ALMOST POSITIVE CURVATURE ON THE GROMOLL-MEYER 7-SPHERE

J.-H. ESCHENBURG

(Communicated by Wolfgang Ziller)

Abstract

D. Gromoll and W. Meyer have represented a certain exotic 7sphere M as a biquotient of the compact Lie group $S p(2)$. Thus any invariant normal homogeneous metric on $S p(2)$ induces a metric of nonnegative sectional curvature on M. We show that the simplest such metrics (except the biinvariant one) induce metrics which have in fact strictly positive curvature outside a subset of M with measure zero.

There are only very few compact manifolds known which allow metrics of strictly positive sectional curvature. But recently it has been shown ([PW], [Wk]) that much more spaces satisfy a condition which seems to be only slightly weaker: A Riemannian manifold M is said to have almost positive curvature if it has positive curvature on an open subset $M_{0} \subset M$ such that $M \backslash M_{0}$ is a set of measure zero.
D. Gromoll and W. Meyer [GM] constructed a metric of nonnegative sectional curvature on the exotic 7 -sphere $M=G / U$ where $G=S p(2)$ and

$$
U=\left\{\left(\binom{q}{1},\binom{q}{q}\right) ; q \in S p(1)\right\} \subset G \times G
$$

In fact, a subgroup $U \subset G \times G$ acts on G by left and right multiplication: $\left(u_{1}, u_{2}\right) \cdot g$ $:=u_{1} g u_{2}^{-1}$. If this action is free, the orbit space G / U is a smooth manifold, called a biquotient. Any normally homogeneous metric on G has nonnegative curvature, and if this metric is also U-invariant, it induces a metric on the orbit space which has also nonnegative curvature by O'Neill's formulas for Riemannian submersions. For the bi-invariant metric and many other normal homogeneous metrics on $S p(2)$, the curvature on $M=S p(2) / U$ is even strictly positive near the point U.e where $e \in S p(2)$ is the identity, but this cannot hold on the whole manifold ([E1]). How large is the subset $M_{0} \subset M$ where the curvature is strictly positive? It is known ($[\mathrm{W}]$) that for the bi-invariant metric $M \backslash M_{0}$ contains an open subset, so this metric does not have almost positive curvature in the above sense. However the property does hold for the simplest normally homogeneous metrics on $S p(2)$ which are not bi-invariant. Using arguments taken from [E1] we will show that $M \backslash M_{0}$ is essentially a hypersurface. F. Wilhelm [W] has shown almost positivity for another set of metrics on M, but his computations are much more involved.

Let $K=S p(1) \times S p(1) \subset S p(2)=G$. Then G is equivariantly diffeomorphic to the homogeneous space $(G \times K) / K$ where K sits diagonally in $G \times K$. A biinvariant metric on $G \times K$ thus induces a normally homogeneous metric on G. Note
that $G / K=\mathbb{H} P^{1}=S^{4}$ is a symmetric space. Such metrics are described in detail in [E2]. They are induced by certain $A d(K)$-invariant inner products on the Lie algebra \mathfrak{g} and have nonnegative curvature (by O'Neill's formula). Moreover, the 2-planes with curvature zero are those spanned by two orthogonal vectors $X, Y \in \mathfrak{g}$ with

$$
\begin{equation*}
[X, Y]=\left[X_{\mathfrak{k}}, Y_{\mathfrak{k}}\right]=\left[X_{\mathfrak{p}}, Y_{\mathfrak{p}}\right]=0 \tag{1}
\end{equation*}
$$

where $X_{\mathfrak{k}}$ and $X_{\mathfrak{p}}$ are the components of X with respect to the Cartan decomposition $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}$. Since G / K is a rank-one symmetric space, there are no vanishing commutators in \mathfrak{p}; thus we may assume that Y has no \mathfrak{p}-component, i.e. $Y=\left(\begin{array}{cc}y & 0 \\ 0 & z\end{array}\right) \in \mathfrak{k}$ where y, z are imaginary quaternions. Let $X_{\mathfrak{p}}=\left(\begin{array}{cc}0 & -\bar{x} \\ x & 0\end{array}\right)$ for some nonzero $x \in \mathbb{H}$. Then $\left[X_{\mathfrak{p}}, Y\right]=0$ iff $z x=x y$ or

$$
\begin{equation*}
z=x y x^{-1} \tag{2}
\end{equation*}
$$

The infinitesimal action of the Lie algebra \mathfrak{u} of U on G is given as follows: For any $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S p(2)$ we have $V_{g}:=g^{-1}(\mathfrak{u} . g)=\left\{v_{g} ; v \in \mathbb{R}^{3}\right\}$ where $\mathbb{R}^{3} \subset \mathbb{H}$ denotes the set of imaginary quaternions (the Lie algebra of $S p(1)$) and where

$$
v_{g}=A d\left(g^{*}\right)\left(\begin{array}{ll}
v & 0 \tag{3}\\
0 & 0
\end{array}\right)-\left(\begin{array}{ll}
v & 0 \\
0 & v
\end{array}\right)=\left(\begin{array}{cc}
\bar{a} v a-v & \bar{a} v b \\
\bar{b} v a & \bar{b} v b-v
\end{array}\right) .
$$

In order to have zero curvature at the point $U . g \in G / U$ we need to find perpendicular $X, Y \perp V_{g}$ satisfying (1), thus spanning a horizontal zero curvature plane at g, and in fact this condition is also sufficient (cf. [E1], p. 31, and [GM]).
Theorem. Let $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S p(2)$ with $a, b \neq 0$. There exists a zero curvature plane at $U . g \in G / U$ iff

$$
\begin{equation*}
\operatorname{det}\left(I-A d\left(b^{-1}\right)-A d\left(a^{-1}\right)\right)=0 \tag{*}
\end{equation*}
$$

Proof. Let $X, Y \perp V_{g}$ with (1), spanning a zero curvature plane. Our first claim is that $X_{\mathfrak{k}}$ and $Y_{\mathfrak{k}}$ are linearly dependent. In fact, since $\left[X_{\mathfrak{k}}, Y_{\mathfrak{k}}\right]=0$, we may assume $X_{\mathfrak{k}}=\left(\begin{array}{ll}x & 0 \\ 0 & 0\end{array}\right)$ and $Y_{\mathfrak{k}}=\left(\begin{array}{ll}0 & 0 \\ 0 & y\end{array}\right)$ for $x, y \in \mathbb{R}^{3}$. Thus $\left\langle v_{g}, X\right\rangle=\langle\bar{a} v a-v, x\rangle=\langle v, a x \bar{a}-x\rangle$ and likewise $\left\langle v_{g}, Y\right\rangle=\langle v, b y \bar{b}-y\rangle$. This vanishes for all $v \in \mathbb{R}^{3}$ iff $a x \bar{a}=x$ and $b y \bar{b}=y$. If both x, y are nonzero, we have $|a|^{2}=|b|^{2}=1$ which is impossible since $|a|^{2}+|b|^{2}=1$ (recall that g is unitary).

Thus we may assume $X_{\mathfrak{k}}=0$ and hence by (2)

$$
X=\left(\begin{array}{cc}
0 & -\bar{x} \tag{4}\\
x & 0
\end{array}\right), \quad Y=\left(\begin{array}{cc}
y & 0 \\
0 & x y x^{-1}
\end{array}\right)
$$

Now

$$
\left\langle v_{g}, X\right\rangle=2\langle\bar{b} v a, x\rangle=2\langle v, b x \bar{a}\rangle,
$$

and this vanishes if $b x \bar{a}$ is perpendicular to $\mathbb{R}^{3} \subset \mathbb{H}$, hence a real number. Thus if $a \neq 0$, we get

$$
\begin{equation*}
b x=t a \tag{5}
\end{equation*}
$$

for some nonzero $t \in \mathbb{R}$. Moreover, $\left\langle v_{g}, Y\right\rangle=\left\langle v, a y \bar{a}-y+b x y x^{-1} \bar{b}-x y x^{-1}\right\rangle$ vanishes for all $v \in \mathbb{R}^{3}$ iff

$$
\begin{equation*}
a y \bar{a}-y+b x y x^{-1} \bar{b}-x y x^{-1}=0 \tag{6}
\end{equation*}
$$

By (5) we have $b x y x^{-1} \bar{b}=|b|^{2} b x y(b x)^{-1}=|b|^{2} a y a^{-1}$ if also $b \neq 0$. Hence

$$
\begin{equation*}
a y \bar{a}+b x y x^{-1} \bar{b}=|a|^{2} a y a^{-1}+|b|^{2} a y a^{-1}=a y a^{-1}=A d(a) y \tag{7}
\end{equation*}
$$

Further (5) implies $A d(x)=A d\left(b^{-1} a\right)$. Therefore $\left\langle v_{g}, Y\right\rangle=0$ iff

$$
\begin{equation*}
A d(a) y-A d\left(b^{-1}\right) A d(a) y-y=0 \tag{8}
\end{equation*}
$$

Thus $A d(a) y \neq 0$ is in the kernel of $I-A d\left(b^{-1}\right)-A d\left(a^{-1}\right)$ which implies that the determinant of that matrix vanishes.

Vice versa, if $\operatorname{det}\left(I-A d\left(b^{-1}\right)-A d\left(a^{-1}\right)\right)=0$, we find a nonzero $y \in \mathbb{R}^{3}$ such that $A d(a) y$ is in the kernel of this matrix. Now putting $x=b^{-1} a$ and defining X, Y by (4), we obtain a horizontal zero curvature plane at g.

Remarks. 1. We can determine the horizontal zero curvature planes also in the cases $a=0$ or $b=0$, using (6). E.g. if $b=0$, then (6) becomes $a y a^{-1}-y-x y x^{-1}=0$ which is solvable precisely for those a such that $A d(a)$ turns some vector $y \in \mathbb{R}^{3}$ by the angle $\pi / 3$; then $|\operatorname{Ad}(a) y-y|=|y|$, and we find some $x \in \mathbb{H}$ with $A d(x) y=$ $A d(a) y-y$. Thus a horizontal zero curvature plane at such g exists if and only if the (minimal) rotation angle of $A d(a)$ is $\geq \pi / 3$.
2. Note that equation $(*)$ for g in the Theorem is invariant under the action of U and thus determines a hypersurface (possibly with singularities) in G / U. In fact, if $u=\left(\left(\begin{array}{c}q \\ \\ \end{array}\right),\binom{q}{q}\right) \in U$, then

$$
u \cdot g=\left(\begin{array}{cc}
q a q^{-1} & q b q^{-1} \\
c q^{-1} & d q^{-1}
\end{array}\right)
$$

Thus a and b become conjugated by q which does not change the determinant equation.

References

[E1] J.-H. Eschenburg: Freie isometrische Aktionen auf kompakten Lie-Gruppen mit positiv gekrümmten Orbiträumen, Schriftenr. Math. Inst. Univ. Münster (2) $\mathbf{3 2}$ (1984) MR 86a:53045
[E2] J.-H. Eschenburg: Inhomogeneous spaces of positive curvature, Diff. Geom. Appl. 2 (1992), 123-132 MR 94j:53044
[GM] D. Gromoll and W.T. Meyer: An exotic sphere with nonnegative sectional curvature, Ann. of Math. 100 (1974), 401 - 406 MR 51:11347
[PW] P. Petersen and F. Wilhelm: Examples of Riemannian manifolds with positive curvature almost everywhere, Geom. and Top. 3 (1999), 331 - 367 MR 2000g:53030
[W] F. Wilhelm: An exotic sphere with positive curvature almost everywhere, Preprint Riverside 1999
[Wk] B. Wilking: Manifolds with positive sectional curvature almost everywhere, preprint
Institut für Mathematik, Universität Augsburg, D-86135 Augsburg, Germany
E-mail address: eschenburg@math.uni-augsburg.de

