
                
                           
                                
                     
                                                

ALMOST POSITIVE CURVATURE
ON THE GROMOLL-MEYER 7-SPHERE

J.-H. ESCHENBURG

(Communicated by Wolfgang Ziller)

Abstract. D. Gromoll and W. Meyer have represented a certain exotic 7-
sphere M as a biquotient of the compact Lie group Sp(2). Thus any invariant
normal homogeneous metric on Sp(2) induces a metric of nonnegative sectional
curvature on M . We show that the simplest such metrics (except the bi-
invariant one) induce metrics which have in fact strictly positive curvature
outside a subset of M with measure zero.

There are only very few compact manifolds known which allow metrics of strictly
positive sectional curvature. But recently it has been shown ([PW], [Wk]) that
much more spaces satisfy a condition which seems to be only slightly weaker: A
Riemannian manifold M is said to have almost positive curvature if it has positive
curvature on an open subset M0 ⊂M such that M \M0 is a set of measure zero.

D. Gromoll and W. Meyer [GM] constructed a metric of nonnegative sectional
curvature on the exotic 7-sphere M = G/U where G = Sp(2) and

U = {(( q 1 ), ( q q )); q ∈ Sp(1)} ⊂ G×G.
In fact, a subgroup U ⊂ G×G acts on G by left and right multiplication: (u1, u2).g
:= u1gu

−1
2 . If this action is free, the orbit space G/U is a smooth manifold, called

a biquotient. Any normally homogeneous metric on G has nonnegative curvature,
and if this metric is also U -invariant, it induces a metric on the orbit space which
has also nonnegative curvature by O’Neill’s formulas for Riemannian submersions.
For the bi-invariant metric and many other normal homogeneous metrics on Sp(2),
the curvature on M = Sp(2)/U is even strictly positive near the point U.e where
e ∈ Sp(2) is the identity, but this cannot hold on the whole manifold ([E1]). How
large is the subset M0 ⊂ M where the curvature is strictly positive? It is known
([W]) that for the bi-invariant metric M \ M0 contains an open subset, so this
metric does not have almost positive curvature in the above sense. However the
property does hold for the simplest normally homogeneous metrics on Sp(2) which
are not bi-invariant. Using arguments taken from [E1] we will show that M \M0 is
essentially a hypersurface. F. Wilhelm [W] has shown almost positivity for another
set of metrics on M , but his computations are much more involved.

Let K = Sp(1) × Sp(1) ⊂ Sp(2) = G. Then G is equivariantly diffeomorphic
to the homogeneous space (G × K)/K where K sits diagonally in G × K. A bi-
invariant metric on G×K thus induces a normally homogeneous metric on G. Note
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that G/K = HP 1 = S4 is a symmetric space. Such metrics are described in detail
in [E2]. They are induced by certain Ad(K)-invariant inner products on the Lie
algebra g and have nonnegative curvature (by O’Neill’s formula). Moreover, the
2-planes with curvature zero are those spanned by two orthogonal vectors X,Y ∈ g

with

[X,Y ] = [Xk, Yk] = [Xp, Yp] = 0(1)

where Xk and Xp are the components of X with respect to the Cartan decom-
position g = k + p. Since G/K is a rank-one symmetric space, there are no van-
ishing commutators in p; thus we may assume that Y has no p-component, i.e.
Y =

(
y 0
0 z

)
∈ k where y, z are imaginary quaternions. Let Xp =

(
0 −x̄
x 0

)
for some

nonzero x ∈ H. Then [Xp, Y ] = 0 iff zx = xy or

z = xyx−1.(2)

The infinitesimal action of the Lie algebra u of U on G is given as follows: For
any g =

(
a b
c d

)
∈ Sp(2) we have Vg := g−1(u.g) = {vg; v ∈ R3} where R3 ⊂ H

denotes the set of imaginary quaternions (the Lie algebra of Sp(1)) and where

vg = Ad(g∗)
(
v 0
0 0

)
−
(
v 0
0 v

)
=
(
āva− v āvb
b̄va b̄vb− v

)
.(3)

In order to have zero curvature at the point U.g ∈ G/U we need to find perpendic-
ular X,Y ⊥ Vg satisfying (1), thus spanning a horizontal zero curvature plane at g,
and in fact this condition is also sufficient (cf. [E1], p. 31, and [GM]).

Theorem. Let g =
(
a b
c d

)
∈ Sp(2) with a, b 6= 0. There exists a zero curvature

plane at U.g ∈ G/U iff

det(I −Ad(b−1)−Ad(a−1)) = 0.(∗)

Proof. Let X,Y ⊥ Vg with (1), spanning a zero curvature plane. Our first claim is
that Xk and Yk are linearly dependent. In fact, since [Xk, Yk] = 0, we may assume
Xk = ( x 0

0 0 ) and Yk =
(

0 0
0 y

)
for x, y ∈ R3. Thus 〈vg, X〉 = 〈āva−v, x〉 = 〈v, axā−x〉

and likewise 〈vg, Y 〉 = 〈v, byb̄ − y〉. This vanishes for all v ∈ R3 iff axā = x and
byb̄ = y. If both x, y are nonzero, we have |a|2 = |b|2 = 1 which is impossible since
|a|2 + |b|2 = 1 (recall that g is unitary).

Thus we may assume Xk = 0 and hence by (2)

X =
(

0 −x̄
x 0

)
, Y =

(
y 0
0 xyx−1

)
.(4)

Now

〈vg, X〉 = 2〈b̄va, x〉 = 2〈v, bxā〉,

and this vanishes if bxā is perpendicular to R3 ⊂ H, hence a real number. Thus if
a 6= 0, we get

bx = ta(5)

for some nonzero t ∈ R. Moreover, 〈vg, Y 〉 = 〈v, ayā − y + bxyx−1b̄ − xyx−1〉
vanishes for all v ∈ R3 iff

ayā− y + bxyx−1b̄− xyx−1 = 0.(6)



                                                 1167

By (5) we have bxyx−1b̄ = |b|2bxy(bx)−1 = |b|2aya−1 if also b 6= 0. Hence

ayā+ bxyx−1b̄ = |a|2aya−1 + |b|2aya−1 = aya−1 = Ad(a)y.(7)

Further (5) implies Ad(x) = Ad(b−1a). Therefore 〈vg, Y 〉 = 0 iff

Ad(a)y −Ad(b−1)Ad(a)y − y = 0.(8)

Thus Ad(a)y 6= 0 is in the kernel of I −Ad(b−1)−Ad(a−1) which implies that the
determinant of that matrix vanishes.

Vice versa, if det(I − Ad(b−1) − Ad(a−1)) = 0, we find a nonzero y ∈ R3 such
that Ad(a)y is in the kernel of this matrix. Now putting x = b−1a and defining
X,Y by (4), we obtain a horizontal zero curvature plane at g.
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