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A minimal surface in euclidean space has two very special properties: (A) It allows a twisted
circle of isometric deformations preserving the tangent plane (Associated family), and (B)
it is just the real part of a holomorphic map (Weierstrass representation). In fact, these two
properties hold more generally for a pluriharmonic map f of a simply connected complex
manifold into euclidean space. If instead the target space is a Riemannian symmetric space
P , Property (A) essentially remains true, however by lack of global parallel displacements
a parallel isomorphism between the tangent spaces of the associated family is needed. Con-
sequently Property (B) gets more complicated: f arises by projecting a “superhorizontal”

holomorphic map f̂ into a certain infinite dimensional flag manifold (adjoint orbit) fibering

over P . the “universal twistor space”. The map f̂ takes values in a finite dimensional
sub-twistor space iff the associated family is trivial.

Introduction

Among the most beautiful objects in Geometry are the minimal surfaces in 3-space. One
of their spectacular properties is the existence of a (so called associated) family of deforma-
tions preserving the interior distances and the surface normal while rotating the principal
directions. The best known example is the deformation of the catenoid into the helicoid,
cf. http://www.ag.jku.at/verbieg_en.html. It starts and ends with the catenoid which
however is turned inside-out during the deformation. This is an example of a twisted loop
of surfaces: It comes back to its original shape, but only after applying a point reflection
on the ambient space. The same phenomenon occurs when euclidean 3-space is replaced
with a symmetric space P , a Riemannian manifold with isometric point reflections at every
point. Moreover, the minimal surface can be replaced by a harmonic map of a surface
into P . In fact, a surface is only the easiest example of a complex manifold, and we may
equally well consider a pluriharmonic map of an arbitrary complex manifold. Also these
maps can be deformed by twisted loops, described as mappings into some space of loops.
These are holomorphic mappings of a certain kind, and therefore pluriharmonic maps can
be obtained from holomorphic data; the Weierstrass representation for minimal surfaces is
the best known example.

Sometimes the situation is rigid and the twisted loop of deformations arises only by
isometries of the ambient space; such pluriharmonic maps are called isotropic. Of course
they can exist only if the point reflections in P can be deformed to the identity; symmetric
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spaces with this property are called inner. This case is much simpler and has been studied
for a long time, starting with the work of Calabi [4]. It is closely connected with the
concept of a twistor (cf. [3]) which was first investigated by R. Penrose [13] in connection
to Relativity. Roughly speaking, a twistor is a complex structure on a tangent space of
an inner symmetric space P , and the set of all twistors forms a fibre bundle over P . The
original example studied by Penrose was the “classical” twistor fibration CP 3 → S4; any
point of complex projective 3-space can be viewed as a complex structure on some tangent
space of S4. Each isotropic pluriharmonic map into a symmetric space can be lifted to some
twistor space over P . The most classical twistor fibration was also the most successfull:
With its help R. Bryant [1] gave an explicit description of all minimal spheres in S4.

In the present survey article we want to explain, following work of K. Uhlenbeck, J.
Rawnsley and others, how the general (non-isotropic) case can also be understood in terms
of a generalized twistor theory. This more general twistor space is infinite dimensional, a
space of twisted loops, and since it contains all other twistor spaces, we would like to call
it “universal”. This is mainly a re-interpretation of well known facts which however could
give a unified view point to the theory. Most of the details missing in this survey can be
found in [7]. We thank J. Dorfmeister for many useful hints and discussion.

0 Harmonic maps

A smooth manifoldM is called Riemannian if there is an inner product on each of its tangent
spaces, depending smoothly on the base point. For any smooth curve c : [a, b] → M the

length L(c) =
∫ b

a
|c′(t)| dt is defined, giving M the structure of a metric space which locally

is approximated by euclidean space. All euclidean notions are applicable but have different
properties. The main difference arises for the parallel displacement of tangent vectors and
the corresponding differentiation of tangent vector fields, the so called Levi-Civita derivative:
The parallel displacement becomes path dependent, and the Levi-Civita derivatives with
respect to two coordinate directions do not commute; in fact their commutator is the basic
invariant of Riemannian geometry, the curvature tensor.

Classical euclidean geometry is investigated by using substructures: lines, planes etc. In
Riemannian geometry, the rôle of lines is taken by geodesic lines which have parallel tangent

vectors and which locally minimize the length and also the energy E(c) =
∫ b

a
|c′(t)|2 dt

among all curves connecting two given points. If metric completeness is assumed, any
two points are joined by a geodesic line, like in euclidean geometry. But what are the
substitutes for planes and higher dimensional subspaces? A plane in space contains the
line passing through any two of its points. In Riemannian geometry, a submanifold with
this property is called totally geodesic. However such submanifolds are very rare unless we
restrict attention to spaces of constant curvature which are locally just spherical, euclidean
or hyperbolic spaces.

Therefore we consider another generalization of geodesics to higher dimensions, using
the energy minimizing property. If M and P are Riemannian manifolds and f : M → P a
smooth map, the derivative of f at a point x ∈ M is a linear map dfx : TxM → Tf(x)P be-
tween the corresponding tangent spaces of M and P . The vector space Hom(TxM,Tf(x)P )
inherits an inner product and hence a norm from the inner products on TxM and Tf(x)P
given by the Riemannian metrics; in fact

|dfx|2 = |dfx.e1|2 + ...+ |dfx.em|2 (1)
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for an orthonormal basis (e1, ..., em) of TxM . For any compact subset Mo ⊂ M the energy
or Dirichlet integral of f |Mo is

E(f |Mo) =

∫
Mo

|dfx|2 dvx (2)

where dvx denotes the volume element of M at x determined by the Riemannian metric. A
map f : M → P is called harmonic if the variation of its energy vanishes,

δE(f |Mo) :=
d

ds
E(fs|Mo)|s=0 = 0 (3)

for any compact subset Mo ⊂ M , where fs : M → P is any smooth variation of f with
f = fs outside Mo. As always, this variational principle is equivalent to its Euler differential
equation:

∆f := trace Ddf = 0 (4)

involving the Levi-Civita derivative D on Hom(TM,TP ) which is induced by the Rieman-
nian metrics on M and P .

Harmonic maps exist for all dimensions of M . A harmonic map of the real line M = R is
just a geodesic. The next case when M is a surface is most interesting since then the energy
(2) is invariant under conformal changes of the metric g on M . In fact, if g is replaced with
µ2g for some smooth positive scaling function µ on M , then |dfx|2 takes up a factor µ(x)2

while the 2-dimensional volume element dvx is divided by µ(x)2, hence the energy remains
unchanged. But an oriented surface with a conformal class of metrics is nothing else than
a 1-dimensional complex manifold where the complex structure J on the tangent space is
the rotation by the angle π/2. Hence harmonic maps f : M → P are already defined when
P is Riemannian but M is only a complex 1-dimensional manifold (a Riemann surface)
without specified metric. We will see that locally all harmonic maps of Riemann surfaces
into symmetric spaces can be obtained in terms of meromorphic functions on M as has
been shown in [8]. These maps became interesting to physicists under the name σ-models
(cf. [6]).

If dimM > 2, harmonic maps in general do not have such nice properties. However
there is an interesting special case where the methods of complex analysis still apply. Let
M be a complex manifold of any dimension. A map f : M → P is called pluriharmonic if
f |C is harmonic for any complex 1-dimensional submanifold (complex curve) C ⊂ M . If we
compare harmonic maps of surfaces to geodesics, then pluriharmonic maps play the rôle of
totally geodesic submanifolds, and they do not always exist as we will see. However there
are many interesting examples. Under certain conditions, a harmonic map f : M → P
of a Kähler manifold M is automatically pluriharmonic, in particular this holds if P has
nonpositive curvature operator (cf. [15], [11]).

1 Associated families and symmetric spaces

Another peculiarity for dimM = 2 is the existence of so called associated families of har-
monic maps. Consider the case P = R

n. Then (4) becomes f22 = −f11 (where the
indices mean partial derivatives). This is the integrability condition for the differential
form df ◦ J = f2dx1 − f1dx2; in other words, df ◦ J is closed iff f is harmonic. Hence
locally df ◦ J = df̃ for another (so called conjugate) harmonic function f̃ , and taking linear
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combinations, we obtain a circle of such maps fθ = f cos θ + f̃ sin θ with

dfθ = df ◦Rθ (5)

where Rθ denotes the rotation by the angle θ on the tangent space of M . This is called
the associated family of f . This result can be extended in two ways. We may replace the
surface by an arbitrary complex manifold M and put Rθ = I cos θ + J sin θ where I is the
identity and J the complex structure on TM . Moreover we replace R

n by any symmetric
space P .

A Riemannian manifold P is called symmetric if for every p ∈ P there is an isometry
sp : P → P fixing p with derivative (dsp)p = −I; this is called point reflection or symmetry
at p. Thus sp reverses any geodesic line passing through p. As a consequence, the group
of isometries I(P ) acts transitively on P since any two points o, q ∈ P can be joined by a
geodesic segment c : [0, 1] → P , and we can map o to q by the point reflection sp where
p = c( 12 ) is the midpoint of c.

Locally, symmetric spaces are characterized by the fact that the curvature tensor

RP (X,Y )Z = [DX , DY ]Z −D[X,Y ]Z

(acting on tangent vector fields X,Y, Z on P ) is parallel on P , i.e. it commutes with the
parallel displacements on P . On any tangent space TpP it defines a trilinear map (a so
called Lie triple product) RP which completely encodes the local structure of the symmetric
space P . In particular, any isometric linear map φ : TpP → TqP preserving RP (i.e.
RP (φX, φY )φZ = φRP (X,Y )Z) “extends” to an isometry g ∈ I(P ) with g(p) = q and
dgp = φ. For p = q any such φ will be called an automorphism of TpP ; it extends to an
isometry of P fixing the point p.

Equation (5) as it stands can hold only for P = R
n where all tangent spaces are identified

by global parallel displacement. But otherwise dfx and d(fθ)x take values in different
tangent spaces, Tf(x)P and Tfθ(x)P . Thus we replace (5) by

dfθ = Φθ ◦ df ◦Rθ (6)

where Φθ(x) is an isomorphism between Tf(x)P and Tfθ(x)P for any x ∈ M which is as nice
as possible:

• Φθ(x) is a linear isometry preserving the curvature tensor RP ,

• Φθ(x) is parallel with respect to x.

A family of smooth maps fθ : M → P satisfying (6) will be called an associated family of
f = f0. A main result of [10] characterizes pluriharmonic maps by associated families:

Theorem 1. Let M be a simply connected complex manifold and P a symmetric space of

nonpositive or nonnegative curvature. Then a smooth map f : M → P is pluriharmonic if

and only if it has an associated family fθ. This is uniquely determined up to isometries of

P .

From the uniqueness we can derive more properties of the associated family. Since Rθ+π =
−Rθ, we obtain a solution (fθ+π,Φθ+π) of (6) for the rotation angle θ + π from a solution
(fθ,Φθ) for θ, namely

fθ+π = fθ, Φθ+π = −Φθ. (7)
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In the second equation we may replace −Φθ(x) by Φθ(x)sf(x) obtaining

Φθ+π(x) = Φθ(x)sf(x), (8)

since Φθ(x) can be considered as an isometry of P sending f(x) onto fθ(x) and sf(x) acts
as −I on Tf(x)P .

A class of particular interest is formed by the so called isotropic pluriharmonic maps whose
associated family is constant: fθ = f for all θ (up to isometries of P ). Then (6) becomes

df = Φθ ◦ df ◦Rθ, (9)

and this time each Φθ(x) is an isometry preserving RP and mapping Tf(x)P onto itself. We
can choose θ 7→ Φθ(x) to be a one-parameter group, a homomorphism of the unit circle: If
(f,Φθ) and (f,Φθ′) are solutions of (9) for θ and θ′, then (f,ΦθΦθ′) is a solution for θ + θ′

(since Rθ+θ′ = RθRθ′) and hence we can assume

Φθ+θ′ = ΦθΦθ′ , Φπ = −I (10)

2 Twistor lifts

Twistors (cf. [13], [3]) have been introduced in order to apply complex analysis to non-
complex symmetric spaces. On a complex (so called hermitian) symmetric space there is a
complex structure on any tangent space TpP which by definition is a Lie triple automorphism
j with j2 = −I. In complex coordinates, j is just the multiplication by i =

√
−1, and it

is invariant under parallel displacements. But if no such complex structure is given, the
idea is to consider the set of all possible complex structures on TpP . Any of these belongs
to a one-parameter group of automorphims of TpP called twistors at p. More precisely, if
G = I(P )o denotes the identity component of the isometry group I(P ), a twistor at p is by
definition a smooth homomorphism τ : S1 = R/(2πZ) → G fixing p and passing through the
point reflection sp = τπ; the corresponding complex structure on TpP is given by j = τπ/2.
Of course this is possible only if the point reflections belong to the identity component of
the isometry group; symmetric spaces with this property are called inner. E.g. the even
dimensional spheres are inner, but not so the odd dimensional ones.

A twistor space Z over P is the conjugacy class of some twistor τo within G. If τ is a
twistor at p, then gτg−1 is a twistor at gp, and since G acts transitively, Z contains twistors
at all points of P . Thus Z fibres over P with fibre Zp being the set of all twistors at p;
let p : Z → P be the projection. Further Z is a complex manifold: Every τ ∈ Z defines
a complex structure τπ/2 on Tp(τ)P which extends canonically to a complex structure on
TτZ. In fact Z can be viewed as an adjoint orbit (an orbit of the adjoint representation
of G on its Lie algebra g) since the one-parameter group is determined by its infinitesimal
generator in g, and it is well known that all adjoint orbits are complex manifolds (quotients
of complex Lie groups by closed complex subgroups).

The easiest example is the 4-dimensional sphere P = S4 ⊂ R
5 where the twistors

τ ∈ Zp are one-parameter groups of orthogonal matrices fixing p and acting by oriented
planar rotations on two orthogonal planes in p⊥. Any such τ is conjugate under SO(5)
to (τo)θ = diag (1, ρθ, ρθ) with ρθ = ( cos θ −sin θ

sin θ cos θ ); more precisely, Z is the conjugacy class
of τo in SO(5). The stabilizer of τo is the subgroup U(2) ⊂ SO(4) ⊂ SO(5) and hence
Z ∼= SO(5)/U(2) is complex projective 3-space CP 3 (recall that SO(5) = PSp(2) ⊂ PU(4)
acts transitively on CP 3 = PU(4)/U(3) and PSp(2) ∩ U(3) = U(2)).
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Also in the general case twistors are composed by planar rotations which however may
have different velocities: The tangent space p = TpP is an orthogonal sum of subspaces pk
on which τ acts by planar rotations ρkθ. But since τπ = −I, the weights k must be odd
integers. Following [3], we call a twistor τ canonical if the lowest weight space p1 generates p
as a Lie triple algebra, i.e. p = p1+RP (p1, p1, p1)+ ... The space p = TpP can be embedded
naturally into TτZ as the horizontal subspace for the fibration p : Z → P , and the subspace
p1 ⊂ p ⊂ TτZ will be called superhorizontal.

Now let f : M → P be an isotropic pluriharmonic map which is full, i.e. f(M) does
not belong to a proper totally geodesic subspace of P . Then by the results of the previous
chapter Φ(x) = (θ 7→ Φθ(x)) is a twistor at f(x) for any x ∈ M and thus defines a
map Φ : M → Z with p ◦ Φ = f , the so called twistor lift. From the parallelity of
x 7→ Φ(x) we see that dΦ takes values in the horizontal bundle of the fibration p : Z → P
(“horizontal” and “parallel” are just the same notions for the principal bundle G → P
and its associated bundles.). More precisely, using (9) we see that dΦ takes values in the
superhorizontal subbundle on which the twistor has weight one and hence agrees with the
complex structure j (more precisely, with the rotation group generated by j); this shows that
Φ is also holomorphic. Vice versa it is easy to see that the projection of a superhorizontal
holomorphic map is an isotropic pluriharmonic map. Thus we obtain:

Theorem 2. Isotropic pluriharmonic maps f : M → P are precisely the projections of

holomorphic superhorizontal maps into twistor spaces over P .

3 Loop space lifts

Now let us consider an arbitrary pluriharmonic map f : M → P . Fixing a base point
p ∈ P we have a canonical projection π : G → P , π(g) = gp where G is the identity
component of the isometry group of P . If we also fix a suitable basis B of the vector
space TpP , then g(B) is a basis for TgpP and hence G can be considered as a certain set
of bases (frames) of the tangent spaces of P . On a contractible open subset M ′ ⊂ M , the
map f can be lifted to G, yielding a smooth map F : M ′ → G which projects onto f |M ′,
i.e. f(x) = F (x)p. This is called a local framing of f since it provides each tangent space
Tf(x)P with a frame F (x). Obviously, two such framings F, F̃ differ by a map into the

isotropy group K = {g ∈ G; gp = p}, more precisely, F̃ = FFK for some smooth map
FK : M ′ → K.

We have already seen that pluriharmonic maps come in associated one-parameter fam-
ilies fθ satisfying (6). A framing F : M ′ → G of f defines also a framing Fθ = ΦθF for fθ.
More generally we may put

Fθ = gθΦθF (11)

for an arbitrary isometry gθ ∈ G, replacing fθ with gθfθ. We will use this freedom as
follows: We fix base points xo ∈ M and p = f(xo) ∈ P . We may assume F (xo) = I, and we
choose gθ = Φθ(xo)

−1 whence Fθ(xo) = I for all θ. Recall that F (x) ∈ G maps p to f(x)
and hence conjugates the point reflections sp and sf(x). From (8) we obtain gθ+π = spgθ
and hence Fθ+π(x) = gθ+πΦθ+π(x)F (x) = spgθΦθ(x)sf(x)F (x) = spFθ(x)sp, thus

Fθ+π(x) = σ(Fθ(x)) (12)

where σ ∈ Aut(G) denotes the conjugation by sp. Therefore each map θ 7→ Fθ(x) belongs
to the twisted loop group

Ĝ = Λσ(G) = {γ : S1 → G; γθ+π = σ(γθ)} (13)
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where the loops γ are sufficiently regular (e.g. of class H1). Thus we have obtained a map
F : M ′ → Ĝ with F(x)θ := Fθ(x). If we had chosen another framing F̃ = FFK , we would
have got a corresponding map F̃ = FFK . By projecting F to the coset space Ẑ = Ĝ/K
(where K ⊂ Ĝ denotes the subgroup of constant loops in the isotropy group K ⊂ G) we get
a map F̄ = FK which is independent of the choice of F and hence is globally defined on
M . This space Ẑ fibres over P where the projection p̂ : Ẑ → P is the evaluation of the loop
at the initial point: p̂(γK) = γ0p. Now we have constructed a smooth map F̄ : M → Ẑ
which is a lift of f : M → P , i.e. p̂ ◦ F̄ = f .

This loop space Ẑ is again a complex manifold, a quotient of two complex loop groups:
Ẑ = Ĝc/Ĝ+ where Ĝc is the set of twisted loops into the complexified group1 Gc and Ĝ+

is the subgroup of those γ : S1 → Gc such that both γ, γ−1 extend to analytic maps on the
unit disk in C. If Gc is a matrix group, we may write each γ ∈ Ĝc as a matrix Fourier series
γθ =

∑
k∈Z

Ake
ikθ, and γ ∈ Ĝ+ iff Ak = 0 for k < 0 and the same is true for γ−1. It can

be shown that F̄ : M → Ẑ is holomorphic; in fact one constructs a holomorphic lift into
Ĝc using the parallelity of Φθ. Moreover it follows from (6) that the differential of F̄ takes
values in a finite dimensional homogeneous subbundle of the tangent bundle of Ẑ, which
at the base point consists of the simplest possible (finite) Fourier series Aeiθ + Āe−iθ; this
will be called the superhorizontal subbundle. Vice versa, we can characterize pluriharmonic
maps by this property. Thus we arrive at a theorem which looks quite similar to the one in
the isotropic case:

Theorem 3. General pluriharmonic maps f : M → P are precisely the projections of

holomorphic superhorizontal maps into the loop space Ẑ over P .

Remarks. 1. In fact, the differential dF̄ can be described in terms of a pc-valued holo-
morphic differential form on M , called normalized potential. If M is a surface, this may
be an arbitrary meromorphic 1-form, but in higher dimensions an integrability condition is
needed (curved flat condition). In [8] it was shown how to obtain f back from the potential.
This formula allows to compute explicit examples.

2. The loop group Ĝc acting on Ẑ preserves the set of holomorphic superhorizontal maps
F̄ : M → Ẑ. Hence it induces an action on the set of pluriharmonic maps which is a special
case of the so called dressing action.

4 The “universal twistor”

Can the previous construction also be viewed as a sort of twistor lift? To answer this
question we first try to understand the twistor construction as a special case of the loop
space lift. This is not difficult since both times we have used Φθ. In the isotropic case,
Φθ(x) is a one-parameter group conjugate to a fixed twistor τ for each x ∈ M , and from
Fθ = (Φθ(xo))

−1ΦθF we obtain (after a slight modification of our frame F )

F = τFτ−1 (14)

Recall that Ẑ = Ĝ/K and Z = Ad(G)τ = G/H where H is the centralizer of τ . Motivated
by (14) we consider the group homomorphism

ρτ : G → Ĝ, g 7→ τgτ−1. (15)

1We can think of G as being a real matrix group defined by algebraic equations which may be complex-
ified.
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The loop ρτ (g) is constant if and only if g commutes with τ , i.e. g ∈ H. Thus ρτ induces
an equivariant embedding ρ̄τ : Z = G/H → Ẑ = Ĝ/K. This is holomorphic and preserves
superhorizontality. In fact, dρτ maps a (complex) eigenvector X of Ad(τ) corresponding
to an eigenvalue eikθ into the corresponding Fourier monomial: (dρτ (X))θ = Ad(τθ)X =
eikθX.

The link between Z and Ẑ becomes even more apparent if we consider Ẑ like Z as an
adjoint orbit. In fact, denoting the Lie algebra of Ĝ by ĝ (consisting of the loops in g),
we get an embedding Ẑ → ĝ, γK 7→ γ′γ−1 where γ′ = d

dθγθ. This can be considered as
an adjoint orbit if we enlarge the Lie algebra ĝ by an element δ with ad(δ)ξ := ξ′ for any
(sufficiently regular) ξ ∈ ĝ. Assuming G to be a matrix group we can represent each γ ∈ Ĝ
as a multiplication operator and δ as a differential operator on matrix valued loops. Thus

Ad(γ)δ = γδγ−1 = δ − γ′γ−1, (16)

and the mapping γK 7→ δ − γ′γ−1 is an embedding of Ẑ as the adjoint orbit of δ in the
enlarged Lie algebra.2 Comparing with Z = Ad(G)τ we conclude that the one-parameter
group generated by δ should be a “universal twistor” τ̂ . This does not belong to Ĝ itself
but to the automorphism group Aut(ĝ); it is the shift of the loop parameter: For any ξ ∈ ĝ

we have
τ̂θ(ξ)θ̃ = ξθ+θ̃. (17)

Lemma. All twistors τ acting on g by the adjoint representation are restrictions of the

“universal twistor” τ̂ on ĝ, more precisely,

dρτ ◦Ad(τ) = τ̂ ◦ dρτ (18)

Proof. We have gc =
∑

k gk with Ad(τθ)X = eikθX for any X ∈ gk. On the other hand,

for any X ∈ gk we have τ̂θ(dρτ (X)) = τ̂θ(θ̃ 7→ eikθ̃X) = eikθdρτ (X) which proves the claim.

We sum up our discussion by the following

Theorem 4. Any pluriharmonic map f : M → P is the projection of a holomorphic

superhorizontal map F̄ into the universal twistor space Ẑ. The map f is isotropic iff F̄(M)
is contained in one of the finite dimensional twistor spaces Zτ ⊂ Ẑ.

Remark. There is an important difference between the finite dimenisonal twistors τ and
the universal one τ̂ : The “universal twistor” does not act on P but on loop spaces, and
therefore it is not a twistor in the sense of Section 2. But we may pass to the infinite
dimensional symmetric space P̂ = Ĝ/K̂ which consists of the loops in P , and clearly τ̂ is a
twistor on P̂ . This space also fibres over P via the evaluation at the initial point, and the
loop space fibration factorizes over P̂ as Ẑ → P̂ → P .
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