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0. Introduction

Any simply connected minimal surface in 3-space allows a one-parameter family
(‘associated family’) of isometric deformations preserving the principal curvatures
while rotating the principal curvature directions; the most famous example is the
deformation of the catenoid into the helicoid. This property holds also in a much
more general situation: It is valid for harmonic maps of a surface M into a symmet-
ric space P = G/K. If M is simply connected, any harmonic map f : M → G/K

determines a smooth family fλ: M̃ → G/K of harmonic maps defined on the
universal cover M̃ of M, parametrized by λ = e−iθ ∈ S1, such that the differ-
ential dfλ is obtained essentially from a rotation of df by the angle θ , and this
property characterizes harmonic maps. It may happen that this associated family is
trivial, i.e. fλ is congruent to f for all λ, in which case the harmonic map is called
isotropic. In particular this happens for M = S2 if the target space is an n-sphere or
a complex projective space. This case was studied by many authors, starting 1967
with Calabi’s work [6]. One application was the explicit description of all minimal
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2-spheres in the 4-sphere by Bryant [1]. A description of all isotropic harmonic
maps into arbitrary symmetric spaces was given in [5]: They arise as projections
from holomorphic and ‘superhorizontal’ maps f̂ into a so called twistor space Z

which is an adjoint G-orbit fibering over G/K where superhorizontal means that
df̂ takes values in a certain distribution on Z.

If the target space is a compact Lie group or a compact symmetric space other
than Sn or CP n, harmonic spheres are no longer isotropic. They were investigated
by Uhlenbeck [22] for U(n) and Burstall and Guest [4] in the general case. Then the
associated family fλ could be considered as a map from M into the loop group �G

consisting of all sufficiently regular maps γ : S1 → G. Using the Cartan embed-
ding these results then extend to harmonic maps into arbitrary compact symmetric
spaces. However, in these papers the associated family fλ is differently defined and
not harmonic for most values of λ.

Ideas contained in [22] and in the work of Pohlmeyer [20] and the Russian
soliton school were used in [8] to generate harmonic maps from certain almost
arbitrarily chosen meromorphic (1, 0)-forms, so called normalized potentials, on a
simply connected domain M ⊂ Ĉ; like in the case of minimal surfaces in Euclidean
space this construction was called a Weierstrass representation for harmonic maps.
As an application of this one can change the setting in [22] or [4] slightly and
does, indeed, obtain an associated family of harmonic maps from a given harmonic
map into an arbitrary compact symmetric space G/K, without using the Cartan
embedding.

Of course one also wants to replace the surface M by a simply connected man-
ifold of higher dimension. Since complex analysis plays an essential rôle in the
theory, one assumes that M (like a surface) is a complex manifold. But harmonicity
is too weak in higher dimensions; instead one assumes that f is pluriharmonic
which means harmonicity along any complex curve in M. It has been shown first by
Ohnita and Valli (cf. [11, 19]) that these maps are also characterized by associated
families. The twistor theory for isotropic pluriharmonic maps was developed in
[11].

In the present paper we show that the method of [8] essentially can be extended
to the pluriharmonic setting. However, a few new features arise. Since we are deal-
ing with several variables, holomorphic (1, 0)-forms are not automatically locally
integrable. As a matter of fact, while the normalized potentials are trivially inte-
grable in the one-dimensional case their higher-dimensional analogues are closely
related to the ‘curved flats’ of Ferus and Pedit [12], thus permitting to construct
arbitrary pluriharmonic maps from certain given curved flats. Also, while in the
one-dimensional case a simply connected Riemann surface (other than Ĉ) is con-
tractible and can be realized as an open subset of C

1, the analogous result is not
true for higher-dimensional complex manifolds. Thus globally defined framings
do not exist automatically, opposite to the one-dimensional case. Of course, locally
extended framings F : Mo → � exist, where Mo is a contractible open subset of M

and � is a group of (twisted) loops g: S1 → G.
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It turns out, however, that after projecting the local extended framings from �

to Z = �/K (where K is embedded into � as constant loops) our approach works
globally. Since Z fibres naturally over G/K, our description can be viewed as a
generalized twistor theory where the twistor space Z is replaced with Z which is
an infinite-dimensional adjoint orbit. As in the isotropic case, every pluriharmonic
map f : M → G/K arises by projecting a holomorphic and ‘superhorizontal’ map
f̂ : M → Z into G/K. The classical finite-dimensional twistor theory embeds
nicely.

We start our paper with a geometric foundation of the basic notions. In Sec-
tion 1, given a simply connected manifold M, a vector bundle E over M and an
E-valued 1-form δ ∈ Hom(T M,E), we investigate when there does exist a smooth
map f : M → P = G/K such that E ∼= f ∗T P and δ ∼= df ; such δ will be called
integrable. In Section 2 we introduce the rotations Rλ = (cos θ)I +(sin θ)J , where
λ = e−iθ and J denotes the complex structure of M. We show that for any map
f : M → P the 1-form δλ = df ◦Rλ is integrable if and only if f is pluriharmonic.
Thus we have introduced the loop parameter in a geometric fashion.

In Section 3 we consider locally extended framings F : Mo → � for pluri-
harmonic maps f : M → G/K from M to a symmetric space G/K. We show
that F can be defined globally as a map from M to �/K. The following section,
Section 4, discusses the Maurer–Cartan forms of extended framings. Here we show
in particular that our geometrically defined associated family coincides with the
one introduced in [8].

The next two sections present for pluriharmonic maps constructions related to
the techniques of [8]. In particular, we introduce locally the notion of holomorphic
framings (Section 5) and globally the notion of normalized framings (Section 6). In
this section the contrast with the one-dimensional theory is best visible. Formulas
(38) and (39) are trivial in the one-dimensional case. In general they define a
curved flat (see e.g. [12]).

Section 7 briefly presents the notion of dressing, both from the point of view of
extended framings with values in Z and the usual ‘group splitting’ point of view.
In Section 8 we discuss, as an example, the isotropic case. With formula (53) we
make also contact with [14], §2(1), and [7]. The last section (Section 9) discusses
pluriharmonic maps into Lie groups. In particular we draw the connection of our
approach to the slightly different one of Uhlenbeck.

1. Integrability of 1-Forms

Let M and P be smooth manifolds. Suppose that P carries a Riemannian metric.
On any Riemannian manifold there is a canonical differentiation of tangent vec-
tor fields, the Levi-Civita covariant derivative D which in turn defines parallel
displacements of vectors along curves. Let f : M → P be a smooth map. Its
differential is considered as a bundle homomorphims df ∈ Hom(T M, f ∗T P )

where f ∗T P is the pull back bundle over M with fibre (f ∗T P )z = Tf (z)P at
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any point z ∈ M. Hence df is a 1-form on M with values in the vector bundle
E = f ∗T P , and in fact it is closed, i.e. for any vector fields X,Y on M we have

dD df (X, Y ) := DX(df (Y )) − DY (df (X)) − df ([X,Y ]) = 0. (1)

If M also carries a Riemannian metric, we can define the Hessian D df : T M ⊗
T M → f ∗T P ,

D df (X, Y ) = DX(df (Y )) − df (DXY ), (2)

and (1) says that this bilinear map is symmetric.
Now we ask the converse question: Given manifolds M and P and a metric

vector bundle E over M with a compatible covariant derivative D and an E-valued
1-form δ ∈ Hom(T M,E), when does there exist a smooth map f : M → P such
that E ∼= f ∗T P and δ ∼= df ? More precisely

� ◦ δ = df (3)

for some bundle isometry �: E → f ∗T P which is parallel, i.e. invariant under
parallel displacements. Such a δ will be called integrable. By (1), a necessary con-
dition for integrability is dDδ = 0. Clearly, if M is simply connected and P = R

n

with its Euclidean inner product, this condition is also sufficient.
But instead of R

n we want to consider a symmetric space. This is a Riemannian
manifold P such that for every p ∈ P there is an isometry sp fixing p with
(dsp)p = −I , called geodesic symmetry or point reflection at p; clearly s−1

p = sp.
In particular, P is homogeneous, i.e. its (full) isometry group G acts transitively,
and hence P may be viewed as a coset space G/K where K is the isotropy group
(stabilizer subgroup) of some chosen point o ∈ P . Clearly, the point reflection so

commutes with K, hence K is fixed by the Cartan involution σ ∈ Aut(G),

σ (g) = sogs−1
o . (4)

In fact Fix(σ ) = {g ∈ G; σ (g) = g} contains K as a normal subgroup of
finite index. A local characterization of symmetric spaces is the parallelity of its
Riemannian curvature tensor RP (X, Y,Z) = [DX,DY ]Z − D[X,Y ]Z. The trilinear
map on the tangent spaces defined by RP is called a Lie triple product.

Now dDδ = 0 is no longer sufficient for the integrability of δ, but a further con-
dition is needed: We assume that on the vector bundle E there is also a parallel Lie
triple product RP : E ⊗ E ⊗ E → E whose restriction to any fibre is isometrically
isomorphic to the curvature tensor on any tangent space of P . We call (E,D,RP )

a vector bundle of type P . We have (cf. [10]):

THEOREM 1. Let M be simply connected and (E,D,RP ) a vector bundle of
type P over M and let RE: T M ⊗ T M ⊗ E → E be its curvature tensor. Given
δ ∈ Hom(T M,E), there exists f : M → P = G/K and a parallel bundle isometry
�: E → f ∗T P such that � ◦ δ = df if and only if

dDδ = 0, (5)
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RE(X, Y )ξ = RP (δX, δY )ξ (6)

for all sections X,Y of T M and ξ of E. The map f is unique up to isometries of
P , i.e. any other solution is of the form g ◦ f for some g ∈ G.

2. Complex Rotations and the Levi Form

From now on let M be always a simply connected complex manifold. The almost
complex structure on T M will be called J . Consider the eigenspace decomposition
of J on the complexified tangent bundle

T cM = T ′M + T ′′M, (7)

where J = i I on T ′M and J = −i I on T ′′M. Let θ ∈ [0, 2π ]. Put λ = e−iθ and

Rλ := (cos θ)I + (sin θ)J. (8)

Then Rλ = λ−1 I on T ′M and Rλ = λ I on T ′′M.
Let f : M → P = G/K be a smooth map and put δλ = df ◦ Rλ ∈

Hom(T M, f ∗T P ). Under which conditions is δλ integrable for any λ ∈ S1? The
answer was given in [11]: if and only if f is pluriharmonic, i.e. if f |C is harmonic
for any complex one-dimensional submanifold C ⊂ M or equivalently if the Levi
form of f vanishes, Lf = 0.� The Levi form can be explained best by using a
local Kähler metric on M, i.e. a Riemannian metric such that J is orthogonal and
parallel. In particular, the eigenbundles T ′M and T ′′M are parallel. Locally, such
a metric always exists on a complex manifold, e.g. the flat metric in a complex
coordinate chart has this property. Then the Hessian h = D df is defined and its
complex linear extension to T cM splits as h = h(2,0) + h(1,1) + h(0,2): For any
X,Y ∈ T cM we put h(2,0)(X, Y ) = h(X′, Y ′), h(0,2)(X, Y ) = h(X′′, Y ′′), and

h(1,1)(X, Y ) = h(X′, Y ′′) + h(X′′, Y ′) = 1
2 (h(X, Y ) + h(JX, JY )), (9)

where X′ = (1/2)(X − iJX) and X′′ = (1/2)(X + iJX) are the components
of X with respect to the splitting (7). The (1, 1)-part given by (9) is called Levi
form Lf = h(1,1). Surprisingly, this is independent of the Kähler metric. In fact,
h(X, Y ) = DX(df (Y )) − df (DXY ), and only the second term depends on the
metric of M. If X and Y are complex vector fields with X ∈ T ′M and Y ∈ T ′′M,
then by parallelity of these bundles we have DXY ∈ T ′′M and DY X ∈ T ′M. Hence
DXY = DY X ∈ T ′ ∩ T ′′ = 0 if [X,Y ] = 0. Using a local basis of commuting
vector fields in T ′ and T ′′, e.g. ∂/∂zi and ∂/∂z̄j for a complex coordinate system
z = (z1, . . . , zm) on M, we see the independence of Lf = D df (1,1) from the
chosen Kähler metric.

� A slightly different definition was given by Ohnita [17]: He calls f pluriharmonic if df ◦ J is
integrable. This is easily seen to be equivalent to our definition.
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THEOREM 2. Let M be a simply connected complex manifold, P = G/K a
symmetric space with either nonnegative or nonpositive curvature and f : M → P

be a smooth map. Then δλ = df ◦ Rλ is integrable for all λ ∈ S1 if and only if f is
pluriharmonic.

Remark. The proof of Theorem 2 is contained in [11]. As a matter of fact,
the conclusion ‘⇒’ is easy : the pluriharmonicity follows from (5) alone. To
see this observe that δλ = λ df on T ′′M and δλ = λ−1 df on T ′M, hence
(DX′δ)Y ′′ = λh(X′, Y ′′) while (DY ′′δ)X′ = λ−1h(Y ′′, X′). Due to the symmetry
of h = D df , these expressions are equal for λ �= ±1 only if h(X′, Y ′′) = 0; this
is the pluriharmonicity of f . The converse conclusion ‘⇐’, in particular the proof
of (5) for δλ is more complicated and needs the semi-definiteness of the curvature
operator of P .

COROLLARY 1. Pluriharmonic maps come in families (so called associated
families) fλ, λ ∈ S1 where df ◦ Rλ

∼= dfλ, more precisely

�λ ◦ df ◦ Rλ = dfλ (10)

for some parallel bundle isometry �λ: f ∗T P → f ∗
λ T P preserving the curvature

tensor RP .

The fact that �λ is isometric and preserves RP is equivalent to saying that for
any z ∈ M we have �λ(z) = dgf (z) for some isometry g ∈ G, more precisely,
for every z ∈ M there exists g ∈ G (depending on z) with g(f (z)) = fλ(z)

and dgf (z) = �λ(z) ∈ Hom(Tf (z)P, Tfλ(z)P) where dg is the differential of g

considered as an isometry g: P → P . Viewing G as a group acting on T P we
may simply say �λ(z) = g ∈ G. From now on we will call fλ, or more precisely
(fλ,�λ), the associated family of f .

Let us consider the special case λ = −1. Then R−1 = −I and we may easily
write down a solution of (10): f−1 = f and �−1 = −I . More generally, if (fλ,�λ)

is a solution for some λ, we have R−λ = −Rλ and hence (fλ,−�λ) is a solution
for −λ. Considering �λ(z) as an element of G we may express this by saying
�−λ(z) = �λ(z)sf (z) or shortly

�−λ = �λsf , (11)

where sp ∈ G is the geodesic symmetry at p ∈ P .

Remark. We would like to point out that the construction of an associated family
as explained above requires M to be simply connected.

3. Loop Group Formulation

Let f : M → P = G/K be any smooth map. We will always assume that f (zo)

is the base point o = eK ∈ G/K for some fixed zo ∈ M. If M is contractible, f
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can be lifted to a smooth mapping F : M → G such that f (z) = F(z)K ∈ G/K;
this will be called a framing for f . Any other framing is obtained as F̃ = Fk

for some smooth mapping (gauge transformation) k: M → K. Passing to Fk

with k = F(zo)
−1 ∈ K, we may assume F(zo) = e (= unit element of G). If

M is arbitrary, such framings are possibly no longer defined globally, but on any
contractible open subset Mo ⊂ M. From now on Mo will aways denote such a
subset of M.

If f is pluriharmonic, we obtain the associated family (fλ,�λ) to which we
assign the framing

Fλ = gλ�λF, (12)

where gλ = �λ(zo)
−1 ∈ G. In fact Fλ is a framing of gλ◦fλ since �λ(z) (viewed as

an element of G and hence as an isometry of P ) maps f (z) onto fλ(z). Moreover,
by (11) we have

F−λ = (gλso)
−1�λsf F = s−1

o gλ�λFso = σ (Fλ) (13)

where σ (g) = sogs−1
o is the Cartan involution of G corresponding to the symmetric

space P . Thus Fλ can be considered as an element of the twisted loop group

� := �σG := {γ : S1 → G; γ (−λ) = σ (γ (λ)}, (14)

where the loops γ ∈ � need to satisfy certain regularity assumptions (e.g. H 1 or
C∞). Thus starting from the pluriharmonic map f : M → G/K we have defined a
map

F : Mo → �, F (z)(λ) = Fλ(z). (15)

We can make F unique and hence globally defined on M by composing it with the
canonical projection

π : � → Z := �/K, (16)

where K ⊂ � denotes the subgroup of constant loops in � with values in K.
Note that the twisting condition γ (−λ) = σ (γ (λ)) implies that constant loops
automatically lie in the fixed group of σ in which K is normal and of finite index.
Summing up the preceding discussion we obtain the following theorem:

THEOREM 3. Let M be a simply connected complex manifold and zo ∈ M. Then
for any pluriharmonic map f : M → P with f (zo) = o there exists precisely one
map F̄ : M → Z = �/K with ev1 ◦ F̄ = f and with local lifts F = (Fλ): Mo →
� given by (12) such that FλF

−1
1 is parallel along f .

4. The Maurer–Cartan Form

Now we assume that the isometry group G of the symmetric space P is a (closed)
matrix group: G ⊂ GL(RN ) ⊂ R

N×N for some N . Let g denote its Lie algebra.
To any smooth map F : M → G we assign a g-valued 1-form
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α = F−1 dF ∈ �1(M; g), (17)

which satisfies dα = −F−1 dF F−1 ∧ dF = −α ∧ α. Vice versa, given any α ∈
α1(M, g) on a simply connected manifold M, it is an easy consequence of the
Frobenius theorem that there exists a map F : M → G with α = F−1 dF if and
only if

dα = −α ∧ α, (18)

and this F is unique up to left translations with (constant) elements of G. Using the
Cartan decomposition g = k+ p corresponding to the symmetric space P = G/K,
the Maurer–Cartan form splits accordingly as

α = αk + αp. (19)

A second splitting compatible to the first one is obtained from the complex
structure:

α = α′ + α′′, (20)

where α′(X) = α(X′) and α′′(X) = α(X′′).
Now let f : M → G/K be pluriharmonic. As explained in the previous sections,

we have the associated family (fλ,�λ) with framing Fλ = gλ�λF as given in (12).
The corresponding Maurer–Cartan form is

αλ = F−1
λ dFλ = F−1�−1

λ d�λF + α. (21)

Due to the parallelity of �λ, the first term on the right-hand side of (21) takes values
in p as the subsequent lemma shows:

LEMMA 1. Let f, f̃ : M → P = G/K be smooth maps such that � ◦ df̃ = df

for some linear isometry �: f ∗T P → f̃ ∗T P preserving the curvature tensor of
P . Thus � can be considered also as a smooth map �: M → G. Let F : M → G

be a framing of f . Then � is parallel as a section of Hom(f ∗T P, f̃ ∗T P ) if and
only if F−1�−1 d�F ∈ p.

Proof. The parallel displacements on P are given by curves g(t) in G which are
horizontal with respect to the principal fibration G → G/K. Hence � is parallel iff
it maps horizontal curves in G again onto horizontal curves. More precisely, if z(t)

is a curve in M and t �→ g(t) ∈ G a horizontal lift of t �→ f (z(t)) ∈ G/K,
then t �→ �(z(t))g(t) ∈ G is a horizontal lift of t �→ f̃ (z(t)). In other
words, (�(z)g)′ = �(z)′g + �(z)g′ is horizontal. But g′ and hence �(z)g′ are
horizontal vectors anyway since left translation by the element �(z(t)) ∈ G pre-
serves horizontality. Thus �(z)′g is horizontal for any curve z(t) in M and every
g ∈ G. Therefore, the 1-forms d�F and F−1�−1 d�F take horizontal values
iff � is parallel. This proves the claim since the horizontal space at e ∈ G is
p ⊂ g = TeG. �
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As a consequence, we obtain from (21):

(αλ)k = αk (22)

for any λ ∈ S1. The other component (αλ)p is just the horizontal lift of dfλ, up to
isometries of P , and from (10) we obtain

(αλ)p = αp ◦ Rλ = λ−1α′
p + λ α′′

p. (23)

A smooth map F : Mo → � with

F −1 dF = αk + λ−1α′
p + λ α′′

p (24)

for some α ∈ α1(M, g) will be called an extended framing.

THEOREM 4. Let M be a simply connected complex manifold. A smooth map
f : M → G/K is pluriharmonic if and only if there is locally an extended framing
F such that f = π ◦ F (1) where π : G → G/K is the canonical projection. The
map F̄ = π ◦ F : M → �/K is globally defined and uniquely determined by f .

Proof. It only remains to show that f = π ◦ F (1) is pluriharmonic if F : M →
� satisfies (24). This follows from Theorem 2: Putting Fλ = F (λ) and fλ = π◦Fλ,
we obtain

dfλ = dπ.dFλ = Fλ.dπ.(F−1
λ dFλ) = Fλ.dπ.(αk + αp ◦ Rλ) = Fλ.(αp ◦ Rλ).

In particular we have df1 = F1 αp and hence dfλ = �̃λ df1◦Rλ with �̃λ = FλF
−1
1 .

From (24) and the previous lemma we see that �̃λ is parallel which finishes the
proof. �

5. Holomorphic Framings

Let us assume further that G ⊂ GL(RN ) can be complexified in the following
sense: We complexify the Lie algebra g ⊂ R

N×N by putting gc = g ⊕ ig ⊂ C
N×N

and we assume that gc is the Lie algebra of a closed subgroup Gc ⊂ GL(CN ) such
that G = {g ∈ Gc; g = g}.� Moreover, we require that the Cartan involution σ

on G extends holomorphically to Gc and commutes with the complex conjugation.
Now we consider the complex extension of the twisted loop group

�c := �σ Gc = {γ : S1 → Gc}. (25)

Any γ ∈ �c can be written as a matrix Fourier series

γ (λ) =
∞∑

j=−∞
ajλ

j . (26)

� Obviously, this holds if G is the zero set of a polynomial on R
N×N which is true for all classical

groups and for all adjoint representations of semisimple groups; note that the automorphism group
of a real Lie algebra is defined by such polynomials.
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Let � denote the space of all such Fourier series (26) and consider the subspaces

�+ =



∑
j≥0

ajλ
j


 , �− =




∑
j<0

ajλ
j


 .

We define the subgroups�

�+ = {γ ∈ �c; γ, γ −1 ∈ �+},
�− = {γ ∈ �c; γ, γ −1 ∈ I + �−}. (27)

LEMMA 2 (cf. [8, 17]). If F : Mo → � is an extended framing, there exists some
V+: Mo → �+ such that H = F V+: Mo → �c is holomorphic on Mo. In other
words, F is holomorphic modulo �+.

Proof. Consider α = F −1 dF and

η = H−1 dH = V+αV−1
+ + V−1

+ dV+. (28)

To establish the holomorphicity of H we need to find V+ such that the antilinear
part η′′ of η vanishes. But η′′ = V−1

+ (α′′V+ + d ′′V+) vanishes if and only if

d ′′V+ = −α′′V+. (29)

Since α′′ = F −1d ′′F , the integrability condition for (29) is satisfied. Moreover,
α′′ = α′′

k + λα′′
p takes values in the Lie algebra of �+, hence we can find a solution

V+ with values in �+. �
Remark. From (28) we see that the Fourier series of η like that of α starts with

λ−1:

η =
∑
j>−1

ηjλ
j . (30)

The choice of H is not unique; in fact, each solution (29) takes precisely the form
Ṽ+ = V+W+ for some holomorphic map W+: Mo → �+. In the next section we
will use this freedom to choose a very special η where all but the first coefficient
η−1 vanish.

Now consider the group K̂ = Fix(σ ) = {g ∈ G; σ (g) = g} which contains
the isotropy group K as a normal subgroup of finite index (cf. Section 1). Let
� = K̂/K.

LEMMA 3. The inclusion � ⊂ �c induces an equivariant isomorphism of the

coset spaces �/K̂
∼=−→�c/�+. Consequently, Z is a finite covering of �c/�+:

Z̄ := �c/�+ ∼= Z/�. (31)

� Without using coordinates, �+ contains all γ : S1 → Gc which are the boundary values of a
holomorphic map γ̂ : D → Gc , where D ⊂ C denotes the open unit disk, while γ ∈ �− gives the
boundary values of a holomorphic map γ̂ : Ĉ \ D̄ → Gc with γ (∞) = I (where Ĉ = C ∪ {∞}).
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Proof. We show first that � ⊂ �c acts transitively on the coset space �c/�+.
This is the so called Iwasawa decomposition (cf. [8, 16, 21]): Any γ c ∈ �c can be
decomposed as γ c = γ γ + with γ ∈ � and γ + ∈ �+. Thus

�c/�+ = �/(�+ ∩ �).

But � ∩ �+ contains only the constant loops since
∑

j ajλj = ∑
j ajλ

−j . Since

the constant loops in � = �σ (G) are fixed by σ they belong to K̂. �
Let L, Lc, L+, L− be the Lie algebras of the loop groups �, �c, �+, �−, respec-
tively. The tangent space z = Lc/L+ = (L− ⊕L+)/L+ of Z at the base point e�+
can be identified with the Lie algebra L− and has a filtration by finite-dimensional
subspaces z1 ⊂ z2 ⊂ · · · ⊂ z with

zr =



r∑
j=1

a−jλ
−j ∈ Lc


 . (32)

Viewed as subspaces of z = Lc/L+, the zr are invariant under Ad(�+) and hence
they determine distributions ẑr on Z̄ and on Z. The first of these spaces, z1, gener-
ates all the others under the Lie product; it is called the superhorizontal subspace.
A mapping into Z is called superhorizontal if its differential takes values in ẑ1.

THEOREM 5. Let M be simply connected. The pluriharmonic maps f : M →
P = G/K are in 1:1 correspondence to the superhorizontal and holomorphic
maps F̄ : M → Z = �/K, and we have f = ev1 ◦ F̄ where ev1: �/K → G/K,
γ K �→ γ (1)K is the evaluation map at λ = 1.

Proof. If a pluriharmonic map f : M → P is given and F : Mo → � is an
extended frame, then F̄ = π ◦ F : M → Z has the desired properties by the
preceding lemmas and (24). It remains to show that f = ev1 ◦ F̄ is pluriharmonic
provided that F̄ : M → Z is holomorphic and superhorizontal. Let F : M → �

locally be a lift of F̄ with respect to π : � → �/K = Z. Since F̄ is superhori-
zontal, dπ(F −1 dF ) takes values in z1, in other words, ω̃ = F −1 dF takes values
in z1 + L+ which shows that α = ∑

j≥−1 αjλ
j . But since α is real, i.e. α = α, all

αj with j ≥ 2 vanish and we obtain

α = α−1λ
−1 + α0 + α1λ. (33)

From the twisting condition σα(−λ) = α(λ) we see that αj ∈ kc for even j and
αj ∈ pc for odd j which shows that α0 ∈ k and α±1 ∈ pc. On the other hand, from
the holomorphicity of F̄ we obtain α′′ ≡ 0 mod L+, hence

α′′ = α′′
0 + α′′

1λ + · · · . (34)

Comparing the last two equations we infer that α′′
−1 = 0 and hence by reality we

have α′
1 = 0. This implies that α is of the form (24),

α = λ−1α′
p + αk + λ α′′

p (35)
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which finishes the proof. �
Remarks. (1) We may as well replace Z = �/K by Z̄ = �/K̂ = �c/�+

since Z is a covering of Z̄ and M is simply connected: Maps from M into Z can
be projected to Z̄, and those into Z̄ can be lifted to Z, and holomorphicity and
superhorizontality are preserved.

(2) Theorem 5 shows that the rôle of Z is very similar to that of the twistor
spaces for the special case of isotropic (pluri)harmonic maps (cf. [5] and Section 8
below). Therefore, Z will be called general twistor space� and F̄ the general
twistor lift of f .

6. The Normalized Potential

The last theorem has shown that any pluriharmonic map f : M → P = G/K

can be obtained from holomorphic data, the map F̄ : M → Z. Though the target
space Z is infinite dimensional, the differential dF̄ takes values in the pull back
of the finite-dimensional superhorizontal subbundle. In the present section we will
replace this bundle-valued (1, 0)-form by a vector valued but meromorphic one,
called η−1, which still determines f . For harmonic maps on surfaces this construc-
tion was carried out in [8], reducing harmonic maps of a surface into a symmetric
space to certain meromorphic differentials on the surface. A similar construction
was known since long time for minimal surfaces in Euclidean space, the Weier-
strass representation, and therefore the representation of f in terms of η−1 was
also called a generalized Weierstrass representation.

In fact, let F : Mo → � be an extended framing of f . In Section 5 we
constructed a holomorphic framing H : Mo → �c with H = F V+ for some
V+: Mo → �+. At all points z ∈ Mo where H(z) is not too far from the unit
element we may split H uniquely as

H = H−H+, (36)

where H± takes values in �± (Birkhoff decomposition) In fact as in [8] it follows
that H± are meromorphic on all of Mo. Accordingly both factors H± are meromor-
phic (i.e. all coefficients of the Fourier series (26) of H depend meromorphically
on z ∈ Mo). Now we claim

H− = F−, (37)

where F = F−F+ is the Birkhoff decomposition of F . In fact,

F−F+ = F = HV−1
+ = H−H+V−1

+ ,

� Like the finite-dimensional twistor spaces, Z can be viewed formally as an adjoint orbit, using
the embedding ϕ: Z → L, ϕ(γ K) = γ ′γ −1. For trivial K this embedding was discussed in [21, ch.
8.9]. In fact, since φ(gγ K) = gφ(γ K)g−1 + g′g−1 for any g ∈ �, the image ϕ(Z) is an adjoint
orbit of the affine Kac–Moody group extending �.
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and by the uniqueness of the Birkhoff decomposition we obtain F− = H−.
Hence we may use F− in place of H as a holomorphic framing in the sense of

Lemma 2 (with V+ = F −1+ ); we will call it the normalized framing. Note that F−
is independent of the chosen extended framing F since any other extended framing
is of the form F ′ = F k for some mapping k: Mo → K. Since K ⊂ �+, the (�−)-
components of F and F ′ with respect to the Birkhoff decomposition agree. Hence
F− is a meromorphic mapping defined globally on M.

From the remark subsequent to Lemma 2 we see that the Fourier series of η− :=
F −1

− dF− starts with η−1λ
−1, but on the other hand it takes values in L−, hence

there are no other terms. Thus

η− = F −1
− dF− = η−1λ

−1 (38)

for some meromorphic η−1 ∈ �(1,0)(Mo, g
c). From the integrability condition

dη− = −η− ∧η− which follows from (38) we obtain by comparing coefficients for
the powers of λ:

dη−1 = 0, (39)

η− ∧ η− = 0. (40)

THEOREM 6. The pluriharmonic maps f : M → P = G/K are locally in
1:1 correspondence with meromorphic (1, 0)-forms η−1 ∈ �(1,0)(M, pc) satisfying
(39) and (40).

Proof. It remains to construct a pluriharmonic map f : Mo → P from a given
holomorphic η−1 ∈ �(1,0)(Mo, g

c). We put η− = η−1λ
−1. This is a holomorphic

(1, 0)-form with values in �− which is integrable by (39) und (40). Thus there
exists a holomorphic map F−: Mo → �− ⊂ �c, This descends to a holomorphic
superhorizontal map F̄ = π ◦ F−: Mo → �c/�+ = Z, and by Theorem 5,
f = ev1◦F̄ is pluriharmonic. More precisely, we can get a (real) extended framing
F of f by the Iwasawa decomposition of F−:

F− = F V+ (41)

with F (z) ∈ � and V+(z) ∈ �+ for all z ∈ Mo (in fact V+ = F −1
+ ). �

These computations can be carried out explicitly in the case of finite uniton number.
A pluriharmonic map f : M → G/K is called of finite uniton number if the cor-
responding extended frames F take values in the algebraic loop group �alg ⊂ �

which consists of those loops γ ∈ � such that γ and γ −1 are finite Laurent series.�

The finite uniton number property holds if and only if η− takes values in some
nilpotent subalgebra of gc, cf. [4, 14]. We will discuss a subcase in Section 8.

� This holds iff γ extends to an algebraic map γ̂ : C∗ → Gc.
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7. The Dressing Action

For a simply connected complex manifold M the pluriharmonic maps f : M →
G/K correspond bijectively to the superhorizontal holomorphic maps F̄ : M →
Z̄ = �c/�+ (cf. Section 5). Moreover we have seen that the action of �c on
Ẑ = �c/�+ by left translations is holomorphic and preserves the superhorizontal
distribution ẑ1. Thus for every γ ∈ �c and any superhorizontal holomorphic map
F̄ : M → Z̄ we get another such map γ F̄ : M → Z̄ with (γ F̄ )(z) = γ F̄ (z) for
all z ∈ M. By Theorem 5 this induces an action of �c on the set of pluriharmonic
maps f : M → G/K called the dressing action:

γ ∗ f := ev1(γ F̄ ).

Note that the dressing action of the real loop group � does not give anything new:
For γ ∈ � we have γ ∗f = γ1F mod K = γ1f which is congruent to f since γ1 ∈
G. Thus due to the Iwasawa splitting �c = ��+ the dressing action essentially
can be restricted to �+.

THEOREM 7. For any pluriharmonic map f : M → G/K and any γ ∈ �c there
is another pluriharmonic map f ′ = γ ∗f : M → G/K such that the corresponding
general twistor lifts satisfy F̄ ′ = γ F̄ . The normalized holomorphic framing F ′− is
the (�−)-part of γ F− with respect to the Birkhoff decomposition, in other words
there is a map V+ = V0 + V1λ + V2λ

2 + · · · : M → �+ with

F ′
−V+ = γ F−. (42)

For the normalized potentials η− and η′− we obtain

η′
− = Ad(V0)η− (43)

where V0 = V|λ=0 takes values in K̂c = Fixc(σ ).
Proof. Equation (42) follows since F ′− ≡ F ′ ≡ γ F ≡ γ F− mod �+. Further,

from F ′− = γ F−V−1
+ we obtain η′− = V+η−V−1

+ − dV+V−1
+ . We have η− =

η−1λ
−1 and V−1 = V −1

o + W1λ + W2λ
2 + · · · and hence η′ ≡ V0ηV −1

o mod L+.
But both sides have no component in L+ whence we obtain (43). Moreover, V0

takes values in K̂c since σV0 = V0 by the twisting condition (14). �

8. The Isotropic Case

A pluriharmonic map f : M → P = G/K is called isotropic if its associated
family is trivial, fλ = f up to congruence for all λ ∈ S1, i.e. fλ = gλf for some
gλ ∈ G independent of z. This is the realm of the ‘classical’ twistor theory (cf. [5,
11]) saying that such maps arise as projections from holomorphic superhorizontal
maps into certain flag manifolds fibering over G/K. One of the most spectacular
applications was Bryant’s explicit formula for all minimal 2-spheres in the 4-sphere
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using the twistor fibration CP 3 → S4, see [1]. We will show that twistor theory is
generalized by our theory in Section 5.

Let us briefly recall the classical twistor theory as represented in [11]. We will
always assume that f is full, i.e. it does not take values in a proper totally geodesic
subspace of P . From (10) we obtain a family of parallel maps �λ with

df = �λ ◦ df ◦ Rλ (44)

but this time each �λ(z) is an automorphism of Tf (z)P , in other words, �λ(z) lies
in the isotropy subgroup of the point f (z) ∈ P which is F(z)K F(z)−1 (where
F : Mo → G is a frame along f ). From (44) and RλRµ = Rλµ and R−1 = −I we
see

�λ�µ = �λµ, �−1 = −I, (45)

i.e. the map �(z): λ �→ �λ(z): S1 → G is an homomorphism with �−1(z) =
sf (z). Moreover, by the parallelity of �λ the value set {�λ(z); z ∈ M} ⊂ G is
contained in a conjugacy class for every λ ∈ S1; recall that parallel translations on
P are restrictions of isometries, i.e. elements of G. Thus there is a circle subgroup
q = (qλ): S1 → G with

q−1 = so, (46)

such that �: z �→ �(z) takes values in the conjugacy class of q, more precisely

�λ = FqλF
−1. (47)

The conjugacy class of the circle q is the twistor space Zq = G/Cq where

Cq = {g ∈ G; gqλg
−1 = qλ ∀λ}. (48)

This is a complex manifold: If we let G+,G− ⊂ Gc be the Lie subgroups
corresponding to the Lie subalgebras

g+ =
∑
j≥0

gj , g− =
∑
j<0

gj , (49)

where gc = ∑
j gj denotes the eigenspace decomposition of Ad(qλ):

gj = ker(Ad(qλ) − λ−jI ) ⊂ gc. (50)

Then we have

Zq = G/Cq = Gc/G+, (51)

and Gc/G+ is a coset space of a complex Lie subgroup and hence a complex
manifold.

From (46) we see that Cq is contained in K̂ = Fix(σ ) and hence in K since
the centralizer of any torus is connected (cf. [15]). Therefore the map π : gqg−1 ∼=
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gCq �→ gK: Zq → G/K is a well defined fibration. Hence we have f = π ◦ �

where �: M → Zq is called the twistor lift. It follows from (44) and the paral-
lelity of �λ (cf. [11]) that this map is holomorphic and superhorizontal, i.e. its
differential takes values in the superhorizontal subbundle of T Zq obtained from
gr

1 := (g1 + g−1)∩ g by left translations. From (44) and the fullness of f it follows
that gr

1 generates g as a Lie algebra (cf. [11]) and hence the circle q is canonical
in the sense of [5]. Thus all isotropic pluriharmonic maps f : M → G/K arise as
projections of superhorizontal holomorphic maps into a twistor space Zq for some
canonical circle q ⊂ K.

We want to derive these statements within our general twistor theory. There we
have chosen our extended frame F = (Fλ) as follows (cf. (12):

Fλ = gλ�λF = gλF kλ (52)

with kλ(z) = F−1�λF ∈ K. Now this is a homomorphism with respect to λ which
is conjugate to qλ for all z,

kλ(z) = k(z)qλk(z)−1. (53)

Hence Fλ = gλF k qλk
−1 or equivalently Fλk = gλFk qλ. Using the gauge free-

dom, we may replace the framing F by Fk which we now call F . In the new
notation we have Fλ = gλF qλ. Since we require also the normalization F(zo) = e,
we obtain gλ = q−1

λ and hence

Fλ = q−1
λ F qλ. (54)

This equation has been observed in the surface case, cf. [7], [14]. Since q is a circle
subgroup, there are only finitely many powers of λ in the matrix qλ and hence the
isotropic case belongs to the case of finite uniton number (cf. Section 6). Moreover
we see from (54) that F = (Fλ) takes values in a finite-dimensional subgroup
�q ∼= G of �:

�q = {q−1gq; g ∈ G} ⊂ �, (55)

where q−1gq(λ) := q−1
λ gqλ. Such a curve q−1gq is constant if g lies in the cen-

tralizer Cq of the circle group q. Thus the projection π : � → Z = �/K maps �q

onto �q/Cq which is isomorphic to the twistor space Zq = G/Cq . More precisely,
we have the embedding

j : G/Cq → Z = �/K, gCq �→ q−1
λ g qλK, (56)

which is (1) holomorphic, (2) equivariant under G via the embedding G → �q ⊂
�, g �→ q−1

λ gqλ, (3) sends the superhorizontal distribution of Zq into that of Z and
(4) satisfies

ev1 ◦ j = π : G/Cq → G/K: gCq �→ gK. (57)
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THEOREM 8. Let f : M → G/K be a pluriharmonic map. Then the following
properties are equivalent:

(1) f is isotropic,
(2) F̄ takes values in a finite-dimensional twistor space j (Zq) ⊂ Z,
(3) The normalized potential η−1 takes values in g−1 = ker(Ad(qλ) − λI) for

some canonical circle subgroup q: S1 → G.

Proof. We have already seen (1) ⇒ (2). Next assume (2). Let F = (Fλ): Mo →
� be a local lift of F̄ . Then Fλ = q−1

λ Fqλk for some k: Mo → K where
F = F1. Putting λ = 1 we obtain k = e and Fλ = q−1

λ Fqλ. Now the Birkhoff
decomposition restricts to the finite-dimensional Bruhat splitting Gc = G−G+
corresponding to q (cf. (49)). In fact, if F = F−F+ is the Bruhat decomposition of
F (for F(z) close enough to e), both factors are invariant under conjugation with
q−1

λ and F± = Ad(q−1
λ )F±. Thus η− = Ad(q−1)α− where α− = F−1

− dF−. But
on the other hand η− = λ−1η−1 and hence α− takes values in g−1 ⊂ g− (where
Ad(q−1) = λ−1) and η−1 = α−.

Now let us assume (3). Then η− = λ−1η−1 = Ad(q−1
λ )η−1 and F− =

Ad(q−1
λ )F− where F− takes values in G− with dF− = F−η−1. From the finite-

dimensional Iwasawa decomposition Gc = GG+ we obtain F− = FF+ with
F ∈ G and F+ ∈ G+. Applying Ad(q−1

λ ) and comparing with the infinite-
dimensional Iwasawa decomposition F− = F F+ we see that F± = q−1

λ F±qλ and
F = q−1

λ Fqλ. Since qλ ∈ K for all λ, the last equality Fλ = q−1
λ Fqλ projects onto

fλ = q−1
λ f and thus fλ equals f up to the rigid motion qλ. Hence f is isotropic. �

EXAMPLE 1 ([2, 9]). Let P = Gp(Cn) = U(n)/(U(p)×U(q)) with p+q = n be
the Grassmannian of complex p-dimensional subspaces of C

n. Then the possible
twistor spaces over P (cf. ([5], [3]) are certain (classical) flag manifolds. Recall
that a flag over C

n can be viewed either as a chain of subspaces W1 ⊂ W2 ⊂ · · · ⊂
Wr = C

n or as an orthogonal decomposition C
n = E1 ⊕ · · · ⊕ Er where W1 = E1

and Wj+1 = Wj ⊕Ej+1. Let Z be the space of all flags of a certain type (determined
by the dimensions dj = dim Ej ). Then there is a projection π : Z → P = Gp(Cn)

with p = ∑
j odd dj sending the flag (E1, . . . , Er ) onto the subspace

∑
j odd Ej .

This is a twistor fibration with G = U(n), Gc = GL(n, C), and the canonical
circle qλ is given by the matrix

qλ = diag(λId1, λ
2Id2, . . . , λ

rIdr
). (58)

The eigenspaces gk for qλ consist of block matrices (blocks of size d1, . . . , dr )
where only the k-the block diagonal is nonzero.

A map f : M → Z is a chain of vector bundles (a ‘moving flag’) z �→
(Wj (z))

r
j=1 over M; it is holomorphic iff the bundles Wj are spanned locally by

holomorphic sections, i.e. there is a holomorphic map H = (h1, . . . , hn): Mo →
GL(n, C) = U(n)c such that Wj = Span(h1, . . . , hnj

) where nj = dim Wj .
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Moreover, f is superhorizontal if Wj differentiates into Wj+1, i.e. dwj takes val-
ues in Wj+1 for any section wj of Wj . Thus the moving flag W1 ⊂ W2 ⊂ · · ·
is obtained as follows. We start with n1 = d1 arbitrary holomorphic functions
h1, . . . , hd1 : Mo → C

n in ‘general position’, i.e. they are pointwise linear inde-
pendent and all their partial derivatives are linearly independent up to the order
when the full dimension n is exhausted. Then we let W1(z) be the linear span of
the values of the functions hi (for i = 1, . . . , d1) at z ∈ Mo and W2 the span of
the hi and their first partial derivatives while W3 is spanned by hi and their first
and second partial derivatives etc. Thus we obtain all holomorphic superhorizontal
maps into Z and hence (by composing with the projection π : Z → P ) all isotropic
pluriharmonic maps f : M → P = Gp(Cn).

How is this elementary description related to our general theory? Let us consider
the moving (nonorthogonal) decomposition C

n = V1 ⊕ · · · ⊕ Vr where the first
space V1 is spanned at any point z by the values of h1, . . . , hd1 , the second one V2

only by their first derivatives, V3 by their second derivatives etc. Denoting C
n =

E1 ⊕ · · · ⊕ Er the canonical decomposition where Ei are orthogonal subspaces
of dimension di spanned by consecutive parts of the canonical basis (e1, . . . , en),
we have H(Ei) ⊂ Vi. Moreover, since Vi is spanned by (i − 1)-th derivatives of
the hi , i = 1, . . . , d1, the 1-form dH |Ei

takes values in Vi+1 = H(Ei+1). Thus
η = H−1 dH maps each Ei into Ei+1 for i = 1, . . . , r − 1. Only the last space Er

can be mapped anywhere. Hence η takes values in g−1+g+ which consists of those
block matrices where only the upper triangular part and the first lower diagonal is
nonzero. In order to obtain the normalized potential, according to Chapter 6 we
have to decompose H = H−H+ where H− is strictly lower triangular and H+
upper triangular (including the diagonal). Then η− = H−1

− dH− is the normalized
potential taking values in g−1, i.e. it has only block entries on the first lower block
diagonal.

9. Pluriharmonic Maps into Lie Groups

In this section we specialize to the case where P is a compact Lie group� G.
In some sense, this is the general case: Any symmetric space P = G/K can,
up to coverings, be viewed as a connected component of the totally geodesic
submanifold

P̂ = {g ∈ G; σ (g) = g−1}, (59)

using the Cartan embedding

P = G/K → P̂ ⊂ G, gK �→ gσ (g−1). (60)

Therefore, many authors (based on the fundamental article of Uhlenbeck [22])
restrict their attention to this case. We will see how our discussion specializes.

� What we need is a biinvariant semi-Riemannian metric on G; positive definiteness is not
essential. All semisimple Lie groups and many others have this property.
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Let G be a Lie group with a biinvariant Riemannian metric. Then G × G acts
isometrically on G by left and right translations Lg, Rg−1 , and also the inversion
ι: g �→ g−1 is an isometry of G. Thus G is a symmetric space with symmetry
se = ι at the unit element e, and the symmetry sg at an arbitrary g ∈ G is obtained
by conjugating se with Lg or Rg which yields sg(x) = gx−1g. Representing G as
a symmetric coset space we obtain

G = G̃/K̃ := (G × G)/�, � := {(g, g); g ∈ G} (61)

with the projection

π : G × G → G, π(g, h) = gh−1 (62)

and with the Cartan involution σ ∈ Aut(G × G),

σ (g, h) = (h, g). (63)

Now let f : M → G be pluriharmonic. Then there is globally a lift F̃ : M →
G × G (a framing) given by

F̃ (z) = (f (z), e). (64)

For the corresponding Maurer–Cartan form we obtain

α̃ = F̃−1 dF̃ = (f −1df, 0) =: (α, 0). (65)

We need to decompose α̃ = α̃k+α̃p according to the Cartan decomposition g̃ = k̃+
p̃ of g̃ = g ⊕ g where k̃ = {(A,A); A ∈ g} is the Lie algebra of K̃ = � = Fix(σ )

and p̃ = {(A,−A); A ∈ g}. Thus,

α̃p = 1
2 (α,−α), (66)

α̃k = 1
2 (α, α). (67)

Introducing the λ-parameter and splitting further into the (1, 0) and (0, 1) compo-
nents we obtain

α̃λ = λ−1α̃′
p + α̃k + λα̃′′

p

= 1
2 λ−1(α′,−α′) + 1

2 (α, α) + 1
2 λ(α′′,−α′′)

= (
1
2 (1 + λ−1)α′ + 1

2 (1 + λ)α′′, 1
2 (1 − λ−1)α′ + 1

2 (1 − λ)α′′). (68)

THEOREM 9. A smooth map f : M → G with Maurer–Cartan form α = f −1df

is pluriharmonic if and only if the 1-form

αλ := 1
2 (1 + λ−1)α′ + 1

2(1 + λ)α′′ (69)

is integrable for all λ ∈ S1.



320                                

Proof. It remains to show ‘⇐’. Denoting by F = (Fλ) a solution to

F−1
λ dFλ = αλ, (70)

we obtain a solution F̂ = (F̂λ) to F̂−1
λ dF̂λ = α̂λ as

F̂λ = (Fλ, F−λ). (71)

Clearly, the normalization F̂λ(zo) = (e, e) at the base point zo is equivalent with
Fλ(zo) = e. Thus, according to our general construction, an associated family (fλ)

of f is given by

fλ = π ◦ F̂λ = FλF
−1
−λ . (72)

Hence f is pluriharmonic by Theorem 2. �
Remarks. (1) We would like to point out that the ‘extended frame’ in the sense of

Uhlenbeck (cf. [13, 22]) is just the first component Fλ of the extended frame F̂ =
(F̂λ) of the pluriharmonic map as defined in this paper (cf. (64)). It is therefore not
surprising that the extended frame in the sense of this paper defines a pluriharmonic
map fλ for every λ ∈ S1 while the extended frame in Uhlenbeck’s sense defines a
pluriharmonic map only for λ = ±1.

(2) We also note that the normalized potential η̂− = F̂ −1
− dF̂− is of the form

η̂− = (
1
2 (1 + λ−1) η,

1
2 (1 − λ−1) η) (73)

for some holomorphic (1, 0)-form η ∈ �(1,0)(M, g).
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