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1. Introduction

Ion channels present complex protein structures embedded across the biological cell
membranes thereby forming the ion-conducting, selective nanopores [1]. The confor-
mational dynamics of these special proteins, which is known under the label of gating
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dynamics, results in the spontaneous openings and closures of ion channels [1]. In
the simplest case, this gating dynamics has the “all-or-none” character and can be
symbolized by the following kinetic scheme,

C
ko (V )
�

kc (V )
O : (1)

Accordingly, the conductance of ion channel 5uctuates stochastically between some
7nite value and nearly zero. In the case of voltage-dependent ion channels, like a
delayed recti7er potassium channel, or a Shaker K+ channel, the opening rate, ko(V ),
and the closing rate, kc(V ), are both dependent on the applied voltage V .
The invention of the patch clamp technique [2] enables one to observe the current

and the conductance 5uctuations in real time with a resolution on the level of single
ion channels. Moreover, the study of the statistics of dwelling time-intervals becomes
feasible. As a matter of fact, the patch clamp experiments with single ion channels
pioneered the whole area of single molecular research. The gating dynamics of an ion
channel with one closed and one open states, as seen visually in the patch clamp record-
ings, can be characterized by the probability densities of closed, fc(t), and open, fo(t)
dwelling time-intervals. The experimental studies reveal that in many ion channels the
distribution of open dwelling times is approximately exponential, fo(t) = kc exp(−kct).
However, the distribution of closed time intervals fc(t) frequently involves the sum of
many exponentials, 
i exp(−
it), i.e.,

fc(t) =
N∑
i=1

ci
i exp(−
it) (2)

with weights ci, obeying
∑N

i=1 ci = 1. The rationale behind this 7tting procedure is
the assumption that the closed state consists of N kinetically distinct discrete substates
separated by large potential barriers. The gating dynamics is then captured by a discrete
Markovian kinetic scheme with the rate constants determined by the Arrhenius law.
Such an approach presents nowadays the standard in the neurophysiology [3]. An

essential drawback of it is, however, that the number of closed substates needed for
agreement with the experimental data can depend on the range of applied voltages and
temperatures used in the experiment. For example, the experimental gating dynamics
of a Shaker potassium channel has been reasonably described by a sequential 8-state
Markovian scheme with 7 closed states for a temperature about T=20◦C [4]. However,
when the same research group extended later on their model to embrace the small
range of temperatures 10–20◦C, three additional closed states have been introduced
[5]. This “proliferation” of the number of discrete states, required for the consistent
description of experimental data, is rarely addressed within the approach based on a
discrete Markovian description.
Moreover, it may happen that for some channels the closed time distribution can be

more conveniently 7tted by a stretched exponential [6], or by a power law dependence
[7–11] with a few parameters only. This observation gave rise to the so-called fractal
models of the ion channel gating dynamics such as put forward, for example, by
Liebovitch et al. [6]. The di"usion models introduced by Millhauser et al. [7], L*auger
[12] and Condat and J*ackle [13] are intrinsically based on the concept of dynamical
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conformational substates in proteins, an idea which has been pioneered by Frauenfelder
et al. [14,15]. The di"usion models serve as a microscopic justi7cation for the fractal
modeling. On the other hand, the discrete di"usion models yet present Markovian
models with a large number of states. The non-Markovian, fractal behavior emerges
from the projection of a full Markovian dynamics onto the subspace of two observable
states as symbolized by the kinetic scheme (1).
Alternatively, the discrete di"usion can be replaced by the continuous di"usion on

a potential landscape. Then, the distinct minima of this landscape, separated by sub-
stantial potential barriers, correspond to the discrete states in the mainstream approach.
However, it may happen that, depending on the applied voltage, some of the distinct
barriers disappear. Then, the new features of gating dynamics come into the play, which
are inevitably missed in the discrete modeling. It seems therefore that a compromise
between the discrete Markovian schemes and a continuous conformational di"usion
approach is called for [16,17]. Especially, the continuous di"usion models, if set up
suOciently simple to allow an analytic treatment, are capable to provide a new insight
into the problem of ion channel gating. In the present work, we re7ne and justify
further the approach put forward in Ref. [17].

2. Model of gating dynamics

To start, let us consider the model depicted in Fig. 1. Its central element is the
voltage-dependent transitions in a bistable, piecewise linear potential along the x-axis,
see l.h.s. in Fig. 1. This bistable potential corresponds to the motion of the so-called
voltage sensor. The voltage sensor presents a functional part of the ion channel ma-
chinery which changes its position in response to the changes in the transmembrane
potential. In accord with the current view [1], the voltage sensor is formed by the
system of four positively charged S4 �-helices which carry a total gating charge q ∼
10–13e0, where e0 is the positively valued, elementary charge. When x=0, the voltage
sensor is in its resting position; when x = x0, the voltage sensor is fully activated and
the complete gating charge is moved across the membrane. Moreover, the drop V of
the transmembrane electric potential is assumed to occur linearly on the characteristic
length x0 which corresponds to the e3ective width of the cellular membrane within the
region of the gating charge translocation. Then, the energy barriers, Uo(V ) and Uc(V ),
follow as

Uo(V ) = qr(Vc − V ) ; (3)

Uc(V ) = U (0)
c − q(1− r)(Vc − V ) ; (4)

where r := xB=x0. Furthermore, Vc in (3) corresponds to the threshold value of the
voltage V when the activation barrier towards the channel opening vanishes and U (0)

c

in (4) is the corresponding height of the activation barrier towards the channel closing.
Note that for V ¿Vc, Uo(V ) is negative. Uc(V ) has normally a positive value, since
one assumes that U (0)

c is large and the barrier is strongly asymmetric, 1− r�r. These
assumptions correspond to the experimental observations that the closing rate has a



12                                          

0

U  (V)o

U  (V)c

y

-L 0

clo
se

d 
sta

te
s

U(x)

xB x
x

0

voltage−dependent
barrier

vo
lta

ge
−ind

ep
en

de
nt

U  (V)o

xB x0

closed open

P(x,0)=δ(x)

Fig. 1. Sketch of the studied model. The left part of 7gure involves the two-dimensional conformational
space for the gating dynamics. The x-axis corresponds to the voltage sensor degrees of freedom and the
y-axis to the conformational di"usion. Note that only the y=0 cross-section, U (x; 0), of the two-dimensional
conformational potential U (x; y) possesses a bistable character. For y¿ � exceeding some small �-vicinity
of y = 0, the y = a = constant cross-sections, U (x; a), are essentially monostable, exhibiting sharp minima
at x = 0. Moreover, the potential U (0; y) is 5at in the y-direction. These features allow one to simplify the
picture of a two-dimensional reaction state space to the case of one-dimensional reaction coordinate (see the
right part in the 7gure) as described in the text.

strong dependence on the temperature and it is less voltage-sensitive than the opening
rate [1]. Furthermore, one assumes that the voltage sensor triggers the conformational
change in the activation gate when x¿xB (xB corresponds to the top of the activation
barrier for the sub-threshold voltages, V ¡Vc). This latter conformational change leads
7nally to the channel opening.
In accord with the reasoning in Refs. [18,19], the activation gate is likely formed by

the bundle of the intracellular ends of inner, pore-lining S6 �-helices [1]. The motion
of the voltage sensor creates an indirect mechanical torque on the activation gate. This
torque is mediated by other structural elements of the channel protein. For this reason,
the link between the voltage sensor and the activation gate may be 5exible and this
circumstance can introduce a kind of mechanical hysteresis. Namely, the closure of
the activation gate does not occur immediately, when the voltage sensor crosses the
border at x= xB in the back direction, but rather requires that (is most probable when)
the voltage sensor is fully returned to its resting position at x = 0. For this reason,
by calculating the dwelling time distribution fc(t) we assume the initial condition for
the probability density P(x; t) in the form P(x; 0) = �(x), i.e., each and every closing
time-interval starts when the voltage sensor has fully returned. This inevitably presents
an approximation to the reality. In accord with the general activation theory of Kramers
[20], we also have to impose an absorbing boundary at x¿xB. The most natural choice
for this is x=x0. However, in view of our model assumption U (0)

c �kBT one can safely



                                         13

move the absorbing boundary to x= xB, i.e., P(xB; t)=0 at all times t¿ 0. The reason
for this is that the 7nal transition xB → x0 leading to the opening is very fast. The
same is assumed in many discrete Markovian schemes [1]. Given this assumption, the
duration of this 7nal step is negligible in calculating fc(t). Furthermore, in order to
7nd the distribution of open times, fo(t), one should put the source and the re5ecting
boundary at x = x0 and the sink (absorbing boundary) at x = 0, in accord with the
above discussion.
The next important element of our model is the assumption that the voltage sensor

can operate only if the protein acquires a special pre-open conformation. Otherwise, its
motion is energetically prohibited due to the steric factors. To account for this type of
behavior we introduce the additional, “perpendicular” conformational reaction coordi-
nate y, see l.h.s. in Fig. 1. It describes the conformational di"usion. One assumes that
the corresponding dynamics is only weakly voltage-dependent and we shall neglect the
accompanying redistribution of charges in the protein molecule. Actually, this confor-
mational di"usion should occur in a hierarchically arranged, ultrametric conformational
space [15,21,22]. In a simpli7ed manner, one can model this hierarchical features by a
random walk with the mean-squared displacement 〈Qy2(t)〉 ˙ t�. This latter relation
holds, strictly speaking, if the di"usion is unbounded in space. The bounded charac-
ter, however, is important for the following. We restrict ourselves in this paper to the
case of normal di"usion, �=1, as the simplest possibility. Finally, within this outlined
picture one can “convert” the dynamics along the y-axis into the dynamics along the
x-axis, by use of the extra part [ − L; 0] there, see r.h.s in Fig. 1, whereby introduc-
ing the auxiliary di"usion length L and the di"usion coeOcient D = kBT=". Here, "
is the viscous friction coeOcient characterizing the conformational dynamics. In order
to account for the bounded character of the conformational di"usion, we impose the
re5ecting boundary condition 9P(x; t)=9x|x=−L = 0 at x =−L for all t.
Under the simplest assumptions, " should exponentially depend on the temperature,

i.e.,

"= "0 exp(#=kBT ) ; (5)

where # is a characteristic activation energy for transitions between conformational
microstates. It can be in the range of several kBTroom. The exponential temperature
dependence (5) is typical for liquids [23]. In proteins it could be modi7ed like in the
supercooled liquids, or glasses [24]. Here, two di"erent phenomenological forms are
useful [24]:

"= "0 exp
[
#=kB(T − Tg)

]
(6)

for T ¿Tg and

"= "0 exp
[〈�#2〉=(kBT )2] : (7)

In the phenomenological Vogel-Fulcher law (6), Tg is the temperature of glass tran-
sition, where the large-amplitude protein motions become frozen [14,15]. For T�Tg,
the exponential law (5) is obviously restored. The simplest theoretical rationale be-
hind the phenomenological temperature dependence in Eq. (7) is the assumption on
uncorrelated Gaussian disorder in the energy distribution of di"usional conformational
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substates [25,20]. In this case, 〈�#2〉 corresponds to the mean-squared height of the
barrier between substates.
Furthermore, the parameters D and L are conveniently combined into the single

parameter—the conformational di"usion time, i.e.,

&D = L2=D˙ exp(#=kBT )=kBT ; (8)

which constitutes an important parameter of the theory. In (8), we assume (5) for
simplicity. However, the adjustments either for (6), or for (7) can be easily done
when necessary (experimentally motivated).

3. Theory of ion channel gating

In order to 7nd fc(t) one has to solve the Smoluchowski dynamics

9P(x; t)
9t = D

9
9x

(
9
9x + '

9U (x)
9x

)
P(x; t) ; (9)

where '=1=(kBT ), supplemented by the initial and the boundary conditions of re5ection
and absorption discussed above. The closed residence time distribution then follows as

fc(t) =−d(c(t)
dt

; (10)

where (c(t) =
∫ xB
−L P(x; t) dx is the survival probability in the closed state.

By use of the standard Laplace transform method we arrive at the following ex-
act solution for the Laplace-transformed distribution of closed times f̃c(s), see in
Ref. [17]:

f̃c(s) =
A(s)
B(s)

; (11)

where

A(s) = exp(−'Uo(V )=2)
√
'2U 2

o (V ) + 4*2&Ds ; (12)

B(s) =
√
'2U 2

o (V ) + 4*2&Ds cosh
(√

'2U 2
o (V ) + 4*2&Ds=2

)

+(2*
√
&Ds tanh

√
&Ds− 'Uo(V )) sinh

(√
'2U 2

o (V ) + 4*2&Ds=2
)

; (13)

where the parameter * is given by * := xB=L. The explicit result in Eqs. (11)–(13)
allows one to 7nd all moments of the closed residence time distribution. In particular,
the mean closed residence time,

〈Tc〉 :=
∫ ∞

0
tfc(t) dt = lim

s→0
[1− f̃c(s)]=s ;
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emerges as

〈Tc(V )〉= &D*
'Uo(V )

(
e'Uo(V ) − 1− *

)
+ *

(
e'Uo(V ) − 1

)
'2U 2

o (V )
: (14)

The e"ective opening rate can be de7ned as ko(V ) := 1=〈Tc(V )〉. Let us consider the
limiting case *=xB=L�1. In the language of discrete substates, this limit is tantamount
to the assumption that the number of quasidegenerate conformational substates, which
correspond to the resting position of the voltage sensor, largely exceeds that of the
voltage-sensor. Under this assumption, we obtain in leading order of *

ko(V ) =
1

〈Tc〉 ≈ 1
*&D

'rq(V − Vc)
1− exp[− 'rq(V − Vc)]

: (15)

Note that the functional form in Eq. (15) is nothing but the familiar exponential-linear
dependence used as a phenomenological experimental 7t in the celebrated paper by
Hodgkin and Huxley [26] to describe the voltage-dependence of the opening rate of a
single gate in the potassium channels. This form is commonly used to parameterize the
opening rate of the potassium channels, see, e.g., in Refs. [27,28]. Our model provides
a detailed justi7cation for this experimental result. Its remarkable feature is that the
dependence of the rate on voltage is exponential for V ¡Vc, when the energy barrier
towards activation of the voltage sensor is essential, kBT ¡Uo(V ). The exponential
voltage-dependence implies in virtue of (8) an exponential dependence on temperature
as well, i.e.,

ko˙ exp{−[#+ rq(Vc − V )]=kBT} : (16)

This exponential temperature dependence has two sources: a 7rst one is due to the
activation barrier of the voltage sensor Uo(V ), while a second one is due to the
activation barrier # between di"usional microstates, which we have assumed for rea-
sons of simplicity to be of equal height. The barrier Uo(V ) can acquire large values.
For example, assuming typical values Vc = −40 meV, rq = 10e0 and a room tem-
perature kBTroom = 25 meV one obtains Uo(Vr) = 20 kBT for the cell resting potential
Vr =−90 meV. Furthermore, when the activation barrier Uo(V ) vanishes for V ¿Vc,
it follows from (15) that the rate ko(V ) exhibits the linear dependence on voltage, i.e.,
ko(V ) ˙ (V − Vc). In this case, its temperature dependence is distinctly reduced and
becomes mainly determined by the activation barrier # of the conformational di"usion.
The latter one can assume a few kBTroom only. Moreover, some kind of non-Arrhenius
temperature dependence can emerge by virtue of Eq. (6), or Eq. (7) re5ecting thereby
the temperature features of conformational di"usion. The very di"erent temperature de-
pendences of the opening rate for V�Vc and for V ¿Vc present an interesting feature
of our model which calls for an experimental veri7cation.
It is worthwhile to notice that the discussed crossover from an exponential to linear

voltage dependence of the opening rate is qualitatively preserved for any value of *,
including the extreme case *�1. In this case L�xB and the conformational di"usion
does not play a dominant role. The discussed feature is caused by the vanishing of the
activation barrier Uo(V ) for V ¿Vc. However, the distribution of closed time-intervals
fc(t) depends qualitatively on *. Namely, for *�1 and V ¿Vc it displays a power
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Fig. 2. Closed time probability density from our model, Eq. (7), (solid line) and 6-exponential 7tting
procedure of the experimental data from Ref. [8] (dotted line). The following set of parameters is used in
our calculations: &D = 2:9 s, * = 0:01 and 'Uo(V ) =−1:653.

law regime, i.e.,

fc(t) ≈ 1
2(+&D)1=2kot3=2

(17)

for the intermediate time scale 〈Tc〉2=&D�t�&D. In Fig. 2, we illustrate this prominent
feature for the following model parameters: &D=2:9 s, *=0:01 and 'Uo(V )=−1:653.
The solid line denotes the closed time probability density obtained from our model,
Eqs. (11)–(13), by a numerical inversion of the Laplace transform f̃c(s). The short-dashed
line presents the 7tting of the experimental data for the delayed recti7er K+ channel
from a neuroblastoma × glioma cell by use of Eq. (2) with six exponentials. This 7tting
procedure is taken from Ref. [8] (see, Table 4 therein) and implicitly corresponds
to a discrete Markovian scheme with 6 closed substates. Both results describe well
the intermediate power law trend and the exponential tail of the closed time-interval
distribution. Nevertheless, some small distinctions can be distinguished.
The plot of the logarithmic derivative, d logfc(t)=d log t, versus the logarithm of

time t in Fig. 3 renders these distinctions much more visible. The advantage of such
a representation as in Fig. 3 is—in accordance with the reasoning in Ref. [22]—that
the hierarchical, tree-like relaxation dynamics reveals itself by logarithmic oscillations
around the level line that corresponds to the power law trend. Remarkably enough,
the multi-exponential 7t from Ref. [8] does exhibit such logarithmic oscillations, cf.
Fig. 3. Thus, this result seems to support the hierarchical character of the conformational
dynamics. Our simpli7ed model does not distinctly display these 7ne features as these
are rooted in the discrete nature of hierarchical states. Nevertheless, the power law
trend, which reveals the presence and the importance of the conformational dynamics,
is reproduced by our model. Moreover, its appealing feature is that it requires only few
parameters which possess a clear physical meaning. The particular value of the power
law exponent − 3

2 corresponds to the conformational dynamics modeled as a bounded
normal di"usion. Other power law exponents, also seen experimentally [9–11], require
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Fig. 3. Logarithmic derivative of the closed time probability density fc(t). The solid line and the dotted
line correspond to those in Fig. 2; the long-dashed level line corresponds to strict power law dependence
fc(t)˙ t−3=2. The oscillating behavior reveals the hierarchical character of the conformational dynamics.

a generalization of our model to the case of anomalous di"usion. Such corresponding
work is presently in progress.

4. Summary and conclusions

We herewith have presented a simple model of the complex gating dynamics in
voltage-dependent potassium ion channels. It is based on the concept of conforma-
tional di"usion. In particular, we assumed that the conformational change leading to
the opening of ion channel is triggered by the voltage sensor which, in its turn, is per-
mitted only when the channel protein acquires a special pre-open con7guration. When
the ion channel is closed, it exhibits an internal, conformational di"usion over the man-
ifold of conformational substates which do not possess a sensitive voltage dependence.
In a simpli7ed manner, this conformational di"usion has been mathematically modeled
by bounded normal di"usion. Moreover, it has been assumed that the open confor-
mation of the channel is more ordered, with less conformational substates. Then, the
conformational di"usion does not play an essential role. In the language of statistical
thermodynamics this means that the ion channel upon opening undergoes a kind of
ordering transition into a state with lower con7gurational entropy.
We should also stress here that our simple model is aimed not to replace the standard

discrete Markovian modeling [3], but rather to complement these e"orts by highlight-
ing some basic physical features which otherwise become blurred with the standard
approach. In particular, it has been shown that the transition from an exponential to
linear voltage dependence of the opening rate occurs when the activation barrier for
the voltage sensor towards the channel’s opening vanishes due to the applied trans-
membrane voltage. Moreover, if the conformational di"usion time &D exceeds largely
the mean duration of closed time intervals 〈Tc〉, the closed time distribution exhibits
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a power law feature on the intermediate time scale 〈Tc〉2=&D�t�&D. This power law
changes over into an exponential tail for times t ¿ &D. These features are seemingly
consistent with the experimental observations for some K+-channels. The true physical
benchmark of our model is, however, the prediction that the opening rate will become
much less temperature-dependent for supra-threshold voltages. A weak temperature de-
pendence in this latter regime should correlate with a weak voltage dependence. This
distinct prediction calls for an experimental veri7cation, which hopefully will support
our reasoning for the gating dynamics in ion channels.
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