 All commands of De�nition 5.5.11 have the frame property w.r.t. ©# .

Proof. The cases for allocation and deletion are not di�cult. For simple variable
assignments, only the store component is modi�ed and the argumentation is the same
as in our treatment for standard separation logic. Therefore we now concentrate on
the selector assignment i.l := e for commands C . For the reader's bene�t we repeat
its non-aborting relational semantics:

{ ((s, a), (s, (s(i) 7→ [[e]](s,a))|al + aL−l) : i ∈ dom(s) , s(i) 6= 2 , s(i) ≤ pal } .
First assume a non-aborting execution ((s, a), (s, a′l + aL−l)) of C where a′l =df

(s(i) 7→ [[e]](s,a))|al , [[e]](s,a) is atomic and the above conditions are satis�ed. More-
over we assume access elements with a = ap + ar and ap©# ar where for a store s we
have that (s, ap) is safe for C . By this, there exists a transition ((s, ap), (s, bp)) of C
where bp =df (s(i) 7→ [[e]](s,ap))|(ap)l + (ap)L−l with s(i) ≤ p(ap)l .

First, we show bp©# ar . By bilinearity of ©# we have

bp©# ar ⇔ (s(i) 7→ [[e]](s,ap))|(ap)l ©# ar ∧ (ap)L−l ©# ar .

The second conjunct follows by downward closedness of ©# from the assumption

ap©# ar . The �rst conjunct is by Lemma 5.5.6 equivalent to (s(i) + [[e]](s,ap)) · ar ≤
2 ∧ (¬s(i) · (ap)l) · ar ≤ 2 . Again the latter conjunct follows from downward closed-
ness of ap©# ar . For the former conjunct we �rst calculate s(i) · ar ≤ pap · ar ≤ 0
by ap©# ar . By De�nition 5.5.1 we infer by isotony that [[e]](s,ap) ≤ [[e]](s,a) . Since
[[e]](s,a) is atomic both tests are equal. Hence, by the assumptions and ap©# ar we

conclude that [[e]](s,ap) · ar ≤ 2 .

Finally, we need to show a′l + aL−l = bp + ar . Since pap · par ≤ 0 and s(i) ≤ pap we
have (s(i) 7→ [[e]](s,ap))|(ap)l + (ar)l = (s(i) 7→ [[e]](s,ap))|al = (s(i) 7→ [[e]](s,a))|al .
Moreover, aL−l = (ap)L−l + (ar)L−l and the claim follows. ut

Corollary 5.6.3 The ©∗ - frame rule, i.e.,

{P}C {Q}
{P ©∗ R}C {Q©∗ R}

is valid for all predicates R and commands C that do not modify or reference any
identi�er occurring in R.

145

Transitive Separation Logic

As a next step we give frame rules involving the operator ©. . The usage of this
operation requires the inclusion of predicates that characterise forests or tree-like
structures as its combinability relation . involves the de�nition of root . For simplicity
we stay with tree structures as the rule is only required in later veri�cation examples
for trees. However, the frame rule can also be extended to forests like the symmetric
inference rule we provide afterwards. By restricting ourselves to trees we only need a
restricted version of frame property, i.e.,

(tree ; safe (C) × tree ; ¬⊥) ;� ; C ⊆ (C ×H) ;� .

We call it the tree - frame property w.r.t. . . By this we conclude:

Lemma 5.6.4 Any command C of De�nition 5.5.11 has the tree - frame property
w.r.t. . .

Proof. The proof is similar as for Lemma 5.6.2. As before we consider only the case
of selector assignments and assume a non-aborting execution ((s, a), (s, a′l + aL−l)) of
C where a′l =df (s(i) 7→ [[e]](s,a))|al with [[e]](s,a) is atomic, i ∈ dom(s) , s(i) 6= 2

and s(i) ≤ pal . Moreover we assume trees ap, ar with a = ap + ar and ap . ar
where for a store s we have that (s, ap) is safe for C . By this, there exists a transition
((s, ap), (s, bp)) of C where bp =df (s(i) 7→ [[e]](s,ap))|(ap)l+(ap)L−l with s(i) ≤ p(ap)l
and atomic test [[e]](s,ap) .

By this, ap . ar implies s(i) · ar ≤ 0 ∧ [[e]](s,ap) · arq ≤ 2 ∧ [[e]](s,ap) · par ≤ root(ar) .

In particular, we calculate root(ar) = apq · par ≤ apq = (ap)lq + (ap)L−lq and since by
assumption s(i) ≤ p(ap)l and s(i)·root(ar) ≤ 0 we can infer root(ar) ≤ (¬s(i) · (ap)l)q+
(ap)L−lq . With these assumptions it is not di�cult to calculate bp . ar. Moreover the
rest of the claim follows by similar argumentations as in the proof of Lemma 5.6.3. ut
Intuitively, the calculated inequation root(ar) ≤ (¬s(i) · (ap)l)q + (ap)L−lq describes
that the root of the tree ar either remains unmodi�ed in (ap)l or is reachable via
another selector 6= l anyway. This describes in particular the local behaviour of the
selector assignments.

Corollary 5.6.5 Assume predicates P,R ⊆ tree . The ©. - frame rule, i.e.,

{P}C {Q}
{P ©. R}C {Q©. R}

is valid for all predicates Q and commands C that do not modify any expression
occurring in R and reference at most the roots of the trees in R .

146

5.6 Inference Rules

Finally, we turn to a last variant of the frame rule. It is de�ned dually to Corol-
lary 5.6.5 in the sense that the trees of the pre- and postcondition is appended to a
leaf of the untouched trees characterised by R rather the other way round. For this
we de�ne a frame property restricted to forests by

(forest ; ¬⊥ × forest ; safe (C)) ;� ; C ⊆ (H × C) ;� .

We call it the symmetric forest - frame property w.r.t. . . Clearly, a proof of the frame
rule in this case requires a dual variant of the preservation property. Finally, we
conclude:

Lemma 5.6.6 Any command C of De�nition 5.5.11 has the symmetric forest - frame
property w.r.t. . .

Proof. The proof is similar as for Lemma 5.6.4. In the case of node deletion,
the removal of roots connecting di�erent trees is not allowed. We consider in he
sequel only the case of selector assignments and assume a non-aborting execution
((s, a), (s, a′l + aL−l)) of C where a′l =df (s(i) 7→ [[e]](s,a))|al with [[e]](s,a) is atomic,
i ∈ dom(s) , s(i) 6= 2 and s(i) ≤ pal . Moreover we assume forests ap, ar with a = ap +
ar and ar . ap where for a store s we have that (s, ap) is safe for C . By this, there ex-
ists a transition ((s, ap), (s, bp)) of C where bp =df (s(i) 7→ [[e]](s,ap))|(ap)l + (ap)L−l
with s(i) ≤ p(ap)l and atomic test [[e]](s,ap) .

By ar . ap the command C either modi�es a trees tp =df (ap)j for which there exists
another tree tr =df (ar)i with tr . tp or C modi�es a disjoint tree tp with tp©# tr
for arbitrary trees tr ≤ ar . For the latter case we can use a similar argumentation
as in Lemma 5.6.2 while for the former we again set c|(tp)l + (tp)L−l ≤ bp with
c =df (s(i) 7→ [[e]](s,ap)) and s(i) ≤ tp . By this and [[e]](s,ap) ≤ apq , we immediately

infer with ar . ap that ptr · c ≤ 0 ∧ trq · [[e]](s,ap) ≤ 2 . Moreover, by tr . tp we
get trq · s(i) ≤ root(tp) . Since selector assignments do not delete nodes we have
ptp = p(c|(tp)l + (tp)L−l) . With these assumptions it is not di�cult any more to show
tr . (c|(tp)l + (tp)L−l) assuming tr . tp . ut

Corollary 5.6.7 Assume predicates P,R ⊆ forest. The symmetric ©. - frame rule,
i.e.,

{P}C {Q}
{R©. P}C {R©. Q}

.

is valid for all predicates R ⊆ forest and commands C that do not modify or reference
any expression occurring in R and do not delete the root of any tree in P .

147

Transitive Separation Logic

5.7 Veri�cation Examples

For presenting our extended approach with the new operations and predicates in
action we give some veri�cation examples of concrete programs in the sequel.

5.7.1 List Reversal

This standard example is mainly intended to show the basic ideas of our approach.
The algorithm is well known. It uses identi�ers i, j, k . The initial list is headed in i ,
while j heads the gradually accumulated result list. Finally, k is an auxiliary variable
that remembers single list nodes while they are transferred from the original list to
the result list:

j := 2 ; while (i 6= 2) do
(
k := i.next ; i.next := j ; j := i ; i := k

)
.

To prove functional correctness of the in-situ reversal algorithm we introduce the
concept of abstraction functions [Hoa72], e.g., to state invariant properties.

De�nition 5.7.1 (Abstraction function for lists)
Assume a ∈ list and an atom p ∈ a . We de�ne the abstraction function lia w.r.t. a
which collects the nodes of the sublist of a starting in node p in a word consisting of
these nodes in traversal order. Moreover, we de�ne the semantics of the expression
i→ for a program identi�er i as follows:

lia(p) =df

{
〈〉 if p · pa ≤ 2

〈p〉 • lia(〈a|p) otherwise ,
[[i→]](s,a) =df lia(s(i)) . (5.1)

Here • stands for concatenation of words, 〈〉 denotes the empty word and 〈p〉 represents
an atomic test p as a word.

Now using Hoare logic proof rules for variable assignment and while - loops (cf. Fig-
ure 2.3), we can provide a proof of the in-situ list reversal algorithm showing preserva-
tion of structural properties and functional correctness. As our invariant predicate for
functional correctness of the algorithm we assume a word α and syntactically de�ne
I ⇔df (j→)† • i→ = α , where _† denotes word reversal. By this the state-based
semantics of I is given as

(s, a) ∈ I ⇔df ([[j→]](s,a))
† • [[i→]](s,a) = α ∧ i, j ∈ dom(s) ,

where α represents a word. Clearly, this lifts immediately to tests. The correctness
proof for this example can be found in Figure 5.6 assuming the selector set L = {next} .

148

5.7 Veri�cation Examples

{ list (i) ∧ i→ = α }
j := 2 ;
{ list (i)©∗ list (j) ∧ I }
while (i 6= 2) do

(

{ (cell (i)©. list)©∗ list (j) ∧ I }
k := i.next;
{ (cell (i)©. list (k))©∗ list (j) ∧ (j→)† • i • k→ = α }
{ (cell (i)©. list (k))©∗ list (j) ∧ (i • j→)† • k→ = α }
i.next := j ;
{ (cell (i)©. list (j))©∗ list (k) ∧ (i • j→)† • k→ = α }
{ list (i)©∗ list (k) ∧ (i→)† • k→ = α }
j := i ; i := k ;
{ list (j)©∗ list (i) ∧ I })

{ list (j) ∧ (j→)† = α }
{ list (j) ∧ j→ = α† }

Figure 5.6: Veri�cation of list reversal.

It can be seen that each assertion consists of a part that abstracts the structure of the
considered data structure and another part that connects the concrete and abstract
levels of reasoning. The same pattern will also occur in the example algorithms of the
following sections.

Compared to the list reversal algorithm given in [Rey09] we hide in the ©. operator
the existential quanti�ers that were necessary for the standard approach of separation
logic to describe the sharing relationships. Moreover, we include all correctness prop-
erties of the occurring data structures and their interrelationship in the de�nitions of
the new connectives and predicates. To state functional correctness, no quanti�ers
are needed due to the use of the abstraction function. Hence the formulas become
easier to read and more concise.

For a variant (inspired by [CS10]), if one would, e.g., exchange the �rst two commands
in the while loop of the list reversal algorithm, one could possibly create a memory
leak. It can be seen that after the assignment i.next := j one would get in the
postcondition as the structural part the formula (cell (i)©. list (j)) ©∗ list . The list

memory part separated out by the second argument of ©∗ can neither be reached
from i nor from j . Moreover, there is no program variable containing a reference to
the root of that part.

149

Transitive Separation Logic

5.7.2 Tree Rotation

We now consider a more complex example. As already mentioned, for binary trees
we use the selector names left and right . Therefore we set L = {left, right} and a =df

aleft + aright for this section. To de�ne an abstraction function ↔ similar to the →

function in Equation (5.1), we view abstract trees as being inductively de�ned: An
abstract tree is either the empty tree, represented by the empty word 〈〉 , or it is a
triple 〈Tl, 〈p〉, Tr〉 , consisting of an atomic test p as a word that represents the root
node and further abstract trees Tl, Tr , the left and right subtrees, respectively. Again
〈. . . 〉 represents a sequence of nodes by a corresponding word. By this we set

tra(p) =df

{
〈〉 if p · pa ≤ 2

〈tra(〈aleft|p), 〈p〉, tra(〈aright|p)〉 otherwise ,

[[i↔]](s,a) =df tra(s(i)) .

(5.2)

Note that expressions [[i↔]](s,a) are only de�ned if i ∈ dom(s) . Hence we de�ne
(s, a) ∈ (i↔ = 〈. . . 〉) ⇔df [[i↔]](s,a) = 〈. . . 〉 ∧ i ∈ dom(s) similarly to the case of the
invariant I on lists.

a

•

i•

b

•
•
j

c

•
•i

a b

j
•

• c

•

• k

Figure 5.7: Tree rotation at the beginning and end.

For a concrete example, we now
present a correctness proof of
an algorithm for tree rotation as
known from the data structure
of AVL trees. The algorithms
starts with the left tree in Fig-
ure 5.7 and ends with the ro-
tated one on the right.

Using our basic tree predicates
a formula describing the shape
of the left tree of Figure 5.7 would read

cell (i)©. (tree(i.left)©∗ (cell (i.right)©. (tree(i.right.left)©∗ tree(i.right.right)))) . (5.3)

Unfortunately, this formula is hard to read and di�cult to understand. To overcome
this issue we de�ne some auxiliary predicates that will make the assertions easier
to read and more concise. The resulting formulas will exactly describe the required
components of the considered tree. Concretely for trees we set

lt_context(i) =df cell (i)©. tree(i.right) ,
r_tree(i) =df lt_context ∩ (i.left = 2) ,

rt_context(i) =df cell (i)©. tree(i.left) ,
l_tree(i) =df rt_context(i) ∩ (i.right = 2) .

150

5.7 Veri�cation Examples

Intuitively, lt_context(i) describes a tree where i represents the root of the tree and
by the selector right we reach another tree. The context on the left selector is not
speci�ed concretely. Symmetrically, rt_context(i) asserts the dual tree structure. The
predicates r_tree(i) and l_tree(i) describe trees where the unspeci�ed context is empty,
i.e., the address of corresponding selector equals nil .

By this we can transform Formula (5.3) using Lemma 5.5.3(c) into

rt_context(i)©. (lt_context(i.right)©. tree(i.right.left)) . (5.4)

A proof of this can be found in the Appendix. We now give a �clean� version of the
tree rotation algorithm, in which all occurring subtrees are separated. After that we
will show an optimised version, however, with sharing in an intermediate state. With
the above new predicates, a correctness proof is given in Figure 5.8.

{ rt_context(i)©. (lt_context(i.right)©. tree(i.right.left)) ∧ i↔ = 〈Tl, p, 〈Tk, q, Tr〉〉 }
j := i.right ;
{ rt_context(i)©. (lt_context(i.right, j)©. tree(j.left))∧
i↔ = 〈Tl, p, 〈Tk, q, Tr〉〉 ∧ j↔ = 〈Tk, q, Tr〉 }
{ (rt_context(i)©. lt_context(i.right, j))©. tree(j.left)∧
i↔ = 〈Tl, p, 〈Tk, q, Tr〉〉 ∧ j↔ = 〈Tk, q, Tr〉 }
i.right := 2 ;
{ (l_tree(i)©∗ lt_context(j))©. tree(j.left) ∧ i↔ = 〈Tl, p, 〈〉〉 ∧ j↔ = 〈Tk, q, Tr〉 }
{ l_tree(i)©∗ (lt_context(j)©. tree(j.left)) ∧ i↔ = 〈Tl, p, 〈〉〉 ∧ j↔ = 〈Tk, q, Tr〉 }
k := j.left ;
{ l_tree(i)©∗ (lt_context(j)©. tree(j.left, k))∧
i↔ = 〈Tl, p, 〈〉〉 ∧ j↔ = 〈Tk, q, Tr〉 ∧ k↔ = Tk }
j.left := 2 ;
{ l_tree(i)©∗ r_tree(j)©∗ tree(k) ∧ i↔ = 〈Tl, p, 〈〉〉 ∧ j↔ = 〈〈〉, q, Tr〉 ∧ k↔ = Tk }
j.left := i ;
{ (lt_context(j)©. l_tree(i, j.left))©∗ tree(k)∧
i↔ = 〈Tl, p, 〈〉〉 ∧ j↔ = 〈〈Tl, p, 〈〉〉, q, Tr〉 ∧ k↔ = Tk }
{ lt_context(j)©. (l_tree(i, j.left)©∗ tree(k))∧
i↔ = 〈Tl, p, 〈〉〉 ∧ j↔ = 〈〈Tl, p, 〈〉〉, q, Tr〉 ∧ k↔ = Tk }
i.right := k ;
{ lt_context(j)©. (rt_context(i, j.left)©. tree(k, i.right))∧
j↔ = 〈〈Tl, p, Tk〉, q, Tr〉 ∧ i↔ = 〈Tl, p, Tk〉 ∧ k↔ = Tk }

Figure 5.8: Veri�cation of tree rotation.

Note that the predicate (i.l = 2) satis�es the equation (P (i) ©∗ Q) ∩ (i.l = 2) =

151

Transitive Separation Logic

(P (i) ∩ (i.l = 2)) ©∗ Q for P,Q ⊆ tree . Therefore we can use Lemma 5.6.1 for
the proof. Moreover, the proof is structured into two parts. First, each assignment
changes the structural part involving the tree and context predicates which guarantee
implicitly the preservation of the tree structure and its required properties. Second,
the assignments modify the conjunct that involves the abstraction functions for guar-
anteeing correctness of functional properties, e.g., preservation of values within the
considered tree.

The next version of the algorithm that we present uses fewer assignments, but shows
sharing within an intermediate state. Its veri�cation requires the de�nition of a new
predicate, since one of the intermediate states cannot be described with the operators
we have de�ned so far.

De�nition 5.7.2 (Sharing predicate)
For predicates P,R ⊆ forest and Q ⊆ tree we de�ne

P ©. Q©/ R =df { a1 + a2 + a3 : a1 ∈ P, a2 ∈ Q, a3 ∈ R,
a1 . a2, a3 . a2, a1 · a3 = root(a2) } .

Clearly, P ©. Q©/ R = R©. Q©/ P . The linked structure characterised by the pred-
icate is depicted in Figure 5.9.

•
•

•
•

•

Figure 5.9: A shared subtree.

For a use of this predicate in concrete veri�cations we need to introduce the following
inference rules.

Lemma 5.7.3 Assume predicates P ⊆ lt_context and Q,R ⊆ tree , identi�ers i, j and
selectors l,m ∈ L then

{ (P (i)©. (Q(j, i.l)©. R(j.m)) }
i.l := j.m ;
{ P (i)©. R(j.m, i.l)©/ Q(j) } ,

{ P (i)©. S(j.m, i.l)©/ R(j) }
i.l := j ;
{ P (i)©. (R(j, i.l)©. S(j.m)) } .

The latter rule also works for P ⊆ tree .

Proof. We outline a proof of the �rst rule; a proof for the second one can be obtained
similarly. Assume a non-aborting execution involving the tree a = a1 + a2 + a3

152

5.7 Veri�cation Examples

with ai ∈ P (i) ∧ a2 ∈ Q(j, i.l) ∧ a3 ∈ R(j.m) . We know a1 . (a2 + a3) ∧ a2 . a3

and from the identi�ers (s(i) 7→ [[j.m]](s,a)) = (root(a1) 7→ root(a3)) . Note that
a1 ∈ P (i) immediately implies (root(a1) 7→ root(a3))|(a1)l = (root(a1) 7→ root(a3)) .
Next we set b1 =df (root(a1) 7→ root(a3)) + (a1)L−l . From the assumption we
get (a1)L−l©# a2 . Using Lemma 5.4.12, we also know a1©# a3 and further infer

(a1)L−l©# a3 . Now we can conclude b1 . a3 ∧ b1 · a2 = root(a3) . ut
By Lemma 5.7.3 we can verify a shorter form of the tree rotation algorithm that uses
sharing which can be found in Figure 5.10.

{ rt_context(i)©. (lt_context(i.right)©. tree(i.right.left)) ∧ i↔ = 〈Tl, p, 〈Tk, q, Tr〉〉 }
j := i.right ;
{ rt_context(i)©. (lt_context(i.right, j)©. tree(j.left))∧
i↔ = 〈Tl, p, 〈Tk, q, Tr〉〉 ∧ j↔ = 〈Tk, q, Tr〉 }
i.right := j.left ;
{ rt_context(i)©. tree(j.left, i.right)©/ lt_context(j)∧
i↔ = 〈Tl, p, Tk〉 ∧ j↔ = 〈Tk, q, Tr〉 }
j.left := i ;
{ lt_context(j)©. (rt_context(i, j.left)©. tree(i.right))∧
j↔ = 〈〈Tl, p, Tk〉, q, Tr〉 ∧ i↔ = 〈Tl, p, Tk〉 ∧ k↔ = Tk }

Figure 5.10: Tree rotation with sharing.

The third assertion, that uses the new predicate, can be depicted as in Figure 5.11.
It represents the situation where one subtree is shared within two trees in an inter-
mediate state.

•

i•
•i.right j.left

•
j

•

Figure 5.11: Depiction of the intermediate state with sharing.

153

Transitive Separation Logic

5.8 A Treatment of Overlaid Data Structures

We continue to further underpin the practicality of our approach. For this we consider
as a further concrete example the treatment of overlaid data structures with so-called
threaded trees. These trees enable through their threads a fast inorder traversal of
the whole tree (cf. Figure 5.12, where the dashed lines denote threads). This is done
by saving references to the next node of the traversal sequence in previously unused
space. In the case of Figure 5.12 threads are stored in the right - link. For an inorder
traversal one needs to get to the leftmost node j from the root i . The root and the
nodes on its left and right - selector are not marked, i.e., from that nodes one has to
follow the right - link to the right node and further move to the leftmost node from
there to get to the subsequent node in an inorder traversal.

For a formal treatment of that data structure �rst note that all predicates and op-
erations de�ned up to now consider non-reachability or directed reachability only on
complete access elements, i.e., the operators work on all selectors. This is far too
strict, especially in the case of threaded trees. As an example, . completely excludes
the existence of cycles in the whole tree while e.g., links of the tree and threads of
the list together might form cycles within such a tree. In Figure 5.12 we can directly
reach a cycle from j to its successor via the thread and back via the left selector.

•i

• •

• • • •

•j •

Figure 5.12: A threaded tree.

Hence, we need a weaker variant of . that works
on a speci�c set of links M ⊆ L . For a linked
structure c over L we set cM =df

∑
l∈M cl and

de�ne

a .M b ⇔df aM . bM

and its corresponding operator on predicates by

P ©.M Q =df { a+ b : a ∈ P, b ∈ Q, a .M b } .

We will omit the set braces whenM is a singleton
set. The same generalisations can be apply to©∗
and ©# . Note that, by M ⊆ L and downward
closedness of ©# , also ©# ⊆ ©#M and hence P ©∗
Q ⊆ P ©∗ M Q . Note also that our laws for ©#
and ©. hold also for ©#M and ©. M , respectively, assuming a set of links M ⊆ L .

For a threaded tree we de�ne the access element by a = aleft + aright + amarked , i.e.,
L = {left, right,marked} . Clearly, the access elements aleft and aright need to be disjoint,
while amarked is a test with amarked ≤ paright . It represents a set of nodes from which
threads emanate, i.e., where the right links represent pointers from the respective
nodes to their successor in the inorder traversal of the corresponding unthreaded tree.

154

5.8 A Treatment of Overlaid Data Structures

In a �real� program this test would be implemented by marking bits on the nodes; it
is here treated as an access element for uniformity.

Based on this, we de�ne a virtual access element athread ; this means that the selector
thread is not contained in L, but the element is constructed using selectors of L. It
re�ects the fact that in a threaded tree the right-links can be of two kinds: at marked
nodes they are �regular� links to non-empty right subtrees, whereas at non-marked
nodes they are �thread� links that point back to ancestor nodes:

athread =df amarked · aright + aRLm ,
aRLm =df (¬amarked · aright) · a∗left · ¬paleft .

In addition, we require the following structural properties of a :

(a) aLR =df aleft + ¬amarked · aright forms a tree,

(b) athread forms a chain,

(c) the inorder sequence of aLR equals the traversal sequence of athread .

The access element aRLm connects a non-marked node x , i.e., a node without any
threads, with the leftmost node in the right subtree of x which denotes its successor
node in the inorder traversal. The subexpression a∗left · ¬paleft occurring in aRLm is an
algebraic representation of the loop while paleft do aleft . It has been shown in [DM01b]
that determinacy of a loop body is inherited by the corresponding while loop. Note
that athread is a virtual access relation, i.e., its selector thread is not contained in L , but
its access relation is formed using selectors of L .

Next, we relax the de�nition for some predicates, so that they take the new linked
structures into account:

u_cell =df {a : aLR is a cell, amarked ≤ 0 } ,
m_cell =df {a : aLR is a cell, amarked = root(a) } ,

thread_list =df {a : athread is a chain } ,
lr_tree =df {a : aLR is a tree } .

The predicate u_cell characterises unmarked cells while nodes in m_cell are marked.
Marking is realised by assigning the root of a cell to the marked component. The
e�ect of this is that the behaviour of a Boolean value is mimicked. Moreover, the
predicate thread_list is restricted to all marked right selectors and connections from
unmarked nodes to left-most nodes while lr_tree considers only the left and unmarked
right selectors. We further de�ne

[[j→]](s,a) =df liathread(s(j)) and [[i;]](s,a) =df inorder(traLR(s(i))) , (5.5)

155

Transitive Separation Logic

where i, j ∈ dom(s) and tra(p) for a tree a is de�ned in Equation (5.2). The function
inorder(〈. . . 〉) returns the word consisting of the nodes 〈p〉 of the considered tree in
the sequence of an inorder traversal, i.e., it deletes in particular all 〈 and 〉 that are
only used for the tree structure. A threaded tree is now de�ned by the predicate

th_tree(i, j) =df lr_tree (i) ∧ thread_list (j) ∧ j→ = i; ,

where i points to the root of the underlying tree and j points to the head of the list
formed by athread (cf. Figure 5.12). Note that j→ = i; implies that j = leftmost(i) ,
where

lma(p) =df





2 if p = 2

p if (〈aleft|p) · pa = 0
lma(〈aleft|p) otherwise ,

[[leftmost(i)]](s,a) =df lma(s(i)) .

Before we continue with the veri�cation example we need to sum up a few conse-
quences of these de�nitions.

Lemma 5.8.1 Assume predicates P,Q ⊆ tree and identi�ers i, j . Moreover assume
selector sets K,M ⊆ L and a selector l ∈ K −M . Then

{ P (i)©∗ K Q(j) }
i.l := j ;
{ P (i)©∗ K−l Q(j) ∧ P (i)©. lQ(j, i.l) } ,

{ P (i)©. Q(j) ∧ i.l = 2 }
i.l := j ;
{ P (i)©. Q(j) ∧ P (i)©. lQ(j, i.l) }

and
{ P (i)©. M Q(j) ∧ j.l = 2 }
j.l := i ;
{ P (i)©. M Q(j) ∧ Q(j)©. l P (i, j.l) } .

Proofs for these rules can be constructed similarly to that of Lemma 5.6.1. All of
these inference rules make use of the generalised operators. The �rst rule describes
that after the selector assignment P and Q remain strongly disjoint on all selectors in
K − l while it is now possible to reach Q from P via the selector l . This is similarly
mimicked in the second rule. It describes that Q is reachable from P ; especially one
can use the selector l to reach Q from P after the execution of the selector assignment
command. The third rule describes that all links from P to Q mentioned in the
precondition will remain unchanged by assignments via a selector l 6∈ M . Note that
these rules also extend to forests but su�ce in this form for the subsequent example.

Next, we consider marking of nodes. For that we de�ne a command that appropriately
sets the marked selector of the considered access elements and rede�nes allocation of

156

5.8 A Treatment of Overlaid Data Structures

nodes to ignore the marked selector:

mark(i) =df { ((s, a), (s, (s(i) + amarked) + aL−marked)) : i ∈ dom(s) } ,
i := new cell () =df { ((s, a), (s[i← p], (p 7→ 2)|aL−marked + amarked) : i ∈ dom(s) ,

p is an atomic test, p ≤ ¬pa , p 6= 2 } .
Note that both commands satisfy the frame rules of Section 5.6.2. Before we can use
them in the veri�cation of the concrete example we give further inference rules.

Lemma 5.8.2 Assume identi�ers i, j, k with i, k 6= 2 and a word α then

{ th_tree(i, j)©∗ u_cell (k) }
j.left := k ;
{ (lr_tree (i)©. LR u_cell (k)) ∧ thread_list (j) ∧ k • j→ = i; } ,

{ u_cell (k) }
mark(k) ;
{ m_cell (k) } ,

and
{ (u_cell (k)©. right thread_list (j, k.right)) ∧ k • j→ = α }
mark(k) ;
{ (m_cell (k)©. thread thread_list (j, k.right)) ∧ k→ = α } .

These laws are direct consequences of the de�nition of mark and the abstraction func-
tions in Equation (5.5). Proofs can be given similarly as before. The �rst inference
rule expresses that after making the unmarked cell in k the left subtree of j , the
inorder list of the resulting overall tree now starts with k and continues with that
headed by j . The meaning of the second rule is obvious. The third rule states that
after the execution of mark the right - link of k represents a thread link, so that the
thread list is now headed by k .

We can now give another veri�cation example to view the new predicates and op-
erators in action. For simplicity, we do not treat balancing so that we can simply
add a new node as the left subtree of the leftmost node. We assume a non-empty
threaded tree with root in i and j 6= i heading the thread list. Then we can reason as
in Figure 5.13.

Note that the abstraction functions on i , j are independent of the newly allocated
cell k . Hence, as in the case of tree rotation we can infer e.g., (P ∩ (j→ = i;)) ©∗
u_cell (k) = (P ©∗ u_cell (k)) ∩ (j→ = i;) . Finally, we conclude this section by
sketching a similar idea for treating doubly-linked lists. An adequate access element
can be given by a = anext + aprev with L = {next, prev} . The characterising predicate
for this data structure then reads

dl_list(i, j) =df next_list (i) ∧ prev_list (j) ∧ i→ = (←j)
†
,

where

next_list =df {a : anext is a chain } , prev_list =df {a : aprev is a chain } .

157

Transitive Separation Logic

{ lr_tree (i)©. LR u_cell (j) ∧ thread_list (j) ∧ j→ = i; ∧ j→ = α }
k := new cell () ;
{ (lr_tree (i)©. LR u_cell (j))©∗ u_cell (k) ∧ thread_list (j)©∗ u_cell (k)
∧ j→ = i; ∧ j→ = α }

j.left := k ;
{ lr_tree (i)©. LR(u_cell (j)©. LR u_cell (k, j.left)) ∧ thread_list (j)©∗ right u_cell (k, j.left)
∧ k • j→ = i; ∧ j→ = α }

k.right := j ;
{ lr_tree (i)©. LR(u_cell (j)©. LR u_cell (k, j.left)) ∧ u_cell (k)©. right thread_list (j, k.right)
∧ k • j→ = i; ∧ k • j→ = k • α }

mark(k) ;
{ lr_tree (i)©. LR(u_cell (j)©. LR m_cell (k, j.left))
∧ m_cell (k)©. thread thread_list (j, k.right) ∧ k→ = i; ∧ k→ = k • α }
{ lr_tree (i) ∧ thread_list (k) ∧ k→ = i; ∧ k→ = k • α }
j := k ;
{ lr_tree (i) ∧ thread_list (j) ∧ j→ = i; ∧ j→ = k • α }

Figure 5.13: Veri�cation of adding a new node to a threaded tree.

and
[[i→]](s,a) =df lianext(s(j)) , [[←j]](s,a) =df liaprev(s(j)) .

We conclude this section by a discussion on related work. There exist several ap-
proaches that extend separation logic by additional constructs to include sharing or
restrict outgoing pointers of disjoint heaps to a single direction. Wang et al. [WBO08]
de�ned an extension called Con�ned Separation Logic and provided a relational model
for it. They de�ned various operators to assert, e.g., that all outgoing references of a
heap h1 point to another disjoint one h2 or all outgoing references of h1 either point
to themselves or to h2 .

Our approach is more general due to its algebraicity and hence also able to express
the mentioned operations. It is intended as a general foundation for de�ning further
operations and predicates for reasoning about linked object structures.

Another calculus that follows a similar intention as our approach is given in [CS10].
Generally, there heaps are viewed as labelled object graphs. Starting from an abstract
foundation the authors de�ne a decidable logic, e.g. for lists, with domain-speci�c
predicates and operations suitable for automated reasoning.

By contrast, our approach enables abstract derivations in a largely �rst-order alge-
braic approach, i.e., pointer Kleene algebra [Ehm03]. The given simple (in)equational

158

5.8 A Treatment of Overlaid Data Structures

laws allow a direct usage of automated theorem proving systems as Prover9 [McC05]
or any other systems through the TPTP Library [SS98] at the level of the under-
lying resource algebra [HS08]. This supports and helpfully guides the development
of domain speci�c predicates and operations. The assertions we have presented are
simple and still suitable for expressing shapes of linked structures without the need
of any arithmetic as in [CS10]. Part of such assertions can be automatically veri�ed
using Smallfoot [BCO05].

A novel approach to sharing in data structures can be found in [HV13]. This ap-
proach can be directly used with arbitrary separation logics and introduces, di�ering
from our approach, an operation called overlapping conjunction. This operator in
contrast to the separating conjunction allows unspeci�ed overlapping of the resources
characterised by predicates. It enables impressive reasoning about sharing in combi-
nation with the separating implication. However, the formulas involved unfortunately
become very complex and di�cult to understand. We hope that the approach of the
present thesis can also capture complex examples like the garbage collecting algorithm
given in [HV13] with easier and more concise formulas.

159

Chapter 6

Conclusion

A variety of algebraic calculi for separation logic has been presented. They range
from an algebra for the extended assertion language of separation logic to a rela-
tional approach that allowed formulations of the modular behaviour of the involved
commands. By this we further developed general and simple approaches to prove
the frame and concurrency rules. In particular, we also established relationships to
other similar sequential and concurrent approaches. In this chapter we summarise
the results and give some open questions for future research.

6.1 Summary

We have developed an abstraction and algebraic calculus for separation logic asser-
tions. The considered denotational model for the abstractions is based on simple
sets of states and allowed a further abstraction to the structure of a quantale. By
this, pointfree characterisations of assertion classes with particular behaviour have
been developed that yield simple proofs of central properties used in concrete veri�-
cation tasks. This captures, in particular, pure, intuitionistic, precise and supported
assertions.

A further relation-based algebraic calculus for commands was introduced that allowed
by simple embedding of the algebraic treatment of assertions a reuse of previously
gained results. The calculus is enriched by an extra operation on arbitrary relations
to model the separating conjunction of separation logic. The de�nitions allowed again

Conclusion

pointfree versions of central properties, i.e., safety monotonicity and the frame prop-
erty, that are used for a concise soundness proof of the frame rule. This development
also entailed formulations for the preservation of resources as variables, which is han-
dled in separation logic by meta variable side conditions. In addition to this we have
presented some further applications with relationships to concurrency and another
approach that also copes well with framing called the dynamic frames theory. More
concretely, formulations in the context of concurrent separation logic and concurrent
Kleene algebras have been derived.

Finally, as the last contribution of this work we developed from the formal and alge-
braic foundation a transitive separation logic that introduced operations more suitable
for reasoning about reachability within linked object structures. For this we enriched
the underlying resource algebra in terms of a modal Kleene algebra or more concretely
a modal semiring that enabled an abstract characterisation of linked structures. By
this we were able to de�ne more specialised operators, in particular for the complete
exclusion of sharing within such structures and further restricting the involved links in
one direction. Moreover, we presented the treatment in action by a standard example
on lists and also more complex examples on trees and overlaid data structures like
threaded trees which involves lists and trees.

6.2 Future Work

We presented in this thesis several algebraic calculi and approaches for an abstract
and general treatment of behaviours and e�ects of separation logics. In particular,
the developed formalisations yield simple frameworks for the derivation of non-trivial
properties and operations that allowed a more adequate and facilitated description of
data representations and the structure of resources. However, there are still limita-
tions and open problems that deserve consideration.

As mentioned at the end of Section 3.2.5 the precising operation for supported as-
sertions can be lifted to the abstract setting of quantales. A lot of properties can be
proved from the given abstraction in a simple and concise fashion. Unfortunately, it
was required to adjust the algebra by axioms for the derivation of some consequences
with the given characterisation. This poses the question whether the provided for-
malisations are in this form adequate enough or if there exist another characterisation
and axioms that allow a fully algebraic treatment of that assertion class. A starting
point for these investigations can be [BV14]. In that work an extension of the related
algebraic approach of Boolean BI algebras is introduced that further allows the in-
clusion of basic and frequently used properties of separation or resource algebras that
was not possible with the former approach. As further investigations on this one can
consider algebraic treatments of non-discussed assertion classes as e.g., strictly exact

162

6.2 Future Work

assertions [Rey08].

In Section 4.4.2 we discussed the generalised version of separating conjunction to
characterise concurrent non-interfering programs. The relational de�nition of separa-
tion includes the extension to pairs of relations by Cartesian products that allows an
independent treatment of programs on individual parts of states. We suppose that
an extension of the de�nition of separation at this point may enable a more precise
and adequate treatment of races like in [COY07] within the relational notation. One
would require a de�nition on pairs of commands that also includes possible interac-
tions of the parallel executed programs. In particular, this might entail an equational
relationship in [[C ‖ D]]Γ ⊆ [[C]]Γ ∗ [[D]]Γ and thus possibly give a relational model
of concurrent Kleene algebras by verifying soundness of the exchange law (cf. Sec-
tion 4.4.3).

Further treatments and extended approaches for the dynamic frames theory need to
be compared to our relational abstractions. This yields in particular more applications
for the theory and again abstractions that conversely help to guide the development of
further separation logics. We summarise a few approaches that �t into this research as,
e.g., [DYDG+10] where the notion of concurrent abstract predicates is introduced that
includes abstractions for reasoning about shared portions of storage within concurrent
contexts. Relationships to this theory would immediately relate the dynamic frames
treatment also to the topic of concurrency. As similar approach is taken by �ctional
separation logic [JB12] that de�nes on top of separation logic a meta-theory that
allows modular reasoning about data types that include sharing. Moreover it would
be interesting to investigate the relationships to our extension to transitive separation
logic in Chapter 5. A further research direction that deserves attention concentrates
on the relationships of implicit dynamic frames, i.e., a variation to the original theory
that captures aspects of automation, to separation logic [PS11]. These results might
help to design and develop further investigations on relational formulations for the
theory of Section 4.5.

Finally, a general intention of the present work was to relate the earlier approach of
pointer Kleene algebra with concepts of separation logic which resulted in transitive
separation logic. In particular, we obtained more suitable operators for reasoning
about structural data structures and their sharing relationships. As future work, it
will be interesting to explore more complex object structures and verify challenging
garbage collecting algorithms. For this standard examples in the literature are the
Schorr-Waite graph marking algorithm [SW67] and further adaptations for the treat-
ment of concurrent garbage collection algorithms. A derivational approach to this
is given in [PPS10] while �rst formulations towards this topic within pointer Kleene
algebra can be found in [Dan12].

163

Appendix A

Deferred Proofs and Properties

A.1 Deferred Proofs

Proof of Lemma 3.1.7. By Lemma 3.1.4 we have [[p−∗ q]] = [[p]]\[[q]] . Now it is
easy to see that

s, h |= p −� q

⇔ {[de�nition of −�]}
s, h |= ¬(p−∗(¬q))

⇔ {[de�nition of −∗]}
¬(∀h′ : ((dom(h′) ∩ dom(h) = ∅, s, h′ |= p) ⇒ s, h′ ∪ h |= ¬q))

⇔ {[logic: ¬ over ∀]}
∃h′ : ¬((dom(h′) ∩ dom(h) = ∅, s, h′ |= p) ⇒ s, h′ ∪ h |= ¬q)

⇔ {[logic: ¬(A ⇒ B) ⇔ (A ∧ ¬B)]}
∃h′ : dom(h′) ∩ dom(h) = ∅ ∧ s, h′ |= p ∧ s, h′ ∪ h 6|= ¬q

⇔ {[logic]}
∃h′ : dom(h′) ∩ dom(h) = ∅ ∧ s, h′ |= p ∧ s, h′ ∪ h |= q

⇔ {[setting for (⇒) ĥ =df h′ ∪ h and for (⇐) h′ =df ĥ− h]}
∃ ĥ : h ⊆ ĥ ∧ s, ĥ− h |= p ∧ s, ĥ |= q .

ut

Deferred Proofs and Properties

Proof of Lemma 3.2.7.

(a) The claim follows immediately from Lemma 3.2.10, (exc) and part (b).

(b) We �rst show that a = (a u 1) · > follows from both inequations. By neutrality
of > and 1 w.r.t. u and · resp., assumption and isotony, we get

a = a u > = a u 1 · > ≤ (a u 1) · (a u >) ≤ (a u 1) · > .

Moreover, by isotony and assumption (au 1) · > ≤ a · > ≤ a . Next we show that
a = (a u 1) · > implies a · > ≤ a and a · > ≤ a which, by part (a), implies the
claim. For the �rst inequation we calculate by assumption, > · > = > and the
assumption again: a · > = (a u 1) · > · > = (a u 1) · > = a . For the second
inequation, we note that in a Boolean quantale the law t · > = (t u 1) · > holds
for all subidentities t (t ≤ 1) (e.g. [DM01a]). From this we get

a · > = (a u 1) · > · > = (a u 1) · > · > = (a u 1) · > = (a u 1) · > = a .

(c) We show the equivalence of (au b) · c = a u b · c with part (b). First we prove the
⇐ - direction and split the proof showing each inequation separately. Assuming
the distributivity property of part (b) we show ≥ by

a u b · c ≤ (a u b) · (a u c) ≤ (a u b) · c .

For the ≤ - direction we know (a u b) · c ≤ a · c ≤ a · > ≤ a which follows from
isotony and the assumption a · > ≤ a . Now, with (a u b) · c ≤ b · c we can
immediately conclude (a u b) · c ≤ a u b · c .
Next we give a proof for the ⇒ - direction and assume (au b) · c = a u b · c holds.
First, a · > = (a u a) · > = a u a · > ≤ a. Furthermore, we calculate

a u b · c = a u a u b · c = a u (a u b) · c = a u c · (a u b) = (a u b) · (a u c)

which follows from idempotence of u , assumption, commutativity of · and again
assumption and commutativity. ut

Proof of Lemma 3.2.10. (⇐): Using Equation (Ded), isotony and the assumption,
we get

a u b · c ≤ (abc u b) · c ≤ (ab> u b) · c ≤ (a u b) · c

166

A.1 Deferred Proofs

and the symmetric formula a u b · c ≤ b · (a u c) for arbitrary elements a, b, c . Now,
the claim follows using idempotence of u , isotony and the above derived inequations
in

a u b · c = a u a u b · c ≤ a u (a u b) · c ≤ (a u b) · (a u c) .
(⇒): By setting b = a and c = > in the distributivity law, we obtain a u a · > ≤
(aua) ·(au>) = 0 ·a = 0 and hence, by (shu) a ·> ≤ a. This is equivalent to ab> ≤ a
using (exc). ut

Proof of Lemma 3.2.26.

(a) Since [[(s, h)]] is a singleton set, this is obvious.

(b) By de�nition of ∗, Part (a), h ⊆ h′ ∧ ĥ ⊆ h′ implies h′ − ĥ = h′ − h ⇔ ĥ = h,
and set theory:

s, h′ |= p ∗ (s, h′ − h)

⇔ ∃ ĥ : ĥ ⊆ h′ ∧ s, ĥ |= p ∧ s, h′ − ĥ |= (s, h′ − h)

⇔ ∃ ĥ : ĥ ⊆ h′ ∧ s, ĥ |= p ∧ h′ − ĥ = h′ − h
⇔ ∃ ĥ : ĥ ⊆ h′ ∧ s, ĥ |= p ∧ ĥ = h
⇔ s, h |= p .

(c) By de�nition of ∗ , s, h′ − ĥ |= true is true, Part (1), and set theory:

s, h′ |= (s, h) ∗ true
⇔ ∃ ĥ : ĥ ⊆ h′ ∧ s, ĥ |= (s, h) ∧ s, h′ − ĥ |= true

⇔ ∃ ĥ : ĥ ⊆ h′ ∧ s, ĥ |= (s, h)

⇔ ∃ ĥ : ĥ ⊆ h′ ∧ ĥ = h
⇔ h ⊆ h′ .

ut

Proof of Lemma 4.3.4. For the �rst claim we calculate as follows.

(σ1, σ2) # (τ1, τ2)

⇔ {[De�nition 4.3.3]}
σ1 #σ2 ∧ σ1 = τ1 ∧ σ2 = τ2

⇔ {[logic]}
σ1 #σ2 ∧ τ1 # τ2 ∧ σ1 = τ1 ∧ σ2 = τ2

167

Deferred Proofs and Properties

⇔ {[De�nition 3.3.1]}
σ1 #σ2 ∧ ∃σ : σ1 • σ2 = σ ∧ τ1 # τ2 ∧ ∃ τ : τ1 • τ2 = τ ∧ σ1 = τ1 ∧ σ2 = τ2

⇔ {[σ1 = τ1 ∧ σ2 = τ2 implies σ = τ]}
∃σ : σ1 #σ2 ∧ σ1 • σ2 = σ ∧ τ1 • τ2 = σ ∧ τ1 # τ2 ∧ σ1 = τ1 ∧ σ2 = τ2

⇔ {[logic]}
∃σ : (σ1, σ2) � σ ∧ σ� (τ1, τ2) ∧ σ1 = τ1 ∧ σ2 = τ2

⇔ {[de�nition of ;]}
(σ1, σ2) (� ;�) (τ1, τ2) ∧ σ1 = τ1 ∧ σ2 = τ2

⇔ {[de�nition of id]}
(σ1, σ2) (� ;� ∩ id) (τ1, τ2)

The remaining claims are immediate from the de�nitions. ut

Proof of Lemma 4.3.7. For Part (a) we have by (abortext) for arbitrary states
σ, τ :

¬(σ • τ = σ⊥) ⇔ ¬(σ = σ⊥) ∧ ¬(τ = σ⊥) .

Hence, for arbitrary states σ, τ, ρ we reason as follows

ρ (¬⊥ ;�) (σ, τ) ⇔ ¬(ρ = σ⊥) ∧ ρ � (σ, τ)
⇔ ¬(ρ = σ⊥) ∧ ρ = σ • τ ∧ σ # τ
⇔ ¬(σ • τ = σ⊥) ∧ ρ = σ • τ ∧ σ # τ
⇔ ¬(σ = σ⊥) ∧ ¬(τ = σ⊥) ∧ ρ = σ • τ ∧ σ # τ
⇔ ρ � ; (¬⊥ × ¬⊥) (σ, τ)

by the de�nitions and the above equivalence. Part (b) and (c) immediately follows
from (abortext). ut

Proof of Lemma 4.3.10. For arbitrary σ we have

σ p(R ∗ S) σ

⇔ {[De�nition 4.3.5 and de�nition of domain]}
∃σ1, σ2, τ1, τ2 . σ1 #σ2 ∧ σ = σ1 • σ2 ∧ τ1 # τ2 ∧ σ1 R τ1 ∧ σ2 S τ2

⇒ {[omitting conjunct τ1 # τ2 and shifting quanti�cation over τ1, τ2]}
∃σ1, σ2 . σ1 #σ2 ∧ σ = σ1 • σ2 ∧ ∃ τ1, τ2 . σ1 R τ1 ∧ σ2 S τ2

⇔ {[de�nition of domain]}
∃σ1, σ2 . σ1 #σ2 ∧ σ = σ1 • σ2 ∧ σ1 pR σ1 ∧ σ2 pS σ2

⇔ {[De�nition 4.3.5]}
σ (pR ∗ pS) σ .

168

A.1 Deferred Proofs

ut

Proof of Lemma 4.3.18. Assume a compensator K. We �rst show the case for
total correctness. Closure under union is straightforward from additivity of domain
and distributivity of ; and × over ∪ . For closure under composition we begin with
an auxiliary result and show

p(C ;D) ; C ⊆ C ; pD . (A.1)

First, p(C ;D) = p(C ;pD) . By distributivity, C = C ;pD ∪ C ;¬pD and using R = pR ;R
for any relation R we can infer p(C ;D) ; C = p(C ;D) ; C ; pD ⊆ C ; pD .

Assume now that C and D have the frame property. By p(C ; D) ⊆ pC , neutrality
and exchange (×/;), C has the frame property, neutrality and exchange (×/;), Equa-
tion (A.1), neutrality and exchange (×/;), D has the frame property, exchange (×/;),
and by de�nition of compensators:

(p(C ;D)× I) ;� ; C ;D

⊆ (p(C ;D) ; pC × I) ;� ; C ;D

= (p(C ;D)× I) ; (pC × I) ;� ; C ;D

⊆ (p(C ;D)× I) ; (C ×K) ;� ;D

= (p(C ;D) ; C ×K) ;� ;D
⊆ (C ; pD ×K) ;� ;D
= (C ×K) ; (pD × I) ;� ;D
⊆ (C ×K) ; (D ×K) ;�
= (C ;D × K ;K) ;�
⊆ (C ;D ×K) ;� .

Next we show the case for partial correctness. Closure under union follows from
Lemma 4.2.5, distributivity and isotony. For closure under composition we �rst state
and prove the auxiliary result

safe (C ;D) ; C ⊆ C ; safe (D) . (A.2)

First, note that safe (C ; D) = ¬p(C ; p(D ; ⊥)) . and by distributivity, C = C ; p(D ;
⊥) ∪ C ; ¬p(D ;⊥) . Using R = pR ;R we immediately infer

safe (C ;D) ; C = safe (C ;D) ; C ; ¬p(D ;⊥) ⊆ C ; safe (D) .

Note that the auxiliary result (A.2) coincides structurally with (A.1) substituting
safe (_) with p_ . Now by the use of the assumption that D respects ⊥, Lemma 4.2.5
and ¬⊥ is idempotent w.r.t. ; , we can largely reuse the above proof for the case of

169

Deferred Proofs and Properties

partial correctness by replacing all occurrences of p_ with safe (_). It remains the
application of De�nition 4.3.13(d) after the third ⊆ to get formula into the form for
applying the frame property for D . ut

Proof of Equation (4.4) being equivalent to De�nition 4.3.20. First, assume
; (C × r ; K) ; # ⊆ # ; (> × > ; r) ; # . By Lemma 4.3.4, the assumption, ex-
change (×/;), tests commute and are idempotent, we calculate

� ; (C × r ;K) ; # = � ; # ; (C × r ;K) ; #
⊆ � ; (T × T ; r) ; #
= � ; (T × T) ; # ; (I × r) ; #
= > ;� ; (I × r) .

Now, assume� ; (C× r ;K) ; # ⊆ > ;� ; (I × r) . By the argumentation above the
right-hand side equals � ; (>× > ; r) ; # . Hence, we can calculate by Lemma 4.3.4,
the assumption, isotony, exchange (×/;) and > ;> = >

; (C × r ;K) ; # ⊆ � ;� ; (C × r ;K) ;
⊆ � ;� ; (>× > ; r) ; #
⊆ # ; (>×>) ; (>× > ; r) ; #
= # ; (>× > ; r) ; # .

ut

Proof of Lemma 4.3.23. Assume a compensator K, a test p and that C preserves
a test r . Then

� ; (p ; C × r ;K) ; # ⊆ � ; (C × r ;K) ; # ⊆ > ;� ; (I × r) .

Moreover closure under union is straightforward from distributivity of ; and × over
∪. Now assume further that D preserves r and

; (C ;D ×K) ; # ⊆ # ; (C ×K) ; # ; (D ×K) ; # .

By neutrality of I and exchange (×/;), by Lemma (4.3.4), # and I × r are tests and
commute, by assumption, isotony, exchange (×/;) and neutrality of I, C preserves r ,
again exchange (×/;) and neutrality of I, D preserves r, and de�nition of > :

� ; (C ;D × r ;K) ; #
= � ; (I × r) ; (C ;D ×K) ; #
= � ; # ; (I × r) ; (C ;D ×K) ; #

170

A.1 Deferred Proofs

= � ; (I × r) ; # ; (C ;D ×K) ; #
⊆ � ; (I × r) ; # ; (C ×K) ; # ; (D ×K) ; #
⊆ � ; (I × r) ; (C ×K) ; # ; (D ×K) ; #
= � ; (C × r ;K) ; # ; (D ×K) ; #
⊆ > ;� ; (I × r) ; (D ×K) ; #
= > ;� ; (D × r ;K) ; #
⊆ > ;> ;� ; (I × r)
⊆ > ;� ; (I × r) .

ut

Proof of Lemma 4.3.26. We �rst show the second equivalence. By by I ⊆ >,
isotony and neutrality, again isotony and composing > to both sides, and > ;> ⊆ > :

> ; p ; C ⊆ > ; q
⇒ p ; C ⊆ > ; q
⇒ > ; p ; C ⊆ > ;> ; q
⇒ > ; p ; C ⊆ > ; q .

Next we tackle the �rst equivalence. For the ⇒ - direction we assume p ; C ⊆ C ; q
and infer by isotony that > ; p ; C ⊆ > ; C ; q ⊆ > ;> ; q ⊆ > ; q .

For the converse we have since p ⊆ I that p ;C ⊆ C. Moreover, by neutrality, isotony
and the assumption, we calculate p ;C ⊆ > ; p ;C ⊆ > ; q . Thus, p ;C ⊆ C ∩ > ; q .
Finally, since relations more abstractly form test semirings we can infer by a standard
result on that structures (e.g. [Möl07]) that the right-hand side equals C ; q . ut

Proof of Lemma 4.3.27.

(a) By p ⊆ pC and ∩ coincides with ; on tests, de�nition of ∗ (De�nition 4.3.5),
exchange (×/;), C has the generalised frame property, exchange (×/;), and de�-
nition of ∗ (De�nition 4.3.5) again:

(p ∗ r) ; C
⊆ ((p ; pC) ∗ r) ; C
= � ; (p ; pC × r) ;� ; C
= � ; (p× r) ; (pC × I) ;� ; C
⊆ � ; (p× r) ; (C ×K) ;�
= � ; (p ; C)× (r ;K) ;�
= (p ; C) ∗ (r ;K) .

The other case follows from substituting pC with safe (C) , r with r ;¬⊥ and using
exchange (×/;) for the third step s.t. safe (C)×¬⊥ is composed instead of pC× I.

171

Deferred Proofs and Properties

(b) By de�nition of ∗ (De�nition 4.3.5), neutrality of I and exchange (×/;), Lemma
4.3.4, (q× I) and # commute, C preserves r, exchange (×/;) and neutrality of I,
and de�nition of ∗ (De�nition 4.3.5):

(C ; q) ∗ (r ;K)
= � ; (C ; q)× (r ;K) ;�
= � ; (C × (r ;K)) ; (q × I) ;�
= � ; (C × (r ;K)) ; (q × I) ; # ;�
= � ; (C × (r ;K)) ; # ; (q × I) ;�
⊆ > ;� ; (I × r) ; (q × I) ;�
= > ;� ; (q × r) ;�
= > ; (q ∗ r) .

ut

Proof of Lemma 4.4.15. The ⊆ -direction follows from isotonicity. For the other
direction we calculate: By ; coincides on tests with ∩ , de�nition of ∗ , neutrality,
(×/;), p satis�es (4.13), (×/;), neutrality, de�nition of ∗ , and ; on tests equals ∩ ,

p ∗ q ∩ p ∗ r
= (p ∗ q) ; (p ∗ r)
= � ; (I ; p× q ; I)� ;� ;(p ; I × I ; r) ;�
= � ; (I × q) ; (p× I)� ;� ;(p× I) ; (I × r) ;�
⊆ � ; (I × q) ; (p× I) ; (I × r) ;�
= � ; (p× (q ; r)) ;�
= p ∗ (q ∩ r) .

ut

For a proof Lemma 4.4.22 we require an auxiliary result.

Lemma A.1.1 If relations P,Q are forward compatible then (P ; >) ∗ (Q ; >) =
(P ∗Q) ;>.

Proof. We calculate By de�nition of ∗ , Lemma 4.3.4, Equation (×/;), P,Q forward
compatible, Lemma 4.3.25, and de�nition of ∗ :

(P ;>) ∗ (Q ;>)
= � ; (P ;> × Q ;>) ;�
= � ; # ;(P ×Q) ; (>×>) ;�
⊆ � ; (P ×Q) ; # ;(>×>) ;�
= � ; (P ×Q) ;� ;>
= (P ∗Q) ; U .

172

A.1 Deferred Proofs

The reverse inequation follows similarly from # ⊆ id . ut
Finally we are able to prove Lemma 4.4.22.

Proof of Lemma 4.4.22. First note that pP = P ; > ∩ I. The same holds for Q.
By this we calculate

pP ∗ pQ = (P ;> ∩ I) ∗ (Q ;> ∩ I) ⊆ (P ;>) ∗ (Q ;>) = (P ∗Q) ;> .

Moreover pP ∗ pQ ⊆ I, since both are tests. Hence we can conclude pP ∗ pQ ⊆
(P ∗Q) ; U ∩ I = p(P ∗Q) . The reverse inclusion was shown in Lemma 4.3.10. ut

The combinability check # is a test on pairs of relations. Hence, it induces some
useful closure properties that we list in the following.

Corollary A.1.2 If P,Q are forward compatible and R ⊆ P then also R,Q are for-
ward compatible. This result also holds for backward compatibility, hence compatibility
is downward closed, too.

Proof. We show the following more general result: Let C,D,E be relations on pairs
of states such that C is a test. If C is an invariant of D, i.e., C ; D ⊆ D ; C, and
E ⊆ D then C is also an invariant of E. For this we calculate

C ; E = C ; (D ∩ E) = C ;D ∩ C ; E ⊆ D ; C ∩ C ; E =
D ∩ C ; E ; C ⊆ C ; E ; C ⊆ E ; C .

The fourth step follows, since C is a test. A proof can, e.g., be found in [Möl07]. Now
the main claim follows by setting C = #, D = P ×Q and E = R×Q . ut
Note that this proof extends to arbitrary test semirings.

Corollary A.1.3 If P is forward/backward compatible with Q and R then it is also
forward/backward compatible with Q ∪R .

Proof. We show the case of forward compatibility:

; (P × (Q ∪R)) = # ; ((P ×Q) ∪ (P ×R)) = # ; (P ×Q) ∪ # ; (P ×R) ⊆
(P ×Q) ; # ∪ (P ×R) ; # = ((P ×Q) ∪ (P ×R)) ; # = (P × (Q ∪R)) ; # .

ut

Corollary A.1.4

a) Let P,Q and R,S be forward compatible. Then also P ;R and Q ;S are forward
compatible. Again the same holds for backward compatibility.

173

Deferred Proofs and Properties

b) If P and Q are forward/backward compatible then so are Pn and Qn for all
n ∈ IN, where the n-th power of a command means n-fold sequential composition
of the command with itself. Hence also Pn ∗Qn ⊆ (P ∗Q)n .

Proof.

a) # ; (P ;R × Q ; S) = # ; (P ×Q) ; (R× S) ⊆ (P ×Q) ; # ;(R× S) ⊆
(P ×Q) ; (R× S) ; # = (P ;R×Q ; S) ; # .

b) Straightforward induction on n using Part a) and the reverse exchange law. ut

Proof of Lemma 4.4.31. We set Qi = Pi ; ri and pi = pQi in Theorem 4.4.29. This
validates the premise of the rule, since {pQi}Qi {ri} ⇔ pQi ;Qi ⊆ Qi ; ri ∧ pQi ⊆
pQi ⇔ Qi ⊆ Qi ;ri and Qi ;ri = (Pi ;ri) ;ri = Pi ;ri = Qi . Hence, by the conclusion
of the rule we get

(pQ1 ∗ pQ2) ; (Q1 ∗Q2) ⊆ (Q1 ∗Q2) ; (r1 ∗ r2) . (A.3)

Next we calculate: By de�nitions of Qi , property of domain, by Lemma 4.3.10, by
(A.3), de�nitions of Qi , and by ri ⊆ I :

(P1 ; r1) ∗ (P2 ; r2) = Q1 ∗Q2 = p(Q1 ∗Q2) ; (Q1 ∗Q2) ⊆ (pQ1 ∗ pQ2) ; (Q1 ∗Q2) ⊆
(Q1 ∗Q2) ; (r1 ∗ r2) = ((P1 ; r1) ∗ (P2 ; r2)) ; (r1 ∗ r2) ⊆ (P1 ∗ P2) ; (r1 ∗ r2) .

ut

Nest, we recapitulate Equation (4.9):

� ; (C × r) ; # ⊆ C ;� ; (I × r)

and say that C s-preserves a test r i� this condition is satis�ed. We list a few useful
properties in connection with these notions.

Lemma A.1.5

(a) I s-preserves I.

(b) For any relation C and test r we have � ; (C × r) ; # ⊆ (C ∗ I) ;� ; (I × r) .

(c) If C s-preserves a test r then C ∗ r ⊆ C ; (I ∗ r) . In particular, I ∗ I ⊆ I . Hence
if C s-preserves any test r then C ∗ I ⊆ C .

Proof.

174

A.1 Deferred Proofs

(a) The claim follows immediately by setting C = I = r in Equation (4.9).

(b) We calculate: By Equation (×/;), neutrality, I× r and # are tests and commute,
Lemma 4.3.4, de�nition of ∗ ,

� ; (C × r) ; #
= � ; (C × I) ; (I × r) ; #
= � ; (C × I) ; # ; (I × r)
⊆ � ; (C × I) ;� ;� ; (I × r)
= (C ∗ I) ;� ; (I × r) .

(c) The �rst claim is immediate from the de�nition of locality by right-composing
both sides of the inclusion with � , isotony and the de�nition of ∗ . Hence the
second claim is trivial by isotony. The third claim follows by setting r = I and
using I ∗ I = I .

ut
We can now give the

Proof of Lemma 4.3.31. The direction (⇒) is just Lemma A.1.5(c). For (⇐) we
obtain by Lemma A.1.5(b) and the assumption, for arbitrary test r ,

� ; (C × r) ; # ⊆ (C ∗ I) ;� ; (I × r) ⊆ C ;� ; (I × r) .

ut

Corollary A.1.6 C ∗ I ⊆ C ⇔ � ; (C × I) ; # ⊆ C ;� .

Proof. The direction (⇐) follows from composing both sides with� . For the other
direction we immediately get by de�nition and isotony� ; (Q× I) ;� ;� ⊆ Q ;� ,
since C ∗ I ⊆ C . Now the claim follows from Lemma 4.3.4 using # ⊆� ;� . ut

Proof of Lemma 4.5.7. By Theorem 4.5.3 and de�nition of ∗ , f is a test, I = I ; I
and Equation (×/;), Lemma 4.4.23, Lemma 4.3.4, Theorem 4.5.3, and de�nition of ∗ ,

∆f = � ; (f ;>× I) ;�
= � ; (f ; f ;>× I) ;�
= � ; (f × I) ; (f ;>× I) ;�
= � ; (f × I) ; # ;(f ;>× I) ;�
⊆ � ; (f × I) ;� ;� ; (f ;>× I) ;�
= (f ∗ I) ; ∆f .

175

Deferred Proofs and Properties

Hence, by (reldom) we have p(∆f) ⊆ f ∗ I . For the converse we calculate f ∗ I =
p(f ∗ I) ⊆ p((f ;>) ∗ I) = p(∆f) . Analogous calculations show the result for Ξf . ut

Proof of Lemma 4.5.9.

σ1
p(∆f) σ1 ∧ σ1 • σ2 ∆f σ′

⇔ {[Lemma 4.5.8 and Lemma 4.5.7]}
σ1 f ∗ I σ1 ∧ σ1 • σ2 ∆f ∗ I σ′

⇔ {[de�nition of ∗]}
∃σf , σI , τ1, τ2, τ ′1. σ1 = σf • σI ∧ σf ∈ f ∧ σ1 • σ2 = τ1 • τ2
∧ τ1 ∆f τ ′1 ∧ σ′ = τ ′1 • τ2

⇔ {[Theorem 4.5.3]}
∃σf , σI , τ1, τ2, τ ′1, τf , τ ′f , τI . σ1 = σf • σI ∧ σf ∈ f ∧
σ1 • σ2 = τ1 • τ2 ∧ τ1 = τf • τI ∧ τ ′1 = τ ′f • τI ∧ τf ∈ f ∧
σ′ = τ ′1 • τ2

⇒ {[Equation (4.13) implies σf = τf , logic]}
∃σf , σI , τ1, τ2, τ ′f , τI . σ1 = σf • σI ∧ σf ∈ f ∧
σ1 • σ2 = τ1 • τ2 ∧ τ1 = σf • τI ∧ σ′ = τ ′f • τI • τ2

⇒ {[cancellativity implies σI • σ2 = τI • τ2, logic]}
∃σf , σI , τ ′f . σ1 = σf • σI ∧ σf ∈ f ∧ σ′ = (τ ′f • σI) • σ2

⇔ {[de�nition of ; , ∗ and Theorem 4.5.3]}
∃σ′1. σ1 ∆f σ′1 ∧ σ′ = σ′1 • σ2 .

ut

Proof of Lemma 5.2.5.

(a) First, pa ≤ reach(pa, a) by the reach induction rule from Section 5.1. Second, by
a domain property, aq = (pa · a)q = 〈a|pa ≤ reach(pa, a) .

(b) For (≤) we know by diamond star induction that reach(pa, a + b) ≤ a ⇐ pa ≤
a ∧ 〈(a + b)| a ≤ a . pa ≤ a holds by de�nition of , while 〈(a + b)| a ≤ a
resolves by diamond distributivity to 〈a| a ≤ a ∧ 〈b| a ≤ a . Finally, the

claim holds by (a ·a)q ≤ aq and the assumption. The direction (≥) follows from
Part a, a ≤ a+ b and isotony of reach .

ut

Proof of Lemma 5.3.4. We �rst show the auxiliary result

p ≤ aq ∧ |a〉p = 0 ⇒ p = 0 . (A.4)

176

A.1 Deferred Proofs

We have, by the de�nition of diamond, full strictness of domain and since ¬aq is the
greatest right annihilator, |a〉p = 0 ⇔ p(a · p) = 0 ⇔ a · p = 0 ⇔ p ≤ ¬aq . Since
by assumption p ≤ aq, we get p ≤ aq · ¬aq = 0 .

Now we continue with the proof of Lemma 5.3.4. Suppose aq = 0 . Then by full
strictness also a = 0 and hence pa = 0, contradicting atomicity of pa . Hence aq 6= 0 .

Now assume p ≤ aq ∧ p 6= 0 . By Equation A.4 we have 0 6= |a〉p = p(a ·p) ≤ pa . Hence,
atomicity of pa implies |a〉p = pa . Now, by de�nition of codomain and determinacy of
a ,

aq = 〈a|pa = 〈a||a〉p ≤ p ,
so that altogether we have p = aq , which, by the assumptions and the de�nition of
atomicity, shows the claim. ut

Proof of Lemma 5.5.3. Assume a1 ∈ P (i) ∧ a2 ∈ Q(j) ∧ a3 ∈ R(k) and assume
ai 6= 2 .

(a): We only show the ⊆ - direction, since ⊇ was already shown in Lemma 5.4.12.
By the de�nitions it remains to show that (a1 + a2) . a3 ∧ a1 . a2 implies a1 . (a2 +
a3) ∧ a2 . a3 . The assumption (a1 + a2) . a3 resolves to

pa1 ·a3 ≤ 0 ∧ pa2 ·a3 ≤ 0 ∧ a1q ·a3q ≤ 2 ∧ a2q ·a3q ≤ 2 ∧ a1q ·pa3+a2q ·pa3 = root(a3) . (∗)

The last conjunct implies a2q · pa3 ≤ root(a3) . Moreover, note that the side condition
of (a) implies root(a3) ≤ a2 . Hence, root(a3) = root(a3) · pa3 ≤ a2 ·pa3 = pa2 · pa3 +
a2q · pa3 = a2q · pa3 and therefore root(a3) = a2q · pa3 . This shows a2 . a3, which further
by Lemma 5.4.3 implies root(a2 + a3) = root(a2) and a1q · pa3 ≤ root(a3) . From this
we obtain by (∗), since root(a3) 6= 2 is an atom and a1q · a2q ≤ 2 by a1 . a2 , that
a1q · pa3 = 0 as well. Hence, again by a1 . a2, we obtain root(a2) = a1q · pa2 + a1q · pa3 ,
which establishes a1 . (a2 + a3) .

(b): The ⊆ - direction was again shown in Lemma 5.4.12. Now assume a1 . (a2 + a3)
and a2©# a3 . The side condition implies a1 ·root(a3) ≤ 0 which in turn implies
a1q · pa3 ≤ ¬root(a3) . Therefore a1 . a3 does not hold and consequently a1 . a2 and
a1©# a3 need to be true by the de�nition of . for forests.

(c): We assume (a1 + a2) . a3 ∧ a1 . a2 and show a1 . (a2 + a3) ∧ a2©# a3 . As for (a),
(a1+a2).a3 implies a1q ·pa3+a2q ·pa3 = root(a3) . We calculate a2q ·pa3 ≤ a2q ·root(a3) =
a2q ·a1 ·root(a3) = a2q ·a1q ·root(a3) ≤ 2·pa3 ≤ 0 by assumptions and the side condition.
Hence, a2 . a3 and a1q · pa3 = root(a3) which by the assumption (a1 + a2) . a3 further
implies a1 . a3 . Next, the reverse direction is shown by root(ai) ≤ a1 ⇒ ¬(a1©# ai) ,
which in turn implies by a1 . (a2 + a3) and De�nition 5.4.4 that a1 . ai for i = 2, 3 .
Now, using assumption a2 .a3 we immediately get (a1 +a2).a3 from De�nition 5.4.4
again.

177

Deferred Proofs and Properties

(d): Again ⊇ was proved in Lemma 5.4.12 while ⊆ holds, since the side condition
implies root(a3) ≤ a2 and hence a1 . a3 can not hold by a1©# a2 . Therefore by
de�nition we can only have a1©# a3 ∧ a2 . a3 . Now the claim follows from bilinearity
of ©# . ut

Proof of Equation (5.3) ⇔ Equation (5.4).

cell (i)©. (tree(i.left)©∗ (cell (i.right)©. (tree(i.right.left)©∗ tree(i.right.right))))

= {[Lemma 5.5.3 (c)]}
(cell (i)©. tree(i.left))©. (cell (i.right)©. (tree(i.right.left)©∗ tree(i.right.right)))

= {[de�nition of rt_context]}
rt_context(i)©. (cell (i.right)©. (tree(i.right.left)©∗ tree(i.right.right)))

= {[commutativity of ©∗]}
rt_context(i)©. (cell (i.right)©. (tree(i.right.right)©∗ tree(i.right.left)))

= {[Lemma 5.5.3 (c)]}
rt_context(i)©. ((cell (i.right)©. tree(i.right.right))©. tree(i.right.left))

= {[de�nition of lt_context]}
rt_context(i)©. (lt_context(i.right)©. tree(i.right.left))

The same calculation can be done for the �nal state of Figure 5.7, i.e., the equation

cell (j)©. ((cell (i, j.left)©. (tree(i.left)©∗ tree(k, i.right)))©∗ tree(j.right))

equals the following

lt_context(j)©. (rt_context(i, j.left)©. tree(k, i.right)) .

ut

A.2 Further Properties of the Assertion Calculus

We provide some theorems that characterise in particular the interplay of pure and
precise assertions in combination with residuals and detachment operators. By this
we also demonstrate simple algebraic proofs of non-trivial properties characterising
behaviour of assertions in separation logic.

Lemma A.2.1 If t is a test then the element t · > is pure.

178

A.2 Further Properties of the Assertion Calculus

Proof. We use the characterisation of De�nition 3.2.6 and calculate (t · > u 1) · > =
t · (> u 1) · > = t · > which follows immediately from the equation (testdist). ut
We now investigate the interplay between pure assertions and algebraic residuals.

Corollary A.2.2 For arbitrary elements a, b, c we have a u (b\c) ≤ (a u b)\c .

Proof. By De�nition 3.1.3, isotony and Lemma 3.1.5,

a u (b\c) ≤ (a u b)\c ⇔ (a u b) · (a u (b\c)) ≤ c
⇐ b · (b\c) ≤ c
⇐ c ≤ c
⇔ true .

ut

Lemma A.2.3 If a is pure then for arbitrary b, c the following (in)equations hold:

(a u b)\(a u c) = (a u b)\c , (A.5)

a u (b\c) ≤ b\(a u c) , (A.6)

a u (b\c) = a u (b\(a u c)) , (A.7)

a u (b\c) = a u ((a u b)\c) , (A.8)

a u (b\c) = a u ((a u b)\(a u c)) , (A.9)

a u ((a u b)\(a u c)) ≤ b\(a u c) . (A.10)

Proof. For a proof of (A.5) we use the proof principle of indirect equality, i.e.,

x = y ⇔ (∀ z : z ≤ x ⇔ z ≤ y) .

The ⇒ - direction is obvious while for the converse we can instantiate z to x and y
and hence by antisymmetry of ≤ the claim holds. Next we continue with the main
proof. By de�nition, Lemma 3.2.7(c), shunting, distributivity, a + a = >, shunting,
Lemma 3.2.7(c), and de�nition:

∀x : x ≤ (a u b)\(a u c)
⇔ ∀x : (a u b) · x ≤ a u c
⇔ ∀x : a u b · x ≤ a u c
⇔ ∀x : b · x ≤ a+ (a u c)
⇔ ∀x : b · x ≤ (a+ a) u (a+ c)
⇔ ∀x : a u b · x ≤ c
⇔ ∀x : (a u b) · x ≤ c
⇔ ∀x : x ≤ (a u b)\c .

179

Deferred Proofs and Properties

Now we give a proof of Part (A.6). By de�nition of residuals, Lemma 3.2.7(c),
Lemma 3.1.5 and isotony,

a u (b\c) ≤ b\(a u c) ⇔ b · (a u (b\c)) ≤ a u c ⇔ a u (b · (b\c)) ≤ a u c ⇔ true .

The ≤ - direction of (A.7) follows immediately from (A.6) by multiplying both side
with au and using idempotence of u . The ≥ - direction can be shown as follows: By
idempotence and isotony of u , de�nition of resdiduals, Lemma 3.2.7(c), Lemma 3.1.5,
and isotony,

a u (b\(a u c)) ≤ a u (b\c)
⇔ a u (b\(a u c)) ≤ b\c
⇔ b · (a u (b\(a u c))) ≤ c
⇔ a u (b · (b\(a u c))) ≤ c
⇔ true .

Next, the ≤-direction of (A.8) follows immediately by Corollary A.2.2. By idempo-
tence and isotony of u , de�nition of residuals, Lemma 3.2.7(c), and Lemma 3.1.5:

a u ((a u b)\c) ≤ a u (b\c)
⇔ a u ((a u b)\c) ≤ b\c
⇔ b · (a u ((a u b)\c)) ≤ c
⇔ (a u b) · ((a u b)\c) ≤ c
⇔ true .

Finally (A.9) follows immediately from (A.8) and (A.5) and Equation (A.10) holds
by (A.9) and (A.6). ut
These laws provided frequently used theorems characterising the interplay between
pure elements and residuals. It can be seen that all of them can be calculated in a
simple and purely algebraic fashion. We now turn to detachments interacting with
pure elements. This yields analogous import and export laws for detachments as in
the case of pure elements interacting with multiplication or more concretely separating
conjunction in Lemma 3.2.7(c).

Lemma A.2.4 Assume a is pure and b, c arbitrarily. Then (auc)c(aub) = cc(aub) .

Proof. The ≤ - direction follow immediately from isotony of c in its �rst argument.
The other direction can be shown as follows: By (exc), de�nition of c , Boolean
algebra, shunting, Lemma 3.2.7(c), Lemma A.2.3 (A.7) and (A.9), Lemma 3.2.7(c),
shunting, Boolean algebra, commutativity of · and Lemma 3.1.5,

180

A.2 Further Properties of the Assertion Calculus

cc(a u b) ≤ (a u c)c(a u b)
⇔ c · (a u c)c(a u b) ≤ a u b
⇔ c · ((a u c)\a u b) ≤ a u b
⇔ c · ((a u c)\a u b) ≤ a+ b

⇔ a u (c · ((a u c)\a u b)) ≤ b
⇔ c · (a u ((a u c)\a u b)) ≤ b
⇔ c · (a u (c\a u b)) ≤ b
⇔ a u (c · (c\a u b)) ≤ b
⇔ c · (c\a u b) ≤ a+ b

⇔ c · (c\a u b) ≤ a u b
⇔ true .

ut

Lemma A.2.5 For arbitrary b, c and pure a the inequation (a u c)c(a u b) ≤ 0 is
valid. Therefore also (a u c)c(a u b) ≤ 0 .

Proof. By (exc), Boolean algebra, Lemma 3.2.7(c), and isotony:

(a u b)b(a u c) ≤ 0

⇔ > · (a u c) ≤ a u b
⇔ > · (a u c) ≤ a+ b

⇔ a u > · c ≤ a+ b
⇔ true .

ut

Lemma A.2.6 For arbitrary b, c and pure a we have (a u c)cb = cc(a u b) .

Proof. By Boolean algebra, distributivity of c , Lemma A.2.5, and Lemma A.2.4:

(a u c)cb
= (a u c)c((a u b) + (a u b))
= ((a u c)c(a u b)) + ((a u c)c(a u b))
= (a u c)c(a u b)
= cc(a u b) .

ut

Lemma A.2.7 For arbitrary b, c and pure a we have a u (ccb) = cc(a u b) .

Proof. We �rst show the ≥ - direction: By (exc), Boolean algebra, distributivity,
supremum splitting and isotony, isotony of · and de�nition of c , commutativity,
Lemma 3.2.7(a) and Lemma 3.1.5,

181

Deferred Proofs and Properties

cc(a u b) ≤ a u (ccb)
⇔ c · a u (ccb) ≤ a u b
⇔ c · (a+ ccb) ≤ a+ b

⇔ (c · a) + (c · ccb) ≤ a+ b

⇐ c · a ≤ a ∧ c · ccb ≤ b
⇐ > · a ≤ a ∧ c · (c\b) ≤ b
⇔ true .

For the other direction we calculate: By shunting, (exc), Boolean algebra, superdis-
tributivity, Lemma 3.1.5, Boolean algebra,

a u (ccb) ≤ cc(a u b)
⇔ ccb ≤ cc(a u b) + a

⇔ c · cc(a u b) + a ≤ b
⇔ c · ((c\a u b) u a) ≤ b
⇐ c · (c\a u b) u c · a ≤ b
⇐ a u b u c · a ≤ b
⇔ (a u c · a) + (b u c · a) ≤ b .

Now, since a is pure, we infer a u c · a ≤ a u > · a ≤ a u a ≤ 0 and claim follows
from isotony. ut

Corollary A.2.8 For arbitrary b, c and pure a,

a u ccb = cc(a u b) = (a u c)cb = (a u c)c(a u b) .

As a next step we give some further useful properties of precise assertions which
facilitates calculating with them.

Lemma A.2.9 If b, c are precise and a is pure, then (a u b) + (a u c) is precise.

Proof. We assume arbitrary elements d, e ∈ S . By distributivity, Lemma 3.2.7(c)
and Corollary 3.2.11, distributivity, aua = 0 , idempotence of u , b and c are precise,
Lemma 3.2.7(c) and Corollary 3.2.11, and distributivity:

((a u b) + (a u c)) · d u ((a u b) + (a u c)) · e
= ((a u b) · d+ (a u c) · d) u ((a u b) · e+ (a u c) · e)
= (a u (b · d) + a u (c · d)) u (a u (b · e) + a u (c · e))
= a u (b · d) u a u (b · e) + a u (c · d) u a u (b · e) +

a u (b · d) u a u (c · e) + a u (c · d) u a u (c · e)

182

A.2 Further Properties of the Assertion Calculus

= a u (b · d) u (b · e) + a u (c · d) u (c · e)
= a u (b · (d u e)) + a u (c · (d u e))
= ((a u b) · (d u e)) + ((a u c) · (d u e))
= ((a u b) + (a u c)) · (d u e) .

ut

Lemma A.2.10 If a is precise then (a u b) · c u a · d = (a u b) · (c u d) for arbitrary
elements b, c, d .

Proof. First, we calculate by isotony, Boolean algebra, and a is precise,

(a u b) · (c u d) u a · d ≤ a · (c u d) u a · d = a · ((c u d) u d) = 0 . (∗)

We prove the equation by showing each inequation separately. The ≤ - direction can
be shown as follows: By Boolean algebra, distributivity, by (∗), and isotony:

(a u b) · c u a · d
= (((a u b) · (c u d)) + ((a u b) · (c u d))) u a · d
= (((a u b) · (c u d) u a · d) + ((a u b) · (c u d) u a · d)
= ((a u b) · (c u d)) u (a · d)
≤ (a u b) · (c u d) .

The converse inequation follows by isotony, i.e., (aub) ·(cud) ≤ (aub) ·c u (aub) ·d ≤
(a u b) · c u a · d . ut

Corollary A.2.11 If a or a′ is precise, then (au b) ·a′ u a · (a′ u c) = (au b) · (a′ u c)
for all b, c .

This law characterises an interplay between · and u w.r.t. precise elements in the
sense that only the subheaps that �t together, i.e., a and a u b, respectively a′ and
a′ u c, remain within the intersection on the left-hand side of the above equation.

183

Deferred Proofs and Properties

A.3 Deferred Figures

FV(v := e) =df {v} ∪ FV(e)
FV(skip) =df ∅
FV(P ;Q) =df FV(P) ∪ FV(Q)
FV(if b then P else Q) =df FV(b) ∪ FV(P) ∪ FV(Q)
FV(while b do P) =df FV(b) ∪ FV(P)
FV(newvar v inP) =df FV(P)− {v}
FV(newvar v := e inP) =df (FV(e) ∪ FV(P))− {v}
FV(v := cons (e1, ..., en)) =df {v} ∪

n⋃
i=1

FV(ei)

FV(v := [e]) =df {v} ∪ FV(e)
FV([e1] := e2) =df FV(e1) ∪ FV(e2)
FV(dispose e) =df FV(e)

Figure A.1: De�nition of the free variables FV(_) of syntactical commands.

MV(v := e) =df {v}
MV(skip) =df ∅
MV(P ;Q) =df MV(P) ∪MV(Q)
MV(if b then P else Q) =df MV(P) ∪MV(Q)
MV(while b do P) =df MV(P)
MV(newvar v inP) =df MV(P)− {v}
MV(newvar v := e inP) =df MV(P)− {v}
MV(v := cons (e1, ..., en)) =df {v}
MV(v := [e]) =df {v}
MV([e1] := e2) =df ∅
MV(dispose e) =df ∅

Figure A.2: De�nition of the modi�ed variables MV(_) of syntactical commands.

184

Bibliography

[AS12] A. Armstrong and G. Struth, Automated Reasoning in Higher-Order
Regular Algebra, Relational and Algebraic Methods in Computer Science
(W. Kahl and T. G. Gri�n, eds.), Lecture Notes in Computer Science,
vol. 7560, Springer-Verlag, 2012, pp. 66�81.

[ASW13a] A. Armstrong, G. Struth, and T. Weber, Kleene Algebra, Archive of
Formal Proofs, 2013.

[ASW13b] , Program Analysis and Veri�cation Based on Kleene Algebra
in Isabelle/HOL, Interactive Theorem Proving (S. Blazy, C. Paulin-
Mohring, and D. Pichardie, eds.), Lecture Notes in Computer Science,
vol. 7998, Springer-Verlag, 2013, pp. 197�212.

[BBTS05] B. Biering, L. Birkedal, and N. Torp-Smith, BI Hyperdoctrines and
Higher-Order Separation Logic, Proccedings of 14th European Sympo-
sium on Programming (ESOP 2005) (S. Sagiv, ed.), Lecture Notes in
Computer Science, vol. 3444, Springer-Verlag, 2005, pp. 233�247.

[BBTS07] , BI-hyperdoctrines, Higher-order Separation Logic, and Abstrac-
tion, ACM Transactions on Programming Languages and Systems 29
(2007), no. 5, 24.

[BCO05] J. Berdine, C. Calcagno, and P. O'Hearn, A Decidable Fragment of Sep-
aration Logic, FSTTCS 2004: Foundations of Software Technology and
Theoretical Computer Science 3328 (2005), 110�117.

[BCO06] J. Berdine, C. Calcagno, and P. W. O'Hearn, Smallfoot: Modular Au-
tomatic Assertion Checking with Separation Logic, Formal Methods for
Components and Objects (FMCO2005) (F. de Boer, M. M. Bonsangue,
S. Graf, and W. de Roever, eds.), Lecture Notes in Computer Science,
vol. 4111, Springer-Verlag, 2006, pp. 115�137.

BIBLIOGRAPHY

[BCOP05] R. Bornat, C. Calcagno, P. O'Hearn, and M. Parkinson, Permission Ac-
counting in Separation Logic, Proceedings of the 32nd ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, Principles
of Programming Languages POPL'05, ACM Press, 2005, pp. 259�270.

[BCY06] R. Bornat, C. Calcagno, and H. Yang, Variables As Resource in Sep-
aration Logic, Electronic Notes on Theoretical Computer Science 155
(2006), 247�276.

[BD02] M. Broy and E. Denert, Software Pioneers: Contributions to Software
Engineering, Springer-Verlag, 2002.

[Bie04] B. Biering, On the Logic of Bunched Implications and its Relation to
Separation Logic, Master's thesis, University of Copenhagen, 2004.

[Bir67] G. Birkho�, Lattice Theory, 3rd ed., American Mathematical Society,
1967.

[BJ72] T. S. Blyth and M. F. Janowitz, Residuation Theory, Pergamon Press,
1972.

[BK10] J. Brotherston and M. Kanovich, Undecidability of Propositional Sepa-
ration Logic and Its Neighbours, Proceedings of the 2010 25th Annual
IEEE Symposium on Logic in Computer Science, LICS '10, IEEE Com-
puter Society, 2010, pp. 130�139.

[Boy03] J. Boyland, Checking Interference with Fractional Permissions, Proceed-
ings of the 10th International Conference on Static Analysis, SAS'03,
Springer-Verlag, 2003, pp. 55�72.

[BP12] T. Braibant and D. Pous, Deciding Kleene Algebras in Coq, Logical
Methods in Computer Science 8 (2012), no. 1, 1�42.

[Bro07] S. Brookes, A Semantics for Concurrent Separation Logic, Theoretical
Computer Science 375 (2007), 227�270.

[Bur72] R. M. Burstall, Some Techniques for Proving Correctness of Programs
which Alter Data Structures, Machine Intelligence 7 (1972), 23�50.

[BV14] J. Brotherston and J. Villard, Parametric Completeness for Separation
Theories, Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL '14, ACM Press, 2014,
pp. 453�464.

186

BIBLIOGRAPHY

[BvdW93] R. C. Backhouse and J. van der Woude, Demonic Operators and Mono-
type Factors, Mathematical Structures in Computer Science 3 (1993),
no. 4, 417�433.

[BvW98] R.-J. Back and J. von Wright, Re�nement Calculus: A Systematic In-
troduction, Graduate Texts in Computer Science, Springer-Verlag, 1998.

[CDOY09a] C. Calcagno, D. Distefano, P. O'Hearn, and H. Yang, Compositional
Shape Analysis by Means of Bi-abduction, ACM SIGPLAN Notices 44
(2009), no. 1, 289�300.

[CDOY09b] , Space Invading Systems Code, Logic-Based Program Synthesis
and Transformation (M. Hanus, ed.), Springer-Verlag, 2009, pp. 1�3.

[CJ00] P. Collette and C. B. Jones, Enhancing the Tractability of
Rely/Guarantee Speci�cations in the Development of Interfering Oper-
ations, Proof, Language and Interaction (G. Plotkin, C. Stirling, and
M. Tofte, eds.), MIT Press, 2000, pp. 277�307.

[Coh94] E. Cohen, Using Kleene Algebra to Reason about Concurrency Control,
Tech. report, Telcordia, 1994.

[Con71] J. H. Conway, Regular Algebra and Finite Machines, Chapman & Hall,
1971.

[COY07] C. Calcagno, P. W. O'Hearn, and H. Yang, Local Action and Abstract
Separation Logic, Proceedings of the 22nd Symposium on Logic in Com-
puter Science, IEEE Computer Society Press, 2007, pp. 366�378.

[CS10] Y. Chen and J.-W. Sanders, Abstraction of Object Graphs in Program
Veri�cation, Proc. of 10th Intl. Conference on Mathematics of Program
Construction (C. Bolduc, J. Desharnais, and B. Ktari, eds.), Lecture
Notes in Computer Science, vol. 6120, Springer-Verlag, 2010, pp. 80�99.

[Dan09] H.-H. Dang, Algebraic Aspects of Separation Logic, Tech. Report 2009-1,
Institut für Informatik, Universität Augsburg, 2009.

[Dan12] , On the Algebraic Derivation of Garbage Collec-
tors, Relational and Algebraic Methods in Computer Sci-
ence � PhD Programme at RAMiCS 13 (W. Kahl and
T. G. Gri�n, eds.), Technical Report, Faculty of Com-
puter Science and Technology, University of Cambridge, 2012,
http://www.cl.cam.ac.uk/conference/ramics13/Dang_alggarcol.pdf.

187

BIBLIOGRAPHY

[Dan14] , Abstract Dynamic Frames, Relational and Algebraic Methods
in Computer Science (RAMiCS 14) (P. Höfner, P. Jipsen, W. Kahl,
and M. E. Müller, eds.), Lecture Notes in Computer Science, vol. 8428,
Springer-Verlag, 2014, pp. 157�172.

[DBS+95] J. Desharnais, N. Belkhiter, S. B. M. Sghaier, F. Tchier, A. Jaoua,
A. Mili, and N. Zaguia, Embedding a Demonic Semilattice in a Relational
Algebra, Theoretical Computer Science 149 (1995), no. 2, 333�360.

[DGM+14] H.-H. Dang, R. Glück, B. Möller, P. Roocks, and A. Zelend, Exploring
Modal Worlds, Journal of Logic and Algebraic Programming 83 (2014),
135�153.

[DH08] H.-H. Dang and P. Höfner, First-Order Theorem Prover Evaluation
w.r.t. Relation- and Kleene Algebra, Relations and Kleene Algebra
in Computer Science � PhD Programme at RelMiCS 10/AKA05
(R. Berghammer, B. Möller, and G. Struth, eds.), Technical Report, no.
2008-04, Institut für Informatik, Universität Augsburg, 2008, pp. 48�52.

[DH11] , Variable Side Conditions and Greatest Relations in Algebraic
Separation Logic, Proceedings of the 12th international conference on
Relational and Algebraic Methods in Computer Science (H. de Swart,
ed.), Lecture Notes in Computer Science, vol. 6663, Springer-Verlag,
2011, pp. 125�140.

[DH12] , Automated Higher-order Reasoning about Quantales, PAAR-
2010: Proceedings of the 2nd Workshop on Practical As-
pects of Automated Reasoning (R. A. Schmidt, S. Schulz,
and B. Konev, eds.), EPiC Series, vol. 9, EasyChair, 2012,
http://www.easychair.org/publications/?page=515428679, pp. 40�51.

[DHA09] R. Dockins, A. Hobor, and A. W. Appel, A Fresh Look at Separation Al-
gebras and Share Accounting, Proceedings of the 7th Asian Symposium
on Programming Languages and Systems, APLAS '09, Springer-Verlag,
2009, pp. 161�177.

[DHM09] H.-H. Dang, P. Höfner, and B. Möller, Towards Algebraic Separation
Logic, Relations and Kleene Algebra in Computer Science (R. Bergham-
mer, A. Jaoua, and B. Möller, eds.), Lecture Notes in Computer Science,
vol. 5827, Springer-Verlag, 2009, pp. 59�72.

[DHM10] , Algebraic Separation Logic, Tech. Report 2010-06, Institute of
Computer Science, University of Augsburg, 2010.

188

BIBLIOGRAPHY

[DHM11] , Algebraic Separation Logic, Journal of Logic and Algebraic Pro-
gramming 80 (2011), no. 6, 221�247.

[Dij76] E. W. Dijkstra, A Discipline of Programming, Prentice Hall, 1976.

[DM01a] J. Desharnais and B. Möller, Characterizing Determinacy in Kleene Al-
gebra, Information Sciences 139 (2001), 253�273.

[DM01b] , Characterizing Determinacy in Kleene Algebra (revised ver-
sion), Tech. Report 2001-03, Institute of Computer Science, University
of Augsburg, April 2001.

[DM11] H.-H. Dang and B. Möller, Simplifying Pointer Kleene Algebra, Proceed-
ings of the First Workshop on Automated Theory Engineering, Wrocaw,
Poland (P. Höfner, A. McIver, and G. Struth, eds.), CEUR Workshop
Proceedings, vol. 760, CEUR-WS.org, 2011, pp. 20�29.

[DM12a] , Reverse Exchange for Concurrency and Local Reasoning, Math-
ematics of Program Construction (J. Gibbons and P. Nogueira, eds.),
Lecture Notes in Computer Science, vol. 7342, Springer-Verlag, 2012,
pp. 177�197.

[DM12b] , Transitive Separation Logic, 13th International Conference on
Relational and Algebraic Methods in Computer Science (RAMiCS 13)
(W. Kahl and T. G. Gri�n, eds.), Lecture Notes in Computer Science,
vol. 7560, Springer-Verlag, 2012, pp. 1�16.

[DM13] , Extended Transitive Separation Logic, Tech. Report 2013-07,
Institut für Informatik, Universität Augsburg, 2013.

[DM14] , Concurrency and Local Reasoning under Reverse Exchange, Sci-
ence of Computer Programming 85, Part B (2014), 204�223, Special
Issue on Mathematics of Program Construction 2012.

[DMN97] J. Desharnais, A. Mili, and T. T. Nguyen, Re�nement and Demonic
Semantics, Relational Methods in Computer Science (C. Brink, W. Kahl,
and G. Schmidt, eds.), Springer-Verlag, 1997, pp. 166�183.

[DMS06] J. Desharnais, B. Möller, and G. Struth, Kleene Algebra with Domain,
ACM Transactions on Computational Logic 7 (2006), no. 4, 798�833.

[DMT06] J. Desharnais, B. Möller, and F. Tchier, Kleene Under a Modal Demonic
Star, Journal of Logic and Algebraic Programming 66 (2006), 127�160.

189

BIBLIOGRAPHY

[DYBG+13] T. Dinsdale-Young, L. Birkedal, P. Gardner, M. Parkinson, and H. Yang,
Views: Compositional Reasoning for Concurrent Programs, Proceedings
of the 40th annual ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, POPL '13, ACM Press, 2013, pp. 287�300.

[DYDG+10] T. Dinsdale-Young, M. Dodds, P. Gardner, M. Parkinson, and
V. Vafeiadis, Concurrent Abstract Predicates, ECOOP 2010 � Object-
Oriented Programming, 24th European Conference, Maribor, Slovenia,
June 21-25, 2010. Proceedings (T. D'Hondt, ed.), Lecture Notes in Com-
puter Science, vol. 6183, Springer-Verlag, 2010, pp. 504�528.

[Ehm01] T. Ehm, Transformational Construction of Correct Pointer Algorithms,
Perspectives of System Informatics (D. Bjørner, M. Broy, and A. V.
Zamulin, eds.), Lecture Notes in Computer Science, vol. 2244, Springer-
Verlag, 2001, pp. 116�130.

[Ehm03] , The Kleene Algebra of Nested Pointer Structures: Theory and
Applications, Ph.D. thesis, Universität Augsburg, 2003.

[Ehm04] , Pointer Kleene Algebra, RelMiCS/AKA 2003 (R. Berghammer,
B. Möller, and G. Struth, eds.), Lecture Notes in Computer Science, vol.
3051, Springer-Verlag, 2004, pp. 99�111.

[EKMS92] M. Erne, J. Koslowski, A. Melton, and G. E. Strecker, A Primer on
Galois Connections, York Academy of Science, 1992.

[FBH97] M. F. Frias, G. Baum, and A. M. Haeberer, Fork Algebras in Algebra,
Logic and Computer Science, Fundam. Inform. 32 (1997), no. 1, 1�25.

[FL79] M. J. Fischer and R. E. Ladner, Propositional Dynamic Logic of Regular
Programs, Journal of Computer and System Sciences 18 (1979), no. 2,
194�211.

[GGN11] D. Garbervetsky, D. Gorín, and A. Neisen, Enforcing Structural Invari-
ants using Dynamic Frames, Proceedings of the 17th Intl Conference
on Tools and Algorithms for the Construction and Analysis of Systems,
TACAS'11/ETAPS'11, Springer-Verlag, 2011, pp. 65�80.

[GLW06] D. Galmiche and D. Larchey-Wendling, Expressivity Properties of
Boolean BI Through Relational Models, Proceedings of the 26th Interna-
tional Conference on Foundations of Software Technology and Theoreti-
cal Computer Science, FSTTCS'06, Springer-Verlag, 2006, pp. 357�368.

190

BIBLIOGRAPHY

[HHM+11] C. A. R. Hoare, A. Hussain, B. Möller, P. W. O'Hearn, R. L. Petersen,
and G. Struth, On Locality and the Exchange Law for Concurrent Pro-
cesses, CONCUR 2011 (J. P. Katoen and B. König, eds.), Lecture Notes
in Computer Science, vol. 6901, Springer-Verlag, 2011, pp. 250�264.

[HMSW09a] C. A. R. Hoare, B. Möller, G. Struth, and I. Wehrman, Concurrent
Kleene Algebra, CONCUR 09 � Concurrency Theory (M. Bravetti and
G. Zavattaro, eds.), Lecture Notes in Computer Science, vol. 5710,
Springer-Verlag, 2009, pp. 399�414.

[HMSW09b] , Foundations of Concurrent Kleene Algebra, Relations and
Kleene Algebra in Computer Science (R. Berghammer, A. Jaoua, and
B. Möller, eds.), Lecture Notes in Computer Science, vol. 5827, Springer-
Verlag, 2009, pp. 166�186.

[HMSW11] C. A. R. Hoare, B. Möller, G. Struth, and I. Wehrman, Concurrent
Kleene Algebra and its Foundations, Journal of Logic and Algebraic
Programming 80 (2011), no. 6, 266�296.

[Hoa69] C. A. R. Hoare, An Axiomatic Basis for Computer Programming, Com-
munications of the ACM 12 (1969), no. 10, 576�580, Reprint in [BD02].

[Hoa72] , Proofs of Correctness of Data Representations, Acta Informat-
ica 1 (1972), 271�281.

[Hoa11] , An Algebra for Program Designs, Notes on Summer School in
Software Engineering and Veri�cation in Moscow, 2011.

[Höf] P. Höfner, Database for Automated Proofs of Kleene Algabra,
http://www.dcs.shef.ac.uk/∼georg/ka (accessed December 17,
2014).

[Höf08] , Automated reasoning for hybrid systems � Two case studies,
Relations and Kleene Algebra in Computer Science (R. Berghammer,
B. Möller, and G. Struth, eds.), Lecture Notes in Computer Science,
vol. 4988, Springer-Verlag, 2008, pp. 191�205.

[Höf09] , Algebraic Calculi for Hybrid Systems, Ph.D. thesis, Universität
Augsburg, 2009.

[HS07] P. Höfner and G. Struth, Automated Reasoning in Kleene Algebra, Au-
tomated Deduction � CADE-21 (F. Pfenning, ed.), Lecture Notes in
Arti�cial Intelligence, vol. 4603, Springer-Verlag, 2007, pp. 279�294.

191

BIBLIOGRAPHY

[HS08] , Can Re�nement be Automated?, Re�ne 2007 (E. Boiten, J. Der-
rick, and G. Smith, eds.), Electronic Notes on Theoretical Computer
Science, vol. 201, Elsevier Science Publishers Ltd., 2008, pp. 197�222.

[HSS08] P. Höfner, G. Struth, and G. Sutcli�e, Automated Veri�cation of Re�ne-
ment Laws, Annals of Mathematics and Arti�cial Intelligence, Special
Issue on First-order Theorem Proving 1 (2008), 35�62.

[HV13] A. Hobor and J. Villard, The Rami�cations of Sharing in Data Struc-
tures, Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages (R. Giacobazzi and
R. Cousot, eds.), POPL, ACM Press, 2013, pp. 523�536.

[IO01] S. Ishtiaq and P. W. O'Hearn, BI as an Assertion Language for Mutable
Data Structures, ACM SIGPLAN Notices 36 (2001), no. 3, 14�26.

[JB12] J. B. Jensen and L. Birkedal, Fictional Separation Logic, Proceedings of
the 21st European Conference on Programming Languages and Systems,
ESOP'12, Springer-Verlag, 2012, pp. 377�396.

[JP08] B. Jacobs and F. Piessens, The VeriFast Program Veri�er, Tech. Report
CW-520, Department of Computer Science, Katholieke Universiteit Leu-
ven, Belgium, 2008.

[JT51] B. Jónsson and A. Tarski, Boolean Algebras with Operators, Part I,
American Journal of Mathematics 73 (1951), 891�939.

[Kas11] I. T. Kassios, The Dynamic Frames Theory, Formal Aspects of Com-
puting 23 (2011), no. 3, 267�289.

[Koz94] D. Kozen, A Completeness Theorem for Kleene Algebras and the Algebra
of Regular Events, Information and Computation 110 (1994), no. 2, 366�
390.

[Koz97] , Kleene Algebra with Tests, ACM Transactions on Programming
Languages and Systems 19 (1997), no. 3, 427�443.

[Koz00] , On Hoare Logic and Kleene Algebra with Tests, ACM Transac-
tions on Computational Logic 1 (2000), no. 1, 60�76.

[Koz02] , On Hoare Logic, Kleene Algebra, and Types, In the Scope of
Logic, Methodology, and Philosophy of Science: Volume One of the 11th
Int. Congress Logic, Methodology and Philosophy of Science, Cracow,
August 1999 (P. Gärdenfors, J Wole«ski, and K. Kijania-Placek, eds.),

192

BIBLIOGRAPHY

Studies in Epistemology, Logic, Methodology, and Philosophy of Science,
vol. 315, Kluwer Academic Publishers, 2002, pp. 119�133.

[KP00] D. Kozen and M.-C. Patron, Certi�cation of Compiler Optimizations us-
ing Kleene Algebra with Tests, Proceedings of the 1st International Con-
ference on Computational Logic (CL2000) (J. Lloyd, V. Dahl, U. Fur-
bach, M. Kerber, K.-K. Lau, C. Palamidessi, L. Moniz Pereira, Y. Sagiv,
and P. J. Stuckey, eds.), Lecture Notes in Computer Science, vol. 1861,
Springer-Verlag, 2000, pp. 568�582.

[Lam68] J. Lambek, Deductive Systems and Categories I. Syntactic Calculus and
Residuated Categories, Mathematical Systems Theory 2 (1968), no. 4,
287�318.

[Lei10] K. Rustan M. Leino, Dafny: An Automatic Program Veri�er for Func-
tional Correctness, Proceedings of the 16th Intl. Conf. on Logic for Pro-
gramming, Arti�cial Intelligence, and Reasoning, Springer-Verlag, 2010,
pp. 348�370.

[Mad06] R. Maddux, Relation Algebras, Studies in Logic and the Foundations of
Mathematics, vol. 150, Elsevier Science Publishers Ltd., 2006.

[MB85] E. Manes and D. Benson, The Inverse Semigroup of a Sum-Ordered
Semiring, Semigroup Forum 31 (1985), 129�152.

[McC05] W. McCune, Prover9 and Mace4, http://www.cs.unm.edu/∼mccune/
prover9, 2005.

[MH69] J. McCarthy and P. J. Hayes, Some Philosophical Problems from the
Standpoint of Arti�cial Intelligence, Machine Intelligence 4 (B. Meltzer
and D. Michie, eds.), Edinburgh University Press, 1969, pp. 463�502.

[MHS06] B. Möller, P. Höfner, and G. Struth, Quantales and Temporal Log-
ics, Algebraic Methodology and Software Technology (M. Johnson and
V. Vene, eds.), Lecture Notes in Computer Science, vol. 4019, Springer-
Verlag, 2006, pp. 263�277.

[Möl92] B. Möller, Some Applications of Pointer Algebra, Programming and
Mathematical Method (M. Broy, ed.), NATO ASI Series, Series F: Com-
puter and Systems Sciences, no. 88, Springer-Verlag, 1992, pp. 123�155.

[Möl93a] , Derivation of Graph and Pointer Algorithms, Springer-Verlag,
1993.

193

BIBLIOGRAPHY

[Möl93b] , Towards Pointer Algebra, Science of Computer Programming
21 (1993), no. 1, 57�90.

[Möl97] , Calculating with Pointer Structures, Proceedings of the IFIP
TC2/WG 2.1 International Workshop on Algorithmic Languages and
Calculi, Chapman & Hall, 1997, pp. 24�48.

[Möl99a] , Calculating with Acyclic and Cyclic Lists, Information Sciences
119 (1999), no. 3-4, 135�154.

[Möl99b] , Calculational System Design, Nato Science Series, Series F:
Computer and System Sciences, vol. 173, ch. Algebraic Structures for
Program Calculation, pp. 25�97, IOS Press, 1999.

[Möl07] , Kleene Getting Lazy, Science of Computer Programming 65
(2007), 195�214.

[MS06a] B. Möller and G. Struth, Algebras of Modal Operators and Partial Cor-
rectness, Theoretical Computer Science 351 (2006), no. 2, 221�239.

[MS06b] , wp Is wlp, Relational Methods in Computer Science (W. Mac-
Caull, M. Winter, and I. Düntsch, eds.), Lecture Notes in Computer
Science, vol. 3929, Springer-Verlag, 2006, pp. 200�211.

[Mul86] C. Mulvey, &, Rendiconti del Circolo Matematico di Palermo 12 (1986),
no. 2, 99�104.

[Ngu91] T. T. Nguyen, A Relational Model of Nondeterministic Programs, Inter-
national Journal on Foundations of Computer Science 2 (1991), 101�131.

[Nis06] S. Nishimura, Reasoning About Data-Parallel Pointer Programs in
a Modal Extension of separation logic, Algebraic Methodology and
Software Technology, 11th International Conference (M. Johnson and
V. Vene, eds.), Lecture Notes in Computer Science, vol. 4019, Springer-
Verlag, 2006, pp. 293�307.

[O'H07] P. W. O'Hearn, Resources, Concurrency, and Local Reasoning, Theoret-
ical Computer Science 375 (2007), no. 1�3, 271�307.

[OP99] P. W. O'Hearn and D. J. Pym, The Logic of Bunched Implications,
Bulletin of Symbolic Logic 5 (1999), no. 2, 215�244.

[ORY01] P. W. O'Hearn, J. C. Reynolds, and H. Yang, Local Reasoning about
Programs that Alter Data Structures, CSL '01: Proceedings of the 15th

194

BIBLIOGRAPHY

International Workshop on Computer Science Logic (L. Fribourg, ed.),
Lecture Notes in Computer Science, vol. 2142, Springer-Verlag, 2001,
pp. 1�19.

[ORY09] , Separation and Information Hiding, ACM Transactions on Pro-
gramming Languages and Systems 31 (2009), no. 3, 1�50.

[Par10] M. Parkinson, The Next 700 Separation Logics, Veri�ed Software: The-
ories, Tools, Experiments (G. T. Leavens, P. W. O'Hearn, and S. K. Ra-
jamani, eds.), Lecture Notes in Computer Science, vol. 6217, Springer-
Verlag, 2010, pp. 169�182.

[PB05] M. Parkinson and G. Bierman, Separation Logic and Abstraction, Pro-
ceedings of the 32Nd ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, POPL '05, ACM Press, 2005, pp. 247�
258.

[PBC06] M. Parkinson, R. Bornat, and C. Calcagno, Variables as Resource in
Hoare Logics, Proceedings of the Twenty-First Annual IEEE Symposium
on Logic in Computer Science (LICS 2006), IEEE Computer Society
Press, 2006, pp. 137�146.

[PBO07] M. Parkinson, R. Bornat, and P. O'Hearn, Modular Veri�cation of a
Non-blocking Stack, Proceedings of the 34th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL
'07, ACM Press, 2007, pp. 297�302.

[Plo04] G. D. Plotkin, A Structural Approach to Operational Semantics, Journal
of Logic and Algebraic Programming 60�61 (2004), 17�139.

[POY04] D. J. Pym, P. W. O'Hearn, and H. Yang, Possible Worlds and Resources:
The Semantics of BI, Theoretical Computer Science 315 (2004), no. 1,
257�305.

[PPS10] D. Pavlovic, P. Pepper, and D. R. Smith, Formal Derivation of Con-
current Garbage Collectors, Mathematics of Program Construction
(C. Bolduc, J. Desharnais, and B. Ktari, eds.), Lecture Notes in Com-
puter Science, vol. 6120, Springer-Verlag, 2010, pp. 353�376.

[Pre09] V. Preoteasa, Frame Rule for Mutually Recursive Procedures Manipulat-
ing Pointers, Theoretical Computer Science 410 (2009), no. 42, 4216�
4233.

195

BIBLIOGRAPHY

[PS11] M. Parkinson and A. J. Summers, The Relationship Between Separa-
tion Logic and Implicit Dynamic Frames, Proceedings of the 20th Eu-
ropean Conference on Programming Languages and Systems: Part of
the Joint European Conferences on Theory and Practice of Software,
ESOP'11/ETAPS'11, Springer-Verlag, 2011, pp. 439�458.

[PS12] , The Relationship Between Separation Logic and Implicit Dy-
namic Frames, Logical Methods in Computer Science 8 (2012), no. 3,
1�54.

[Pym02] D. J. Pym, The Semantics and Proof Theory of the Logic of
Bunched Implications, Applied Logic Series, no. 26, Kluwer Aca-
demic Publishers, 2002, Errata and remarks (Pym 2008) main-
tained at http://homepages.abdn.ac.uk/d.j.pym/pages/BI-monograph-
errata.pdf.

[Rey00] J. C. Reynolds, Intuitionistic Reasoning about Shared Mutable Data
Structure, Millennial Perspectives in Computer Science (J. Davies,
B. Roscoe, and J. Woodcock, eds.), Palgrave, 2000, pp. 303�321.

[Rey02] , Separation Logic: A Logic for Shared Mutable Data Structures,
LICS '02: Proceedings of the 17th Annual IEEE Symposium on Logic
in Computer Science, IEEE Computer Society, 2002, pp. 55�74.

[Rey08] , Lecture Notes for the First Phd Fall School on Logics and Se-
mantics of state, 2008, http://www.cs.cmu.edu/∼jcr/copenhagen08.pdf.

[Rey09] , An Introduction to Separation Logic, In Engineering Methods
and Tools for Software Safety and Security (M. Broy, ed.), IOS Press,
2009, pp. 285�310.

[RG08] M. Raza and P. Gardner, Footprints in Local Reasoning, Foundations
of Software Science and Computational Structures (R. Amadio, ed.),
Lecture Notes in Computer Science, vol. 4962, Springer-Verlag, 2008,
pp. 201�215.

[Ros90] K. I. Rosenthal, Quantales and their Applications, Pitman Research
Notes in Mathematics Series, vol. 234, Longman Scienti�c & Technical,
1990.

[Sim06] E.-J. Sims, Extending Separation Logic with Fixpoints and Postponed
Substitution, Theoretical Computer Science 351 (2006), no. 2, 258�275.

196

BIBLIOGRAPHY

[SJP09] J. Smans, B. Jacobs, and F. Piessens, Implicit Dynamic Frames: Com-
bining Dynamic Frames and Separation Logic, Proc of the 23rd Euro-
pean Conf. on ECOOP, Genoa, Springer-Verlag, 2009, pp. 148�172.

[SS93] G. Schmidt and T. Ströhlein, Relations and Graphs: Discrete Mathe-
matics for Computer Scientists, Springer-Verlag, 1993.

[SS98] G. Sutcli�e and C.B. Suttner, The TPTP Problem Library: CNF release
v1.2.1, Journal of Automated Reasoning 21 (1998), no. 2, 177�203.

[Str07] G. Struth, Reasoning Automatically about Termination and Re�nement,
6th International Workshop on First-Order Theorem Proving (S. Ranise,
ed.), vol. Technical Report ULCS-07-018, Department of Computer Sci-
ence, University of Liverpool, 2007, pp. 36�51.

[SW67] H. Schorr and W. M. Waite, An E�cient Machine-independent Proce-
dure for Garbage Collection in Various List Structures, Communications
of the ACM 10 (1967), no. 8, 501�506.

[Tar55] A. Tarski, A Lattice-theoretical Fixpoint Theorem and its Applications,
Paci�c Journal of Mathematics 5 (1955), no. 2, 285�309.

[TBY12] J. Thamsborg, L. Birkedal, and H. Yang, Two for the Price of One: Lift-
ing Separation Logic Assertions, Logical Methods in Computer Science
8 (2012), no. 3:22, 1�31.

[TKN07] H. Tuch, G. Klein, and M. Norrish, Types, Bytes, and Separation logic,
POPL '07: Proceedings of the 34th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, ACM Press, 2007,
pp. 97�108.

[TSBR08] N. Torp-Smith, L. Birkedal, and J. C. Reynolds, Local Reasoning about
a Copying Garbage Collector, ACM Transactions on Programming Lan-
guages and Systems 30 (2008), no. 4, 24:1�24:58.

[Tue08] T. Tuerk, A Separation Logic Framework in HOL, Tech. Report 2008-
1-Ait Mohamed, Department of Electrical Computer Engineering, Con-
cordia University, 2008.

[Vaf11] V. Vafeiadis, Concurrent Separation Logic and Operational Semantics,
Electronic Notes on Theoretical Computer Science 276 (2011), 335�351.

[VK98] B. Von Karger, Temporal Algebra, Mathematical Structures in Computer
Science 8 (1998), no. 3, 277�320.

197

BIBLIOGRAPHY

[VP07] V. Vafeiadis and M. J. Parkinson, A Marriage of Rely/Guarantee and
Separation logic, CONCUR 2007 - Concurrency Theory, 18th Inter-
national Conference, Lecture Notes in Computer Science, vol. 4703,
Springer-Verlag, 2007, pp. 256�271.

[WBO08] S. Wang, L.-S. Barbosa, and J.-N. Oliveira, A Relational Model for Con-
�ned Separation Logic, Proc. of the 2nd IFIP/IEEE Intl. Symposium on
Theoretical Aspects of Software Engineering, TASE '08, IEEE Computer
Society Press, 2008, pp. 263�270.

[WHO09] I. Wehrman, C. A. R. Hoare, and P. W. O'Hearn, Graphical Models of
Separation Logic, Information Processing Letters 109 (2009), no. 17,
1001�1004.

[Win07] M. Winter, Goguen Categories: A Categorical Approach to L-fuzzy Re-
lations, 1st ed., Springer Publishing Company, Incorporated, 2007.

[Yan01] H. Yang, An Example of Local Reasoning in BI Pointer Logic: The
Schorr-Waite Graph Marking Algorithm, SPACE 2001: Informal pro-
ceedings of Workshop on Semantics, Program Analysis and Comput-
ing Environments for Memory Management (F. Henglein, J. Hughes,
H. Makholm, and H. Niss, eds.), 2001, pp. 41�68.

[Yan07] , Relational Separation Logic, Theoretical Computer Science 375
(2007), no. 1�3, 308�334.

[YLB+08] H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, D. Distefano, and
P. O'Hearn, Scalable Shape Analysis for Systems Code, Computer Aided
Veri�cation, 20th International Conference (A. Gupta and S. Malik,
eds.), Lecture Notes in Computer Science, vol. 5123, Springer-Verlag,
2008, pp. 385�398.

[YO02] H. Yang and P. W. O'Hearn, A Semantic Basis for Local Reasoning,
Foundations of Software Science and Computation Structures, Proceed-
ings FOSSACS 2002 (M. Nielsen and U. Engberg, eds.), Lecture Notes
in Computer Science, vol. 2303, Springer-Verlag, 2002, pp. 402�416.

198

LIST OF FIGURES

List of Figures

2.1 Illustration of separating implication. 15
2.2 Examples of Hoare triples in separation logic. 19
2.3 Hoare logic inference rules. 19

3.1 Notations of operators in separation logic, AS and abstract quantales. 30

4.1 Relational semantics of heap-independent commands. 59
4.2 Relational semantics of heap-dependent commands. 60
4.3 Recursive de�nition of interleaving traces. 88
4.4 Dependencies in the exchange law. 100
4.5 Compatibility in the reverse exchange law. 103
4.6 Illustration of the cross-split assumption for a state σ 111
4.7 Speci�cation of a rational number module with dynamic frames. . . . 112
4.8 State partitions of a state σ for a bounded frame g 118

5.1 Sharing within two singly linked lists. 124
5.2 Examples of sharing patterns for addresses x1, x2, x3 127
5.3 Illustration of . on trees. 134
5.4 . - combination of forests a, b . 136
5.5 Illustration of a selector assignment inference rule. 144
5.6 Veri�cation of list reversal. 149
5.7 Tree rotation at the beginning and end. 150
5.8 Veri�cation of tree rotation. 151
5.9 A shared subtree. 152
5.10 Tree rotation with sharing. 153
5.11 Depiction of the intermediate state with sharing. 153
5.12 A threaded tree. 154
5.13 Veri�cation of adding a new node to a threaded tree. 158

A.1 De�nition of the free variables FV(_) of syntactical commands. 184
A.2 De�nition of the modi�ed variables MV(_) of syntactical commands. . 184

199

Index

∗ - product, see separating conjunction

abstraction function, 148
access element, 127

acyclic, 132
closed, 131
deterministic, 133

assertions, 14
fully allocated, 43
intuitionistic, 33
precise, 40
pure, 36
supported, 44

bunched implications (BI), 31

codomain, 125
commands, 16

relational interpretation, 58
compatible, 102

backward, 102
forward, 101

concurrency rule, 86
concurrent Kleene algebra (CKA), 98

detachment, 29
directed combinability, 134
domain

abstract, 125
relations, 62

dynamic frames, 109
accumulation, 119

bounded, 117

exchange law, 99
reverse, 102

frame property, 21
generalised, 75
pointfree, 72
relational, 73

frame rule, 20
generalised, 80

framing requirements, 113
modi�cation, 113
preservation, 113

Hoare triple
resource-sensitive, 63
concurrent separation logic, 92
general, 100
partial correctness, 66
pointwise, 18
total correctness, 67

iteration, 125

Kleene algebra, 125

linked structure, 133
cell, 134
chain, 134
forest, 133
root, 134

tree, 134
local actions, 81, 82
locality, 116

bimonoid, 109

modal operators
abstract, 125
relations, 64

operational semantics, 17

parallel decomposition, 89
pointfree, 90

permission algebra, 53
counting permissions, 54
fractional permissions, 53

predicate transformer, 83
locality, 83

preservation, 76
strong, 91

properness, 126

quantale, 24

relation
angelic behaviour, 60
Cartesian product, 69
compensator, 74
demonic behaviour, 65
domain-precise, 97
join, 68
split, 68

residual, 27
resource context, 86
respect program abortion, 63

safe states, 64
safety monotonicity, 21
selector, 133
separating conjunction, 14

AS, 24

separating implication, 14
AS, 27

separation algebra, 51
separation logic, 12

concurrent, 85
transitive, 123

septraction, 29
strong disjointness, 127

termination monotonicity, 80
tests, 39

atomic, 126
pairs, 69

threaded trees, 154
twig, 141

update, 141

Curriculum Vitae

Han Hing Dang

Personal Data

Date of birth February 19, 1984
Citizenship German

Education

since May 2009 Doctorate, University of Augsburg, Germany
March 2009 Diploma in Computer Science (major) and

in Mathematics (minor)
October 2004 � March 2009 Study of Computer Science

July 2004 Abitur

Academic Positions

since October 2010 Researcher, University of Augsburg, Germany
May 2009 � September 2010 Research Assistant, University of Augsburg, Germany

