

Pluriharmonic maps, loop groups and twistor theory

Josef Dorfmeister, Jost-Hinrich Eschenburg

Angaben zur Veröffentlichung / Publication details:

Dorfmeister, Josef, and Jost-Hinrich Eschenburg. 2003. "Pluriharmonic maps, loop groups and twistor theory." *Annals of Global Analysis and Geometry* 24 (4): 301–21. https://doi.org/10.1023/A:1026225029745.

Nutzungsbedingungen / Terms of use:

The state of the s

Pluriharmonic Maps, Loop Groups and Twistor Theory

J. DORFMEISTER¹ and J.-H. ESCHENBURG²

¹Zentrum Mathematik M8 (SCS), Technische Universität München, Boltzmann Str. 3, D-85747 Garching, Germany. e-mail: dorfm@mathematik.tu-muenchen.de ²Department of Mathematics, University of Augsburg, Germany. e-mail: eschenburg@math.uni-augsburg.de

0. Introduction

Any simply connected minimal surface in 3-space allows a one-parameter family ('associated family') of isometric deformations preserving the principal curvatures while rotating the principal curvature directions; the most famous example is the deformation of the catenoid into the helicoid. This property holds also in a much more general situation: It is valid for harmonic maps of a surface M into a symmetric space P = G/K. If M is simply connected, any harmonic map $f: M \to G/K$ determines a smooth family $f_{\lambda}: \tilde{M} \to G/K$ of harmonic maps defined on the universal cover \tilde{M} of M, parametrized by $\lambda = e^{-i\theta} \in S^1$, such that the differential df_{λ} is obtained essentially from a rotation of df by the angle θ , and this property characterizes harmonic maps. It may happen that this associated family is trivial, i.e. f_{λ} is congruent to f for all λ , in which case the harmonic map is called isotropic. In particular this happens for $M = S^2$ if the target space is an n-sphere or a complex projective space. This case was studied by many authors, starting 1967 with Calabi's work [6]. One application was the explicit description of all minimal

2-spheres in the 4-sphere by Bryant [1]. A description of all isotropic harmonic maps into arbitrary symmetric spaces was given in [5]: They arise as projections from holomorphic and 'superhorizontal' maps \hat{f} into a so called *twistor space* Z which is an adjoint G-orbit fibering over G/K where *superhorizontal* means that $d\hat{f}$ takes values in a certain distribution on Z.

If the target space is a compact Lie group or a compact symmetric space other than S^n or $\mathbb{C}P^n$, harmonic spheres are no longer isotropic. They were investigated by Uhlenbeck [22] for U(n) and Burstall and Guest [4] in the general case. Then the associated family f_{λ} could be considered as a map from M into the loop group ΛG consisting of all sufficiently regular maps $\gamma \colon S^1 \to G$. Using the Cartan embedding these results then extend to harmonic maps into arbitrary compact symmetric spaces. However, in these papers the associated family f_{λ} is differently defined and not harmonic for most values of λ .

Ideas contained in [22] and in the work of Pohlmeyer [20] and the Russian soliton school were used in [8] to generate harmonic maps from certain almost arbitrarily chosen meromorphic (1,0)-forms, so called *normalized potentials*, on a simply connected domain $M \subset \hat{\mathbb{C}}$; like in the case of minimal surfaces in Euclidean space this construction was called a *Weierstrass representation* for harmonic maps. As an application of this one can change the setting in [22] or [4] slightly and does, indeed, obtain an associated family of harmonic maps from a given harmonic map into an arbitrary compact symmetric space G/K, without using the Cartan embedding.

Of course one also wants to replace the surface M by a simply connected manifold of higher dimension. Since complex analysis plays an essential rôle in the theory, one assumes that M (like a surface) is a complex manifold. But harmonicity is too weak in higher dimensions; instead one assumes that f is *pluriharmonic* which means harmonicity along any complex curve in M. It has been shown first by Ohnita and Valli (cf. [11, 19]) that these maps are also characterized by associated families. The twistor theory for *isotropic* pluriharmonic maps was developed in [11].

In the present paper we show that the method of [8] essentially can be extended to the pluriharmonic setting. However, a few new features arise. Since we are dealing with several variables, holomorphic (1,0)-forms are not automatically locally integrable. As a matter of fact, while the normalized potentials are trivially integrable in the one-dimensional case their higher-dimensional analogues are closely related to the 'curved flats' of Ferus and Pedit [12], thus permitting to construct arbitrary pluriharmonic maps from certain given curved flats. Also, while in the one-dimensional case a simply connected Riemann surface (other than $\hat{\mathbb{C}}$) is contractible and can be realized as an open subset of \mathbb{C}^1 , the analogous result is not true for higher-dimensional complex manifolds. Thus globally defined framings do not exist automatically, opposite to the one-dimensional case. Of course, locally extended framings $F: M_o \to \Lambda$ exist, where M_o is a contractible open subset of M and Λ is a group of (twisted) loops $g: S^1 \to G$.

It turns out, however, that after projecting the local extended framings from Λ to $\mathcal{Z} = \Lambda/K$ (where K is embedded into Λ as constant loops) our approach works globally. Since \mathcal{Z} fibres naturally over G/K, our description can be viewed as a generalized twistor theory where the twistor space Z is replaced with Z which is an infinite-dimensional adjoint orbit. As in the isotropic case, every pluriharmonic map $f \colon M \to G/K$ arises by projecting a holomorphic and 'superhorizontal' map $\hat{f} \colon M \to Z$ into G/K. The classical finite-dimensional twistor theory embeds nicely.

We start our paper with a geometric foundation of the basic notions. In Section 1, given a simply connected manifold M, a vector bundle E over M and an E-valued 1-form $\delta \in \operatorname{Hom}(TM, E)$, we investigate when there does exist a smooth map $f \colon M \to P = G/K$ such that $E \cong f^*TP$ and $\delta \cong \mathrm{d}f$; such δ will be called *integrable*. In Section 2 we introduce the rotations $R_{\lambda} = (\cos \theta)I + (\sin \theta)J$, where $\lambda = e^{-i\theta}$ and J denotes the complex structure of M. We show that for any map $f \colon M \to P$ the 1-form $\delta_{\lambda} = \mathrm{d}f \circ R_{\lambda}$ is integrable if and only if f is pluriharmonic. Thus we have introduced the loop parameter in a geometric fashion.

In Section 3 we consider locally extended framings $F: M_o \to \Lambda$ for pluriharmonic maps $f: M \to G/K$ from M to a symmetric space G/K. We show that F can be defined globally as a map from M to Λ/K . The following section, Section 4, discusses the Maurer–Cartan forms of extended framings. Here we show in particular that our geometrically defined associated family coincides with the one introduced in [8].

The next two sections present for pluriharmonic maps constructions related to the techniques of [8]. In particular, we introduce locally the notion of holomorphic framings (Section 5) and globally the notion of normalized framings (Section 6). In this section the contrast with the one-dimensional theory is best visible. Formulas (38) and (39) are trivial in the one-dimensional case. In general they define a curved flat (see e.g. [12]).

Section 7 briefly presents the notion of dressing, both from the point of view of extended framings with values in $\mathbb Z$ and the usual 'group splitting' point of view. In Section 8 we discuss, as an example, the isotropic case. With formula (53) we make also contact with [14], $\S 2(1)$, and [7]. The last section (Section 9) discusses pluriharmonic maps into Lie groups. In particular we draw the connection of our approach to the slightly different one of Uhlenbeck.

1. Integrability of 1-Forms

Let M and P be smooth manifolds. Suppose that P carries a Riemannian metric. On any Riemannian manifold there is a canonical differentiation of tangent vector fields, the *Levi-Civita covariant derivative* D which in turn defines *parallel displacements* of vectors along curves. Let $f: M \to P$ be a smooth map. Its differential is considered as a bundle homomorphims $\mathrm{d} f \in \mathrm{Hom}(TM, f^*TP)$ where f^*TP is the pull back bundle over M with fibre $(f^*TP)_z = T_{f(z)}P$ at

any point $z \in M$. Hence df is a 1-form on M with values in the vector bundle $E = f^*TP$, and in fact it is *closed*, i.e. for any vector fields X, Y on M we have

$$d^{D} df(X, Y) := D_{X}(df(Y)) - D_{Y}(df(X)) - df([X, Y]) = 0.$$
 (1)

If M also carries a Riemannian metric, we can define the Hessian $D df: TM \otimes TM \to f^*TP$,

$$D df(X,Y) = D_X(df(Y)) - df(D_XY), \tag{2}$$

and (1) says that this bilinear map is symmetric.

Now we ask the converse question: Given manifolds M and P and a metric vector bundle E over M with a compatible covariant derivative D and an E-valued 1-form $\delta \in \operatorname{Hom}(TM, E)$, when does there exist a smooth map $f: M \to P$ such that $E \cong f^*TP$ and $\delta \cong \operatorname{d} f$? More precisely

$$\Phi \circ \delta = \mathrm{d}f \tag{3}$$

for some bundle isometry $\Phi \colon E \to f^*TP$ which is *parallel*, i.e. invariant under parallel displacements. Such a δ will be called *integrable*. By (1), a necessary condition for integrability is $d^D\delta = 0$. Clearly, if M is simply connected and $P = \mathbb{R}^n$ with its Euclidean inner product, this condition is also sufficient.

But instead of \mathbb{R}^n we want to consider a *symmetric space*. This is a Riemannian manifold P such that for every $p \in P$ there is an isometry s_p fixing p with $(\mathrm{d} s_p)_p = -I$, called *geodesic symmetry* or *point reflection* at p; clearly $s_p^{-1} = s_p$. In particular, P is *homogeneous*, i.e. its (full) isometry group G acts transitively, and hence P may be viewed as a coset space G/K where K is the isotropy group (stabilizer subgroup) of some chosen point $o \in P$. Clearly, the point reflection s_o commutes with K, hence K is fixed by the *Cartan involution* $\sigma \in \mathrm{Aut}(G)$,

$$\sigma(g) = s_o g s_o^{-1}. \tag{4}$$

In fact $Fix(\sigma) = \{g \in G; \ \sigma(g) = g\}$ contains K as a normal subgroup of finite index. A local characterization of symmetric spaces is the *parallelity of its* $Riemannian\ curvature\ tensor\ R^P(X,Y,Z) = [D_X,D_Y]Z - D_{[X,Y]}Z$. The trilinear map on the tangent spaces defined by R^P is called a *Lie triple product*.

Now $d^D \delta = 0$ is no longer sufficient for the integrability of δ , but a further condition is needed: We assume that on the vector bundle E there is also a parallel Lie triple product $R^P \colon E \otimes E \otimes E \to E$ whose restriction to any fibre is isometrically isomorphic to the curvature tensor on any tangent space of P. We call (E, D, R^P) a vector bundle *of type* P. We have (cf. [10]):

THEOREM 1. Let M be simply connected and (E, D, R^P) a vector bundle of type P over M and let R^E : $TM \otimes TM \otimes E \rightarrow E$ be its curvature tensor. Given $\delta \in \text{Hom}(TM, E)$, there exists $f: M \rightarrow P = G/K$ and a parallel bundle isometry $\Phi: E \rightarrow f^*TP$ such that $\Phi \circ \delta = df$ if and only if

$$d^D \delta = 0, (5)$$

$$R^{E}(X,Y)\xi = R^{P}(\delta X,\delta Y)\xi \tag{6}$$

for all sections X, Y of TM and ξ of E. The map f is unique up to isometries of P, i.e. any other solution is of the form $g \circ f$ for some $g \in G$.

2. Complex Rotations and the Levi Form

From now on let M be always a simply connected *complex* manifold. The almost complex structure on TM will be called J. Consider the eigenspace decomposition of J on the complexified tangent bundle

$$T^c M = T' M + T'' M, (7)$$

where J=i I on T'M and J=-i I on T''M. Let $\theta\in[0,2\pi]$. Put $\lambda=e^{-i\theta}$ and

$$R_{\lambda} := (\cos \theta)I + (\sin \theta)J. \tag{8}$$

Then $R_{\lambda} = \lambda^{-1} I$ on T'M and $R_{\lambda} = \lambda I$ on T''M.

Let $f: M \to P = G/K$ be a smooth map and put $\delta_{\lambda} = \mathrm{d} f \circ R_{\lambda} \in \mathrm{Hom}(TM, f^*TP)$. Under which conditions is δ_{λ} integrable for any $\lambda \in S^1$? The answer was given in [11]: if and only if f is *pluriharmonic*, i.e. if $f|_C$ is harmonic for any complex one-dimensional submanifold $C \subset M$ or equivalently if the *Levi form* of f vanishes, Lf = 0.* The Levi form can be explained best by using a local *Kähler metric* on M, i.e. a Riemannian metric such that J is orthogonal and parallel. In particular, the eigenbundles T'M and T''M are parallel. Locally, such a metric always exists on a complex manifold, e.g. the flat metric in a complex coordinate chart has this property. Then the Hessian $h = D \, \mathrm{d} f$ is defined and its complex linear extension to T^cM splits as $h = h^{(2,0)} + h^{(1,1)} + h^{(0,2)}$: For any $X, Y \in T^cM$ we put $h^{(2,0)}(X, Y) = h(X', Y')$, $h^{(0,2)}(X, Y) = h(X'', Y'')$, and

$$h^{(1,1)}(X,Y) = h(X',Y'') + h(X'',Y') = \frac{1}{2}(h(X,Y) + h(JX,JY)), \tag{9}$$

where X'=(1/2)(X-iJX) and X''=(1/2)(X+iJX) are the components of X with respect to the splitting (7). The (1, 1)-part given by (9) is called *Levi form* $Lf=h^{(1,1)}$. Surprisingly, this is *independent of the Kähler metric*. In fact, $h(X,Y)=D_X(\mathrm{d} f(Y))-\mathrm{d} f(D_XY)$, and only the second term depends on the metric of M. If X and Y are complex vector fields with $X\in T'M$ and $Y\in T''M$, then by parallelity of these bundles we have $D_XY\in T''M$ and $D_YX\in T'M$. Hence $D_XY=D_YX\in T'\cap T''=0$ if [X,Y]=0. Using a local basis of commuting vector fields in T' and T'', e.g. $\partial/\partial z_i$ and $\partial/\partial \bar{z}_j$ for a complex coordinate system $z=(z_1,\ldots,z_m)$ on M, we see the independence of $Lf=D\,\mathrm{d} f^{(1,1)}$ from the chosen Kähler metric.

^{*} A slightly different definition was given by Ohnita [17]: He calls f pluriharmonic if $df \circ J$ is integrable. This is easily seen to be equivalent to our definition.

THEOREM 2. Let M be a simply connected complex manifold, P = G/K a symmetric space with either nonnegative or nonpositive curvature and $f: M \to P$ be a smooth map. Then $\delta_{\lambda} = \mathrm{d} f \circ R_{\lambda}$ is integrable for all $\lambda \in S^1$ if and only if f is pluriharmonic.

Remark. The proof of Theorem 2 is contained in [11]. As a matter of fact, the conclusion ' \Rightarrow ' is easy: the pluriharmonicity follows from (5) alone. To see this observe that $\delta_{\lambda} = \lambda \,\mathrm{d} f$ on T'M and $\delta_{\lambda} = \lambda^{-1} \,\mathrm{d} f$ on T'M, hence $(D_{X'}\delta)Y'' = \lambda h(X',Y'')$ while $(D_{Y''}\delta)X' = \lambda^{-1}h(Y'',X')$. Due to the symmetry of $h = D \,\mathrm{d} f$, these expressions are equal for $\lambda \neq \pm 1$ only if h(X',Y'') = 0; this is the pluriharmonicity of f. The converse conclusion ' \Leftarrow ', in particular the proof of (5) for δ_{λ} is more complicated and needs the semi-definiteness of the curvature operator of P.

COROLLARY 1. Pluriharmonic maps come in families (so called associated families) f_{λ} , $\lambda \in S^1$ where $df \circ R_{\lambda} \cong df_{\lambda}$, more precisely

$$\Phi_{\lambda} \circ \mathrm{d}f \circ R_{\lambda} = \mathrm{d}f_{\lambda} \tag{10}$$

for some parallel bundle isometry Φ_{λ} : $f^*TP \to f_{\lambda}^*TP$ preserving the curvature tensor R^P .

The fact that Φ_{λ} is isometric and preserves R^P is equivalent to saying that for any $z \in M$ we have $\Phi_{\lambda}(z) = dg_{f(z)}$ for some isometry $g \in G$, more precisely, for every $z \in M$ there exists $g \in G$ (depending on z) with $g(f(z)) = f_{\lambda}(z)$ and $dg_{f(z)} = \Phi_{\lambda}(z) \in \operatorname{Hom}(T_{f(z)}P, T_{f_{\lambda}(z)}P)$ where dg is the differential of g considered as an isometry $g: P \to P$. Viewing G as a group acting on TP we may simply say $\Phi_{\lambda}(z) = g \in G$. From now on we will call f_{λ} , or more precisely $(f_{\lambda}, \Phi_{\lambda})$, the *associated family* of f.

Let us consider the special case $\lambda = -1$. Then $R_{-1} = -I$ and we may easily write down a solution of (10): $f_{-1} = f$ and $\Phi_{-1} = -I$. More generally, if $(f_{\lambda}, \Phi_{\lambda})$ is a solution for some λ , we have $R_{-\lambda} = -R_{\lambda}$ and hence $(f_{\lambda}, -\Phi_{\lambda})$ is a solution for $-\lambda$. Considering $\Phi_{\lambda}(z)$ as an element of G we may express this by saying $\Phi_{-\lambda}(z) = \Phi_{\lambda}(z)s_{f(z)}$ or shortly

$$\Phi_{-\lambda} = \Phi_{\lambda} s_f, \tag{11}$$

where $s_p \in G$ is the geodesic symmetry at $p \in P$.

Remark. We would like to point out that the construction of an associated family as explained above requires M to be simply connected.

3. Loop Group Formulation

Let $f: M \to P = G/K$ be any smooth map. We will always assume that $f(z_o)$ is the base point $o = eK \in G/K$ for some fixed $z_o \in M$. If M is contractible, f

can be lifted to a smooth mapping $F: M \to G$ such that $f(z) = F(z)K \in G/K$; this will be called a *framing* for f. Any other framing is obtained as $\tilde{F} = Fk$ for some smooth mapping (*gauge transformation*) $k: M \to K$. Passing to Fk with $k = F(z_o)^{-1} \in K$, we may assume $F(z_o) = e$ (= unit element of G). If M is arbitrary, such framings are possibly no longer defined globally, but on any contractible open subset $M_o \subset M$. From now on M_o will aways denote such a subset of M.

If f is pluriharmonic, we obtain the associated family $(f_{\lambda}, \Phi_{\lambda})$ to which we assign the framing

$$F_{\lambda} = g_{\lambda} \Phi_{\lambda} F, \tag{12}$$

where $g_{\lambda} = \Phi_{\lambda}(z_o)^{-1} \in G$. In fact F_{λ} is a framing of $g_{\lambda} \circ f_{\lambda}$ since $\Phi_{\lambda}(z)$ (viewed as an element of G and hence as an isometry of P) maps f(z) onto $f_{\lambda}(z)$. Moreover, by (11) we have

$$F_{-\lambda} = (g_{\lambda}s_o)^{-1}\Phi_{\lambda}s_f F = s_o^{-1}g_{\lambda}\Phi_{\lambda}Fs_o = \sigma(F_{\lambda})$$
(13)

where $\sigma(g) = s_o g s_o^{-1}$ is the Cartan involution of G corresponding to the symmetric space P. Thus F_{λ} can be considered as an element of the *twisted loop group*

$$\Lambda := \Lambda_{\sigma}G := \{ \gamma \colon S^1 \to G; \ \gamma(-\lambda) = \sigma(\gamma(\lambda)) \}, \tag{14}$$

where the loops $\gamma \in \Lambda$ need to satisfy certain regularity assumptions (e.g. H^1 or C^{∞}). Thus starting from the pluriharmonic map $f: M \to G/K$ we have defined a map

$$\mathcal{F}: M_o \to \Lambda, \quad \mathcal{F}(z)(\lambda) = F_{\lambda}(z).$$
 (15)

We can make \mathcal{F} unique and hence globally defined on M by composing it with the canonical projection

$$\pi: \Lambda \to \mathcal{Z} := \Lambda/K,$$
 (16)

where $K \subset \Lambda$ denotes the subgroup of constant loops in Λ with values in K. Note that the twisting condition $\gamma(-\lambda) = \sigma(\gamma(\lambda))$ implies that constant loops automatically lie in the fixed group of σ in which K is normal and of finite index. Summing up the preceding discussion we obtain the following theorem:

THEOREM 3. Let M be a simply connected complex manifold and $z_o \in M$. Then for any pluriharmonic map $f: M \to P$ with $f(z_o) = o$ there exists precisely one map $\tilde{\mathcal{F}}: M \to \mathcal{Z} = \Lambda/K$ with $ev_1 \circ \tilde{\mathcal{F}} = f$ and with local lifts $\mathcal{F} = (F_\lambda): M_o \to \Lambda$ given by (12) such that $F_\lambda F_1^{-1}$ is parallel along f.

4. The Maurer-Cartan Form

Now we assume that the isometry group G of the symmetric space P is a (closed) matrix group: $G \subset GL(\mathbb{R}^N) \subset \mathbb{R}^{N \times N}$ for some N. Let \mathfrak{g} denote its Lie algebra. To any smooth map $F \colon M \to G$ we assign a \mathfrak{g} -valued 1-form

$$\alpha = F^{-1} \, \mathrm{d}F \in \Omega^1(M; \mathfrak{g}),\tag{17}$$

which satisfies $d\alpha = -F^{-1} dF F^{-1} \wedge dF = -\alpha \wedge \alpha$. Vice versa, given any $\alpha \in \alpha^1(M,\mathfrak{g})$ on a simply connected manifold M, it is an easy consequence of the Frobenius theorem that there exists a map $F \colon M \to G$ with $\alpha = F^{-1} dF$ if and only if

$$d\alpha = -\alpha \wedge \alpha, \tag{18}$$

and this F is unique up to left translations with (constant) elements of G. Using the Cartan decomposition $\mathfrak{g} = \mathfrak{k} + \mathfrak{p}$ corresponding to the symmetric space P = G/K, the Maurer–Cartan form splits accordingly as

$$\alpha = \alpha_k + \alpha_p. \tag{19}$$

A second splitting compatible to the first one is obtained from the complex structure:

$$\alpha = \alpha' + \alpha'',\tag{20}$$

where $\alpha'(X) = \alpha(X')$ and $\alpha''(X) = \alpha(X'')$.

Now let $f: M \to G/K$ be pluriharmonic. As explained in the previous sections, we have the associated family $(f_{\lambda}, \Phi_{\lambda})$ with framing $F_{\lambda} = g_{\lambda} \Phi_{\lambda} F$ as given in (12). The corresponding Maurer–Cartan form is

$$\alpha_{\lambda} = F_{\lambda}^{-1} dF_{\lambda} = F^{-1} \Phi_{\lambda}^{-1} d\Phi_{\lambda} F + \alpha. \tag{21}$$

Due to the parallelity of Φ_{λ} , the first term on the right-hand side of (21) takes values in p as the subsequent lemma shows:

LEMMA 1. Let $f, \tilde{f}: M \to P = G/K$ be smooth maps such that $\Phi \circ d\tilde{f} = df$ for some linear isometry $\Phi: f^*TP \to \tilde{f}^*TP$ preserving the curvature tensor of P. Thus Φ can be considered also as a smooth map $\Phi: M \to G$. Let $F: M \to G$ be a framing of f. Then Φ is parallel as a section of $\operatorname{Hom}(f^*TP, \tilde{f}^*TP)$ if and only if $F^{-1}\Phi^{-1}d\Phi F \in \mathfrak{p}$.

Proof. The parallel displacements on P are given by curves g(t) in G which are horizontal with respect to the principal fibration $G \to G/K$. Hence Φ is parallel iff it maps horizontal curves in G again onto horizontal curves. More precisely, if z(t) is a curve in M and $t \mapsto g(t) \in G$ a horizontal lift of $t \mapsto f(z(t)) \in G/K$, then $t \mapsto \Phi(z(t))g(t) \in G$ is a horizontal lift of $t \mapsto \tilde{f}(z(t))$. In other words, $(\Phi(z)g)' = \Phi(z)'g + \Phi(z)g'$ is horizontal. But g' and hence $\Phi(z)g'$ are horizontal vectors anyway since left translation by the element $\Phi(z(t)) \in G$ preserves horizontality. Thus $\Phi(z)'g$ is horizontal for any curve z(t) in M and every $g \in G$. Therefore, the 1-forms $d\Phi F$ and $F^{-1}\Phi^{-1}d\Phi F$ take horizontal values iff Φ is parallel. This proves the claim since the horizontal space at $e \in G$ is $\mathfrak{p} \subset \mathfrak{g} = T_eG$.

As a consequence, we obtain from (21):

$$(\alpha_{\lambda})_k = \alpha_k \tag{22}$$

for any $\lambda \in S^1$. The other component $(\alpha_{\lambda})_p$ is just the horizontal lift of df_{λ} , up to isometries of P, and from (10) we obtain

$$(\alpha_{\lambda})_{p} = \alpha_{p} \circ R_{\lambda} = \lambda^{-1} \alpha'_{p} + \lambda \alpha''_{p}. \tag{23}$$

A smooth map $\mathcal{F}: M_o \to \Lambda$ with

$$\mathcal{F}^{-1} \, \mathrm{d}\mathcal{F} = \alpha_k + \lambda^{-1} \alpha_p' + \lambda \, \alpha_p'' \tag{24}$$

for some $\alpha \in \alpha^1(M, \mathfrak{g})$ will be called an *extended framing*.

THEOREM 4. Let M be a simply connected complex manifold. A smooth map $f: M \to G/K$ is pluriharmonic if and only if there is locally an extended framing \mathcal{F} such that $f = \pi \circ \mathcal{F}(1)$ where $\pi: G \to G/K$ is the canonical projection. The map $\tilde{\mathcal{F}} = \pi \circ \mathcal{F}: M \to \Lambda/K$ is globally defined and uniquely determined by f.

Proof. It only remains to show that $f = \pi \circ \mathcal{F}(1)$ is pluriharmonic if $\mathcal{F}: M \to \Lambda$ satisfies (24). This follows from Theorem 2: Putting $F_{\lambda} = \mathcal{F}(\lambda)$ and $f_{\lambda} = \pi \circ F_{\lambda}$, we obtain

$$df_{\lambda} = d\pi.dF_{\lambda} = F_{\lambda}.d\pi.(F_{\lambda}^{-1} dF_{\lambda}) = F_{\lambda}.d\pi.(\alpha_{k} + \alpha_{p} \circ R_{\lambda}) = F_{\lambda}.(\alpha_{p} \circ R_{\lambda}).$$

In particular we have $\mathrm{d} f_1 = F_1 \, \alpha_p$ and hence $\mathrm{d} f_\lambda = \tilde{\Phi}_\lambda \, \mathrm{d} f_1 \circ R_\lambda$ with $\tilde{\Phi}_\lambda = F_\lambda F_1^{-1}$. From (24) and the previous lemma we see that $\tilde{\Phi}_\lambda$ is parallel which finishes the proof.

5. Holomorphic Framings

Let us assume further that $G \subset GL(\mathbb{R}^N)$ can be complexified in the following sense: We complexify the Lie algebra $\mathfrak{g} \subset \mathbb{R}^{N \times N}$ by putting $\mathfrak{g}^c = \mathfrak{g} \oplus i\mathfrak{g} \subset \mathbb{C}^{N \times N}$ and we assume that \mathfrak{g}^c is the Lie algebra of a closed subgroup $G^c \subset GL(\mathbb{C}^N)$ such that $G = \{g \in G^c; \overline{g} = g\}$.* Moreover, we require that the Cartan involution σ on G extends holomorphically to G^c and commutes with the complex conjugation. Now we consider the complex extension of the twisted loop group

$$\Lambda^c := \Lambda_\sigma G^c = \{ \gamma \colon S^1 \to G^c \}. \tag{25}$$

Any $\gamma \in \Lambda^c$ can be written as a matrix Fourier series

$$\gamma(\lambda) = \sum_{j=-\infty}^{\infty} a_j \lambda^j. \tag{26}$$

^{*} Obviously, this holds if G is the zero set of a polynomial on $\mathbb{R}^{N \times N}$ which is true for all classical groups and for all adjoint representations of semisimple groups; note that the automorphism group of a real Lie algebra is defined by such polynomials.

Let Σ denote the space of all such Fourier series (26) and consider the subspaces

$$\Sigma^+ = \left\{ \sum_{j \geq 0} a_j \lambda^j
ight\}, \quad \Sigma^- = \left\{ \sum_{j < 0} a_j \lambda^j
ight\}.$$

We define the subgroups'

$$\Lambda^{+} = \{ \gamma \in \Lambda^{c}; \ \gamma, \gamma^{-1} \in \Sigma^{+} \},$$

$$\Lambda^{-} = \{ \gamma \in \Lambda^{c}; \ \gamma, \gamma^{-1} \in I + \Sigma^{-} \}.$$
(27)

LEMMA 2 (cf. [8, 17]). If $\mathcal{F}: M_o \to \Lambda$ is an extended framing, there exists some $\mathcal{V}_+: M_o \to \Lambda^+$ such that $\mathcal{H} = \mathcal{F}\mathcal{V}_+: M_o \to \Lambda^c$ is holomorphic on M_o . In other words, \mathcal{F} is holomorphic modulo Λ^+ .

Proof. Consider $\alpha = \mathcal{F}^{-1} d\mathcal{F}$ and

$$\eta = \mathcal{H}^{-1} \, d\mathcal{H} = \mathcal{V}_{+} \alpha \, \mathcal{V}_{\perp}^{-1} + \mathcal{V}_{\perp}^{-1} \, d\mathcal{V}_{+}. \tag{28}$$

To establish the holomorphicity of \mathcal{H} we need to find \mathcal{V}_+ such that the antilinear part η'' of η vanishes. But $\eta'' = \mathcal{V}_+^{-1}(\alpha''\mathcal{V}_+ + d''\mathcal{V}_+)$ vanishes if and only if

$$d''\mathcal{V}_{+} = -\alpha''\mathcal{V}_{+}.\tag{29}$$

Since $\alpha'' = \mathcal{F}^{-1}d''\mathcal{F}$, the integrability condition for (29) is satisfied. Moreover, $\alpha'' = \alpha''_k + \lambda \alpha''_p$ takes values in the Lie algebra of Λ^+ , hence we can find a solution \mathcal{V}_+ with values in Λ^+ .

Remark. From (28) we see that the Fourier series of η like that of α starts with λ^{-1} :

$$\eta = \sum_{j>-1} \eta_j \lambda^j. \tag{30}$$

The choice of \mathcal{H} is not unique; in fact, each solution (29) takes precisely the form $\tilde{V}_+ = V_+ W_+$ for some holomorphic map $W_+: M_o \to \Lambda^+$. In the next section we will use this freedom to choose a very special η where all but the first coefficient η_{-1} vanish.

Now consider the group $\hat{K} = \text{Fix}(\sigma) = \{g \in G; \ \sigma(g) = g\}$ which contains the isotropy group K as a normal subgroup of finite index (cf. Section 1). Let $\Gamma = \hat{K}/K$.

LEMMA 3. The inclusion $\Lambda \subset \Lambda^c$ induces an equivariant isomorphism of the coset spaces $\Lambda/\hat{K} \xrightarrow{\cong} \Lambda^c/\Lambda^+$. Consequently, Z is a finite covering of Λ^c/Λ^+ :

$$\bar{\mathcal{Z}} := \Lambda^c / \Lambda^+ \cong \mathcal{Z} / \Gamma. \tag{31}$$

^{*} Without using coordinates, Λ^+ contains all $\gamma \colon S^1 \to G^c$ which are the boundary values of a holomorphic map $\hat{\gamma} \colon D \to G^c$, where $D \subset \mathbb{C}$ denotes the open unit disk, while $\gamma \in \Lambda^-$ gives the boundary values of a holomorphic map $\hat{\gamma} \colon \hat{\mathbb{C}} \setminus \bar{D} \to G^c$ with $\gamma \in \mathbb{C} = \mathbb{C} \cup \{\infty\}$.

Proof. We show first that $\Lambda \subset \Lambda^c$ acts transitively on the coset space Λ^c/Λ^+ . This is the so called *Iwasawa decomposition* (cf. [8, 16, 21]): Any $\gamma^c \in \Lambda^c$ can be decomposed as $\gamma^c = \gamma \gamma^+$ with $\gamma \in \Lambda$ and $\gamma^+ \in \Lambda^+$. Thus

$$\Lambda^c/\Lambda^+ = \Lambda/(\Lambda^+ \cap \Lambda).$$

But $\Lambda \cap \Lambda^+$ contains only the constant loops since $\overline{\sum_j a_j \lambda^j} = \sum_j \overline{a_j} \lambda^{-j}$. Since the constant loops in $\Lambda = \Lambda_{\sigma}(G)$ are fixed by σ they belong to \hat{K} .

Let L, L^c , L^+ , L^- be the Lie algebras of the loop groups Λ , Λ^c , Λ^+ , Λ^- , respectively. The tangent space $\mathfrak{z} = L^c/L^+ = (L^- \oplus L^+)/L^+$ of $\mathbb Z$ at the base point $e\Lambda^+$ can be identified with the Lie algebra L^- and has a filtration by finite-dimensional subspaces $\mathfrak{z}_1 \subset \mathfrak{z}_2 \subset \cdots \subset \mathfrak{z}$ with

$$\mathfrak{z}_r = \left\{ \sum_{j=1}^r a_{-j} \lambda^{-j} \in L^c \right\}. \tag{32}$$

Viewed as subspaces of $\mathfrak{z}=L^c/L^+$, the \mathfrak{z}_r are invariant under $\mathrm{Ad}(\Lambda^+)$ and hence they determine distributions $\hat{\mathfrak{z}}_r$ on $\bar{\mathcal{Z}}$ and on \mathcal{Z} . The first of these spaces, \mathfrak{z}_1 , generates all the others under the Lie product; it is called the *superhorizontal subspace*. A mapping into \mathcal{Z} is called *superhorizontal* if its differential takes values in $\hat{\mathfrak{z}}_1$.

THEOREM 5. Let M be simply connected. The pluriharmonic maps $f: M \to P = G/K$ are in 1:1 correspondence to the superhorizontal and holomorphic maps $\tilde{\mathcal{F}}: M \to \mathcal{Z} = \Lambda/K$, and we have $f = ev_1 \circ \tilde{\mathcal{F}}$ where $ev_1: \Lambda/K \to G/K$, $\gamma K \mapsto \gamma(1)K$ is the evaluation map at $\lambda = 1$.

Proof. If a pluriharmonic map $f\colon M\to P$ is given and $\mathcal{F}\colon M_o\to \Lambda$ is an extended frame, then $\bar{\mathcal{F}}=\pi\circ\mathcal{F}\colon M\to \mathcal{Z}$ has the desired properties by the preceding lemmas and (24). It remains to show that $f=ev_1\circ\bar{\mathcal{F}}$ is pluriharmonic provided that $\bar{\mathcal{F}}\colon M\to \mathcal{Z}$ is holomorphic and superhorizontal. Let $\mathcal{F}\colon M\to \Lambda$ locally be a lift of $\bar{\mathcal{F}}$ with respect to $\pi\colon \Lambda\to \Lambda/K=\mathcal{Z}$. Since $\bar{\mathcal{F}}$ is superhorizontal, $\mathrm{d}\pi(\mathcal{F}^{-1}\,\mathrm{d}\mathcal{F})$ takes values in \mathfrak{z}_1 , in other words, $\tilde{\omega}=\mathcal{F}^{-1}\,\mathrm{d}\mathcal{F}$ takes values in \mathfrak{z}_1+L^+ which shows that $\alpha=\sum_{j\geq -1}\alpha_j\lambda^j$. But since α is real, i.e. $\overline{\alpha}=\alpha$, all α_j with $j\geq 2$ vanish and we obtain

$$\alpha = \alpha_{-1}\lambda^{-1} + \alpha_0 + \alpha_1\lambda. \tag{33}$$

From the twisting condition $\sigma\alpha(-\lambda) = \alpha(\lambda)$ we see that $\alpha_j \in \mathfrak{k}^c$ for even j and $\alpha_j \in \mathfrak{p}^c$ for odd j which shows that $\alpha_0 \in \mathfrak{k}$ and $\alpha_{\pm 1} \in \mathfrak{p}^c$. On the other hand, from the holomorphicity of $\bar{\mathcal{F}}$ we obtain $\alpha'' \equiv 0 \mod L^+$, hence

$$\alpha'' = \alpha_0'' + \alpha_1''\lambda + \cdots. \tag{34}$$

Comparing the last two equations we infer that $\alpha''_{-1} = 0$ and hence by reality we have $\alpha'_{1} = 0$. This implies that α is of the form (24),

$$\alpha = \lambda^{-1} \alpha_p' + \alpha_k + \lambda \, \alpha_p'' \tag{35}$$

which finishes the proof.

Remarks. (1) We may as well replace $Z = \Lambda/K$ by $\bar{Z} = \Lambda/\hat{K} = \Lambda^c/\Lambda^+$ since Z is a covering of \bar{Z} and M is simply connected: Maps from M into Z can be projected to \bar{Z} , and those into \bar{Z} can be lifted to Z, and holomorphicity and superhorizontality are preserved.

(2) Theorem 5 shows that the rôle of Z is very similar to that of the *twistor spaces* for the special case of isotropic (pluri)harmonic maps (cf. [5] and Section 8 below). Therefore, Z will be called *general twistor space** and $\tilde{\mathcal{F}}$ the *general twistor lift* of f.

6. The Normalized Potential

The last theorem has shown that any pluriharmonic map $f\colon M\to P=G/K$ can be obtained from holomorphic data, the map $\bar{\mathcal{F}}\colon M\to \mathcal{Z}$. Though the target space \mathcal{Z} is infinite dimensional, the differential $d\bar{\mathcal{F}}$ takes values in the pull back of the finite-dimensional superhorizontal subbundle. In the present section we will replace this bundle-valued (1,0)-form by a vector valued but meromorphic one, called η_{-1} , which still determines f. For harmonic maps on surfaces this construction was carried out in [8], reducing harmonic maps of a surface into a symmetric space to certain meromorphic differentials on the surface. A similar construction was known since long time for minimal surfaces in Euclidean space, the Weierstrass representation, and therefore the representation of f in terms of f in terms

In fact, let $\mathcal{F}: M_o \to \Lambda$ be an extended framing of f. In Section 5 we constructed a holomorphic framing $\mathcal{H}: M_o \to \Lambda^c$ with $\mathcal{H} = \mathcal{F}\mathcal{V}_+$ for some $\mathcal{V}_+: M_o \to \Lambda_+$. At all points $z \in M_o$ where $\mathcal{H}(z)$ is not too far from the unit element we may split \mathcal{H} uniquely as

$$\mathcal{H} = \mathcal{H}_{-}\mathcal{H}_{+},\tag{36}$$

where \mathcal{H}_{\pm} takes values in Λ^{\pm} (*Birkhoff decomposition*) In fact as in [8] it follows that \mathcal{H}_{\pm} are meromorphic on all of M_o . Accordingly both factors \mathcal{H}_{\pm} are meromorphic (i.e. all coefficients of the Fourier series (26) of \mathcal{H} depend meromorphically on $z \in M_o$). Now we claim

$$\mathcal{H}_{-} = \mathcal{F}_{-},\tag{37}$$

where $\mathcal{F} = \mathcal{F}_{-}\mathcal{F}_{+}$ is the Birkhoff decomposition of \mathcal{F} . In fact,

$$\mathcal{F}_{-}\mathcal{F}_{+}=\mathcal{F}=\mathcal{H}\,\mathcal{V}_{+}^{-1}=\mathcal{H}_{-}\mathcal{H}_{+}\mathcal{V}_{+}^{-1},$$

^{*} Like the finite-dimensional twistor spaces, $\mathcal Z$ can be viewed formally as an adjoint orbit, using the embedding $\varphi \colon \mathcal Z \to L$, $\varphi(\gamma K) = \gamma' \gamma^{-1}$. For trivial K this embedding was discussed in [21, ch. 8.9]. In fact, since $\phi(g\gamma K) = g\phi(\gamma K)g^{-1} + g'g^{-1}$ for any $g \in \Lambda$, the image $\varphi(\mathcal Z)$ is an adjoint orbit of the affine Kac–Moody group extending Λ .

and by the uniqueness of the Birkhoff decomposition we obtain $\mathcal{F}_{-} = \mathcal{H}_{-}$.

Hence we may use \mathcal{F}_- in place of \mathcal{H} as a holomorphic framing in the sense of Lemma 2 (with $\mathcal{V}_+ = \mathcal{F}_+^{-1}$); we will call it the *normalized framing*. Note that \mathcal{F}_- is independent of the chosen extended framing \mathcal{F} since any other extended framing is of the form $\mathcal{F}' = \mathcal{F} k$ for some mapping $k: M_o \to K$. Since $K \subset \Lambda^+$, the (Λ^-) -components of \mathcal{F} and \mathcal{F}' with respect to the Birkhoff decomposition agree. Hence \mathcal{F}_- is a meromorphic mapping defined globally on M.

From the remark subsequent to Lemma 2 we see that the Fourier series of $\eta_- := \mathcal{F}_-^{-1} d\mathcal{F}_-$ starts with $\eta_{-1}\lambda^{-1}$, but on the other hand it takes values in L^- , hence there are no other terms. Thus

$$\eta_{-} = \mathcal{F}_{-}^{-1} \, \mathrm{d}\mathcal{F}_{-} = \eta_{-1} \lambda^{-1} \tag{38}$$

for some meromorphic $\eta_{-1} \in \Omega^{(1,0)}(M_o, \mathfrak{g}^c)$. From the integrability condition $d\eta_- = -\eta_- \wedge \eta_-$ which follows from (38) we obtain by comparing coefficients for the powers of λ :

$$d\eta_{-1} = 0, (39)$$

$$\eta_- \wedge \eta_- = 0. \tag{40}$$

THEOREM 6. The pluriharmonic maps $f: M \to P = G/K$ are locally in 1:1 correspondence with meromorphic (1,0)-forms $\eta_{-1} \in \Omega^{(1,0)}(M,\mathfrak{p}^c)$ satisfying (39) and (40).

Proof. It remains to construct a pluriharmonic map $f\colon M_o\to P$ from a given holomorphic $\eta_{-1}\in\Omega^{(1,0)}(M_o,\mathfrak{g}^c)$. We put $\eta_-=\eta_{-1}\lambda^{-1}$. This is a holomorphic (1,0)-form with values in Λ^- which is integrable by (39) und (40). Thus there exists a holomorphic map $F_-\colon M_o\to\Lambda^-\subset\Lambda^c$, This descends to a holomorphic superhorizontal map $\bar{\mathcal{F}}=\pi\circ\mathcal{F}_-\colon M_o\to\Lambda^c/\Lambda^+=\mathcal{Z}$, and by Theorem 5, $f=ev_1\circ\bar{\mathcal{F}}$ is pluriharmonic. More precisely, we can get a (real) extended framing \mathcal{F} of f by the Iwasawa decomposition of \mathcal{F}_- :

$$\mathcal{F}_{-} = \mathcal{F} \mathcal{V}_{+} \tag{41}$$

with
$$\mathcal{F}(z) \in \Lambda$$
 and $V_+(z) \in \Lambda^+$ for all $z \in M_o$ (in fact $\mathcal{V}_+ = \mathcal{F}_+^{-1}$).

These computations can be carried out explicitly in the case of *finite uniton number*. A pluriharmonic map $f \colon M \to G/K$ is called *of finite uniton number* if the corresponding extended frames \mathcal{F} take values in the *algebraic loop group* $\Lambda^{\text{alg}} \subset \Lambda$ which consists of those loops $\gamma \in \Lambda$ such that γ and γ^{-1} are *finite* Laurent series.* The finite uniton number property holds if and only if η_- takes values in some nilpotent subalgebra of \mathfrak{g}^c , cf. [4, 14]. We will discuss a subcase in Section 8.

^{*} This holds iff γ extends to an algebraic map $\hat{\gamma} \colon \mathbb{C}^* \to G^c$.

7. The Dressing Action

For a simply connected complex manifold M the pluriharmonic maps $f \colon M \to G/K$ correspond bijectively to the superhorizontal holomorphic maps $\bar{\mathcal{F}} \colon M \to \bar{\mathcal{Z}} = \Lambda^c/\Lambda^+$ (cf. Section 5). Moreover we have seen that the action of Λ^c on $\hat{\mathcal{Z}} = \Lambda^c/\Lambda^+$ by left translations is holomorphic and preserves the superhorizontal distribution $\hat{\mathfrak{J}}_1$. Thus for every $\gamma \in \Lambda^c$ and any superhorizontal holomorphic map $\bar{\mathcal{F}} \colon M \to \bar{\mathcal{Z}}$ we get another such map $\gamma \bar{\mathcal{F}} \colon M \to \bar{\mathcal{Z}}$ with $(\gamma \bar{\mathcal{F}})(z) = \gamma \bar{\mathcal{F}}(z)$ for all $z \in M$. By Theorem 5 this induces an action of Λ^c on the set of pluriharmonic maps $f \colon M \to G/K$ called the *dressing action*:

$$\gamma * f := ev_1(\gamma \bar{\mathcal{F}}).$$

Note that the dressing action of the *real* loop group Λ does not give anything new: For $\gamma \in \Lambda$ we have $\gamma * f = \gamma_1 F \mod K = \gamma_1 f$ which is congruent to f since $\gamma_1 \in G$. Thus due to the Iwasawa splitting $\Lambda^c = \Lambda \Lambda^+$ the dressing action essentially can be restricted to Λ^+ .

THEOREM 7. For any pluriharmonic map $f: M \to G/K$ and any $\gamma \in \Lambda^c$ there is another pluriharmonic map $f' = \gamma * f: M \to G/K$ such that the corresponding general twistor lifts satisfy $\widetilde{\mathcal{F}}' = \gamma \widetilde{\mathcal{F}}$. The normalized holomorphic framing \mathcal{F}'_- is the (Λ_-) -part of $\gamma \mathcal{F}_-$ with respect to the Birkhoff decomposition, in other words there is a map $\mathcal{V}_+ = V_0 + V_1 \lambda + V_2 \lambda^2 + \cdots : M \to \Lambda^+$ with

$$\mathcal{F}_{-}^{\prime}\mathcal{V}_{+} = \gamma \mathcal{F}_{-}.\tag{42}$$

For the normalized potentials η_{-} and η'_{-} we obtain

$$\eta' = \operatorname{Ad}(V_0)\eta_- \tag{43}$$

where $V_0 = \mathcal{V}|_{\lambda=0}$ takes values in $\hat{K}^c = \text{Fix}^c(\sigma)$.

Proof. Equation (42) follows since $\mathcal{F}'_- \equiv \mathcal{F}' \equiv \gamma \mathcal{F} \equiv \gamma \mathcal{F}_- \mod \Lambda_+$. Further, from $F'_- = \gamma \mathcal{F}_- \mathcal{V}_+^{-1}$ we obtain $\eta'_- = \mathcal{V}_+ \eta_- \mathcal{V}_+^{-1} - d\mathcal{V}_+ \mathcal{V}_+^{-1}$. We have $\eta_- = \eta_{-1}\lambda^{-1}$ and $\mathcal{V}^{-1} = V_o^{-1} + W_1\lambda + W_2\lambda^2 + \cdots$ and hence $\eta' \equiv V_0\eta V_o^{-1} \mod L^+$. But both sides have no component in L^+ whence we obtain (43). Moreover, V_0 takes values in \hat{K}^c since $\sigma V_0 = V_0$ by the twisting condition (14).

8. The Isotropic Case

A pluriharmonic map $f: M \to P = G/K$ is called *isotropic* if its associated family is trivial, $f_{\lambda} = f$ up to congruence for all $\lambda \in S^1$, i.e. $f_{\lambda} = g_{\lambda}f$ for some $g_{\lambda} \in G$ independent of z. This is the realm of the 'classical' twistor theory (cf. [5, 11]) saying that such maps arise as projections from holomorphic superhorizontal maps into certain flag manifolds fibering over G/K. One of the most spectacular applications was Bryant's explicit formula for all minimal 2-spheres in the 4-sphere

using the twistor fibration $\mathbb{C}P^3 \to S^4$, see [1]. We will show that twistor theory is generalized by our theory in Section 5.

Let us briefly recall the classical twistor theory as represented in [11]. We will always assume that f is full, i.e. it does not take values in a proper totally geodesic subspace of P. From (10) we obtain a family of parallel maps Φ_{λ} with

$$df = \Phi_{\lambda} \circ df \circ R_{\lambda} \tag{44}$$

but this time each $\Phi_{\lambda}(z)$ is an automorphism of $T_{f(z)}P$, in other words, $\Phi_{\lambda}(z)$ lies in the isotropy subgroup of the point $f(z) \in P$ which is F(z)K $F(z)^{-1}$ (where $F: M_o \to G$ is a frame along f). From (44) and $R_{\lambda}R_{\mu} = R_{\lambda\mu}$ and $R_{-1} = -I$ we see

$$\Phi_{\lambda}\Phi_{\mu} = \Phi_{\lambda\mu}, \quad \Phi_{-1} = -I, \tag{45}$$

i.e. the map $\Phi(z)$: $\lambda \mapsto \Phi_{\lambda}(z)$: $S^1 \to G$ is an homomorphism with $\Phi_{-1}(z) = s_{f(z)}$. Moreover, by the parallelity of Φ_{λ} the value set $\{\Phi_{\lambda}(z); z \in M\} \subset G$ is contained in a conjugacy class for every $\lambda \in S^1$; recall that parallel translations on P are restrictions of isometries, i.e. elements of G. Thus there is a circle subgroup $q = (q_{\lambda})$: $S^1 \to G$ with

$$q_{-1} = s_o,$$
 (46)

such that $\Phi: z \mapsto \Phi(z)$ takes values in the conjugacy class of q, more precisely

$$\Phi_{\lambda} = F q_{\lambda} F^{-1}. \tag{47}$$

The conjugacy class of the circle q is the twistor space $Z_q = G/C_q$ where

$$C_q = \{ g \in G; \ gq_{\lambda}g^{-1} = q_{\lambda} \ \forall_{\lambda} \}. \tag{48}$$

This is a complex manifold: If we let $G_+, G_- \subset G^c$ be the Lie subgroups corresponding to the Lie subalgebras

$$\mathfrak{g}_{+} = \sum_{j \ge 0} \mathfrak{g}_{j}, \quad \mathfrak{g}_{-} = \sum_{j < 0} \mathfrak{g}_{j}, \tag{49}$$

where $\mathfrak{g}^c = \sum_j \mathfrak{g}_j$ denotes the eigenspace decomposition of $\mathrm{Ad}(q_\lambda)$:

$$\mathfrak{g}_j = \ker(\operatorname{Ad}(q_\lambda) - \lambda^{-j}I) \subset \mathfrak{g}^c.$$
 (50)

Then we have

$$Z_q = G/C_q = G^c/G_+, (51)$$

and G^c/G_+ is a coset space of a complex Lie subgroup and hence a complex manifold.

From (46) we see that C_q is contained in $\hat{K} = \text{Fix}(\sigma)$ and hence in K since the centralizer of any torus is connected (cf. [15]). Therefore the map $\pi: gqg^{-1} \cong$

 $gC_q \mapsto gK \colon Z_q \to G/K$ is a well defined fibration. Hence we have $f = \pi \circ \Phi$ where $\Phi \colon M \to Z_q$ is called the *twistor lift*. It follows from (44) and the parallelity of Φ_{λ} (cf. [11]) that this map is holomorphic and *superhorizontal*, i.e. its differential takes values in the *superhorizontal subbundle* of TZ_q obtained from $\mathfrak{g}_1^r := (\mathfrak{g}_1 + \mathfrak{g}_{-1}) \cap \mathfrak{g}$ by left translations. From (44) and the fullness of f it follows that \mathfrak{g}_1^r generates \mathfrak{g} as a Lie algebra (cf. [11]) and hence the circle f is *canonical* in the sense of [5]. Thus all isotropic pluriharmonic maps $f \colon M \to G/K$ arise as projections of superhorizontal holomorphic maps into a twistor space Z_q for some canonical circle $f \in K$.

We want to derive these statements within our general twistor theory. There we have chosen our extended frame $\mathcal{F} = (F_{\lambda})$ as follows (cf. (12):

$$F_{\lambda} = g_{\lambda} \Phi_{\lambda} F = g_{\lambda} F k_{\lambda} \tag{52}$$

with $k_{\lambda}(z) = F^{-1}\Phi_{\lambda}F \in K$. Now this is a homomorphism with respect to λ which is conjugate to q_{λ} for all z,

$$k_{\lambda}(z) = k(z)q_{\lambda}k(z)^{-1}.$$
 (53)

Hence $F_{\lambda}=g_{\lambda}F\,k\,q_{\lambda}k^{-1}$ or equivalently $F_{\lambda}k=g_{\lambda}Fk\,q_{\lambda}$. Using the gauge freedom, we may replace the framing F by Fk which we now call F. In the new notation we have $F_{\lambda}=g_{\lambda}F\,q_{\lambda}$. Since we require also the normalization $F(z_{o})=e$, we obtain $g_{\lambda}=q_{\lambda}^{-1}$ and hence

$$F_{\lambda} = q_{\lambda}^{-1} F \, q_{\lambda}. \tag{54}$$

This equation has been observed in the surface case, cf. [7], [14]. Since q is a circle subgroup, there are only finitely many powers of λ in the matrix q_{λ} and hence the isotropic case belongs to the case of *finite uniton number* (cf. Section 6). Moreover we see from (54) that $\mathcal{F} = (F_{\lambda})$ takes values in a finite-dimensional subgroup $\Lambda^q \cong G$ of Λ :

$$\Lambda^q = \{ q^{-1} g q; \ g \in G \} \subset \Lambda, \tag{55}$$

where $q^{-1}gq(\lambda) := q_{\lambda}^{-1}gq_{\lambda}$. Such a curve $q^{-1}gq$ is constant if g lies in the centralizer C_q of the circle group q. Thus the projection $\pi \colon \Lambda \to \mathcal{Z} = \Lambda/K$ maps Λ^q onto Λ^q/C_q which is isomorphic to the twistor space $Z_q = G/C_q$. More precisely, we have the embedding

$$j: G/C_q \to \mathcal{Z} = \Lambda/K, \quad gC_q \mapsto q_\lambda^{-1} g \, q_\lambda K,$$
 (56)

which is (1) holomorphic, (2) equivariant under G via the embedding $G \to \Lambda^q \subset \Lambda$, $g \mapsto q_{\lambda}^{-1} g q_{\lambda}$, (3) sends the superhorizontal distribution of Z_q into that of Z and (4) satisfies

$$ev_1 \circ j = \pi \colon G/C_q \to G/K \colon gC_q \mapsto gK.$$
 (57)

THEOREM 8. Let $f: M \to G/K$ be a pluriharmonic map. Then the following properties are equivalent:

- (1) f is isotropic,
- (2) $\bar{\mathcal{F}}$ takes values in a finite-dimensional twistor space $j(Z_q) \subset \mathcal{Z}$,
- (3) The normalized potential η_{-1} takes values in $\mathfrak{g}_{-1} = \ker(\operatorname{Ad}(q_{\lambda}) \lambda I)$ for some canonical circle subgroup $q: S^1 \to G$.

Proof. We have already seen $(1) \Rightarrow (2)$. Next assume (2). Let $\mathcal{F} = (F_{\lambda})$: $M_o \to \Lambda$ be a local lift of $\bar{\mathcal{F}}$. Then $F_{\lambda} = q_{\lambda}^{-1} F q_{\lambda} k$ for some $k \colon M_o \to K$ where $F = F_1$. Putting $\lambda = 1$ we obtain k = e and $F_{\lambda} = q_{\lambda}^{-1} F q_{\lambda}$. Now the Birkhoff decomposition restricts to the finite-dimensional Bruhat splitting $G^c = G_- G_+$ corresponding to q (cf. (49)). In fact, if $F = F_- F_+$ is the Bruhat decomposition of F (for F(z) close enough to e), both factors are invariant under conjugation with q_{λ}^{-1} and $\mathcal{F}_{\pm} = \mathrm{Ad}(q_{\lambda}^{-1})F_{\pm}$. Thus $\eta_- = \mathrm{Ad}(q^{-1})\alpha_-$ where $\alpha_- = F_-^{-1} \, \mathrm{d} F_-$. But on the other hand $\eta_- = \lambda^{-1} \eta_{-1}$ and hence α_- takes values in $\mathfrak{g}_{-1} \subset \mathfrak{g}_-$ (where $\mathrm{Ad}(q_{-1}) = \lambda^{-1}$) and $\eta_{-1} = \alpha_-$.

Now let us assume (3). Then $\eta_- = \lambda^{-1}\eta_{-1} = \operatorname{Ad}(q_\lambda^{-1})\eta_{-1}$ and $\mathcal{F}_- = \operatorname{Ad}(q_\lambda^{-1})F_-$ where F_- takes values in G_- with $\mathrm{d}F_- = F_-\eta_{-1}$. From the finite-dimensional Iwasawa decomposition $G^c = GG_+$ we obtain $F_- = FF_+$ with $F \in G$ and $F_+ \in G_+$. Applying $\operatorname{Ad}(q_\lambda^{-1})$ and comparing with the infinite-dimensional Iwasawa decomposition $\mathcal{F}_- = \mathcal{F}\mathcal{F}_+$ we see that $\mathcal{F}_\pm = q_\lambda^{-1}F_\pm q_\lambda$ and $\mathcal{F} = q_\lambda^{-1}Fq_\lambda$. Since $q_\lambda \in K$ for all λ , the last equality $F_\lambda = q_\lambda^{-1}Fq_\lambda$ projects onto $f_\lambda = q_\lambda^{-1}f$ and thus f_λ equals f up to the rigid motion q_λ . Hence f is isotropic. \square

EXAMPLE 1 ([2, 9]). Let $P = G_p(\mathbb{C}^n) = U(n)/(U(p) \times U(q))$ with p+q=n be the Grassmannian of complex p-dimensional subspaces of \mathbb{C}^n . Then the possible twistor spaces over P (cf. ([5], [3]) are certain (classical) flag manifolds. Recall that a flag over \mathbb{C}^n can be viewed either as a chain of subspaces $W_1 \subset W_2 \subset \cdots \subset W_r = \mathbb{C}^n$ or as an orthogonal decomposition $\mathbb{C}^n = E_1 \oplus \cdots \oplus E_r$ where $W_1 = E_1$ and $W_{j+1} = W_j \oplus E_{j+1}$. Let Z be the space of all flags of a certain type (determined by the dimensions $d_j = \dim E_j$). Then there is a projection $\pi \colon Z \to P = G_p(\mathbb{C}^n)$ with $P = \sum_{j \text{ odd}} d_j$ sending the flag (E_1, \ldots, E_r) onto the subspace $\sum_{j \text{ odd}} E_j$. This is a twistor fibration with G = U(n), $G^c = GL(n, \mathbb{C})$, and the canonical circle q_k is given by the matrix

$$q_{\lambda} = \operatorname{diag}(\lambda I_{d_1}, \lambda^2 I_{d_2}, \dots, \lambda^r I_{d_r}). \tag{58}$$

The eigenspaces \mathfrak{g}_k for q_λ consist of block matrices (blocks of size d_1, \ldots, d_r) where only the k-the block diagonal is nonzero.

A map $f: M \to Z$ is a chain of vector bundles (a 'moving flag') $z \mapsto (W_j(z))_{j=1}^r$ over M; it is holomorphic iff the bundles W_j are spanned locally by holomorphic sections, i.e. there is a holomorphic map $H = (h_1, \ldots, h_n) \colon M_o \to GL(n, \mathbb{C}) = U(n)^c$ such that $W_j = \operatorname{Span}(h_1, \ldots, h_{n_j})$ where $n_j = \dim W_j$.

Moreover, f is superhorizontal if W_j differentiates into W_{j+1} , i.e. $\mathrm{d} w_j$ takes values in W_{j+1} for any section w_j of W_j . Thus the moving flag $W_1 \subset W_2 \subset \cdots$ is obtained as follows. We start with $n_1 = d_1$ arbitrary holomorphic functions $h_1, \ldots, h_{d_1} \colon M_o \to \mathbb{C}^n$ in 'general position', i.e. they are pointwise linear independent and all their partial derivatives are linearly independent up to the order when the full dimension n is exhausted. Then we let $W_1(z)$ be the linear span of the values of the functions h_i (for $i=1,\ldots,d_1$) at $z\in M_o$ and W_2 the span of the h_i and their first partial derivatives while W_3 is spanned by h_i and their first and second partial derivatives etc. Thus we obtain all holomorphic superhorizontal maps into Z and hence (by composing with the projection $\pi\colon Z\to P$) all isotropic pluriharmonic maps $f\colon M\to P=G_p(\mathbb{C}^n)$.

How is this elementary description related to our general theory? Let us consider the moving (nonorthogonal) decomposition $\mathbb{C}^n = V_1 \oplus \cdots \oplus V_r$ where the first space V_1 is spanned at any point z by the values of h_1, \ldots, h_{d_1} , the second one V_2 only by their first derivatives, V_3 by their second derivatives etc. Denoting \mathbb{C}^n $\mathbb{E}_1 \oplus \cdots \oplus \mathbb{E}_r$ the canonical decomposition where \mathbb{E}_i are orthogonal subspaces of dimension d_i spanned by consecutive parts of the canonical basis (e_1, \ldots, e_n) , we have $H(\mathbb{E}_i) \subset V_i$. Moreover, since V_i is spanned by (i-1)-th derivatives of the h_i , $i=1,\ldots,d_1$, the 1-form $dH|_{\mathbb{E}_i}$ takes values in $V_{i+1}=H(\mathbb{E}_{i+1})$. Thus $\eta = H^{-1} dH$ maps each \mathbb{E}_i into \mathbb{E}_{i+1} for $i = 1, \dots, r-1$. Only the last space \mathbb{E}_r can be mapped anywhere. Hence η takes values in $\mathfrak{g}_{-1} + \mathfrak{g}_{+}$ which consists of those block matrices where only the upper triangular part and the first lower diagonal is nonzero. In order to obtain the normalized potential, according to Chapter 6 we have to decompose $H = H_-H_+$ where H_- is strictly lower triangular and H_+ upper triangular (including the diagonal). Then $\eta_- = H_-^{-1} dH_-$ is the normalized potential taking values in \mathfrak{g}_{-1} , i.e. it has only block entries on the first lower block diagonal.

9. Pluriharmonic Maps into Lie Groups

In this section we specialize to the case where P is a compact Lie group* G. In some sense, this is the general case: Any symmetric space P = G/K can, up to coverings, be viewed as a connected component of the totally geodesic submanifold

$$\hat{P} = \{ g \in G; \ \sigma(g) = g^{-1} \}, \tag{59}$$

using the Cartan embedding

$$P = G/K \to \hat{P} \subset G, \quad gK \mapsto g\sigma(g^{-1}). \tag{60}$$

Therefore, many authors (based on the fundamental article of Uhlenbeck [22]) restrict their attention to this case. We will see how our discussion specializes.

^{*} What we need is a biinvariant semi-Riemannian metric on G; positive definiteness is not essential. All semisimple Lie groups and many others have this property.

Let G be a Lie group with a biinvariant Riemannian metric. Then $G \times G$ acts isometrically on G by left and right translations L_g , $R_{g^{-1}}$, and also the inversion $\iota: g \mapsto g^{-1}$ is an isometry of G. Thus G is a symmetric space with symmetry $s_e = \iota$ at the unit element e, and the symmetry s_g at an arbitrary $g \in G$ is obtained by conjugating s_e with L_g or R_g which yields $s_g(x) = gx^{-1}g$. Representing G as a symmetric coset space we obtain

$$G = \tilde{G}/\tilde{K} := (G \times G)/\Delta, \quad \Delta := \{(g, g); g \in G\}$$

$$(61)$$

with the projection

$$\pi: G \times G \to G, \quad \pi(g,h) = gh^{-1}$$
 (62)

and with the Cartan involution $\sigma \in \operatorname{Aut}(G \times G)$,

$$\sigma(g,h) = (h,g). \tag{63}$$

Now let $f: M \to G$ be pluriharmonic. Then there is globally a lift $\tilde{F}: M \to G \times G$ (a framing) given by

$$\tilde{F}(z) = (f(z), e). \tag{64}$$

For the corresponding Maurer-Cartan form we obtain

$$\tilde{\alpha} = \tilde{F}^{-1} d\tilde{F} = (f^{-1}df, 0) =: (\alpha, 0).$$
 (65)

We need to decompose $\tilde{\alpha} = \tilde{\alpha}_k + \tilde{\alpha}_p$ according to the Cartan decomposition $\tilde{\mathfrak{g}} = \tilde{\mathfrak{k}} + \tilde{\mathfrak{p}}$ of $\tilde{\mathfrak{g}} = \mathfrak{g} \oplus \mathfrak{g}$ where $\tilde{\mathfrak{k}} = \{(A, A); A \in \mathfrak{g}\}$ is the Lie algebra of $\tilde{K} = \Delta = \operatorname{Fix}(\sigma)$ and $\tilde{\mathfrak{p}} = \{(A, -A); A \in \mathfrak{g}\}$. Thus,

$$\tilde{\alpha}_p = \frac{1}{2}(\alpha, -\alpha), \tag{66}$$

$$\tilde{\alpha}_k = \frac{1}{2}(\alpha, \alpha). \tag{67}$$

Introducing the λ -parameter and splitting further into the (1,0) and (0,1) components we obtain

$$\tilde{\alpha}_{\lambda} = \lambda^{-1} \tilde{\alpha}'_{p} + \tilde{\alpha}_{k} + \lambda \tilde{\alpha}''_{p}$$

$$= \frac{1}{2} \lambda^{-1} (\alpha', -\alpha') + \frac{1}{2} (\alpha, \alpha) + \frac{1}{2} \lambda (\alpha'', -\alpha'')$$

$$= (\frac{1}{2} (1 + \lambda^{-1}) \alpha' + \frac{1}{2} (1 + \lambda) \alpha'', \frac{1}{2} (1 - \lambda^{-1}) \alpha' + \frac{1}{2} (1 - \lambda) \alpha''). \quad (68)$$

THEOREM 9. A smooth map $f: M \to G$ with Maurer–Cartan form $\alpha = f^{-1} df$ is pluriharmonic if and only if the 1-form

$$\alpha_{\lambda} := \frac{1}{2} (1 + \lambda^{-1}) \alpha' + \frac{1}{2} (1 + \lambda) \alpha''$$
(69)

is integrable for all $\lambda \in S^1$.

Proof. It remains to show ' \Leftarrow '. Denoting by $\mathcal{F} = (F_{\lambda})$ a solution to

$$F_{\lambda}^{-1} \, \mathrm{d}F_{\lambda} = \alpha_{\lambda},\tag{70}$$

we obtain a solution $\hat{\mathcal{F}} = (\hat{F}_{\lambda})$ to $\hat{F}_{\lambda}^{-1} d\hat{F}_{\lambda} = \hat{\alpha}_{\lambda}$ as

$$\hat{F}_{\lambda} = (F_{\lambda}, F_{-\lambda}). \tag{71}$$

Clearly, the normalization $\hat{F}_{\lambda}(z_o) = (e, e)$ at the base point z_o is equivalent with $F_{\lambda}(z_o) = e$. Thus, according to our general construction, an associated family (f_{λ}) of f is given by

$$f_{\lambda} = \pi \circ \hat{F}_{\lambda} = F_{\lambda} F_{-\lambda}^{-1}. \tag{72}$$

Hence f is pluriharmonic by Theorem 2.

Remarks. (1) We would like to point out that the 'extended frame' in the sense of Uhlenbeck (cf. [13, 22]) is just the first component F_{λ} of the extended frame $\hat{\mathcal{F}} = (\hat{F}_{\lambda})$ of the pluriharmonic map as defined in this paper (cf. (64)). It is therefore not surprising that the extended frame in the sense of this paper defines a pluriharmonic map f_{λ} for every $\lambda \in S^1$ while the extended frame in Uhlenbeck's sense defines a pluriharmonic map only for $\lambda = \pm 1$.

(2) We also note that the normalized potential $\hat{\eta}_- = \hat{\mathcal{F}}_-^{-1} d\hat{\mathcal{F}}_-$ is of the form

$$\hat{\eta}_{-} = (\frac{1}{2}(1+\lambda^{-1})\eta, \frac{1}{2}(1-\lambda^{-1})\eta)$$
(73)

for some holomorphic (1, 0)-form $\eta \in \Omega^{(1,0)}(M, \mathfrak{g})$.

Acknowledgement

We would like to thank Martin Guest for comments and suggestions.

References

- Bryant, R.: Conformal and minimal immersions of compact surfaces into the 4-sphere, J. Differential Geom. 17 (1982), 455–473.
- 2. Burstall, F. E.: Private communication.
- Burstall, F. E., Eschenburg, J.-H., Ferreira, M. J. and Tribuzy, R.: Kähler submanifolds with parallel pluri-mean curvature, Preprint, math.DG/0111217, 2001.
- Burstall, F. E. and Guest, M. A.: Harmonic two-spheres in compact symmetric spaces, *Math. Ann.* 309 (1997) 541–557.
- Burstall, F. E. and Rawnsley, J. H.: Twistor Theory for Riemannian Symmetric Spaces, Lecture Notes in Math. 1424, Springer-Verlag, Berlin, 1990.
- 6. E. Calabi, E.: Minimal immersions of surfaces in Euclidean spheres, *J. Differential Geom.* **1** (1967), 111–125.
- Chi, Q.-S., Fernandez, L. and Wu, H.: Normalized potentials of minimal surfaces in spheres, Nagoya Math. J. 156 (1999), 187–214.

- 8. Dorfmeister, J., Pedit, F. and Wu, H.: Weierstrass type representations of harmonic maps into symmetric spaces, *Comm. Anal. Geom.* **6** (1998), 633–668.
- 9. Erdem, S. and Wood, J. C.: On the construction of harmonic maps into a Grassmannian, *J. London Math. Soc.* (2) **28** (1983), 161–174.
- 10. Eschenburg, J.-H. and Tribuzy, R.: Existence and uniqueness of maps into affine homogeneous spaces, *Rend. Sem. Mat. Univ. Padova* **89**, 11–18.
- 11. Eschenburg, J.-H. and Tribuzy, R.: Associated families of pluriharmonic maps and isotropy, *Manuscripta Math.* **95** (1998), 295–310.
- Ferus, D. and Pedit, F.: Curved flats in symmetric spaces, Manuscripta Math. 91 (1996), 445– 454.
- 13. Guest, M.: *Harmonic Maps, Loop Groups, and Integrable Systems*, Cambridge Univ. Press, Cambridge, 1997.
- 14. Guest, M.: An update on harmonic maps of finite uniton number, via the zero curvature equation, in: M. Guest, R. Miyaoka and Y. Ohnita (eds), *Integrable Systems, Topology, and Physics*, Contemp. Math. 309, Amer. Math. Soc., Providence, RI, 2002.
- Helgason, S.: Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, New York, 1978.
- McIntosh, I.: Global solutions of the elliptic 2D periodic Toda lattice, Nonlinearity 7 (1994), 85–108.
- 17. Ohnita, Y.: Harmonic maps into symmetric spaces and integrable system theory, in: *Proceedings of the Conference 'Theory of Lie Groups and Manifolds'*, Sophia Kokyuroku in Mathematics 45, 2002, pp. 81–98.
- Ohnita, Y. and Udagawa, S.: Harmonic maps of finite type into generalized flag manifolds and twistor fibrations, in: *Differential Geometry and Integrable Systems, Proceedings of the 9th* MSJ-IRI Tokyo 2000, Contemp. Math. 308, Amer. Math. Soc., Providence, NJ, 2002, pp. 245– 270.
- 19. Ohnita, Y. and Valli, G.: Pluriharmonic maps into compact Lie groups and factorization into unitons, *Proc. London Math. Soc.* **61** (1990), 546–570.
- 20. Pohlmeyer, K.: Integrable Hamiltonian systems and interactions through quadratic constraints, *Comm. Math. Phys.* **46** (1976), 207–221.
- 21. Pressley, A. and Segal, G.: *Loop Groups*, Oxford Science Publications, Clarendon Press, Oxford, 1986.
- 22. Uhlenbeck, K.: Harmonic maps into Lie groups (classical solutions of the chiral model), *J. Differential Geom.* **30** (1989), 1–50.