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Introduction

The existence of free circle actions (S1-actions) on compact symmetric spaces is

of importance in connection with constructing Riemannian manifolds of positive

sectional curvature. Among the known compact, simply connected Riemannian

manifolds of positive sectional curvature there are two infinite families occurring

in dimensions 7 and 13 (cf. ([AW75, Esc82, Esc84, Baz96, Sha])). Both families

are described as orbit spaces of free circle actions on symmetric spaces with

Dynkin diagram A2, namely as circle quotients of SU(3) and SU(6)/Sp(3). It

has been shown by R. Bock in [Boc98] that the two other symmetric spaces

of type A2, namely SU(3)/SO(3) and E6/F4, do not admit free, isometric circle

actions. In the present paper we ask: Which symmetric spaces allow free, isomet-

ric circle actions? We only need to answer this for the strongly irreducible,

compact symmetric spaces i.e., those which are locally not Riemannian products.

Let S be a strongly irreducible, compact symmetric space and let ~GG denote the

connected component of its isometry group. An inner involution is an element

u 2 ~GG such that u2 ¼ id. Our main results are:

THEOREM 1. Any inner involution on the symmetric space S without fixed points lies

in a circle subgroup U � ~GG such that U acts freely on S.

?Partially supported by an NSF grant.
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This allows us to classify the irreducible symmetric spaces that admit free circle

actions.

THEOREM 2. Free circle actions exist precisely on the following compact, simply

connected, strongly irreducible symmetric spaces:

ð1Þ All simple compact Lie groups,

ð2Þ SUð2nÞ=SOð2nÞ for all n5 2,

ð3Þ SUð2nÞ=SpðnÞ for all n5 2,

ð4Þ SOð p þ qÞ=ðSOðpÞ � SOðqÞÞ for all odd p; q5 1.

THEOREM 3. If S is not of group type, then the only free, isometric actions of SUð2Þ

or of SOð3Þ are the usualHopf actions on the Grassmannians of odd dimensional

subspaces in R4m ðExample 4 in Theorem 2Þ.

However, we show in Section 6 that the orbit space of a free circle action on a sym-

metric space S ¼ G=K with its induced metric has zero curvature 2-planes at every

point unless S itself admits positive curvature, i.e., unless S is a compact, rank

one, symmetric space. The above-mentioned metrics of positive curvature on the

7- and 13-dimensional orbit spaces are induced from nonsymmetric metrics on S.

In fact, in both cases there is a subgroup H � G of smaller dimension which still

acts transitively on S, and S carries the normal homogeneous metric with respect

to H. It remains open whether there exist nonsymmetric metrics on the Grassman-

nians for which the S1-quotients (or the SU(2) or SO(3) quotients) admit positive

curvature.

1. Preliminaries on Symmetric Spaces

Let S be a compact symmetric space. As usual we represent S as a coset space G=K

where G is a compact, connected Lie group with an involutive automorphism s (of
order 2) called the global symmetry of S. Let K̂K ¼ fg 2 G; gs ¼ gg denote the fixed

group of s and let K̂Ko denote its identity component. Then we have (cf. [Hel78]

p. 212):

K̂Ko � K � K̂K; ð1:1Þ

and S may be viewed as a finite covering of the ‘smallest’ symmetric space ŜS ¼ G=K̂K.

The symmetry s acts also on the Lie algebra g of G and induces the Cartan decom-

position g ¼ kþ p where k is the Lie algebra of K (and of K̂K). k is identified with

the (þ1)-eigenspace of s
, while p is the (�1)-eigenspace which can also be viewed
as the tangent space ToS of S at the base point o ¼ eK. As a consequence we have

the Cartan relations:

½k; k � k; ½k; p � p; ½p; p � k: ð1:2Þ
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We will need the following totally geodesic submanifold of G:

P ¼ expðpÞ ¼ fx 2 G; xs ¼ x�1go � G; ð1:3Þ

where f�go always denotes the identity component (the connected component of the

unit element e 2 G). This subspace is known as Cartan embedding of the symmetric

space. In fact the map

f : G ! G; fðgÞ ¼ gsg�1;

takes values in P since ðgsg�1Þs ¼ gðgsÞ�1 ¼ ðgsg�1Þ�1 and descends to an embedding

of ŜS ¼ G=K̂K (since �ggs �gg�1 ¼ gsg�1 if and only if ~gg ¼ gk for some k 2 K̂K).

The Riemannian metric on S is induced by a bi-invariant metric on G, and G acts

on S by isometries. But the action of G need not be effective; its kernel consists of all

z 2 G with zðgK Þ ¼ gK for all g 2 G which is equivalent to g�1zg 2 K for all g 2 G. In

particular, z 2 K and, moreover, g�1zg ¼ ðg�1zgÞs ¼ ðg�1Þszgs. Thus all x ¼ gsg�1 2

P commute with z, but since P generates G as a group (recall from the Cartan

relations (1.2) that p generates g as a Lie algebra), Gmust commute with z and hence

z lies in the center Z of G. Conversely, Z \ K clearly acts trivially on G=K. We have

shown:

PROPOSITION 1.1. The identity component of the isometry group of the symmetric

space S ¼ G=K is ~GG ¼ G=ðZ \ K Þ; where Z is the center of G.

PROPOSITION 1.2. Suppose that S ¼ G=K is irreducible where K is connected and k

has no outer automorphisms. Then K̂K ¼ K � Zs where Z is the center of G and

Zs ¼ fz 2 Z : zs ¼ zg.

Proof. We need to determine K̂K=K. Any k̂k 2 K̂K determines an automorphism

iðk̂kÞ : k 7! k̂kxk̂k�1 of K̂Ko ¼ K. This must be inner by assumption i.e., iðk̂kÞ ¼ iðkÞ for

some k 2 K. Hence, the coset k̂kK contains some representative k̂k
 ¼ k̂kk�1 commuting

with all of K. Without loss of generality we may assume k̂k ¼ k̂k
.

Now recall that the adjoint representations of K and K̂K on g leave p invariant and
their restrictions to p are the isotropy representations of S ¼ G=K and ŜS ¼ G=K̂K

respectively. By irreducibility of the isotropy representation of K we obtain Adðk̂kÞ ¼

�I on p unless this representation is complex and Adðk̂kÞ acts as a complex scalar. But
in the latter case S is hermitian symmetric and k̂k lies in the identity component K (in

fact in the central S1-factor). If Adðk̂kÞ is the identity on p, then k̂k acts trivially on ŜS,

hence k̂k 2 Z. If Adðk̂kÞ ¼ �I on p, then k̂k acts as the symmetry s on ŜS. Thus k̂k belongs

to G i.e., ŜS is an inner symmetric space which is equivalent to saying that K̂K contains a

maximal torus T with k̂k 2 T (cf. [He178], p. 424f). This implies k̂k 2 K̂Ko ¼ K which

finishes the proof. &

2. Involutions

Let G be a compact, connected Lie group. Given g 2 G, conjugation by the

element g yields an automorphism of G; iðgÞðxÞ ¼ gxg�1, which is called an inner
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by the set of automorphism. The fixed group of iðgÞ, elements of G commuting with

g, evidently contains a maximal torus: the torus containing g. In particular, the fixed

point groups of two inner involutions have conjugate maximal tori. The last state-

ment can be generalized to arbitrary involutions.

PROPOSITION 2.1. Let G be a compact, connected Lie group and let s; �ss be two

involutions of G such that �ss ¼ sg for some inner automorphism g ¼ iðgÞ i.e.,

gðxÞ ¼ gxg�1 for some g 2 G. Let K and ~KK be the identity components of the fixed

groups of s and ~ss. Then the maximaltori of K and ~KK are conjugate in G.

Proof. We start by proving the statement for two special cases for �ss. Suppose first
�ss ¼ sk with k ¼ iðkÞ for some k 2 K. Let To � K be a maximal torus with k 2 To.

Extend To to a maximal torus T of G. Since To is maximal Abelian in K and

contained in K \ T which is abelian, we get To ¼ K \ T. On the other hand

~KK \ T ¼ ft 2 T; skt ¼ tg ¼ ft 2 T;st ¼ tg ¼ K \ T:

Therefore the maximal torus To of K is contained in a maximal tours of ~KK (which

extends ~KK \ T), and in particular we have also k 2 ~KK. Reversing now the roles of

s and �ss we see that K and ~KK have in fact the same maximal torus To.

The assertion remains true if ~ss is only conjugate to sk, say ~ss ¼ aska�1 for some
a ¼ iðaÞ for a 2 G. But note that as ¼ sas, where as ¼ sas ¼ iðasÞ. So we have in

this case,

�ss ¼ saska�1 ¼ sg;

for g ¼ iðgÞ with g ¼ aska�1. To complete the proof we will show that any g 2 G can

be represented as g ¼ aska�1 for some k 2 K and a 2 G.

The group G acts on itself isometrically by a � x :¼ asxa�1 (for any a; x 2 G). The

orbit G � e is just the Cartan embedding of the symmetric space G=K into G, and

its normal space neðG � eÞ at the unit element e is the Lie algebra k � g of K. It

follows from a straightforward argument that any g 2 G is of the form g ¼ a � k

for some a 2 G and k 2 K ¼ expðkÞ: In fact, there is a shortest geodesic from g to

the closed set G � e � G: This geodesic meets G � e perpendicularly at some point

a � e: Thus g ¼ expa�eðxÞ for some normal vector x 2 na�eðG � eÞ. Let xa ¼ a�1 � x 2

neðG � eÞ ¼ k: Then g ¼ expa�eða � xoÞ ¼ a � expeðxoÞ ¼ a � k for k ¼ expðxoÞ 2 K, and

we are done. &

Remark 2:2. In the terminology of [HPTT94] and [Kol02], the conjugacy of the

maximal tori of the fixed point groups K and K̂K can be seen from the fact that these

maximal tori are sections of the above-mentioned polar action of G on itself; the

polar action is given by a � x :¼ asxa�1 (see also [dS56], Chapter II).

Remark 2:3. Given any connected Dynkin diagram, there is, up to conjugacy, at

most one diagram automorphism of order 2. Since the full automorphism group is a

(split) extension of the inner automorphism group, any two outer involutions differ

by an inner automorphism.
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3. Fixed Point Free Involutions

Since the circle group S1 � C contains the element �1 of order 2, a free isometric

circle action on a symmetric space S ¼ G=K can occur only if there is an involution

in ~GG acting on S without fixed points, where ~GG is the identity component of the iso-

metry group. So we ask when this is possible.

LEMMA 3.1. An element u 2 G acting on S ¼ G=K has a fixed point if and only if u is

conjugate to some element of K.

Proof. An element u 2 G has a fixed point on S ¼ G=K if and only if ugk ¼ gK or

g�1ug 2 K for some g 2 G i.e., if and only if u is conjugate to some element of K. &

If K is connected, then the above condition is equivalent to saying the the conju-

gacy class of u intersects a maximal torus of K. In particular, if S is an inner sym-

metric space i.e., if G and K have the same rank and hence share a maximal torus,

then any conjugacy class meets K. Then any u 2 G acting on S has a fixed point. This

fact rules out most symmetric spaces on Helgason’s list ([Hel78], p. 518, 532f). The

remaining types are AI, AII, DI, EI and EIV.

Moreover, by Proposition 2.1 and Remark 2.3, it suffices to consider one type of sym-

metric space for a given groupG as long as the fixed groups are connected. Themost con-

venient type is the so called normalform ; S ¼ G=K is said to be of normal form if a

maximal torus T of G is contained in P, the Cartan embedding. (This means that the

Satake diagramofShasonlywhite points andnoarrows; see [Hel78], pp. 426, 531, 532ff.)

LEMMA 3.2. If S ¼ G=K is of normalform and if K̂K nK contains no elements of order

2, then any u 2 G with u2 ¼ e is conjugate to an element of K and hence, has a fixed

point on S.

Proof. We may find v 2 T which is conjugate to u, and since T � P we have

vs ¼ v�1 ¼ v. Therefore v 2 K̂K and hence, v 2 K since v has order 2. &

We now apply this lemma to the normal form spaces of types EI, AI and DI. Let

us start with EI, the symmetric space S ¼ E6=PSpð4Þ where PSpð4Þ ¼ Spð4Þ=f�Ig.

From Proposition 1.2 we see that K̂K nK contains no order 2 elements since the center

ZðE6Þ is Z3 (cf. [He178], p. 516). Moreover the Dynkin diagram of K ¼ PSpð4Þ is of

type C4, allowing no diagram automorphisms; hence K has no outer automorphism.

So Lemma 3.2 implies that any u 2 G with u2 ¼ e has a fixed point on S. By Pro-

position 2.1 the same is true for G= ~KK where ~KK ¼ F4 (note that G= ~KK is of type

EIV). We have proved:

PROPOSITION 3.3. E6=Spð4Þ and E6=F4 do not admit any fixed point free, inner

involutions.

Next we consider the case AI where S ¼ SUðnÞ=SOðnÞ. Here the symmetry s is
complex conjugation of matrices and therefore K̂K is the set of all real matrices
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in SU(n) i.e., K̂K ¼ SOðnÞ ¼ K. Lemma 3.2 shows that any order 2 element of SU(n)

has a fixed point. If n is odd, SO(n) has no center and SU(n) acts effectively. We have

shown

PROPOSITION 3.4. SUðnÞ=SOðnÞ admits no fixed point free involutions if n is odd.

However, if n ¼ 2m is even, then ZðSUð2mÞÞ \ K ¼ f�Ig. So, we pass to the effec-

tive groups G ¼ SUð2mÞ=f�Ig and K ¼ SOð2mÞ=f�Ig. Now K̂K modulo sign consists

of all matrices A 2 SUð2mÞ which are either real or purely imaginary; in the latter

case we have sðAÞ ¼ �AA ¼ �A � A mod� I. Since the product of two purely imagin-

ary matrices is real, K̂K is a degree 2 extension of K. An imaginary diagonal matrix k̂k is

of order 2 in SUð2mÞ=f�Ig if and only if k̂k ¼ i � diagð�Ij; I2m�jÞ with m þ j even (in

order to have det k̂k ¼ 1). If j 6¼ m, then the eigenvalues of k̂k do not come in conjugate

pairs, thus k̂k is not conjugate to a real matrix, i.e., not conjugate to an element of K.

This defines a fixed point free involution on S. Hence, there are free Z2-actions on

S ¼ SUð2mÞ=SOð2mÞ, but not on ŜS (by Lemma 3.2). By Proposition 3.1, the same

holds for the spaces SUð2mÞ=SpðmÞ, i.e., there are free Z2-actions on S ¼ SUð2mÞ=

SpðmÞ, but not on ŜS ¼ G=K̂K.

Finally we consider the case DI or more precisely the normal form symmetric

space S ¼ SOð2nÞ=SðOðnÞ �OðnÞÞ for odd n (the Grassmannian of n-planes in R2n).

The kernel of the action of SO(2n) on S is {�I}; the symmetry s on G ¼

SOð2nÞ=f�Ig is given by conjugation with the matrix diagð�In; InÞ (up to sign). Note

that K ¼ SðOðnÞ �OðnÞÞ=f�Ig ffi SOðnÞ � SOðnÞ is connected while K̂K ¼ FixðsÞ has
another connected component formed by the off-diagonal block matrices A ¼
0 a
b 0

� �
in SO(2n) with sðAÞ ¼ �A � A mod� I. Thus K̂K ¼ K [ K � J where J ¼

0 �In

In 0

� �
. We conclude from Lemma 3.2 that the space ŜS ¼ G=K̂K admits no fixed point

free involutions, but S does (as we will see in Section 4).

4. Circle Actions

To complete the proof of Theorem 1, we now show that all remaining spaces admit

free circle actions. Let us start with SUð2nÞ=SOð2nÞ and SUð2nÞ=SpðnÞ. As we have

seen, these can be treated together since the maximal tori of SOð2nÞ and SpðnÞ are

conjugate within SUð2nÞ. Recall from Section 3 that each u 2 G ¼ SUð2nÞ with

u2 ¼ e has a fixed point on S ¼ G=K, where K ¼ SOð2nÞ or Sp(n). Among these, only

u ¼ �I belongs to the kernel Z \ K of the action of G on S. Any circle subgroup

U � T � G contains an element of order 2. Thus the effective action of U can be free

only if �I2 U. Since U � G is abelian, it can be extended to a maximal torus T of G,

and by conjugacy we may assume that T is the torus of diagonal matrices. Hence U is

of the form,

U ¼ fuðzÞ ¼ diagðz k1 ; . . . ; z k2n Þ; z 2 S1g; ð4:1Þ

40                     



where all the ki are odd integers with
P

ki ¼ 0; then uð�1Þ ¼ �I. To avoid

ineffective coverings of S1 we assume that the ki are relatively prime. U acts freely

if and only if the entries z ki for all z 2 S1nf�1g do not come in conjugate pairs. So

for U to act freely, we must ensure (after possibly reordering) that we never have

z k1þk2 ¼ � � � ¼ z k2n�1þk2n ¼ 1 for any z 6¼ �1. The failure of this condition would

mean that the exponents have a common divisor not equal to 2. We have shown:

PROPOSITION 4.1. Let U � SUð2nÞ be conjugate to a subgroup of the form ð4:1Þ:

Then U acts freely on SUð2nÞ=SOð2nÞ or an SUð2nÞ=SpðnÞ if and only if all the integers

ki are odd and for any permutation p of the set f1; . . . ; 2ng, the greatest common divisor

of the numbers kpð1Þ þ kpð2Þ; kpð3Þ þ kpð4Þ; . . . ; kpð2n�1Þ þ kpð2nÞ is 2.

Remark 4:2. For the case SUð6Þ=Spð3Þ we encounter the Bazaikin spaces

([Baz96], see also [Zil]). These were originally constructed as quotients of the

homogeneous space S0 ¼ SUð5Þ=Spð2Þ by a circle group U. Here any u 2 U is a

composition of certain left translations in SU(5) with the right translation by u0ðzÞ ¼

diagðz; z; z; z; �zz 4Þ ¼ diagðz � I4; �zz
4Þ (for z 2 S1) with commutes with the right action

of Sp(2). However, note (by counting dimensions, for instance) that SU(5)� SU(6)

acts transitively on S ¼ SUð6Þ=Spð3Þ with stabilizer SU(5)\Spð3Þ ¼ Sp(2) which

implies S0 ¼ S. Moreover, the above right action of u0 2 SUð5Þ on S is the same as

the left action by u1 ¼ diagðz � I5; �zz
5Þ 2 SUð6Þ. In fact, both transformations com-

mute with the transitive action of SU(5), and applied to the base point o ¼

e � Spð2Þ ¼ e � Spð3Þ we have uo � o ¼ u1 � o since u1u
�1
0 ¼ diagðz � I4; z; �zz5Þ�

diagðz � I4; �zz
4; 1Þ�1 ¼ diagðI4; z5; �zz5Þ 2 Spð3Þ. Therefore, the two sided action of U on

can be replaced with a left action of some U0� SUð6Þ.

Remark 4:3: None of the subgroups U0 � SUð2nÞ of Proposition 4.1 can be

extended to a group isomorphic to SU(2) or SO(3). In fact it follows from the

representation theory of SU(2) that a circle group U � SUð2nÞ can be extended if

and only if, up to conjugation, its Lie algebra is generated by an orthogonal sum of

vectors of the type i � diagð�m;�m þ 2; . . . ;m � 2;mÞ with m4 n. But the eigen-

values of such matrices evidently come in conjugate pairs, so they violate the con-

dition of Proposition 4.1.

It remains to consider the real, odd-dimensional, oriented Grassmannians

S ¼ G=K with G ¼ SOðp þ qÞ and K ¼ SOðpÞ � SOðqÞ for p,q odd (of type DI).

The symmetry s is conjugation by diagð�Ip; IqÞ. Its fixed group K̂K consists of all

block diagonal matrices diagða; bÞ 2 SOð2nÞ, where a is a p � p and b is a q � q

matrix. Then K̂K ¼ SðOðpÞ �OðqÞÞ and ŜS ¼ G=K̂K is the Grassmannian of un-oriented

p-planes in Rpþq. The group G acts effectively on S, but not on ŜS; the kernel of the

latter action is f�Ig. At the end of Section 3 we saw that the fixed group of the action

of s on ~GG ¼ G=f�Ig is a proper extension of K̂K=f�Ig in the case p ¼ q ¼ n. However,

if p 6¼ q, then there is no such extension since there are no orthogonal off diagonal

block matrices.
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A maximal torus T of G consists of all block diagonal matrices A ¼

diagða1; . . . ; anÞ with ai ¼
cos ai � sin ai

sin ai cos ai

� �
. Since p, q are odd, say p ¼ 2m � 1, the sub-

group T \ K is a maximal torus of K and consists of all matrices A 2 T with am ¼ I2.

Furthermore, A 2 T \ K̂K if and only if am ¼ �I2.

Up to conjugation, any circle subgroup U � SOð2nÞ with 2n ¼ p þ q lies in T and

consists of elements of the form

uðzÞ ¼ diagðaðzÞk1 ; . . . ; aðzÞknÞ ð4:2Þ

where aðeiaÞ :¼ cos a � sin a
sin a cos a

� �
and k1; . . . ; kn are relatively prime integers. An element

uðzÞ is conjugate to an element of K if and only if aðzÞki ¼ I2 for some i. To ensure

freeness, we wish to avoid such a possibility and this is achieved for all z 6¼ 1 if

and only if ki ¼ �1 for all i. So, for a free action, the elements of U must be of

the form

uðzÞ ¼ diagðaðzÞ; . . . ; aðzÞÞ ð4:3Þ

up to conjugacy in Oð2nÞ. This is simply the Hopf circle action on R2n ¼ Cn and it

descends to a free action on ŜS. There are no other free circle actions on ŜS since

any such action would lift to a free circle action on S. We have shown:

PROPOSITION 4.4. The only free circle actions on S ¼ SOð2nÞ=ðSOð pÞ � SOðqÞÞ

and on ŜS ¼ SOð2nÞ=SðOð pÞ �OðqÞÞ, where p, q odd and p þ q ¼ 2n, are by subgroups

conjugate to the type described in ð4:3Þ.

It is well known that the Hopf circle action extends to a Hopf SU(2)-action on R2n

if n is even, yielding a free SU(2) action on S and a free SO(3)-action on ŜS. (Note that

the action of H � G on S is free if and only if the action of the maximal torus of H is

free.)

We conclude that these are the only free actions of connected groups on strongly

irreducible symmetric spaces that are not group type. This completes the proof of

Theorem 1.

5. Reducible Symmetric Spaces

PROPOSITION 5.1. Let S ¼ S1 � S2 be a Riemannian product of compact sym-

metric spaces. Then S admits a fixed point free inner involution if and only if either of

S1 or S2 do.

Proof. Let u be any inner involution on S. So u ¼ ðu1; u2Þ where ui are inner

involutions on Si. Then FixðuÞ ¼ Fixðu1Þ � Fixðu2Þ � S is empty if and only if

Fixðu1Þ ¼ ; or Fixðu2Þ ¼ ;. &
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COROLLARY 5.2. S ¼ S1 � S2 admits a free, isometric circle action if and only if

S1 or S2 admit such an action.

Proof. A free circle action of S1 or S2 can easily be extended to a free circle action

of S. The converse follows from Proposition 5.1 and Theorem 1. &

Remark 5:3. Of course there are many ways to extend a free circle action on S1
to S1 � S2; we may use, for instance, any circle action (not necessarily free) on S2
and then act via the diagonal. An instructive example is that of the Berger spheres,

(S2n�1 �s1 S1).

6. Existence of Zero Curvature 2-Planes

PROPOSITION 6.1. Let S ¼ G=K be any compact Riemannian symmetric space of

rank r5 2 and U � G a circle subgroup acting freely on S. Then the induced metric on

the orbit space S=U has a zero curvature plane at every point.

Proof. It suffices to show that at any point o 2 S there is a zero curvature 2-plane

in ToS which is horizontal i.e., perpendicular to the fiber UðoÞ of the Riemannian

submersion p : S ! S=U. The O’Neill tensor does not increase the curvature in this

situation (cf. [Esc84, Esc92 and GM74]). Let o 2 S be arbitrary and let K be the

identity component of the group of isometries of S which fixes o and hence acts

linearly on p ¼ ToS. Let a � p be a maximal abelian subalgebra containing a non-
zero tangent vector v 2 ToðUðoÞÞ � p.
Now we use a well known convexity theorem (see for instance [PT88]): The ortho-

gonal projection of the orbit KðvÞ � p onto a is the convex hull of the finite set
WðvÞ � a where W is the Weyl group of S acting on a. We only need that the convex
hull of WðvÞ contains the origin 0. Then the a-projection of some kðvÞ is 0. In other

words, kðvÞ ? a or v ? a0 :¼ k�1 � a. Thus ToðUðoÞÞ ¼ Rv is perpendicular to a0

which means that a0 is a horizontal flat subspace of p of dimension r5 2. &

Remark 6:2. The only space (up to coverings) where the above proposition does

not apply is the Grassmannian S ¼ G=K, where G ¼ SOð4mÞ and K ¼ SOð pÞ � SOðqÞ

for p, q odd and p þ q ¼ 4m. This space admits a free, isometric action of SU(2).

However, the tangent space of the SU(2)-orbit at the base point o ¼ eK 2 S is per-

pendicular to a maximal flat subspace of ToS, and so SU(2)\G/K cannot have

positive curvature at all points.
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