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Abstract

This thesis is concerned with the application of adaptive mortar edge element
methods to the numerical solution of the quasi-stationary limit of Maxwells
equations, also known as the eddy current model, in three space dimensions.
Although eddy current model is time-dependent, we restrict our analysis to time-
independent problems that arise from a time discretization of the partial differ-
ential equations.

For the solution of these equations we consider the mortar approach, which re-
lies on the macro-hybrid variational formulation of the problem with respect to
a geometrically conforming, nonoverlapping decomposition of the computational
domain (cf. [Hop99]). Based on independent, locally quasi-uniform and shape
regular simplicial triangulation of the subdomains we use the lowest order curl-
conforming edge elements of Nédélec’s first family for the discretization of the
problem. Due to nonmatching triangulations at the interfaces of adjacent sub-
domains, we have to impose weak continuity constraints on the tangential traces
across the skeleton of the decomposition by means of appropriately chosen La-
grange multipliers.

The mortar edge element discretized problems give rise to indefinite algebraic
saddle point problems. Since the saddle point problem behaves utterly different
on the large kernel of the curl-operator, standard iterative solvers that do not
take care of the the kernel fail in this case. We analyze this problem in great
detail and develop a multilevel iterative solver featuring a hybrid smoother that is
based on the smoother presented in [Hip98]. The key ingredient of the smoother
is an additional defect correction on the subspace of irrotational vector fields.
However, in order to guarantee convergence of the iterative scheme, we have to
impose compatibility constraints on the triangulations at the interfaces.

To improve the accuracy of the computed solution while keeping the computa-
tional cost as small as possible, we put particular emphasis on mesh adaptivity.
We present an a posteriori error estimator that combines elements of the error
estimators given in [BHHW00, Woh99c] and relies on a Helmholtz decomposition
of the error into an irrotational and weakly solenoidal part. We show that the
error estimator is both efficient and reliable, provided certain assumptions are
fulfilled.

Finally, we demonstrate the convergence properties of the multigrid scheme and
the quality of the error estimator by solving several academic test problems that
cover a wide range of physical applications.
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8.1 Computational domain for Experiments 1 to 5. . . . . . . . . . . . 110

8.2 Computational domain for Experiments 6 and 7. . . . . . . . . . . 116

8.3 Computational domain for Experiments 8 and 9. . . . . . . . . . . 117

8.4 Computational domain for Experiment 16. . . . . . . . . . . . . . 127

8.5 True error of the edge element discretization for Experiment 16. . 127

8.6 Error of the edge element discretization for Experiment 12. . . . . 128

8.7 Error of the edge element discretization for Experiment 13. . . . . 129

8.8 Error of the edge element discretization for Experiments 14 and 15. 129

9



10



Introduction

Schläft ein Lied in allen Dingen,
Die da träumen fort und fort,
Und die Welt hebt an zu singen,
Triffst du nur das Zauberwort.

Slumb’ring deep in everything
Dreams a song as yet unheard,
And the world begins to sing,
If you find the magic word.

Joseph Freiherr von Eichendorff,
Wünschelrute.

Although electromagnetic phenomena have been known since the time of the
Greeks, it took a long time until scientist started to develop a theory for elec-
tromagnetism. Despite the fact that many scientists, e.g., Faraday and Ampère,
contributed to this development, the modern theory of electromagnetism is ac-
credited to one person — James Clerk Maxwell (1831-1879). In 1873 Maxwell
published the textbook A Treatise on Electricity and Magnetism. In this work
Maxwell combined previous experimental and theoretical results to formulate a
set of coupled partial differential equations that were sufficient to describe all
phenomena that had been known at that time. To honor his work, the equations
presented in his work now bear his name and are known as Maxwell’s equations.

Since Maxwell’s equations describe a great range of different physical phenomena,
ranging from stationary fields to wave propagation, it can be very difficult to solve
these equations. However, in many situations we are able to make simplifying
assumptions to obtain new models that are solvable more easily. One of these
models is the eddy current model. It is derived from Maxwell’s equations by
neglecting the displacement currents. The name “eddy current” results from the
fact that temporally changing magnetic fields induce electric currents that flow
on closed paths.

Although the partial differential equations of the eddy current model are less com-
plex, it is still difficult to find analytic solutions of these equations. Therefore, we
have to use numerical methods to approximate the electric and magnetic fields.
Despite the development of a vast array of numerical techniques for the compu-
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INTRODUCTION

tation of electromagnetic fields, the efficient solution of eddy current problems
remains a challenging task.

For the solution of the algebraic equations arising from the finite element dis-
cretization of the partial differential equations, domain decomposition methods
have aroused great interest in past decades. A particular domain decomposition
approach is the mortar element method. The mortar method is based on a de-
composition of the computational domain into nonoverlapping subdomains. It
allows us to use independent individual triangulations, which are well adapted
to the local behaviour of the electromagnetic field, for each subdomain. More-
over, it offers the possibility of parallelization, which can be used to accelerate
the numerical solution process. Therefore, the main focus of this thesis is on the
development of adaptive algorithms for the numerical solution of mortar edge
element discretized three-dimensional eddy current problems.

The outline of this thesis is as follows: in Chapter 1 we will introduce Maxwell’s
equations together with suitable constitutive equations and boundary conditions.
Additionally, we will present the most important simplified models. Chapter
2 will provide an elaborate introduction to the function spaces needed for the
derivation of the variational formulation. Based on the Hilbert space H1(Ω), we
will introduce the Hilbert spaces H(div; Ω) and H(curl; Ω). Special attention
will be paid to the trace space of H(curl; Ω), which plays a central role in the
construction of suitable Lagrange multipliers for the mortar element method.

Chapter 3 is dedicated to the model problem. First we will derive the variational
formulation of the eddy current problem and prove the existence and uniqueness
of a solution. In a second step we will employ an implicit timestepping scheme
in order to discretize the problem in time. The resulting time-independent vari-
ational problem will serve as our model problem. The rest of this chapter is
concerned with the macro-hybrid variational formulation of the model problem
with respect to a geometrically conforming, nonoverlapping decomposition of the
computational domain [Hop99].

In Chapter 4 we will consider the mortar approach based on individual discretiza-
tions of the subdomain problems by Nédélec’s edge elements [Néd83]. Since this
approach crucially depends on the choice of a suitable discrete Lagrange multiplier
space, we will discuss its construction in great detail. At the end of this chapter
we will prove an inf-sup condition for the associated discrete saddle point prob-
lem. Optimal a priori error estimates for the global discretization error [XH05]
are presented in Chapter 5.

Chapter 6 deals with an efficient and reliable residual-type a posteriori error
estimator. By decomposing the global discretization error into an irrotational
and weakly solenoidal part, we will prove both the efficiency and reliability of
the error estimator. An efficient multilevel iterative solver for the solution of
the discrete saddle point problem will be developed and analyzed in Chapter 7.

12



INTRODUCTION

We will show that a good smoother depends on the appropriate treatment of
the nontrivial kernel of the curl-operator and discuss problems arising from this
fact. As main result of this chapter, we will introduce a new hybrid smoother
which consists of two steps. The first step performs preconditioned Richardson-
type iterative sweeps on the fully edge element discretized problem. In the second
step we apply similar iterative sweeps to a defect problem defined on the subspace
of irrotational vector fields.

Chapter 8 addresses the performance of the multilevel iterative solver and the
residual-type a posteriori error estimator for several academic test problems. In
order to obtain these numerical results, the algorithms developed in Chapters 6
and 7 have been implemented using the software toolbox UG [BBL+97]. Finally,
in Chapter 9 we will summarize the results of the previous chapters and discuss
limitations of the proposed methods together with possible remedies.
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Chapter 1

Physical Models of
Electromagnetism

The following presentation of the physical background is only a summary of the
theory that is important for the later work and follows standard textbooks on
electromagnetism, such as [Gre91, Nol90]. It is by far not a complete treatment
of the physics of electromagnetism. A much more detailed description can be
found in the references given above.

Before we start with the introduction of the physical background, we want to say
some words about notation. We will distinguish vectors from scalars by the use
of bold typeface. In general, this convention does not carry over to operators.
Unless stated otherwise, vectors will be three-dimensional and either elements of
IR3 or C3. For example, x ∈ IR3 denotes a vector with components x1, x2, and
x3, i.e. x = (x1, x2, x3)

T , where T denotes the transpose. For two vectors a ∈ CN

and b ∈ CN , we define the dot product on CN by

a · b =
N∑

j=1

aj bj .

Moreover, the vector product of two vectors a ∈ C3 and b ∈ C3 is given by

a ∧ b = (a2 b3 − a3 b2, a3 b1 − a1 b3, a1 b2 − a2 b1)
T .

A comprehensive list of the notation, used in this work, can be found at the end
of the thesis.

1.1 Maxwell’s Equations

The classical electromagnetic field is described by four vector-valued functions of
position x ∈ lR3 and time t. These vector fields are the electric field intensity

15



CHAPTER 1. PHYSICAL MODELS OF ELECTROMAGNETISM

E, the magnetic field intensity H, the electric displacement D, and the magnetic
induction B. The vector functions D and B are also called the electric flux and
the magnetic flux density, respectively. Since both D and B can be eliminated
via suitable constitutive laws, they are less important than E and H. Therefore,
E and H are the fundamental field vectors, and we will call them the electric and
magnetic field, respectively.

An electromagnetic field can be created by resting charges and by currents, which
are the directed flows of electric charge. The distribution of charge is given by
a scalar function ρ, while currents are described by a vector-valued function J.
Both are functions of position x ∈ lR3 and time t and are called the electric charge
density and the electric current density, respectively. Table 1.1 summarizes these
fields in terms of SI units.

Quantity Units Quantity Units

Electric field intensity E V m−1 Magnetic field intensity H Am−1

Electric displacement D Cm−2 Magnetic induction B T

Electric current density J Am−2 Electric charge density ρ Cm−3

Table 1.1: Summary of the electromagnetic field quantities and their correspond-
ing SI units.

These field variables and sources are connected by Maxwell’s equations, which
are two pairs of coupled partial differential equations that are given by

Faraday’s law
∂B

∂t
+ curlE = 0 , (1.1)

Gauss’s law div B = 0 , (1.2)

Maxwell-Ampère’s law
∂D

∂t
− curlH = −J , (1.3)

Gauss’s law div D = ρ , (1.4)

where curl u and div u are defined by

curl u = ∇∧ u := (
∂u3

∂x2

− ∂u2

∂x3

,
∂u1

∂x3

− ∂u3

∂x1

,
∂u2

∂x1

− ∂u1

∂x2

)T , (1.5)

div u = ∇ · u :=
3∑

i=1

∂ui

∂xi

. (1.6)

Faraday’s law describes the effect of a changing magnetic flux B on the electric
field E, while Ampère’s circuital law states that the magnetic field H can be

16



1.1. MAXWELL’S EQUATIONS

created by a current J. Maxwell modified this law to include the effects of a
changing electric displacement field D on the magnetic field H. The two Gaussian
laws finally give the effect of the charge density ρ on the electric displacement
and express the fact that the magnetic induction B is solenoidal.

The two Gaussian laws (1.2) and (1.4) are also consequences of equations (1.1) and
(1.3), provided charge is conserved. This can be seen by taking the divergence of
(1.1) and (1.3) and recalling that div (curlA) = 0 for any vector-valued function
A. This gives

div
∂B

∂t
= 0 and div

∂D

∂t
= − div J . (1.7)

If charge is conserved then ρ and J are connected by

∂ρ

∂t
+ div J = 0 , (1.8)

which gives

∂

∂t
div B =

∂

∂t
(div D− ρ) = 0 . (1.9)

Equation (1.9) shows that equations (1.2) and (1.4) hold at all times if they hold
at one time.

1.1.1 Constitutive Equations

Since equations (1.1)-(1.4) form a system of 7 independent scalar equations that
involve 16 unknown scalar functions (one scalar function ρ and 15 scalar compo-
nents of the vector fields E, H, D, B, and J), the system is under-determined.
Therefore, these equations must be augmented by constitutive equations.

Two of the constitutive equations relate the electric field E with the electric
displacement D and the magnetic field H with the magnetic induction B, i.e.

D = D (E) and B = B (H) . (1.10)

The functions D and B can be nonlinear, but in the following only the linear case
is considered. Then these constitutive laws are given by

D = εE and B = µH , (1.11)

where ε and µ ∈ lR3×3 are positive definite matrix-valued functions that can
depend on position x and time t. There are two important simplifications of
these two constitutive equations. In vacuum or free space (1.11) reduces to

D = ε0E and B = µ0H , (1.12)

17



CHAPTER 1. PHYSICAL MODELS OF ELECTROMAGNETISM

where ε0 and µ0 are called the electric permittivity and the magnetic permeability,
respectively. In SI units they are given by

ε0 = 4π · 10−7 Hm−1 (henrys/meter)

µ0 ≈ 8.854 · 10−12 Fm−1 (farads/meter) .

Additionally, the speed of light in vacuum, denoted by c, is given by c = 1/
√
ε0µ0.

In inhomogeneous but isotropic materials ε and µ are given by positive, bounded
scalar functions ε and µ, respectively. Then we have

D = εE and B = µH . (1.13)

To solve the system of partial differential equations (1.1)-(1.4), one additional
constitutive law is needed. In a conducting medium an electric field gives rise to
electric currents. If the strength of the electric field is not too large, the relation
between E and J can be expressed by means of Ohm’s law that is given by

J = σE + Ja , (1.14)

where σ is called conductivity and Ja is a vector-valued function that describes
an applied current density. In the general case, σ is a positive semi-definite
matrix-valued function of position. However, we will only consider the case where
the conductivity can be expressed as a nonnegative scalar function σ. Regions
with positive σ are called conducting regions, while regions with σ = 0 are called
insulators. Insulators with ε 6= ε0 are called dielectrics and ε is called the dielectric
constant. Finally, in air at low field strengths or in vacuum we have the case that
σ = 0, ε = ε0, and µ = µ0.

1.1.2 Interface Conditions

In many cases ε or µ are discontinuous, e.g., at a conductor-air interface. Then
equations (1.1)-(1.4) are not a complete classical description, since they are not
valid at the interfaces between media where either ε or µ are discontinuous. At
these interfaces the partial differential equations have to be replaced by suitable
interface conditions.

Let us consider the case of two materials with different electric and magnetic
properties. The materials are separated by a surface Γ with unit normal n point-
ing from region B to A (cf. Figure 1.1). If EA and εA denote the limiting values of
the electric field and the permittivity as Γ is approached from region A, and EB

and εB denote the corresponding values of region B then the interface conditions
for the electric field are given by

n ∧ (EA − EB) = 0 , (1.15)

n · (εAEA − εBEB) = ρS on Γ , (1.16)

18



1.1. MAXWELL’S EQUATIONS

where ρS is called the surface charge density. Taking equations (1.15) and (1.16),
we see that the tangential component of the electric field is continuous at the
surface Γ, while the normal component of D = εE is discontinuous if surface
charges are present.

Region A

Region B

Γ

µA, εA

µB, εB

n

EA, HA

EB, HB

Figure 1.1: Geometry of the surface Γ separating two media
with discontinuous permittivity and permeability.

For the magnetic field the interface conditions are just the other way round. Here
we have

n ∧ (HA −HB) = JS , (1.17)

n · (µAHA − µBHB) = 0 on Γ , (1.18)

where JS is called the surface current density and µA,B and HA,B are defined
as above. In this case the normal component of B = µH is continuous, while
the tangential component of H is discontinuous at the interface Γ if surface cur-
rents are present. However, in most instances the magnetic field has continuous
tangential components.

Considering these interface conditions, any numerical scheme for the approxima-
tion of Maxwell’s equations has to take into account that the tangential compo-
nents of the electric and magnetic field are continuous, while the normal compo-
nents jump at the discontinuities of the material.

1.1.3 Boundary Conditions

In order to find a solution of Maxwell’s equations, we have to impose boundary
conditions at the boundary of the domain we are considering. These conditions
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CHAPTER 1. PHYSICAL MODELS OF ELECTROMAGNETISM

are necessary to guarantee the uniqueness of the solution. Very often we are
interested in the electromagnetic field in a bounded domain that is surrounded
by different materials. Then the boundary conditions can be considered as special
cases of the interface conditions.

A particularly important case occurs when parts of the boundary consist of a
perfect conductor. Taking Ohm’s law, we can see that if we require the current
density J to be bounded inside the perfect conductor, the electric field E tends
to 0 as σ tends to infinity. This suggests that the electric field vanishes inside a
perfect conductor.

This effect is just a special case of the response of a perfect conductor to external
fields. In general, a perfect conductor prevents electric and magnetic fields from
entering the conductor. In order to achieve this, surface charges and currents are
induced. Thus we get on the boundary

n ∧ E = 0 , (1.19)

n ·D = ρS , (1.20)

n ·B = 0 , (1.21)

n ∧H = JS , (1.22)

which means that the electric field is orthogonal and the magnetic field is tan-
gential to the boundary.

Equally important is the case when parts of the boundary are not perfect con-
ductors, but allow the field to penetrate only a small distance into the material.
Then a more appropriate boundary condition is the impedance or imperfectly
conducting boundary condition which is given by

n ∧H− λ (n ∧ E) ∧ n = 0 , (1.23)

where the impedance λ is a positive function of position which is defined on the
boundary.

1.2 Simplified Electromagnetic Models

Maxwell’s equations, as given in the last section, describe a great range of differ-
ent physical phenomena, ranging from stationary fields to wave propagation. This
behavior suggests that it might be unwise to use this general form for the com-
putation of electromagnetic fields. Indeed, there are a variety of physical models
arising from additional assumptions that allow substantial simplifications of the
equations. In the following we present those simplified models that are encoun-
tered most frequently. They have in common that these additional assumptions
concern the temporal variation of the fields.
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1.2. SIMPLIFIED ELECTROMAGNETIC MODELS

1.2.1 Stationary Models: Electrostatics and Magnetostat-
ics

The most obvious simplification is to assume that there is no variation in time of
the electric and magnetic fields. In this case the close connections between the
electric and the magnetic field, as given by equations (1.1) and (1.3), do not exist
any more. In fact, the two fields can be treated independently. The equations
for the electric field take the form

curlE = 0 , (1.24)

div D = ρ , (1.25)

D = εE , (1.26)

with a static charge density ρ. Equations (1.24)-(1.26) are also called the elec-
trostatic model. A consequence of equation (1.24) is the fact that on simply
connected domains the electric field E can be expressed as the gradient of a
scalar function ϕ, i.e E = −gradϕ. Employing the remaining equations, we
arrive at

− div (εgradϕ) = ρ . (1.27)

Equation (1.27) is called Poisson’s equation and it admits a unique solution when
provided with suitable boundary conditions. In a similar way we get the magne-
tostatic model that is given by

curlH = J , (1.28)

div B = 0 , (1.29)

B = µH , (1.30)

for a time-independent source current density J. The vanishing divergence of the
magnetic field implies the existence of a vector potential field A for B, which
means that B = curlA. Using this fact, we arrive at the essential equation of
magnetostatics

curl
(
µ−1 curlA

)
= J . (1.31)

Equations (1.27) and (1.31) show that in the static case Maxwell’s equations boil
down to elliptic boundary value problems corresponding to a minimization of
energy (electrostatics) or energy dissipation (magnetostatics).

1.2.2 The Quasi-Static Model - The Eddy Current Case

In transient, slowly-varying applications, it is possible to neglect the Maxwellian
displacement current ∂tD [ABN00], which basically means that the wave prop-
agation is ignored. This simplification yields a reasonable approximation if the
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CHAPTER 1. PHYSICAL MODELS OF ELECTROMAGNETISM

wavelength of the electric field is much greater than the size of the region of
interest and if the conductivity is big enough. In this case we arrive at parabolic
equations that are given by

curlE = −∂B
∂t

, (1.32)

curlH = J , (1.33)

div B = 0 , (1.34)

div D = ρ . (1.35)

1.2.3 The Time-Harmonic Model

Another way to simplify the time-dependent Maxwell’s equations is to perform
a Fourier transform in time. In the general case, this would give an infinite
number of equations for the frequencies ω ∈ (0,∞). However, it is often enough
to analyze the electromagnetic propagation at a single frequency. This is the case
if the source currents and charges vary sinusoidally in time. Then the electric
and magnetic fields are given by

E (x, t) = Re
(
Ê (x) exp (−iωt)

)
, (1.36)

D (x, t) = Re
(
D̂ (x) exp (−iωt)

)
, (1.37)

H (x, t) = Re
(
Ĥ (x) exp (−iωt)

)
, (1.38)

B (x, t) = Re
(
B̂ (x) exp (−iωt)

)
, (1.39)

J (x, t) = Re
(
Ĵ (x) exp (−iωt)

)
, (1.40)

ρ (x, t) = Re (ρ̂ (x) exp (−iωt)) , (1.41)

where the amplitudes Ê, D̂, Ĥ, B̂, Ĵ, and ρ̂ are complex. Electromagnetic fields
of this form are called time-harmonic, and the resulting Maxwell’s equations are
named time-harmonic Maxwell’s equations. Substituting relations (1.36)-(1.41)
into (1.1)-(1.4) gives

−iωB̂ + curl Ê = 0 , (1.42)

div D̂ = ρ̂ , (1.43)

−iωD̂− curl Ĥ = −Ĵ , (1.44)

div B̂ = 0 . (1.45)
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Then the charge conservation and the constitutive equations have the form

iωρ̂ = div Ĵ , (1.46)

D̂ = εÊ , (1.47)

B̂ = µĤ , (1.48)

Ĵ = σÊ + Ĵa . (1.49)

23



24



Chapter 2

Sobolev and Vector Function
Spaces

A powerful method for solving partial differential equations is to derive a varia-
tional formulation of the problem and look for a generalized solution in an appro-
priate Hilbert space. In the context of Maxwell’s equations, these Hilbert spaces
are built on Sobolev spaces for scalar and vector-valued functions. Therefore, the
purpose of the first part of this chapter is to recall main results and notions for
scalar Sobolev spaces. These results are quite standard and will be stated without
proofs. Detailed proofs can be found in the excellent books [Ada78, GR79, Gri85].

In the second part of this chapter we generalize the concept of the classical Sobolev
space and introduce two important spaces of vector-valued functions that are
appropriate for analyzing Maxwell’s equations. Although these spaces have been
intensively studied in recent years, they are still a little less standard, so we shall
give more details. In particular, their trace spaces will be analyzed in great detail,
since they are essential for the variational formulation of the problem.

2.1 Standard Sobolev Spaces

Let Ω ⊂ IRd, d = 1, 2, 3, be a domain, i.e. an open and connected set. Its closure
will be denoted by Ω̄ and we will refer to Γ = ∂Ω := Ω̄ \ Ω as its boundary.
Since Ω is a subset of IRd, we also have an exterior domain, which is defined by
Ωe := IRd \ Ω̄. A point in IRd is denoted by x = (x1, ..., xd).

A d-tuple α = (α1, ..., αd) consisting of nonnegative integers αi ∈ N0 is called
a multi-index. Denoting by xα the monomial xα1

1 · ... · xαd
d , which has degree

|α| =
∑d

i=1 αi, the partial derivatives Dαu of u ∈ C |α|(Ω) can be written as

Dαu =
∂|α|u

∂xα1
1 ∂x

α2
2 ...∂xd

αd
. (2.1)
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For m ∈ N0 we denote by Cm(Ω) the space of m times continuously differentiable
functions u on Ω. In the following we abbreviate C0(Ω) ≡ C(Ω) and refer to
Cm

0 (Ω) as the set of functions u ∈ Cm(Ω) having compact support in Ω. Moreover,
we define

C∞(Ω) :=
∞⋂

m=0

Cm(Ω)

and denote by C∞
0 (Ω) the subspace of functions u ∈ C∞(Ω) with compact sup-

port.

Since Ω is an open set, we cannot expect that an arbitrary element of Cm(Ω)
is bounded. Considering this we define Cm(Ω̄) as the set of functions in Cm(Ω)
which have uniformly continuous and bounded derivatives up to order m on Ω̄,
i.e

Cm(Ω̄) :=
{
u|Ω | u ∈ Cm

0 (IRd)
}
.

Cm(Ω̄) is a Banach space with respect to the norm

‖u‖Cm(Ω̄) := max
0≤|α|≤m

sup
x∈Ω

|Dαu(x)| . (2.2)

For 1 ≤ p < ∞ we denote by Lp(Ω) the linear space of measurable functions u
on Ω satisfying ∫

Ω

|u(x)|p dV <∞ . (2.3)

Lp(Ω) is a Banach space with respect to the norm

‖u‖0,p,Ω :=

(∫
Ω

|u(x)|p dV
)1/p

. (2.4)

The most important case is p = 2, which is the set of all square integrable
functions. L2 (Ω) is a Hilbert space with respect to the inner product

(u, v)0,Ω :=

∫
Ω

uv dV . (2.5)

A measurable function u on Ω is said to be essentially bounded on Ω if there
exists a constant K such that |u(x)| ≤ K almost everywhere on Ω. The infimum
of such constants K is denoted by ess supx∈Ω |u(x)| and is called the essential
supremum of u on Ω. Taking this notation, we can define the space L∞(Ω) as
the vector space of all functions that are essentially bounded on Ω. This space is
a Banach space with respect to the norm

‖u‖∞ := ess sup
x∈Ω

|u(x)| . (2.6)

26
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For a given Hilbert space X we denote by X ′ its dual space, which consists of all
bounded linear functionals on X. For f ∈ X ′ the norm of f is given by

‖f‖X′ := sup
u∈X,u 6=0

|f(u)|
‖u‖X

.

Moreover, we define the dual pairing < ·, · >X by

< f, u >X= f(u) ∀u ∈ X, f ∈ X ′ .

The space of distributions, denoted by (C∞
0 (Ω))′, is the dual space of C∞

0 (Ω) in
the sense that a linear functional T : C∞

0 (Ω) → IR is an element of (C∞
0 (Ω))′ if

for every compact set K ⊂ Ω there exist constants C and k such that

|T (φ)| ≤ C
∑
|α|≤k

sup
K
|Dαφ| ∀φ ∈ C∞

0 . (2.7)

The elements of (C∞
0 (Ω))′ are called distributions, and we can identify each func-

tion u ∈ L1(Ω) with a distribution T (·) by setting

T (φ) =

∫
Ω

uφ dV ∀φ ∈ (C∞
0 (Ω)) .

Observing this property, we can generalize the classical concept of differentiability
and introduce the weak derivative.

Definition 2.1 (Weak derivative)
A function u ∈ L1(Ω) has a weak derivative, denoted by v = Dα

wu, α ∈ Nd
0, if

v ∈ L1(Ω) and ∫
Ω

v φ dV = (−1)|α|
∫

Ω

uDαφ dV ∀φ ∈ C∞
0 (Ω) . (2.8)

The weak derivative of a function is unique. Moreover, for functions u ∈ Cm
(
Ω̄
)

the weak and the standard (strong) derivatives agree given that |α| ≤ m. After
these preliminaries we are able to state the definition of the standard Sobolev
spaces which are relevant for our analysis.

Definition 2.2 (Sobolev spaces Hm(Ω))
Let Ω ∈ IRd be a domain, m ∈ N0. Then the Sobolev space Hm (Ω) is given by

Hm(Ω) :=
{
u ∈ L2 (Ω) | Dα

wu ∈ L2 (Ω) , |α| ≤ m
}
. (2.9)

Hm(Ω) is a Hilbert space endowed with the norm

‖u‖m,Ω :=

∑
|α|≤m

∫
Ω

|Dα
wu|2 dV

1/2

(2.10)
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and the inner product

(u, v)m,Ω :=
∑
|α|≤m

∫
Ω

Dα
wuD

α
wv dV . (2.11)

Additionally, we denote the corresponding semi-norm by

|u|m,Ω :=

∑
|α|=m

∫
Ω

|Dα
wu|2 dV

1/2

. (2.12)

The definition of the standard Sobolev space is not unique. As shown by Meyers
and Serrin [MS64], the Sobolev space Hm(Ω) can be defined as the completion
of the space

{u ∈ Cm(Ω) | ‖u‖m,Ω <∞}

with respect to the ‖ · ‖m,Ω-norm.

Although this alternative characterization is useful, as it states that any function
u ∈ Hm(Ω) can be approximated by smooth functions, it is not sufficient for the
treatment of boundary value problems. On bounded domains the properties of
Sobolev spaces depend on the smoothness or regularity of the boundary of the
domain. In the framework of our analysis we will consider (m, 1)-regular domains,
especially Lipschitz polyhedral domains in IR3.

Definition 2.3 (Lipschitz and (m, 1)-regular domain)
The boundary ∂Ω of a bounded domain Ω ⊂ IRd is called Lipschitz if there
exist constants α > 0 and β > 0, a finite number of local coordinate systems
(xr

1, ..., x
r
d), 1 ≤ r ≤ R, and local Lipschitz continuous functions ar defined on

Or =
{
x̂r = (xr

2, ..., x
r
d) ∈ IRd−1 | |xr

i | ≤ α , 2 ≤ i ≤ d
}

such that the following properties hold

• ∂Ω =
⋃R

r=1 {(xr
1, x̂

r) | xr
1 = ar(x̂r) , x̂

r ∈ Or} ,

• {(xr
1, x̂

r) | ar(x̂
r) < xr

1 < ar(x̂
r) + β , x̂r ∈ Or} ⊂ Ω , 1 ≤ r ≤ R ,

• {(xr
1, x̂

r) | ar(x̂
r)− β < xr

1 < ar(x̂
r) , x̂r ∈ Or} ⊂ Ωe , 1 ≤ r ≤ R .

The domain Ω is said to be (m, 1)-regular, for an integerm ≥ 1, if the mappings ar

can be chosen m-times differentiable with Lipschitz-continuous partial derivatives
of order m.

An important property of Lipschitz domains is the fact that C∞(Ω̄) is dense in
Hm(Ω) with respect to the ‖ · ‖m,Ω-norm [Ada78]. This allows us to define the
trace of functions u ∈ Hm(Ω). This is particulary important for boundary value
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problems, since the solution has to satisfy boundary conditions, e.g., Dirichlet
boundary conditions. Moreover, on Lipschitz domains Ω the space Hm(Ω) can
be alternatively defined using Fourier transforms [Wlo82]. So far Sobolev spaces
have been defined for nonnegative integers m. However, in order to be able to
define trace spaces, the notion of a Sobolev space has to be extended to real
values of m. Following [Gri85] we have:

Definition 2.4 (Sobolev spaces with real index)
Let s ∈ IR+ and m ∈ Z+. Suppose s = m+ σ > 0, where σ ∈ IR and 0 < σ < 1.
Then the space Hs(Ω) is defined to be the space of functions u ∈ (C∞

0 )′ such that
u ∈ Hm(Ω) and∫

Ω

∫
Ω

|Dα
wu(x)−Dα

wu(y)|2

|x− y|d+2σ
dV (x) dV (y) <∞ ∀ |α| = m . (2.13)

Hs(Ω) is a Hilbert space with respect to the norm

‖u‖s,Ω :=

(
‖u‖2

m,Ω +

∫
Ω

∫
Ω

|Dα
wu(x)−Dα

wu(y)|2

|x− y|d+2σ
dV (x) dV (y)

)1/2

. (2.14)

Moreover, observing that C∞
0 (Ω) ⊂ Hs(Ω), s > 0, we denote by Hs

0(Ω), s ≥ 0,
the closure of C∞

0 (Ω) with respect to the norm ‖ ·‖s,Ω. Finally, the Sobolev space
H−s(Ω) is defined as the dual space of Hs

0(Ω).

Observing Definition 2.3, for every x ∈ Γ there exists a neighborhoodO of x ∈ IRd

and a Lipschitz continuous map ϕ : O′ ⊂ IRd−1 → IR such that

Γ ∩ O = {y = (ϕ(y′), y′) ∈ O | y′ ∈ O′} . (2.15)

Defining φ via φ(y) = (ϕ(y2, ..., yd), y2, ..., yd) then φ−1 exists and is Lipschitz
continuous on φ(O′). This gives rise to the following definition [Gri85].

Definition 2.5 (Sobolev spaces on the boundary)
Let Ω be a (m, 1)-regular domain with boundary Γ and Γ0 an open subset of
Γ. A distribution u on Γ0 belongs to Hs(Γ0) for |s| ≤ m + 1 if the composition
u ◦ φ is contained in Hs(O′ ∩ φ−1(Γ0 ∩O)) for all possible O and φ fulfilling the
assumptions in Definition 2.3.

A norm on Hs(Γ0) is given by

‖u‖s,Γ0 :=

(
R∑

j=1

‖u ◦ φ‖s,O′
j∩φ−1

j (Γ0∩Oj)

)1/2

, (2.16)

where (Oj, φj)
R
j=1 is any atlas of Γ such that each pair (Oj, φj) satisfies the as-

sumptions of Definition 2.3. For s ∈ [0, 1) this definition is equivalent to

‖u‖s,Γ0 =

(∫
Γ0

|u|2 dσ +

∫
Γ0

∫
Γ0

|u(x)− u(y)|2

|x− y|d−1+2s
dσ(x) dσ(y)

)1/2

. (2.17)
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For functions u ∈ C∞(Ω̄) the restriction of u to the boundary is well-defined.
Thus it makes sense to define the trace operator γ0 for such functions by

γ0(u) := u|∂Ω . (2.18)

The extension of this operator to the Sobolev spaces Hs(Ω) is given by the fol-
lowing theorem [Gri85].

Theorem 2.6 (Trace theorem)
Let Ω be a (m, 1)-regular domain. Then, if 1/2 < s ≤ m + 1, the mapping
γ0, defined on C∞(Ω̄) by (2.18), has a unique continuous extension as a linear
operator from Hs(Ω) onto Hs−1/2(∂Ω). Moreover,

H1
0 (Ω) :=

{
u ∈ H1(Ω) | γ0(u) = 0

}
. (2.19)

For Γ0 ⊂ Γ we define

H1
Γ0

(Ω) :=
{
u ∈ H1(Ω) | γ0(u)|Γ0 = 0

}
. (2.20)

According to Definition 2.5, the trace space is well-defined if the boundary is
sufficiently smooth. However, since we are mostly concerned with Lipschitz do-
mains, this definition restricts the maximal order of the trace space to s = 1.
Therefore, we define the space Hm+1/2(Γ), 1 ≤ m, as the restriction of the space
Hm+1(Ω) on the boundary Γ, i.e.

Hm+1/2(Γ) :=
{
u|Γ | u ∈ Hm+1(Ω)

}
. (2.21)

Hm+1/2(Γ) is a Hilbert space with respect to the norm

‖ϕ‖m+1/2,Γ := inf
u∈Hm+1(Ω),u|Γ=ϕ

‖u‖m+1,Ω . (2.22)

In the analysis of Maxwell’s equations we have to consider the extension of func-
tions u ∈ Hs(Σ), Σ ⊂ Ω or Σ ⊂ Γ, to Hs(Ω) and Hs(Γ), respectively. The trivial
way to do this is to extend u by zero outside Σ. Of course, this extension is not
well-defined for all functions in u ∈ Hs(Σ). Denoting by ũ this trivial extension
of u, we define

Hs
00(Σ) := {u ∈ Hs(Σ) | ũ ∈ Hs(Ω)} and

Hs
00(Σ) := {u ∈ Hs(Σ) | ũ ∈ Hs(Γ)} , respectively .

Hs
00(Σ) is a Hilbert space with respect to the norm

‖u‖Hs
00(Σ) := ‖ũ‖s,Ω and

‖u‖Hs
00(Σ) := ‖ũ‖s,Γ, respectively.

So far only scalar Sobolev spaces have been considered. However, for the treat-
ment of electromagnetic problems vector-valued functions are needed. Regarding
Maxwell’s equations, especially functions with a well-defined curl or divergence
are essential. The appropriate spaces will be introduced in the following sections.

30



2.2. THE SPACE H(DIV;Ω)

2.2 The Space H(div; Ω)

In this section we consider the space of vector-valued functions with square-
integrable divergence. The properties of this space will be stated without proofs
and we refer the reader to [Gri85] for details.

Let Ω ⊂ IR3 be a Lipschitz domain and let Γ := ∂Ω be its boundary. Recalling
that for functions u ∈ C1(Ω) the gradient of u, denoted by gradu, is defined by

gradu := (
∂u

∂x1

,
∂u

∂x2

,
∂u

∂x3

)T , (2.23)

we proceed as in the previous section and define for a function u ∈ L2 (Ω) its
weak divergence div u ∈ (C∞

0 )′ by means of

< div u, φ > = −
∫

Ω

u · gradφ dV ∀φ ∈ C∞
0 (Ω) , (2.24)

where < ·, · > denotes the dual pairing between (C∞
0 )′ and C∞

0 . Then the space
of functions with square-integrable divergence, denoted by H(div; Ω), is defined
as

H(div; Ω) :=
{
u ∈ L2 (Ω) | div u ∈ L2 (Ω)

}
. (2.25)

Associated with this space is the norm

‖u‖div,Ω :=
(
‖u‖2

2,Ω + ‖ div u‖2
2,Ω

)1/2
.

H(div; Ω) is a Hilbert space with respect to the inner product

(u,v)div,Ω := (u,v)0,Ω + (div u, div v)0,Ω , u,v ∈ H(div; Ω) .

Taking this norm, we can define the space H0(div; Ω) as the closure of (C∞
0 (Ω))3

with respect to the ‖ · ‖div,Ω-norm. Moreover, on Lipschitz domains the space
(C∞(Ω̄))3 is dense in H(div; Ω). This property is very important for boundary
value problems, since it enables us to define the trace of the space H(div; Ω).

For a function u ∈
(
C∞ (Ω̄))3 the normal trace operator γn is defined almost

everywhere by

γn(u) := u|Γ · n , (2.26)

where n is the unit outward normal on Γ. By density arguments we can extend
the normal trace operator γn to a continuous linear mapping, also denoted by γn,
from H(div; Ω) onto H−1/2(Γ) (= (H1/2(Γ))′). Moreover, the following Green’s
theorem is valid for functions u ∈ H(div; Ω) and φ ∈ H1(Ω):

(u,gradφ) + (div u, φ) = < n · u, φ >1/2,Γ , (2.27)
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where < ·, · >1/2,Γ denotes the dual pairing between H−1/2(Γ) and H1/2(Γ). The
continuity of γn implies that

‖n · u‖H−1/2(Γ) ≤ C‖u‖div,Ω . (2.28)

By means of γn, an alternative characterization of H0(div; Ω) is given by

H0(div; Ω) = {u ∈ H(div; Ω) | γn(u) = 0} . (2.29)

2.3 The Space H(curl; Ω)

The second important space for Maxwell’s equations is related to the curl-
operator. As in the previous section, we present the properties of this space
without proofs and refer to [Gri85, Mon03] for details.

Let Ω ⊂ IR3 and let Γ denote its boundary. Following the steps of the last
sections, we define the weak curl curl u ∈ (C∞

0 (Ω)3)′ of a function u ∈ L2 (Ω) by
means of

< curl u,v > =

∫
Ω

u · curl v dV ∀v ∈ (C∞
0 (Ω))3 , (2.30)

where < ·, · > denotes the dual pairing between ((C∞
0 )3)′ and (C∞

0 )3. Then the
space of vector-valued functions whose curl is an element of L2 (Ω) is given by

H(curl; Ω) :=
{
u ∈ L2 (Ω) | curl u ∈ L2 (Ω)

}
. (2.31)

H(curl; Ω) is a Hilbert space with respect to the inner product

(u,v)curl,Ω := (u,v)0,Ω + (curl u, curl v)0,Ω , u,v ∈ H(curl; Ω) . (2.32)

The associated norm will be denoted by ‖ · ‖curl,Ω. Moreover, for s ≥ 0 we define

Hs(curl,Ω) := {u ∈ Hs(Ω) | curl u ∈ Hs(Ω)} , (2.33)

‖u‖s,curl,Ω :=
(
‖u‖2

s,Ω + ‖ curl u‖2
s,Ω

)1/2
. (2.34)

The space H0(curl; Ω) is defined as the closure of (C∞
0 (Ω))3 with respect to the

‖ · ‖curl,Ω-norm. If Ω is a Lipschitz domain, the space
(
C∞ (Ω̄))3 is dense in

H(curl; Ω), which allows us to define the trace of H(curl; Ω).

In contrast to the previous sections, the definition and characterization of the
trace space is more complicated since it contains vector-valued functions. For
the space H(curl; Ω) two mappings play an important role: the tangential trace
mapping γt and the tangential components trace mapping γT . For functions

u ∈
(
C∞ (Ω̄))3 these two mappings are defined by

tangential trace : γt(u) := n ∧ u|Γ , (2.35)

tangential components trace : γT (u) := n ∧ (u ∧ n) |Γ , (2.36)
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where n is the unit outward normal. We start the analysis by considering the
trace of the space H1(Ω) with respect to the trace operators γT and γt. The
ranges of these operators are given by

VγT
:= γT (H1(Ω)) ,

Vγt := γt(H
1(Ω)) ,

respectively. On smooth domains both spaces coincide with the space

TH1/2(Γ) := {q : Γ → IR3 | q = (q1, q2, q3)
T ∈ H1/2(Γ) , n · q = 0} , (2.37)

which means that both trace operators are surjective mappings onto the space
TH1/2(Γ) [BCS02]. Since the boundary of the domain is smooth, the dual space
of TH1/2(Γ), denoted by TH−1/2(Γ), can be defined according to

TH−1/2(Γ) := {q : Γ → IR3 | q = (q1, q2, q3)
T ∈ H−1/2(Γ) , n · q = 0} . (2.38)

Moreover, for u ∈ H(curl; Ω) both traces γt(u) and γT (u) are an element of
TH−1/2(Γ). However, in the case of Lipschitz domains, the situation is completely
different. As pointed out in [BCS02], the spaces VγT

, Vγt , and TH1/2(Γ) do no
longer coincide. Additionally, the definition of TH−1/2(Γ) according to (2.38)
does not make sense any more, since n · q is not defined for q ∈ H−1/2(Γ) in
this case. Since the later part of this thesis will focus on the numerical solution
of Maxwell’s equations on polyhedral Lipschitz domains, we have to characterize
the spaces VγT

and Vγt in more detail.

Let Ω ⊂ IR3 be a simply connected polyhedral domain with boundary Γ. We can
split Γ into K open faces Γi, 1 ≤ i ≤ K, such that Γ =

⋃K
i=1 Γ̄i. Furthermore, let

eij be the common edge of two adjacent faces Γi and Γj and let n denote the unit
outward normal to Ω, which is defined almost everywhere. Let τ ij be a unit vector
parallel to eij, ni = n|Γi

, and τ i = τ ij ∧ ni. Then the couple (τ i, τ ij) forms an
orthonormal basis of the plane generated by Γi, and (τ i, τ ij,ni) is an orthonormal
basis of IR3. For elements u ∈ L2(Γ) we adopt the notation ui = u|Γi

.

Since we are dealing with polyhedra, the definition of γt(u) and γT (u) has to be
understood face by face:

γt,j (u) := nj ∧ uj ∀u ∈
(
C∞ (Ω̄))3 ,

γT,j (u) := uj − (uj · nj)nj ∀u ∈
(
C∞ (Ω̄))3 .

This gives an equivalent definition of γt and γT :

γt(u)(x) = γt,j(u)(x) a.a. x ∈ Γj

γT (u)(x) = γT,j(u)(x) a.a. x ∈ Γj .
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Before we can extend these operators to H1(Ω) and H(curl; Ω), we introduce two
additional spaces which are defined by

L2
t (Γ) :=

{
u ∈ L2(Γ) | u · n|Γ = 0

}
, < ·, · >T its scalar product

H
1/2
− (Γ) :=

{
λ ∈ L2

t (Γ) | λj ∈ H1/2(Γj) , 1 ≤ j ≤ K
}
.

Recalling that
(
C∞ (Ω̄))3 is dense in H1(Ω), we immediately see that the map-

pings γt and γT can be extended to linear continuous mappings from H1(Ω) into

H
1/2
− (Γ). However, the range of the mappings γt and γT is a proper subset of

H
1/2
− (Γ). To characterize the images of these operators in more detail, we start

with an alternative characterization of H1/2(Γ) [BC01a, Proposition 2.2].

Theorem 2.7 (Characterization of H1/2(Γ))
A function ϕ belongs to H1/2(Γ) if and only if ϕ|Γi

∈ H1/2(Γi), 1 ≤ i ≤ K, and∫
Γi

∫
Γj

|ϕ(x)− ϕ(y)|2

‖x− y‖3
dσ(x) dσ(y) <∞ ∀i 6= j s.t. Γ̄i ∩ Γ̄j = eij . (2.39)

Motivated by this theorem we introduce the equality on common edges and faces.
Let (ϕi, ϕj) ∈ H1/2(Γi)×H1/2(Γj), i 6= j, and eij = Γ̄i ∩ Γ̄j 6= ∅. Then we define
the equality on eij by means of

ϕi =eij
ϕj ⇔

∫
Γi

∫
Γj

|ϕ(x)− ϕ(y)|2

‖x− y‖3
dσ(x) dσ(y) <∞ . (2.40)

Denoting by Ii the set of indices given by

Ii :=
{
j ∈ 1, ..., K | Γ̄i ∩ Γ̄j = eij 6= ∅

}
,

we define the space H
1/2
‖ (Γ) by

H
1/2
‖ (Γ) :=

{
u ∈ H

1/2
− (Γ) | ui · τ ij =eij

uj · τ ij , 1 ≤ i ≤ K , ∀j ∈ Ii

}
. (2.41)

H
1/2
‖ (Γ) is a Hilbert space with respect to the norm

‖u‖2
‖,1/2,Γ :=

K∑
i=1

‖ui‖2
1/2,Γi

+
K∑

i=1

∑
j∈Ii

∫
Γi

∫
Γj

|τ ij · ui(x)− τ ij · uj(y)|2

‖x− y‖3
dσ(x) dσ(y) .

In view of (2.41) we see that elements of H
1/2
‖ (Γ) have some kind of continuity

of their component parallel to τ ij. Similarly, we can define a space consisting
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of elements with a similar property for their components parallel to τ i and τ j.

Therefore, we introduce the space H
1/2
⊥ (Γ) which is defined by

H
1/2
⊥ (Γ) :=

{
u ∈ H

1/2
− (Γ) | ui · τ i =eij

uj · τ j , 1 ≤ i ≤ K , ∀j ∈ Ii

}
. (2.42)

H
1/2
⊥ (Γ) is a Hilbert space with respect to the norm

‖u‖2
⊥,1/2,Γ :=

K∑
i=1

‖ui‖2
1/2,Γi

+
K∑

i=1

∑
j∈Ii

∫
Γi

∫
Γj

|τ i · ui(x)− τ j · uj(y)|2

‖x− y‖3
dσ(x) dσ(y) .

Then the range of the trace operators γt and γT can be characterized by H
1/2
‖ (Γ)

and H
1/2
⊥ (Γ) [BC01a, Proposition 2.7].

Theorem 2.8 (Range of the trace operators γt and γT part I)
The mappings

γT : H1(Ω) → H
1/2
‖ (Γ) and γt : H1(Ω) → H

1/2
⊥ (Γ)

are linear, continuous, and surjective. Moreover, denoting by

ker(γT ) := {u ∈ H1(Ω) | n ∧ (u ∧ n)|Γ = 0}
and ker(γt) := {u ∈ H1(Ω) | n ∧ u|Γ = 0}

the kernels of the trace operators, the mappings

γT : H1(Ω)/ ker(γT ) → H
1/2
‖ (Γ) and γt : H1(Ω)/ ker(γt) → H

1/2
⊥ (Γ)

are linear, continuous, and bijective. Finally, there exist continuous lifting maps

RγT
: H

1/2
‖ (Γ) → H1(Ω) and Rγt : H

1/2
⊥ (Γ) → H1(Ω) .

So far we have considered the trace mappings for functions u ∈ H1(Ω). Before
we can extend this operator to functions in H(curl; Ω), we first have to introduce
some tangential operators. We start with the definition of the tangential gradient
operator, denoted by gradΓ. Since we deal with polyhedra, this operator is given
facewise by

gradΓ u|Γi
:= gradΓj

u = γT,i(gradu) = γT (gradu)|Γi
∀u ∈ H2(Ω) . (2.43)

In the same way, we can define the tangential curl operator curlΓ by

curlΓ u := γt(gradu) . (2.44)
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Let H
−1/2
‖ (Γ) and H

−1/2
⊥ (Γ) be the dual spaces of H

1/2
‖ (Γ) and H

1/2
⊥ (Γ) with L2

t (Γ)
as the pivot space, and let and < ·, · >‖,1/2,Γ and < ·, · >⊥,1/2,Γ be the dual pairings

between H
−1/2
‖ (Γ) and H

1/2
‖ (Γ) and between H

−1/2
⊥ (Γ) and H

1/2
⊥ (Γ), respectively.

Then the dual norms on H
−1/2
‖ (Γ) and H

−1/2
⊥ (Γ) are given by

‖λ‖‖,−1/2,Γ := sup
u∈H

1/2
‖ (Γ)

< λ,u >‖,1/2,Γ

‖u‖‖,1/2,Γ

, (2.45)

‖λ‖⊥,−1/2,Γ := sup
u∈H

1/2
⊥ (Γ)

< λ,u >⊥,1/2,Γ

‖u‖⊥,1/2,Γ

. (2.46)

The tangential divergence operator divΓ : H
−1/2
‖ (Γ) → H−3/2(Γ) and the tan-

gential curl operator curlΓ : H
−1/2
⊥ (Γ) → H−3/2(Γ) are defined as the adjoint

operators of −gradΓ and curlΓ according to

< divΓ q, u >3/2,Γ = − < q,gradΓ u >‖,1/2,Γ ∀u ∈ H3/2(Γ), q ∈ H
−1/2
‖ (Γ) ,

< curlΓ q, u >3/2,Γ = < q, curlΓ u >⊥,1/2,Γ ∀u ∈ H3/2(Γ), q ∈ H
−1/2
⊥ (Γ) ,

where < ·, · >3/2,Γ denotes the dual pairing between H3/2(Γ) and H−3/2(Γ). In-
troducing the Hilbert spaces

H
−1/2
‖ (divΓ,Γ) :=

{
λ ∈ H

−1/2
‖ (Γ) | divΓ λ ∈ H−1/2(Γ)

}
, (2.47)

H
−1/2
⊥ (curlΓ,Γ) :=

{
λ ∈ H

−1/2
⊥ (Γ) | curlΓ λ ∈ H−1/2(Γ)

}
, (2.48)

which are equipped with the norms

‖λ‖2

H
−1/2
‖ (divΓ,Γ)

:= ‖λ‖2
‖,−1/2,Γ + ‖ divΓ λ‖2

−1/2,Γ , (2.49)

‖λ‖2

H
−1/2
⊥ (curlΓ,Γ)

:= ‖λ‖2
⊥,−1/2,Γ + ‖ divΓ λ‖2

−1/2,Γ , (2.50)

the trace spaces of H(curl; Ω) are characterized by the following theorem [BCS02,
Theorem 4.1].

Theorem 2.9 (Range of the trace operators γt and γT part II)
The mappings

γt : H(curl; Ω) → H
−1/2
‖ (divΓ,Γ)

and γT : H(curl; Ω) → H
−1/2
⊥ (curlΓ,Γ)

are linear, continuous, and surjective.
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Regarding the tangential trace mapping γt, an alternative definition of H0(curl; Ω)
is given by

H0(curl; Ω) = {u ∈ H(curl; Ω) | γt(u) = 0} . (2.51)

For Γ0 ⊂ Γ we define

HΓ0(curl,Ω) := {u ∈ H(curl; Ω) | γt(u)|Γ0 = 0} . (2.52)

In the next chapter we will derive the variational formulation of Maxwell’s equa-
tions. To be able to do this, we need the following integration by parts formula
[BC01a].

Theorem 2.10 (Stokes’ theorem)
Let u, v ∈ (C1(Ω̄))3. Then∫

Ω

(curl v · u− v · curl u) dV =

∫
Γ

γt(v) · u dσ . (2.53)

Moreover, for u ∈ H(curl; Ω) and v ∈ H1(Ω) we have∫
Ω

(curl v · u− v · curl u) dV = < γt(u),v >1/2,Γ , (2.54)∫
Ω

(curl v · u− v · curl u) dV = < γt(u), γT (v) >‖,1/2,Γ . (2.55)

Finally, for u, v ∈ H(curl; Ω) we have∫
Ω

(curl v · u− v · curl u) dV = < γt(u), γT (v) >t . (2.56)

Note that equation (2.56) expresses the fact that H
1/2
‖ (Γ) is the dual space of

H
1/2
⊥ (Γ) with respect to the pivot space L2

t (Γ) [BC01b]. Based on Stokes’ theorem
we can give one further characterization of H0(curl; Ω).

Let Ωi ⊂ Ω, 1 ≤ i ≤ N , be a nonoverlapping decomposition of Ω such that

Ω̄ =
N⋃

i=1

Ω̄i , Ωi ∩ Ωj = ∅, i 6= j ,

and define

X := {u ∈ L2 (Ω) | u|Ωi
∈ H(curl,Ωi) , (u ∧ n)|Γ∩∂Ωi

= 0 , 1 ≤ i ≤ N} .

Then we have

H0(curl; Ω) = {u ∈ X |
N∑

i=1

< n ∧ ui,ϕ >1/2,∂Ωi
= 0 ∀ϕ ∈ H1(Ω)} , (2.57)

where ui := u|Ωi
.
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2.4 Scalar and Vector Potentials

In the treatment of electromagnetic problems the decomposition of a given vector-
valued function into scalar and vector potentials is an essential tool for analyzing
Maxwell’s equations. To simplify the presentation, we only consider simply con-
nected Lipschitz domains in IR3 with a connected boundary. A more detailed
analysis for a larger class of Lipschitz domains can be found in [ABDG98].

Recalling the definitions of H1(Ω), H(curl; Ω), and H(div; Ω), one clearly sees
that curl(grad p) = 0, p ∈ H1(Ω), and div(curl u) = 0, u ∈ H(curl; Ω). This
can be summarized in the following de Rham diagram:

H1(Ω)/IR
grad−−−→ H(curl; Ω)

curl−−→ H(div; Ω)
div−→ L2 (Ω). (2.58)

A similar result, regarding boundary conditions, is

H1
0 (Ω)

grad−−−→ H0(curl; Ω)
curl−−→ H0(div; Ω)

div−→ L2 (Ω)/IR. (2.59)

A characterization of these diagrams is given by the following theorem [Mon03].

Theorem 2.11 (Properties of the de Rham diagram)
The diagrams (2.58) and (2.59) have the property that the range of one operator
is contained in the kernel of the one following it in the sequence. If Ω is a simply
connected Lipschitz domain with connected boundary then the ranges are the
kernels.

Observing Theorem 2.11, we have the following characterization of functions in
the kernel of the curl and divergence operators [ABDG98, Mon03].

Theorem 2.12 (Existence of scalar and vector potentials)
If u ∈ H0(curl; Ω) is such that curl u = 0 in Ω then there exists a unique scalar
potential p ∈ H1

0 (Ω) such that

u = grad p . (2.60)

If w ∈ H0(div; Ω) is such that div w = 0 in Ω then there exists a vector potential
A ∈ H0(curl; Ω) such that

w = curlA . (2.61)

The vector potential is unique if we additionally require that div A = 0 in Ω and∫
∂Ω

n ·A dσ = 0. Moreover, every u ∈ L2 (Ω) has the Helmholtz decomposition

u = grad p+ curlA (2.62)

for unique p ∈ H1
0 (Ω) and

A ∈ {w ∈ H(curl; Ω) | div w = 0 in Ω , n ·w = 0 on ∂Ω} .
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The Helmholtz decomposition in (2.62) is also called Hodge decomposition. Since
the kernel of the curl-operator is a closed subspace of H0(curl; Ω), we can de-
compose H0(curl; Ω) into a direct sum of the kernel and its complement as given
by

H0(curl; Ω) = gradH1
0 (Ω)⊕X0 ,

where

X0 = {w ∈ H0(curl; Ω) | (w,grad p)0,Ω = 0 ∀p ∈ H1
0 (Ω)} .

According to [Mon03, Remark 4.6], a function w ∈ X0 is characterized by

div w = 0 ,∫
Ω

n ·w dσ = 0 .

If Ω is convex, X0 is continuously embedded in H1(Ω) [ABDG98, Theorem 2.17],
while on an arbitrary Lipschitz domain the space X0 is embedded in H1/2(Ω)
[ABDG98, Cos90].

2.5 Time-Dependent Function Spaces

So far we considered spaces that only depend on the spatial variable x. However,
recalling that Maxwell’s equations involve time derivatives, we have to consider
time-dependent function spaces as well. To address this we introduce the space
Lp(a, b;B).

Definition 2.13 (The space Lp(a, b;B))
Let 1 ≤ p < ∞ and (B, ‖ · ‖) be a Banach space. Then the space Lp(a, b;B) is
given by

Lp(a, b;B) :=

{
u : [a, b] → B | u is Bochner measurable,

∫ b

a

‖u‖p dt <∞
}
.

For the definition of the Bochner measure we refer to [Wlo82, Ada78]. As in the
previous sections, we can define a weak time derivative according to

Definition 2.14 (Weak time derivative)
Let (X, (·, ·)) be a separable Hilbert space and 0 < T <∞ and u ∈ L1(0, T ;X).
Then the function q ∈ L1(0, T ;X′) is called the weak time derivative of u if∫ T

0

∂tϕ(t)(u(t), v) dt = −
∫ T

0

ϕ(t) < q(t), v >X′ dt ∀ϕ ∈ C∞(0, T ) , v ∈ X ,

where the integrals are Bochner integrals and (·, ·) denotes the inner product of
X and < ·, · >X′ the dual pairing between X and X′.
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CHAPTER 2. SOBOLEV AND VECTOR FUNCTION SPACES

In the following we denote the weak time derivative of u by u̇. Combining the
previous definitions, we define W (0, T,X) by:

Definition 2.15 (The Space W (0, T,X))
Let Ω ⊂ IRd be a bounded domain, X a separable Hilbert space and 0 < T <∞.
Then the space W (0, T,X) is given by

W (0, T ;X) := {u ∈ L2(0, T ;X) | u̇ ∈ L2(0, T ;X′)} .
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Chapter 3

Variational Theory for the Eddy
Current Model

For the solution of Maxwell’s equations we generally have to rely on numerical
methods, like finite difference, finite volume, or finite element methods. The latter
are based on variational or weak formulations of boundary value problems. Thus
we first have to establish a reliable variational formulation of the eddy current
model before we can proceed and discretize the resulting equations.

3.1 Derivation of the Model Problem

In Section 1.2.2 we showed that the eddy current model arises from Maxwell’s
equations as a magnetostatic approximation by neglecting the displacement cur-
rent. There are many different formulations of this model focusing, for example,
on the magnetic field H = H(x, t) or the magnetic vector potential A = A(x, t)
as primary unknown. However, in the following we choose the approach that elim-
inates the magnetic field H from equations (1.32)-(1.35) and retains E = E(x, t)
as unknown. Moreover, we assume that the coefficients are time-independent.

Following this approach, we end up with a degenerate parabolic initial-boundary
value problem given by

σ∂tE + curl(χ curlE) = −∂tJa , in Ω× [0, T ] , (3.1)

E ∧ n = 0 , on Γ× [0, T ] , (3.2)

E(x, 0) = E0 , in Ω× {0} , (3.3)

where χ = µ−1. For physical reasons we have to require that div Ja(·, t) = 0
in Ω for all times. The label degenerate is due to the fact that there is a crisp
distinction between insulating regions (σ = 0) and conducting regions (σ > 0).
To simplify the theory, we will take for granted that σ ≥ σ > 0.
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To derive the variational formulation of the parabolic initial-boundary value prob-
lem, we multiply (3.1) with test functions v ∈ H0(curl; Ω) and apply Stokes’
theorem. Then the weak form of (3.1) yields the following variational problem:

Find E ∈ W (0, T,H0(curl; Ω)) such that

< σĖ,v >curl +(χ curlE, curl v)0,Ω = −(∂tJa,v)0,Ω ∀v ∈ H0(curl; Ω) (3.4)

E(0) = E0 ∈ L2 (Ω) , (3.5)

where ∂tJa ∈ L2(0, T,L2 (Ω)) and < ·, · >curl denotes the dual pairing between
H0(curl; Ω) and H0(curl; Ω)′. Setting ã(E,v) := (χ curlE, curl v)0,Ω, the exis-
tence and uniqueness of a solution of (3.4) is given by the following theorem.

Theorem 3.1 (Existence and uniqueness)
Let σ, χ ∈ L∞(Ω) such that 0 < σ ≤ σ ≤ σ̄ and 0 < χ ≤ χ ≤ χ̄. Additionally,
let ∂tJa ∈ L2(0, T,L2 (Ω)) and E0 ∈ L2 (Ω). Then there exists a unique solution
E ∈ W (0, T,H0(curl; Ω)) such that

< σĖ,v >curl +ã(E,v) = −(∂tJa,v)0,Ω ∀v ∈ H0(curl; Ω)

E(0) = E0 ∈ L2 (Ω) .

Proof:

Note that H0(curl; Ω) is a separable and reflexive Hilbert space that is dense in
L2 (Ω). The bilinear form ã(·, ·) fulfills the G̊arding inequality

ã(u,u) + χ(u,u)0,Ω = (χ curl u, curl u)0,Ω + χ(u,u)0,Ω

≥ χ(curl u, curl u)0,Ω + χ(u,u)0,Ω

= χ‖u‖2
curl,Ω

and is bounded

|ã(u,v)| =
(∫

Ω

χ curl u curl v dV

)1/2

≤ χ̄

(∫
Ω

curl u curl u dV

)1/2(∫
Ω

curl v curl v dV

)1/2

≤ χ̄‖u‖curl,Ω · ‖v‖curl,Ω .

Then the existence of a unique solution is a consequence of Theorem 24.A in
[Zei90]. A more general proof considering nonlinear eddy current equations can
be found in [BLS04].

•
In general, a solution of (3.4) in closed form is not available. Therefore, we have
to resort to numerical methods to approximate the solution. Since (3.4) involves
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both temporal and spacial variables, there are several approaches to discretize
(3.4). For our analysis we first choose a semi-discretization in time. To do this
we divide the interval I = [0, T ] into n subintervals by using nodal points

0 = t0 < t1 < ... < tn = T . (3.6)

The corresponding timestep is given by τi = ti − ti−1, 1 ≤ i ≤ n. Resulting from
these subintervals, we obtain a sequence of functions E(i) ∈ H0(curl; Ω) that
approximate the exact solution E(t,x) at t = ti. To finish the discretization, we
replace Ė by means of suitable difference quotients. Following these steps, we
end up with variational equations for the unknowns E(i).

In general, we also have to use numerical methods to approximate E(i). Then the
stability of the resulting fully discrete scheme critically depends on the choice of
the difference quotients in the timestepping scheme. Since (3.4) is a stiff problem,
the timestepping scheme has to be L-stable [DB94]. In order to simplify the
presentation, we choose the implicit Euler scheme, which reads as follows:

Find E(i) ∈ H0(curl; Ω), 1 ≤ i ≤ n, satisfying

1

τi
(σ(E(i)−E(i−1)),v)0,Ω+ ã(E(i),v) = −(∂tJa(ti),v)0,Ω ∀v ∈ H0(curl; Ω) , (3.7)

where E(0) = E0.

This means that in each timestep we have to solve a time-independent equation
given by

a
(i)
Ω (E(i),v) = f (i)(v) ∀v ∈ H0(curl; Ω) , (3.8)

where the bilinear form a
(i)
Ω (·, ·) : H0(curl; Ω)×H0(curl; Ω) → IR and the func-

tional f (i)(·) : H0(curl; Ω) → IR are given by

a
(i)
Ω (u,v) := (βi u,v)0,Ω + ã(u,v) , (3.9)

f (i)(v) := −(∂tJa(ti),v)0,Ω + (βiE
(i−1),v)0,Ω , (3.10)

with βi = σ
τi

.

If we assume that σ, χ ∈ L∞(Ω) and 0 < σ ≤ σ ≤ σ̄ then the existence and
uniqueness of a solution E(i) ∈ H0(curl; Ω) for equation (3.8) is given by the
Lax-Milgram theorem [Bra92], since aΩ(·, ·) is bounded and coercive and both
∂tJa(ti) and E(i−1) are elements of L2 (Ω).

If we apply the discretization mentioned above, we see that the originally time-
dependent problem reduces to a time-independent one of the form:

Find u ∈ H0(curl; Ω) such that

aΩ(u,v) = f(v) ∀v ∈ H0(curl; Ω) , (3.11)
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where aΩ(u,v) and f(v) are given by

aΩ(u,v) := (β u,v)0,Ω + (χ curl u, curl v)0,Ω ,

f(v) := (f ,v)0,Ω , f ∈ L2 (Ω) .

Note that we still assume div f = 0.

3.2 Macro-Hybrid Variational Formulation

Since equation (3.11) plays a central role for the solution of eddy current prob-
lems, the rest of this thesis will focus on solving this equation. In general, we
cannot expect to find a solution of (3.11) but have to use numerical methods
to approximate the solution. In recent years several efficient solvers for the al-
gebraic equations arising from the discretization of (3.11) have been developed.
Among the most powerful solvers, domain decomposition methods have aroused
great interest in the last decades. The basic idea of these methods is to split the
problem formulated on Ω into a sequence of smaller problems that are solvable
more easily [SBG96, QV99].

A special approach in this class of methods are the mortar finite element meth-
ods. These methods use a nonoverlapping decomposition of Ω and allow indi-
vidual triangulations on each subdomain. Therefore, complicated geometries or
moving structures [FMRW04] can be modelled as unions of relatively simple sub-
domains with locally constructed grids. Moreover, local features of the problem
such as corner singularities or discontinuously varying coefficients can be resolved
by locally well adapted meshes [Hop02, HIM00]. In all cases achieving confor-
mity of the grid would result in a large number of elements or a remeshing at
every timestep. However, this flexibility stands in contrast to the conformity
requirements among subdomains for the solution.

Originally, mortar finite element methods have been introduced by Bernadi, Ma-
day, and Patera [BMP93, BMP94]. Subsequently, this approach has been ex-
tended to a variety of problems. Especially the analysis and implementation of
problems related to Maxwell’s equations have been done in [BMR99, BBM01,
BBM02, Hop99, XH05, LVL05]. In the following we will introduce the mortar
approach developed in [Hop99, XH05].

For mortar methods the trace space of H(curl; Ω) is of great importance. As
mentioned in Section 2.3, the definition of this space depends on the regularity of
the boundary. In the sequel we will consider domains Ω that are simply connected
Lipschitz polyhedra with connected boundary. Motivated by (2.57) we start by
decomposing Ω into N open sets. Let Ωi ⊆ Ω, 1 ≤ i ≤ N , be a nonoverlapping,
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polyhedral partition of Ω with

Ω̄ =
N⋃

i=1

Ω̄i , Ωi ∩ Ωj = ∅ , 1 ≤ j ≤ N , i 6= j . (3.12)

Additionally, we assume that the decomposition is geometrically conforming in
the sense that the intersection of two subdomains is either a common face, edge
or vertex of the subdomains (see Figure 3.1).

W
1 W

2

W
3 W

4

W
1

W
2

W
3 W

4

Figure 3.1: Geometric decomposition of the domain. On the left the decompo-
sition is geometrically conforming, while the decomposition is nonconforming
on the right.

Let Γ̄ij := ∂Ωi ∩ ∂Ωj, 1 ≤ i, j ≤ N , be the possibly empty intersection of the
two subdomains Ωi and Ωj and denote by Γij the interior of Γ̄ij with respect
to ∂Ωi. For every interface γk, 1 ≤ k ≤ M , γk 6= ∅, there exists a unique
couple (i(k), j(k)) such that γk = Γi(k),j(k) = Γj(k),i(k). Then the skeleton S of the
decomposition (3.12) is defined according to

S :=
M⋃

k=1

γ̄k , γk ∩ γl = ∅ , 1 ≤ l ≤M , k 6= l . (3.13)

As mentioned above, we have two adjacent subdomains at each interface γk.
Without preference, we choose one of the subdomains to be the mortar or master
domain Ωm(k), while the other subdomain will be called nonmortar or slave do-
main Ωs(k) (see Figure 3.2). To simplify the presentation, we will drop k and write
Ωm and Ωs for the master and slave domain if it is clear from the context which
interface is meant. Additionally, we set %k := ∂Ωm(k) ∩ γk, and δk := ∂Ωs(k) ∩ γk.
Using this definition, we can define for each interface γk the unit outer normal
ni(k),j(k) as the normal to the interface γk pointing from Ωi(k) towards Ωj(k) and
we set nk := ns(k),m(k).

The variational formulation of the model problem, given in (3.11), is not con-
venient for the mortar method, since we want to deal independently with each
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Wm(1)=Ws(2) Wm(2)=Ws(4)
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W3

G G13 31=

G G12 21=

G G34 43=

G G24 42=

W

Figure 3.2: Choosing mortar and nonmortar sides at the interfaces. Each
subdomain can be both master and slave domain.

subdomain. Therefore, it is more reasonable to use a different space of test
functions than H0(curl; Ω). Let n denote the unit outward normal to ∂Ω and
Γi := ∂Ωi ∩ ∂Ω, 1 ≤ i ≤ N . Considering the decomposition (3.12), a natural
choice for the new test space would be given by the product space

X =
{
q ∈ L2 (Ω) | q|Ωi

∈ HΓi
(curl,Ωi)

}
(3.14)

equipped with the broken norm

‖q‖X :=

(
N∑

i=1

‖q‖2
H(curl,Ωi)

)1/2

. (3.15)

However, for the variational formulation we have to consider a subspace of X.
Recall that for Γij ⊂ S, the space TH1/2(Γij) is given by

TH1/2(Γij) = {q ∈ H1/2(Γij) | n · q|Γij
= 0} .

Moreover, denoting by TH
1/2
00 (Γij) the space of those elements q ∈ TH1/2(Γij)

whose trivial extension q̃ by zero to all of ∂Ωi belongs to TH1/2(∂Ωi), i.e.

TH
1/2
00 (Γij) =

{
q ∈ TH1/2(Γij) | q̃ ∈ TH1/2(∂Ωi)

}
, (3.16)

we consider the space

V :=
{
q ∈ X | [n ∧ q]|Γij

∈ TH
1/2
00 (Γij) ∀Γij ⊂ S

}
, (3.17)

where [n∧q]|Γij
denotes the jump of the tangential trace across the interface Γij

given by
[n ∧ q]|Γij

:= nij ∧ q|Γij∩∂Ωi
− nij ∧ q|Γij∩∂Ωj

. (3.18)

V is a Hilbert space provided with the norm

‖q‖V :=
(
‖q‖2

X + ‖[n ∧ q]‖2
1/2,S

)1/2
, (3.19)
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where

‖[n ∧ q]‖1/2,S :=

∑
Γij⊂S

‖[n ∧ q]|Γij
‖2

H
1/2
00 (Γij)

1/2

. (3.20)

Note that TH
1/2
00 (Γij) is a subspace of H

−1/2
‖ (divΓ, ∂Ωi).

Since we are looking for a solution of problem (3.11), we have to assure that a
solution u ∈ V is an element of H0(curl; Ω). To achieve this we impose a weak
continuity constraint on the tangential trace across S by using suitable Lagrange
multipliers. Since [n ∧ q]|Γij

is contained in TH
1/2
00 (Γij), a natural candidate for

the Lagrange multiplier space is given by

M(S) :=
∏

Γij⊂S

TH−1/2(Γij) , (3.21)

where TH−1/2(Γij) denotes the dual space of TH
1/2
00 (Γij). We equip this space

with the norm

‖µ‖M(S) :=

∑
Γij⊂S

‖µ|Γij
‖2
−1/2,Γij

1/2

. (3.22)

After these definitions we have to adjust (3.11) to the new setting. We replace
aΩ(·, ·) with the sum of bilinear forms associated with the subdomain problems.
Thus we define the bilinear form a(·, ·) : V ×V → IR according to

a(u,q) :=
N∑

i=1

aΩi
(u|Ωi

,q|Ωi
) =

N∑
i=1

∫
Ωi

χ curl u · curl q + β u · q dV . (3.23)

To enforce the weak continuity constraint, we further introduce the bilinear form
b(·, ·) : V ×M(S) → IR which is given by

b(q,µ) := < [n ∧ q]|S,µ >1/2,S , (3.24)

with < ·, · >1/2,S:=
∑M

k=1 < ·, · >1/2,γk
. Associated with b(·, ·) is the linear

operator B : V → M(S)′ =
∏

Γij⊂S TH
1/2
00 (Γij) according to

< Bq,µ >1/2,S = b(q,µ) ∀µ ∈ M(S) . (3.25)

Obviously, KerB ⊂ H0(curl; Ω). Thus the appropriate macro-variational formu-
lation of (3.11) is given by:

Find (u,λ) ∈ V ×M(S) such that

a(u,q) + b(q,λ) = f(q) ∀q ∈ V , (3.26)

b(u,µ) = 0 ∀µ ∈ M(S) .

The existence and uniqueness of a solution to the saddle point problem (3.26) is
given by the following theorem [Hop99, Theorem 3.2].
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Theorem 3.2 (Existence and uniqueness)
The bilinear form a(·, ·) is KerB-elliptic and the bilinear form b(·, ·) satisfies the
Babuska-Brezzi condition

inf
µ∈M(S)

sup
q∈V

b(q,µ)

‖q‖V ‖µ‖M(S)

≥ α > 0 . (3.27)

Proof:

Since ‖q‖V = ‖q‖curl,Ω for a function q ∈ Ker B ⊂ H0(curl; Ω), the ellipticity
of a(·, ·) follows from the ellipticity of aΩi

(·, ·). We have

a(u,u) =
N∑

i=1

aΩi
(u|Ωi

,u|Ωi
) ≥

N∑
i=1

ci‖u|Ωi
‖2
H(curl,Ωi)

(3.28)

≥ c‖u‖2
curl,Ω = c‖u‖2

V ,

which proves that a(·, ·) is KerB-elliptic.

For the proof of the Babuska-Brezzi condition we consider an arbitrary µ ∈ M(S).

For Γij ⊂ S we can surely find pij ∈ TH
1/2
00 (Γij) such that

‖pij‖H1/2
00 (Γij)

= 1 and < pij,µ >1/2,Γij
≥ 1

2
‖µ|Γij

‖−1/2,Γij
. (3.29)

We set p
(j)
∂Ωi

:= p̃ij ∈ TH
1/2
00 (∂Ωi) and determine p

(j)
Ωi
∈ H(curl,Ωi) such that

n ∧ p
(j)
Ωi
|∂Ωi

= p
(j)
∂Ωi

and

‖p(j)
Ωi
‖H(curl,Ωi) ≤ C‖p(j)

∂Ωi
‖1/2,Γij

≤ C1‖p(j)
∂Ωi
‖
H

1/2
00 (Γij)

= C1 . (3.30)

Finally, if we define p ∈ V by p|Ωi
=

∑
Γij⊂∂Ωi

p
(j)
Ωi

we end up with the inequality

sup
q∈V

b(q,µ)

‖q‖V
≥ b(p,µ)

‖p‖V
≥ C2b(p,µ) = C2

∑
Γij⊂S

< pij + pji,µ|Γij
>1/2,Γij

≥ C2

∑
Γij⊂S

‖µ|Γij
‖−1/2,Γij

≥ C2‖µ‖M(S) ,

which asserts the Babuska-Brezzi condition. Then the existence of a unique
solution is a classical result of the theory of saddle point problems (cf. [BF91]).

•
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Chapter 4

The Mortar Edge Element
Approximation

As mentioned in the previous chapter, we cannot expect to find an analytic
solution of the saddle point problem (3.26). Thus one has to rely on numerical
methods to approximate the solution. In order to compute this approximation, we
have to replace the continuous problem by a discrete formulation, which results
in a system of linear equations. Before we can state the discrete formulation
we have to equip the domain Ω with a triangulation. Based on this mesh we
introduce finite element spaces that will replace V and M(S). Finally, at the
end of this chapter, we will formulate the discrete problem and show that it has
a unique solution.

4.1 Geometrical Setting

Starting from the nonoverlapping, geometrically conforming decomposition of
Ω (3.12), we use individual simplicial triangulations Ti for each subdomain Ωi,
1 ≤ i ≤ N . At the interface γk, 1 ≤ k ≤ M , these triangulations induce two in-
dependent simplicial triangulations Tδk

and T%k
inherited from the triangulations

Ts(k) and Tm(k) of the slave and master domain, respectively. Since the individual
triangulations are independent of each other, we cannot expect Tδk

and T%k
to

match on γk (see fig. 4.1).

For T ∈ Ti, 1 ≤ i ≤ N , and T ∈ Tδk
respectively T ∈ T%k

, 1 ≤ k ≤M , we denote
by h(T ) the diameter and by ρ(T ) the radius of the largest ball respectively
circle that can be inscribed to T . For each subdomain Ωi we assume that the
triangulation Ti is shape regular in the sense that h(T )/ρ(T ) ≤ σi uniformly
for all T ∈ Ti and locally quasi-uniform in the sense that there exist constants
τ̄i > τ i > 0 such that

0 < τ i h(T
′) ≤ h(T ) ≤ τ̄i h(T

′) ∀T, T ′ ∈ Ti, T̄ ∩ T̄ ′ 6= ∅ .
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Γij = γk

δk %k

Ωj

Ωi

hihj

Figure 4.1: Situation at the interface between two subdomains. The individual
triangulations are independent and do in general not match.

These properties are inherited by the triangulations Tδk
and T%k

on the interfaces
γk. Defining global mesh sizes hδk

, h%k
, and hi according to

hi := max{diam T | T ∈ Ti} ,
hδk

:= max{diam T | T ∈ Tδk
} ,

h%k
:= max{diam T | T ∈ T%k

} ,

we assume that the granularities of the triangulations Tδk
and T%k

are such that
there exist constants 0 < κγk

≤ κ̄γk
independent of hδk

and h%k
satisfying

κγk
h%k

≤ hδk
≤ κ̄γk

h%k
. (4.1)

Moreover, for Σi ⊂ Ω̄i we define Fh(Σi) and Eh(Σi) as the sets of faces respectively
edges of Ti in Σi. Analogously, for Σδk

⊂ δk, δk ⊂ S, and Σ%k
⊂ γ%k

, γ%k
⊂ S,

we denote by Eh(Σδk
) and Eh(Σ%k

) the set of edges of Tδk
and T%k

in Σδk
and Σ%k

,
respectively.

After these assumptions on the triangulations of the subdomains we are now able
to define the discrete counterparts of the spaces V and M(S).
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4.2 Nédélec’s Lowest Order Curl Conforming

Elements

Recalling from (3.17) that V ⊂ X and that X is given by the product of the
spaces

HΓi
(curl; Ωi) := {q ∈ H(curl; Ωi) | n ∧ q|Γi

= 0} , 1 ≤ i ≤ N ,

it is obvious that we have to use a good finite element approximation of the
space HΓi

(curl; Ωi). The obvious choice of using vector continuous piecewise
linear elements has several disadvantages.

Since we required that div f = 0, a constant coefficient function β results in a
solution of (3.11) which is an element of the space H0(curl; Ω)∩H(div; Ω). If the
domain has reentrant corners, the space H1(Ω)∩H0(curl; Ω) is a closed subspace
of this space. However, since vector continuous elements are H1(Ω)-conforming,
it is possible to compute finite element solutions that do not converge to the
solution of Maxwell’s equations [Mon03, CD00]. Furthermore, when dealing with
problems involving discontinuous coefficients (e.g., modelling different media), we
cannot expect that the normal component of the solution is continuous at the
interface between different media. This is in contrast to the continuity of vector
continuous finite elements.

To avoid these problems, we will use Nédélec’s curl-conforming edge elements of
the first family as described in [Néd83]. A mortar approach based on the second
family is described in [BBM01, BBM02].

For a tetrahedron T ∈ Ti the lowest order Nédélec element of the first family,
denoted by Nd1(T ), is given by

Nd1(T ) := {q := a + b ∧ x | a, b ∈ IR3 , x ∈ T} .

The degrees of freedom of this element are given by the zero order moments of
the tangential components with respect to the edges E ∈ Eh(T )

`nE(qh) :=

∫
E

tE · qh dσ , E ∈ Eh(T ) , (4.2)

where tE stands for the tangential unit vector on E. Since the degrees of freedom
are associated with the edges of the mesh, Nédélec elements are also termed
edge elements. Moreover, the lowest order edge elements are termed Whitney
elements, since they have been first used by Whitney [Whi57], although Whitney
discovered these elements in a different context.

Then the edge element space Nd1(Ωi; Ti) is given by

Nd1(Ωi; Ti) := {qh ∈ H(curl; Ωi) | qh|T ∈ Nd1(T ) , T ∈ Ti} . (4.3)
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Moreover, we denote by Nd1,Γi
(Ωi; Ti) the subspace of Nd1(Ωi; Ti) with vanishing

tangential trace on Γi. From the definition of Nd1(T ) it is easy to see that on
each tetrahedron T ∈ Ti a function qh ∈ Nd1(T ) is divergence free. However,
this does not imply that a function qh ∈ Nd1(Ωi; Ti) is globally divergence free.
Additionally, according to (4.2) only the tangential component of qh is continuous
at the faces of the triangulation.

Using the degrees of freedom (4.2), we can define an interpolant for Nd1(Ωi; Ti).
Unfortunately, since the degrees of freedom involve integrals along edges, they
are not defined for a general function in H(curl; Ωi) [ABDG98, Mon03]. Assum-
ing that u has the necessary smoothness, the standard interpolation operator
associated with the subdomain Ωi, denoted by Πi

h, is defined according to∑
E∈Eh(Ωi)

`nE(Πi
hu− u) = 0 . (4.4)

If we choose basis functions qEi
for Nd1(Ωi; Ti) that are associated with the edges

Ei ∈ Eh(Ωi) such that `nEi
(qEj

) = δij, the interpolant is given by

Πi
hu :=

∑
E∈Eh(Ωi)

`nE(u)qE . (4.5)

An approximation property of the interpolation operator is given by the following
lemma [XH05, Lemma 4.4].

Lemma 4.1 (Approximation properties of the interpolation operator)
Let Πi

h : H1(curl; Ωi) → Nd1(Ωi; Ti) be the standard interpolation operator
associated with subdomain Ωi. Then, for K ∈ Ti and T ∈ ∂K, the following
holds

(i) ‖nT · (curlΠi
hu− curl u)‖0,T ≤Ch

1
2
K‖ curl u‖1,K ,

(ii) ‖Πi
hu− u‖0,T ≤Ch

1
2
K‖u‖1,curl,K .

Further approximation properties of the interpolant can be found in [Mon03,
Néd83]. An important norm equivalence for Nd1(Ωi; Ti) is given by the following
Lemma [XH05, Lemma 4.2].

Lemma 4.2 (Norm equivalences for Nd1(Ωi; Ti))
For any qh ∈ Nd1(Ωi; Ti), the following norm equivalences hold

ch3
i

∑
T∈Fh(Ω̄i)

|(nT · curl qh)|T |2 ≤ ‖ curl qh‖2
0,Ωi

≤ Ch3
i

∑
T∈Fh(Ω̄i)

|(nT · curl qh)|T |2 ,

and ch3
i

∑
E∈Eh(Ω̄i)

|(tE · qh)(x
M
E )|2 ≤ ‖qh‖2

0,Ωi
≤ Ch3

i

∑
E∈Eh(Ω̄i)

|(tE · qh)(x
M
E )|2 ,

where nT denotes the exterior unit normal vector with respect to T ∈ Fh(Ω̄i),
and xM

E is the midpoint of the edge E.
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An advantageous property of edge elements is the existence of discrete potentials.
For a simply connected domain Ω and for ΓD being a simply connected part of
the boundary ∂Ω we have

Nd1,ΓD
(Ω; TΩ) ∩N 0(curl,Ω) = gradS1,ΓD

(TΩ) , (4.6)

where N 0(curl,Ω) = {q ∈ H(curl; Ω) | curl q = 0} and S1,ΓD
(TΩ) ⊂ H1

ΓD
(Ω)

denotes the Lagrangian finite element space of piecewise linear functions vanishing
on ΓD.

Based on the finite element spaces Nd1(Ωi; Ti) we discretize the function space
V by the product space

Vh := {qh ∈ L2 (Ω) | qh|Ωi
∈ Nd1,Γi

(Ωi; Ti) , 1 ≤ i ≤ N} , (4.7)

‖qh‖Vh
:= (‖qh‖2

X + ‖[n ∧ qh]|S‖2
+ 1

2
,h,S

)1/2 , (4.8)

where ‖ · ‖+ 1
2
,h,S is given by

‖[n ∧ qh]|S‖+ 1
2
,h,S :=

(∑
γk⊂S

‖[n ∧ qh]|δk
‖2

+ 1
2
,h,δk

)1/2

and ‖ · ‖+ 1
2
,h,δk

denotes the mesh-dependent norm

‖[n ∧ qh]|δk
‖+ 1

2
,h,δk

:= h
−1/2
δk

‖[n ∧ qh]|δk
‖0,δk

.

The discrete potential space of Vh is given by

Vh := { vh ∈ L2 (Ω) | vh|Ωi
∈ S1,Γi

(Ωi; Ti) , 1 ≤ i ≤ N} .

4.3 The Lagrange Multiplier Space

Observing (2.57), we see that the space Vh is not contained in H0(curl; Ω) due
to the nonconformity arising on the interfaces γk. Neither the tangential trace
qh ∧ n nor the tangential components trace n ∧ (qh ∧ n) can be expected to be
continuous at the interfaces between adjacent subdomains. In order to keep the
error, caused by this nonconformity, bounded, we have to impose weak continuity
constraints for the tangential trace across the interfaces. This will be realized by
means of appropriately chosen Lagrangian multipliers.

As seen in the last section, the trace of the space Nd1(Ωi; Ti) will be important
for the development of a mortar finite element method. Considering (4.3), it
is easy to see that γt(qh)|δk

is an element of the lowest order Raviart-Thomas
finite element space. For a triangle T ∈ Tδk

the lowest order Raviart-Thomas
divergence conforming finite element (cf. [BF91]) is given by

RT0(T ) := {q = a + bx | a ∈ IR2, b ∈ IR , x ∈ T} . (4.9)
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Any qh ∈ RT0(T ) is uniquely defined by the degrees of freedom

`rE(qh) :=

∫
E

nE · qh dσ , E ∈ Eh(T ) , (4.10)

where nE stands for the exterior unit normal vector with respect to E. Then the
Raviart-Thomas space RT0(δk; Tδk

) is given by

RT0(δk; Tδk
) := {qh ∈ H(div; δk) | qh|T ∈ RT0(T ) , T ∈ Tδk

} . (4.11)

Additionally, the space RT0,0(δk; Tδk
) ⊂ RT0(δk; Tδk

) denotes the subspace of
vector fields with vanishing normal components along the boundary ∂δk. A con-
sequence of the definition of RT0(T ) is that any function qh ∈ RT0(T ) is irrota-
tional, i.e. curlτ qh = 0. As in the case of the edge elements, this does not imply
that a function qh ∈ RT0(δk; Tδk

) is globally irrotational. An important norm
equivalence for functions in RT0(δk; Tδk

) is given by [XH05, Lemma 4.2].

Lemma 4.3 (Norm equivalences for RT0(δk; Tδk
))

For any δk ⊂ S and any qh ∈ RT0(δk; Tδk
), we have

ch2
δk

∑
T∈Tδk

|(divτ qh)|T |2 ≤ ‖ divτ qh‖2
0,δk

≤ Ch2
δk

∑
T∈Tδk

|(divτ qh)|T |2 ,

and

ch2
δk

∑
E∈Eh(δ̄k)

|(nE · qh)(x
M
E )|2 ≤ ‖qh‖2

0,δk
≤ Ch2

δk

∑
E∈Eh(δ̄k)

|(nE · qh)(x
M
E )|2 .

where nE denotes the exterior unit normal vector with respect to E ∈ Eh(δ̄k),
and xM

E is the midpoint of the edge E.

A consequence of the geometric decomposition (3.12) is that at each interface
γk ⊂ S, 1 ≤ k ≤ M , there are two sides: the master side %k and the slave side
δk. Although %k and δk occupy the same geometric space, they are not equivalent
since they inherit different nonmatching triangulations from the master domain
Ωm(k) and from the slave domain Ωs(k), respectively. For the construction of the
Lagrange multiplier space on γk we choose the slave side for the discretization.
Recalling that Tδk

denotes the triangulation of γk inherited from the triangulation
of the slave domain Ωs(k), we define the multiplier space Mh(S) according to

Mh(S) :=
M∏

k=1

Mh(δk) , (4.12)

with Mh(δk) chosen such that

Mh(δk) ⊂ RT0(δk; Tδk
) , (4.13)

dimMh(δk) = dimRT0,0(δk; Tδk
) . (4.14)
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Additionally, we equip the Lagrange multiplier space Mh(S) with the mesh-
dependent norm

‖µh‖Mh(S) :=

(
M∑

k=1

‖µh|δk
‖2
−1/2,h,δk

)1/2

, (4.15)

where

‖µh|δk
‖−1/2,h,δk

:= h
1/2
δk
‖µh|δk

‖0,δk
. (4.16)

To obtain good approximation properties, we have to require that Mh(δk) con-
tains constant vectors. To achieve this we have to modify the basis fields of
RT0,0(δk; Tδk

) in order to comply with conditions (4.13) and (4.14). Denoting by
qE the basis field associated with an edge E ∈ Eh(δ̄k) according to

`rE′(qE) =

∫
E′

nE′ · qE dσ = hδk
δE,E′ , E ′ ∈ Eh(δ̄k) , (4.17)

we construct Mh(δk) by an extension of the basis field qE ∈ RT0,0(δk; Tδk
) with

respect to those edges E ∈ Eh(δk) that have at least one neighboring edge on the
boundary ∂δk.

Before we proceed with the construction of the Lagrangian multiplier space, we
have to introduce some additional notations. Given an interior edge E ∈ Eh(δk),
we denote by

E∂δk
h (E) := {E ′ ∈ Eh(∂δk) | E ′ ⊂ supp qE} ,

the set of the neighboring edges on ∂δk. Likewise, we define for a boundary edge
E ∈ Eh(∂δk) the set of neighboring edges in the interior of δk by

Eδk
h (E) := {E ′ ∈ Eh(δk) | E ′ ⊂ supp qE} .

Finally, we define

Eδk
h (∂δk) :=

⋃
E′∈Eh(∂δk)

Eδk
h (E ′)

as the set of interior edges with a neighboring edge on ∂δk.

At the boundary ∂δk a triangle T ∈ Tδk
shares either one or two edges with ∂δk

(cf. Fig. 4.2). Let us first consider the case that the triangle T shares one edge
with the boundary. Given a constant vector-valued function C ∈ IR2, we have

C|T =
3∑

i=1

h−1
δk
`rEi

(C)qEi
, Ei ∈ Eh(T ) . (4.18)
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E1

E1 E2

E2

E3E3

TT

Figure 4.2: Situation at the boundary of the interface δk. A triangle T ∈ Tδk

shares either one (right) or two edges (left) with ∂δk.

Recalling that `rEi
(C) =

∫
Ei

nEi
·C dσ and

∑3
i=1 |Ei|nEi

= 0 , where nEi
and |Ei|

denote the unit outer normal to Ei and the length of Ei, respectively, we have

C|T =
3∑

i=1

h−1
δk
`rEi

(C)qEi
=

3∑
i=1

h−1
δk
|Ei|(nEi

·C)qEi
(4.19)

= h−1
δk

[−(|E2|(nE2 ·C) + |E3|(nE3 ·C))qE1+

+ |E2|(nE2 ·C)qE2 + |E3|(nE3 ·C)qE3 ]

= h−1
δk

[|E2|(nE2 ·C)(qE2 − qE1) + |E3|(nE3 ·C)(qE3 − qE1)]

= h−1
δk

(
`rE2

(qE2 − qE1) + `rE3
(qE3 − qE1)

)
.

If we define new basis functions ηE2
:= qE2 − qE1 and ηE3

:= qE3 − qE1 , we are
able to reproduce constant vector fields on T under the restrictions of equations
(4.13) and (4.14).

Now, let us consider a triangle T that shares two edges with the boundary of δk.
Here the situation is very different. Since C has two degrees of freedom on T , its
components c1 and c2 ∈ IR, we need at least two basis functions on T to reproduce
C. However, since we have to obey conditions (4.13) and (4.14), a modification
of qE3 is not enough. Therefore, we are forced to modify basis functions whose
support does not contain T in order to be able to reproduce C on T . Let E1,
E2 ∈ Eh(δk) be such that nE1 = α11nE1 + α12nE2 and nE2 = α21nE1 + α22nE2 . If
we define new basis functions ηi, i ∈ {1, 2}, according to

ηi := qEi +
2∑

j=1

βij qEj
, (4.20)

βij :=
αji|Ej|
|Ei|

, (4.21)
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we have

h−1
δk

(`rE3
(C)qE3 +

2∑
i=1

`rEi(C)ηi|T ) = (4.22)

= h−1
δk

(`rE3
(C)qE3 +

2∑
i,j=1

`rEi(C) βij qEj
)

= h−1
δk

(`rE3
(C)qE3 +

2∑
i,j=1

|Ei| (nEi ·C)
αji|Ej|
|Ei|

qEj
)

= h−1
δk

(`rE3
(C)qE3 +

2∑
j=1

(αj1nE1 ·C + αj2nE2 ·C)|Ej|qEj
)

= h−1
δk

(`rE3
(C)qE3 +

2∑
j=1

(nEj
·C)|Ej|qEj

)

= h−1
δk

(`rE3
(C)qE3 +

2∑
j=1

`rEj
(C)qEj

) = C .

As it can be seen from the above calculations, the situation of triangles sharing
two edges with ∂δk does not cause any essential difficulties, but is much more
complicated. In order to avoid related technical difficulties, we will restrict our-
selves to the case of triangles that share at most one edge with the boundary.
Then we define the basis field q̃E, E ∈ Eh(δk), according to

q̃E =

{
qE, E ∈ Eh(δk)\Eδk

h (∂δk)

ηE, E ∈ Eδk
h (∂δk)

. (4.23)

Using these modified basis fields, we define the Lagrange multiplier space as

Mh(δk) := span {q̃E | E ∈ Eh(δk)} . (4.24)

According to the construction of Mh(δk), it contains all constant two-dimensional
vector fields on δk. Moreover, the tangential trace of gradS1(TΩs(k)

) is a subspace
of Mh(δk).

As in the case of edge elements, we want to interpolate functions q using an
interpolation operator based on the degrees of freedom (4.17). Since the degrees
of freedom have to be well-defined, we have to require that q is sufficiently smooth.
So, assume q to be smooth enough (e.g., q ∈ H1/2+δ(δk), δ > 0 [Mon03]). Then
the global interpolation operator associated with the space Mh(δk) is given by

Ihq =
∑

E∈Eh(δk)

`rE(q)q̃E .
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An important property of the global interpolation operator is given by the fol-
lowing lemma.

Lemma 4.4 (Properties of the interpolation operator)
Let q ∈ (H1(γk))

2. Then we have

‖(I− Ih)q‖0,γk
≤ Chδk

|q|1,δk
. (4.25)

Moreover, if qh ∈ RT0(δk; Tδk
) or qh ∈ RT0(δk; T%k

) we have

‖(I− Ih)(qh)‖0,γk
≤ Chδk

‖ divτ qh‖0,γk
, 1 ≤ m ≤M . (4.26)

Proof:

The proof of (4.25) is quite straightforward. Observing that Ih preservers con-
stant vectors C ∈ IR2, we obtain by applying the standard Bramble-Hilbert
lemma and scaling arguments

‖(I− Ih)q‖2
0,γk

=
∑

T∈Tδk

‖(I− Ih)q‖2
0,T ≤

≤ Ch2
δk

∑
T∈Tδk

|q|21,T = Ch2
δk
|q|21,δk

.

Taking roots on both sides of the inequality gives (4.25).

The proof of (4.26) is more involving. Since qh is a piecewise polynomial function
with continuous normal components across the edges of the triangulations, the
global interpolation operator Ih is well-defined for qh. Although an arbitrary
function qh ∈ RT0(δk; Tδk

) or qh ∈ RT0(δk; T%k
) is not an element of (H1(γk))

2,
its restriction to a triangle T of Tδk

or T%k
is a polynomial and thus qh|T ∈

(H1(T ))2.

However, since qh ∈ RT0(δk; T%k
) and Ihqh are defined on different, in general

nonmatching triangulations, we have to introduce a third mesh Tγk
in such a

way that given triangles T ∈ Tγk
, T1 ∈ Tδk

, and T2 ∈ T%k
with T ∩ T1 6= ∅ and

T ∩ T2 6= ∅ we have

T ∩ T1 = T , T ∩ T2 = T . (4.27)

Now, if we restrict a function qh ∈ RT0(δk; Tδk
) or qh ∈ RT0(δk; T%k

) to a triangle
T ∈ Tγk

, we have that qh|T ∈ (H1(T ))2.

Since Ih preserves constant tangential components, we get by a standard Bramble-
Hilbert and scaling argument:

‖(I− Ih)(qh)‖0,T ≤ ChT | qh|1,T = ChT (‖ divτ qh‖2
0,T + ‖ curlτ qh‖2

0,T )1/2 =

= ChT‖ divτ qh‖0,T .
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Therefore, we get

‖(Id− Ih)(qh)‖2
0,γk

=
∑

T∈Tγk

‖(Id− Ih)(qh)‖2
0,T ≤

∑
T∈Tγk

Ch2
T‖ divτ qh‖2

0,T

≤
∑

T∈Tγk

Ch2
δk
‖ divτ qh‖2

0,T = Ch2
δk
‖ divτ qh‖2

0,γk
.

Then equation (4.26) follows by taking roots on both sides of the inequality.
•

4.4 Discrete Saddle Point Problem

After the introduction of the relevant finite element space we are able to formulate
the mortar edge element approximation of (3.11):

Find (uh,λh) ∈ Vh ×Mh(S) such that

ah(uh,qh) + bh(qh,λh) = `(qh) ∀qh ∈ Vh , (4.28)

bh(uh,µh) = 0 ∀µh ∈ Mh(S) ,

where the bilinear form ah(·, ·) : Vh × Vh → IR is the restriction of a(·, ·) to
Vh ×Vh and bh(·, ·) : Vh ×Mh(S) → IR is given by

bh(qh,µh) :=
∑
γk∈S

([qh ∧ n]|γk
,µh)0,δk

.

Associated with bh(·, ·) is the operator Bh : Vh → Mh(S)
′
according to

bh(qh,µh) :=< Bhqh,µh > 1
2
,h,S , (4.29)

where

< ·, · > 1
2
,h,S:=

M∑
k=1

< ·, · > 1
2
,h,δk

(4.30)

and < ·, · > 1
2
,h,δk

denotes the dual pairing between Mh(δk)
′
and Mh(δk).

In order to show the existence and uniqueness of a solution of (4.28), we have
to prove the discrete counterpart of Theorem 3.2. According to the proof of this
theorem, we have to verify the uniform ellipticity of ah(·, ·) on Ker Bh. Addition-
ally, we have to prove a discrete inf-sup condition (LBB-condition) for the saddle
point problem (4.28). Following the approaches in [BD98, Hop99], we will first
concentrate on the proof of the discrete inf-sup condition. To do this we start
with the following auxiliary inf-sup conditions.
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Lemma 4.5 (Auxiliary inf-sup conditions)
The following inf-sup conditions hold true

inf
µh∈Mh(δk)

sup
qh∈RT0,0(δk;Tδk

)

(qh,µh)0,δk

‖qh‖0,δk
‖µh‖0,δk

≥ C > 0 , (4.31)

and

inf
qh∈RT0(δk;Tδk

)
sup

µh∈Mh(δk)

(qh,µh)0,δk

‖qh‖0,δk
‖µh‖0,δk

≥ C > 0 . (4.32)

Proof:

In order to prove (4.31), we choose an arbitrary function qh ∈ RT0,0 and deter-
mine µh ∈ Mh(δk) by specifying its degrees of freedom according to

`rE(µh) = `rE(qh) , E ∈ Eh(δk) .

If K ∈ Tδk
shares no edge with ∂δk, we have

‖qh‖0,K = ‖µh‖0,K ,

(qh,µh)0,K = ‖qh‖2
0,K .

Now, let K ∈ Tδk
share one edge with ∂δk and let FK(x̂) = BK x̂ + bK , x̂ ∈ K̂,

be the affine transformation mapping the reference element K̂ onto K such that
F(Êi) = Ei, 1 ≤ i ≤ 3. Moreover, we assume that E2 ∈ ∂δk (cf. Figure 4.3).

Ê1

Ê2

Ê3

E1

E2

E3
K

K̂

FK

Figure 4.3: Affine transformation from the reference triangle K̂ to K.

Setting q̂h = 1

det B−1
K

B−1
K qh and µ̂h = 1

det B−1
K

B−1
K µh, we have

(q̂h, µ̂h)0,K̂ =
1

|det B−1
K |

∫
K

B−1
K qh ·B−1

K µh dV ≤ ‖B−1
K ‖2

|det B−1
K |

(qh,µh)0,K . (4.33)

Observing the definition of the basis functions of Mh(S) and the properties of
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FK , it is easy to see that q̄h and µ̄h are given by

q̂h = −

(
a

b

)
+ (a+ b) ·

(
x̂

ŷ

)
,

µ̂h = −

(
a

b

)
,

where a, b ∈ IR. It is easy to check that

‖µ̂h‖2
0,K̂

=
1

2
(a2 + b2) ,

‖q̂h‖2
0,K̂

=
1

2
(a2 + b2)− 1

6
(a+ b)2 ,

(q̂h, µ̂h)0,K̂ =
1

2
(a2 + b2)− 1

6
(a+ b)2 ,

‖µ̂h‖0,K̂ ≤
√

6 · ‖q̄h‖0,K̂ .

A consequence of these results is that

(q̂h, µ̂h)0,K̂ ≥ C‖q̂h‖0,K̂ ‖µ̂h‖0,K̂ . (4.34)

To finish the proof, we use the backward transformation to get

‖qh‖2
0,K ≤ ‖BK‖2

|det BK |
‖q̂h‖2

0,K̂
, (4.35)

‖µh‖2
0,K ≤ ‖BK‖2

|det BK |
‖µ̂h‖2

0,K̂
. (4.36)

Taking into account that Tδk
is a regular triangulation, we have

‖B−1
K ‖ ‖BK‖ ≤ C1 , |det BK | =

meas (K)

meas (K̂)
≤ C2 . (4.37)

Combining (4.33), (4.34), (4.35), (4.36), and (4.37) yields

(qh,µh)0,K ≥ C‖qh‖0,K ‖µh‖0,K . (4.38)

Summing over all triangles K ∈ Tδk
gives the assertion of (4.31). We can prove

(4.32) in the same way if we define qh ∈ RT0,0(δk; Tδk
) according to

`rE(qh) = `rE(µh) , E ∈ Eh(δk) ,

where µh ∈ Mh(S) is chosen arbitrarily.

•
The second key ingredient of the proof of the discrete inf-sup condition is an
appropriate discrete extension of functions λh ∈ RT0,0(δk; Tδk

) to the interior of
Ωs(k). A good extension operator can be defined in the following way:
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Definition 4.6 (Discrete extension operator)
The discrete extension operator Eδk

h : RT0,0(δk; Tδk
) → Nd1(Ωs(k); Ts(k)) is defined

according to

(Eδk
h λh) ∧ n = λh on δk , λh ∈ RT0,0(δk; Tδk

) ,

where all degrees of the freedom not located on δk are set equal to zero.

Using Lemmas 4.2 and 4.3, we can derive the following estimate [XH05, Lemma
4.3].

Lemma 4.7 (Properties of Eδk
h )

For λh ∈ RT0,0(δk; Tδk
) there holds

‖Eδk
h λh‖curl,Ωs(k)

≤ C h
1
2
δk
‖λh‖divτ ,δk

,

where ‖v‖divτ ,δk
:= (‖v‖2

0,δk
+ ‖ divτ v‖2

0,δk
)

1
2 , v ∈ RT0,0(δk; Tδk

).

Proof:

According to the definition of the extension operator Eδk
h and by Lemma 4.2 we

get

‖ curl(Eδk
h λh)‖2

0,Ωs(k)
≤ C h3

s(k)

∑
T∈Tδk

|nT · curl(Eδk
h λh))|T |2

= Ch3
s(k)

∑
T∈Tδk

| divτ (E
δk
h λh ∧ n)|T |2

= C h3
s(k)

∑
T∈Tδk

| divτ (λh)|T |2

≤ C hs(k)‖ divτ (λh)‖2
0,δk

.

Additionally, using Lemma 4.3, we have

‖Eδk
h λh‖2

0,Ωs(k)
≤ Ch3

s(k)

∑
E∈Eh(Ω̄s(k))

|(tE · Eδk
h λh)(x

M
E )|2

= Ch3
s(k)

∑
E∈Eh(Ω̄s(k))

|nE · (Eδk
h λh ∧ n)(xM

E )|2

= Ch3
s(k)

∑
E∈Eh(δk)

|(nE · λh)(x
M
E )|2

≤ hs(k)‖λh‖2
0,δk

.

Adding both inequalities gives Lemma 4.7.

•
The results of Lemmas 4.5 and 4.7 enable us to prove the LBB-condition for the
bilinear form bh(·, ·) (cf. [XH05, Lemma 5.1]).
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Lemma 4.8 (Discrete LBB-condition for bh(·, ·))
The bilinear form bh(·, ·) : Vh ×Mh → R satisfies a discrete inf-sup condition
(LBB-condition) uniformly in hi, i.e. there exists a constant c > 0 independent
of the mesh sizes hi, 1 ≤ i ≤ N , such that

sup
qh∈Vh

bh(qh,µh)

‖qh‖Vh

≥ c‖µh‖Mh
.

Proof:

Given µh ∈ Mh(δk) we define pm
h ∈ RT0,0(δk; Tδk

) by fixing the normal fluxes at
the interior edges of δk, i.e.

`rE(pm
h ) = `rE(µh) , E ∈ Eh(δk) .

Let qm
h ∈ Nd1(Ωs(k); Ts(k)) be the trivial extension of pm

h given by qm
h = Eδk

h pm
h .

Then we have [qm
h ∧ n] = pm

h and, according to Lemma 4.7, we have

‖qm
h ‖curl,Ωs(k)

≤ C h
1
2

s(k) ‖p
m
h ‖divτ ,δk

≤ Ch
− 1

2

s(k)‖p
m
h ‖0,δk

= C h
− 1

2

s(k)‖[q
m
h ∧ n]|δk

‖0,δk
.

Using this inequality and Lemma 4.5, we obtain

(µh, [q
m
h ∧ n]|δk

)0,δk
≥ C‖µh‖0,δk

‖[qm
h ∧ n]|δk

‖0,δk

≥ Ch
1
2

s(k) ‖µh‖0,δk
‖qm

h ‖curl,Ωs(k)

= C‖µh‖− 1
2
,h,δk

‖qm
h ‖curl,Ωs(k)

.

On the other hand,

(µh, [q
m
h ∧ n]|δk

)0,δk
≥ C‖µh‖0,δk

‖[n ∧ qm
h ]|δk

‖0,δk

= Ch
1
2

s(k) ‖µh‖0,δk
h
− 1

2

s(k)‖[q
m
h ∧ n]|δk

‖0,δk

= C‖µh‖− 1
2
,h,δk

‖[qm
h ∧ n]|δk

‖+ 1
2
,h,δk

.

Finally, adding the above inequalities and summing over all δk ⊂ S gives the
assertion.

•
In order to finish the proof of the existence and uniqueness of a solution of (4.28),
it remains to be shown that the bilinear form ah(·, ·) is uniformly elliptic in h
on Ker Bh := {qh ∈ Vh | bh(qh,µh) = 0 ∀µh ∈ Mh(S)}. The proof of this
property is given in the following theorem [Hop99, Theorem 3.2].
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Theorem 4.9 (Ker Bh ellipticity of the bilinear form ah(·, ·))
The bilinear form ah(·, ·) : Vh × Vh → IR is uniformly elliptic on Ker Bh, i.e.
there exists a constant γ > 0 such that for all h

ah(qh,qh) ≥ γ‖qh‖2
Vh

∀qh ∈ Ker Bh .

Proof:

According to the assumptions on χ and σ, we have

ah(qh,qh) ≥ min(σ, χ)‖qh‖2
X .

In contrast to the proof of Theorem 3.2, the space Vh is not a subspace of
H0(curl; Ω). This means that ‖qh‖2

X 6= ‖qh‖2
Vh

. Recalling the definition of
‖qh‖Vh

, we have to show that for qh ∈ Ker Bh

‖[n ∧ qh]|γk
‖+ 1

2
,h,γk

≤ C(‖qh‖2
curl,Ωs(k)

+ ‖qh‖2
curl,Ωm(k)

)1/2 ∀γk ⊂ S .

Let Ph be the L2-projection onto the multiplier space Mh(δk) and let Ih and IT ,
T ∈ Tδk

, be the global respectively local interpolation operators which interpolate
the zero order moments of the normal components with respect to the edges
E ∈ Eh(δk) and E ∈ Eh(T ), T ∈ Tδk

, respectively.

Since qh ∈ KerBh it follows that

‖Ph([n ∧ qh]|γk
)‖2

0,γk
= ([n ∧ qh]|γk

, Ph([n ∧ qh]|γk
))0,γk

= 0 .

Hence, using Lemma 4.4, we obtain

‖[n ∧ qh]|γk
‖0,γk

= ‖(Id− Ph)([n ∧ qh]|γk
)‖0,γk

≤
≤ ‖(Id− Ih)([n ∧ qh]|γk

)‖0,γk
≤ Chδk

‖ divτ [n ∧ qh]|γk
‖0,γk

.

Observing that divτ (n ∧ q|T ) = − curlτ (q|T ), Lemma 4.2 and (4.1) yield

‖[n ∧ qh]|γk
‖2

0,γk
≤

≤ C(h2
δk
‖ divτ (n ∧ qh|γk

)‖2
0,γk

+ κ̄2
γk
h2

%k
‖ divτ (n ∧ qh|%k

)‖2
0,%k

)

≤ Ch4
δk

∑
T∈Tδk

| divτ (n ∧ qh|T )|2 + Cκ̄2
γk
h4

%k

∑
T∈T%k

| divτ (n ∧ qh|T )|2

= Ch4
δk

∑
T∈Tδk

| curlτ (qh|T )|2 + Cκ̄2
γk
h4

%k

∑
T∈T%k

| curlτ (qh|T )|2

≤ Chδk
h3

δk

∑
F∈Fh(Ω̄s(k))

| nF · curl qh |F |2 +

+ Cκ̄2
γk
h%k

h3
%k

∑
F∈Fh(Ω̄m(k))

| nF · curl qh |F |2

≤ Chδk
‖ curl qh‖2

0,Ωs(k)
+ Cκ̄2

γk
h%k
‖ curl qh‖2

0,Ωm(k)

≤ Chδk
(‖ curl qh‖2

0,Ωs(k)
+ ‖ curl qh‖2

0,Ωm(k)
) .
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Finally, multiplying by h−1
δk

results in

‖[n ∧ qh]|δk
‖2

+ 1
2
,h,γk

= h−1
δk
‖[n ∧ qh]|δk

‖2
0,δk

≤ C(‖ curl qh‖2
0,Ωs(k)

+ ‖ curl qh‖2
0,Ωm(k)

)

≤ C(‖qh‖2
curl,Ωs(k)

+ ‖qh‖2
curl,Ωm(k)

) .

•
Lemma 4.8 and Theorem 4.9 imply that the mortar edge element approximation
(4.28) has a unique solution (uh,λh) ∈ Vh ×Mh(S).
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Chapter 5

A Priori Error Estimates

In Chapters 3 and 4 we showed that both the continuous and discrete problem
have a unique solution. However, there are two important questions that have to
be answered. Since we want to find an approximation of the continuous solution,
the first question is if uh, the solution of the discrete problem, converges to u,
the solution of the continuous problem, for decreasing mesh size h. As mentioned
in Section 4.2, the answer to this question strongly depends on the choice of our
finite element space. Moreover, if the answer to the first question is yes, we would
like to know how fast this convergence is, i.e. how the approximation error u−uh

depends on the mesh size h.

In this chapter we will answer these questions. The results of this chapter are
from [XH05]. For the sake of completeness, we will give all proofs of the results.

5.1 Formulation of the Problem Using the Con-

strained Space

In Chapter 4 we formulated the variational problem using the unconstrained
space Vh and introduced the Lagrange multiplier space Mh to weakly enforce
consistency requirements. This approach resulted in an indefinite saddle point
problem. However, for the analysis of the convergence it is more convenient to
formulate the problem using a constrained space which leads to a symmetric
positive definite system.

In order to reformulate the problem, we first have to introduce the L2-projection
Qδk

h : (L2(γk))
2 → Mh(δk) which is defined by

(Qδk
h q,w)0,γk

= (q,w)0,γk
∀w ∈ Mh(δk) . (5.1)

The stability of the L2-projection is given by the following lemma [XH05, Lemma
3.1].
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Lemma 5.1 (Approximation property of Qδk
h )

Let Qδk
h be given by (5.1). Then there holds

‖q−Qδk
h q‖0,γm ≤ C h

1
2
δk
|q| 1

2
,δk
, q ∈ (H

1
2 (δk))

2 . (5.2)

Proof:

Let Ih denote the global interpolation operator associated with the space Mh(δk)
as defined in Section 4.3. Recalling Lemma 4.4 and observing that Qδk

h is a
projector, we have

‖(I−Qδk
h )q‖0,γk

≤ ‖(I− Ih)q‖0,γk
≤ Chδk

|q|1,δk
, q ∈ (H1(δk))

2 ,

and
‖(I−Qδk

h )q‖0,γk
≤ 2‖q‖0,δk

.

Then the assertion of (5.2) follows from a standard interpolation of the preceding
inequalities.

•
Using the projector Qδk

h , we introduce the constrained mortar edge element space

Ṽh := {qh ∈ Vh | Qδk
h (qh ∧ n|%k

) = Qδk
h (qh ∧ n|δk

) , 1 ≤ k ≤M} . (5.3)

Then the mortar finite element approximation of (3.11) is given by:

Find uh ∈ Ṽh such that

ah(uh,qh) = l(qh) ∀qh ∈ Ṽh . (5.4)

Note that the solution of (5.4) is identical to the first component of the solution of
(4.28). Since Ṽh is not contained in H(curl; Ω), the basis for the error estimate
is given by the well-known lemma of Strang (cf., e.g., [Cia78]).

Lemma 5.2 (Strang’s Lemma)
Let u and uh be the solutions of the equations (3.11) and (5.4), respectively.
Then the discretization error is given by

‖u− uh‖ah
≤ C

(
inf

vh∈Ṽh

‖u− vh‖ah
+ sup

qh∈Ṽh\{0}

|ah(u,qh)− l(qh)|
‖qh‖ah

)
:= C(Ea + Ec) ,

where ‖ · ‖ah
= ah(·, ·)

1
2 denotes the energy norm.

Lemma 5.2 shows that the error consists of two terms. The first term Ea, usually
referred to as the approximation error, describes how well a function u can be
approximated by the finite element space Ṽh. The second term Ec, the consis-
tency error, is due to the fact that our finite element space is not contained in
H(curl; Ω). In the following we will first deal with the consistency error.
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5.2 Consistency Error

According to Lemma 5.2, the consistency error is defined by the difference of
volume integrals. However, from the previous analysis we would expect that the
consistency error should be given by interface integrals. Although this sounds
like a contradiction, this is not the case.

If u ∈ H1(curl; Ω) and χ ∈ C1(Ω̄), applying Stokes’ theorem yields

N∑
i=1

(∫
Ωi

curl(χ curl u) · qh dV −
∫

Ωi

χ curl u · curl qh dV

)
= (5.5)

=
N∑

i=1

(n ∧ (χ curl u ∧ n),qh ∧ n)0,∂Ωi
=

M∑
k=1

(n ∧ (χ curl u ∧ n), [qh ∧ n]|γk
)0,γk

.

Note that in this case∫
Ωi

curl(χ curl u) · qh dV =

∫
Ωi

f · qh dV .

Therefore, the consistency error can also be defined by

Ec = sup
qh∈Ṽh\{0}

M∑
k=1

|(n ∧ (χ curl u ∧ n), [qh ∧ n]|γk
)0,γk

|
‖qh‖ah

.

From the above equality it is now clear that the consistency error arises at the
interfaces. An estimate of the consistency error is given by the following theorem
[XH05, Theorem 4.1].

Theorem 5.3 (Consistency error)
Assume u ∈ H1(curl; Ω). Then the consistency error can be estimated as follows

Ec ≤ C

(
N∑

j=1

h2
j ‖ curl u‖2

1,Ωj

) 1
2

.

Proof:

Considering the definition of Ṽh, we obtain using Lemma 5.1 and the trace in-
equality for H1(Ωs(k))

|(n ∧ (χ curl u ∧ n), [qh ∧ n]|γk
)0,γk

|
= |(n ∧ (χ curl u ∧ n)−Qδk

h (n ∧ (χ curl u ∧ n)), [qh ∧ n]|γk
)0,γk

|
≤ ‖n ∧ (χ curl u ∧ n)−Qδk

h (n ∧ (χ curl u ∧ n))‖0,γk
‖[qh ∧ n]|γk

‖0,γk

≤ Ch
1
2
δk
|n ∧ (χ curl u ∧ n)| 1

2
,δk
‖[qh ∧ n]|γk

‖0,γk

≤ Ch
1
2

s(k) ‖ curl u‖1,Ωs(k)
‖[qh ∧ n]|γk

‖0,γk
.
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On the other hand, Theorem 4.9 yields for qh ∈ Ṽh

‖[qh ∧ n]|γk
‖0,γk

≤ Ch
1
2
δk

(‖ curl qh‖0,Ωs(k)
+ ‖ curl qh‖0,Ωm(k)

) . (5.6)

Combining the preceding inequalities, we derive

|Ec| ≤
[ N∑

j=1

Chj‖ curl u‖1,Ωj
(‖ curl qh‖0,Ωi

+ ‖ curl qh‖0,Ωj
)
]
/‖qh‖ah

≤ C
[
‖ curl qh‖0,Ω(

N∑
j=1

h2
j‖ curl u‖2

1,Ωj
)

1
2

]
/‖qh‖ah

≤ C
( N∑

j=1

h2
j ‖ curl u‖2

1,Ωj

) 1
2 .

•

5.3 Approximation Error

The estimation of the approximation error Ea is more involving. The main dif-
ficulty is caused by the fact that we have to find the infimum of the space Ṽh

and not the infimum of Vh. This means that we cannot use standard approxi-
mation properties of the space Vh, since we have to pay attention to the mortar
constraint. To address this problem, we introduce a special projection operator
πδk

h : (L2(γk))
2 → RT0,0(δk; Tδk

) which is defined according to∫
δk

πδk
h (p) · µh dV =

∫
δk

p · µh dV ∀µh ∈ Mh(δk) . (5.7)

The stability of πδk
h is given by the following lemma [XH05, Corollary 4.7].

Lemma 5.4 (Stability of πδk
h )

Let πδk
h be given by (5.7). Then there holds

‖πδk
h (p)‖0,δk

≤ C ‖p‖0,γk
, p ∈ (L2(γk))

2 .

Proof:

On basis of Lemma 4.5 we have

‖πδk
h (p)‖0,δk

≤ C sup
µh∈Mh(δk)

(πδk
h (p),µh)0,δk

‖µh‖0,δk

= C sup
µh∈Mh(δk)

(p,µh)0,δk

‖µh‖0,δk

≤ C ‖p‖0,γk
.

•
Based on Lemma 4.5 we can derive a further property of the projector πδk

h (cf.
[XH05, Lemma 4.8]).
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Lemma 5.5
Let Πh : H1(curl; Ω)∩H0(curl; Ω) → Vh be the standard interpolation operator.
Then we have

‖ divτ π
δk
h [Πhu ∧ n]|γk

‖0,γk
≤ C‖ divτ [Πhu ∧ n]|γk

‖0,γk
.

Proof:

Let P δk
h be the standard RT0(δk; Tδk

)-interpolation operator, given in Section 4.3.
Since P δk

h |T , T ∈ Tδk
, preserves constant tangential traces, we follow the steps of

the proof of Lemma 4.4 and obtain

‖(I − P δk
h )[Πhu ∧ n]|γk

‖2
0,γk

≤ Ch2
δk

∑
T∈Tδk

∑
T ′∩T 6=∅, T ′∈T%k

|[Πhu ∧ n]T |21,T ′∩T

= Ch2
δk

∑
T∈Tδk

‖ divτ [Πhu ∧ n]T‖2
0,T

= C h2
δk
‖ divτ [Πhu ∧ n]|γk

‖2
0,γk

.

Taking roots we get

‖(I − P δk
h )[Πhu ∧ n]|γk

‖0,γk
≤ Chδk

‖ divτ [Πhu ∧ n]|γk
‖0,γk

. (5.8)

Observing that

divτ P
δk
h [Πhu ∧ n]|γk

= W δk
h divτ [Πhu ∧ n]|γk

,

where W δk
h is the L2-projection onto the elementwise constants, we have

‖ divτ P
δk
h [Πhu ∧ n]|γk

‖0,γk
≤ C‖ divτ [Πhu ∧ n]|γk

‖0,γk
. (5.9)

Since (πδk
h − P δk

h )[Πhu ∧ n]|γk
∈ RT0(δk; Tδk

) we obtain by applying Lemma 4.5
and (5.8)

‖(πδk
h − P δk

h )[Πhu ∧ n]|γk
‖0,γk

≤ C sup
µ∈Mh(δk)

((πδk
h − P δk

h )[Πhu ∧ n]|γk
,µ)

‖µ‖0,δk

(5.10)

= C sup
µ∈Mh(δk)

((I − P δk
h )[Πhu ∧ n]|γk

,µ)

‖µ‖0,δk

≤ C hδk
‖ divτ [Πhu ∧ n]|γk

‖0,γk
.

Combining (5.9) and (5.10), we get

‖ divτ π
δk
h [Πhu ∧ n]|γk

‖0,γk
≤

≤ ‖ divτ (π
δk
h − P δk

h )[Πhu ∧ n]|γk
‖0,γk

+ ‖ divτ P
δk
h [Πhu ∧ n]|γk

‖0,γk

≤ Ch−1
δk
‖(πδk

h − P δk
h )[Πhu ∧ n]|γk

‖0,γk
+ ‖ divτ [Πhu ∧ n]|γk

‖0,γk

≤ C‖ divτ [Πhu ∧ n]|γk
‖0,γk

.

•
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Combining these auxiliary results, we can estimate the discretization error of the
mortar edge element method (cf. [XH05, Theorem 4.2]).

Theorem 5.6 (Approximation error)
For any u ∈ H1(curl; Ω) there exists a function qh ∈ Ṽh such that

‖u− qh‖curl,h ≤ C

(
N∑

j=1

h2
j ‖u‖2

1,curl,Ωj

) 1
2

,

where ‖ · ‖curl,h := (
∑N

j=1 ‖ · ‖2
curl,Ωj

)
1
2 .

Proof:

Given u ∈ H1(curl; Ω) we define qh as follows

qh = Πhu−
M∑

k=1

Eδk
h

{
πδk

h [(Πj
hu ∧ n)|δk

− (Πi
hu ∧ n)|%k

]
}
.

From the definition of qh it can easily be seen that qh ∈ Ṽh. Applying Lemmas
4.7, 5.4, and 5.5, we get for each δk ∈ S

‖Eδk
h (πδk

h ((Πj
hu ∧ n)|δk

− (Πi
hu ∧ n)|%k

))‖curl,Ωj
(5.11)

≤ Ch
1
2
δk
‖ divτ

(
πδk

h ((Πj
hu ∧ n)|δk

− (Πi
hu ∧ n)|%k

)
)
‖0,γk

+ C h
1
2
δk
‖πδk

h

(
(Πj

hu ∧ n)|δk
− (Πi

hu ∧ n)|%k

)
‖0,γk

≤ C h
1
2
δk
‖ divτ

(
(Πj

hu ∧ n)|δk
− (Πi

hu ∧ n)|%k

)
‖0,γk

+ C h
1
2
δk
‖(Πj

hu ∧ n)|δk
− (Πi

hu ∧ n)|%k
‖0,γk

:= I1 + I2 .

To estimate the first term I1, we apply Lemma 4.1 and obtain

I1 = Ch
1
2
δk
‖ curlτ ((n ∧ (Πj

hu ∧ n))|δk
)− curlτ ((n ∧ (Πi

hu ∧ n))|%k
)‖0,γk

(5.12)

≤ Ch
1
2
δk

(‖ curlτ
(
(n ∧ (Πj

hu ∧ n))|δk
)− (n ∧ (u ∧ n))|δk

)
‖0,γk

+ ‖ curlτ
(
n ∧ (Πi

hu ∧ n))|%k
)− (n ∧ (u ∧ n))|%k

)
‖0,γk

)

≤ Ch
1
2
δk

( ∑
T∈T (δk)

(‖nT · (curlΠj
hu− curl u)|T‖2

0,T

) 1
2

+
( ∑

T∈T (%k)

(‖nT · (curlΠi
hu− curl u)|T‖2

0,T )
1
2

)
≤ C h

1
2

s(k)

(
h

1
2

s(k)‖ curl u‖1,Ωj
+ h

1
2

m(k)‖ curl u‖1,Ωi

)
.
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For the second term I2 we obtain

I2 ≤ Ch
1
2
δk

(
‖(Πj

hu ∧ n)|δk
− (u ∧ n)|δk

‖0,γk
+ ‖(Πi

hu ∧ n)|%k
− (u ∧ n)|%k

‖0,γk

)
≤ Ch

1
2

s(k)

(
h

1
2

s(k)‖u‖1,curl,Ωj
+ h

1
2

m(k)‖u‖1,curl,Ωi

)
. (5.13)

In view of the standard approximation property

‖u− Πhu‖curl,h ≤ C

(
N∑

j=1

h2
j‖u‖2

1,curl,Ωj

) 1
2

using (5.11), (5.12), and (5.13) results in

‖u− qh‖2
curl,h ≤ C

(
‖u− Πhu‖2

curl,h+

+
M∑

k=1

‖Eδk
h (πδk

h ((Πj
hu ∧ n)|δk

− (Πi
hu ∧ n)))‖2

curl,Ωj
)

≤ C
N∑

j=1

h2
j ‖u‖2

1,curl,Ωj
.

•
Combining the results of Theorems 5.3 and 5.6, we finally derive the estimate for
the approximation error [XH05, Theorem 4.3].

Theorem 5.7 (Error of the solution uh)
Let u ∈ H1(curl; Ω) and uh ∈ Ṽh be the solutions of the equations (3.11) and
(5.4), respectively. Then the discretization error is bounded by

‖u− uh‖ah
≤ C

(
N∑

j=1

h2
j‖u‖2

1,curl,Ωj

) 1
2

.

5.4 Error of the Lagrange Multiplier

In the previous section we proved the convergence of the discrete solution uh of
(5.4). However, since we are concerned with the discrete saddle point problem
(4.28), we have to consider the discrete Lagrange multiplier λh as well. Since λh

approximates the flux λ, λ|γk
:= n ∧ (χ curl u ∧ n)|γk

, we have to require that
λh converges to λ as h tends to zero. The proof of this convergence is given by
the following theorem [XH05, Theorem 5.2].
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Theorem 5.8 (Error of the Lagrange multiplier λh)
Let u ∈ H1(curl; Ω) and (uh,λh) ∈ Vh × Mh(S) be the solutions of (3.11)
and (4.28), respectively. Then the error, related to the Lagrange multiplier, is
bounded by

‖λ− λh‖− 1
2
,h,S ≤ C

(
N∑

j=1

h2
j‖u‖2

1,curl,Ωj

) 1
2

.

Proof:

Applying similar arguments as in [BF91] for mixed finite element methods and
[Woh99b] for the saddle point method for mortar element methods and observing
the inf-sup condition developed in Lemma 4.8, we obtain

‖λ− λh‖− 1
2
,h,S ≤ C(‖u− uh‖ah

+ inf
µh∈Mh

‖λ− µh‖− 1
2
,h,S) .

In Theorem 5.7 we already showed that

‖u− uh‖ah
≤ C

 N ]∑
j=1

h2
j ‖u‖2

1,curl,Ωj

 1
2

. (5.14)

To obtain an upper bound for the second term, we apply Lemma 5.1 and get

inf
µh∈Mh(δk)

‖λ− µh‖− 1
2
,h,δk

= h
1
2
δk

inf
µh∈Mh(δk)

‖λ− µh‖0,δk

≤ Chj ‖n ∧ (χ curl u ∧ n)‖ 1
2
,δk

≤ Chj ‖ curl u‖1,Ωj
.

Summing over all δk gives

inf
µh∈Mh

‖λ− µh‖− 1
2
,h,S ≤ C

(
N∑

j=1

h2
j ‖ curl u‖2

1,Ωj

) 1
2

. (5.15)

Finally, combining the estimates of (5.14) and (5.15) yields the assertion.
•
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Chapter 6

Residual-type A Posteriori Error
Estimator

In the last chapter we showed that the solution of mortar finite element approx-
imation uh converges to the solution u of our model problem as the mesh size
h tends to zero. Although this result is quite encouraging, since it states that
for decreasing h we get better approximations of u, it is not helpful, since we
have to decrease the mesh size globally. However, every refinement of the mesh
is connected with an increase of the number of unknowns and thus results in a
higher computational cost. From this point of view it is clear that we want to
avoid global refinement, if possible, but want to use local refinement to keep the
computational cost as small as possible. Therefore, an important part of any
successful computational method is the development of efficient and reliable a
posteriori error estimators and adaptive refinement strategies.

In the context of standard conforming methods the concepts of error estima-
tion are based on the pioneering work due to Babuska and Rheinboldt [BR78a,
BR78b], which has been further developed by others [AO00, BW85, EJ88, ZZ87].
For further references we refer to [Ver96]. In the context of error estimators for P1
mortar finite element methods we mention [Woh99a, Woh99b, Woh99c]. Residual
based a posteriori error estimators for eddy current equations were introduced in
[BHHW00, BDH+99] and extended in [Sch]. Error estimators for time harmonic
Maxwell’s equations have been considered in [Mon98, Mon03]. For hierarchical
error estimators we refer to [BHW00]. However, as far as mortar finite element
approximations based on Nédélec curl-conforming elements are concerned not
that much work has been done yet.

In this section, we will introduce a residual-type a posteriori error estimator η
for the mortar edge element approximation of the eddy current problem with
respect to the broken energy norm ‖v‖2

ah
:= ah(v,v). In order to develop the

error estimator, we will combine elements of [BHHW00] and [Woh99c] and prove
its efficiency and reliability under certain assumptions.
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The key ingredient for the construction of the error estimator is a direct splitting
of the function space V according to

V = V0 ⊕V⊥ , (6.1)

where V0 stand for the subspace of subdomainwise irrotational vector fields with
vanishing tangential trace on the skeleton, i.e.

V0 := {q ∈ V | curl q|Ωi
= 0 , γt(q)|S = 0 , 1 ≤ i ≤ N} , (6.2)

and V⊥ refers to its orthogonal complement

V⊥ := {q ∈ V | (βq|Ωi
,q0|Ωi

)0,Ωi
= 0 , 1 ≤ i ≤ N ∀q0 ∈ V0} . (6.3)

Note that for q ∈ V0 there exists on each subdomain a function ϕ ∈ H1
0 (Ωi) such

that q|Ωi
= gradϕ. Evidently, the decomposition (6.1) is also orthogonal with

respect to the scalar product induced by the bilinear form ah(·, ·). Unfortunately,
mere existence of such a decomposition is not enough for the construction of the
error estimator. The reliability and the efficiency of the error estimator hinge on
the following assumption (cf. [BHHW00, Mon03] for similar assumptions).

Assumption 1
Let u and uh be the solutions of equations (3.11) and (5.4), respectively. We
assume that for the error eu := u − uh ∈ V a splitting eu = e0

u + e⊥u , e0
u ∈ V0,

e⊥u ∈ V⊥, can be found such that e⊥u |Ωi
∈ H1(Ωi) ∩HΓi

(curl,Ωi) and

|e⊥q |1,Ωi
≤ C(Ωi)‖ curl e⊥u‖0,Ωi

∀q ∈ V⊥ .

We have to make this assumption, since in the derivation of the error estimator
we have to approximate eu by a discrete function eu,h. Since eu is not regular
enough, we cannot use the standard interpolation operator for edge elements but
have to rely on quasi-interpolation operators. As mentioned in [Mon03], there is
currently no such operator that is defined on the whole space V. However, for
V0 there are several quasi-interpolation operators that give good approximations
of e0

u, while for e⊥u we need this assumption at the moment to define a good
interpolant for e⊥u . If better quasi-interpolation operators were available, we
might be able to get rid of this assumption.

Moreover, defining the weighted norm ‖ · ‖L on the skeleton given by

‖v‖L :=

 M∑
k=1

∑
F∈Fh(δk)

hF

χT

‖v‖2
0,F

1/2

,

which is an equivalent norm to ‖ · ‖− 1
2
,h,S, we make the following saturation

assumption:
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Assumption 2
Let u ∈

∏N
i=1 H1(curl,Ωi) and let the jump of n ∧ (curl u ∧ n) vanish on the

skeleton. Then we assume

inf
µh∈Mh

‖λ− µh‖L ≤ Ch‖eu‖ah
, Ch > 0 , (6.4)

with Ch < C0 <∞ for h→ 0 and λ|γk
:= nk ∧ (curl u ∧ nk), 1 ≤ k ≤M .

In the last section we showed that ‖eu‖ah
and infµh∈Mh

‖λ − µh‖− 1
2
,h,S are of

order O(h). If we assume that u has higher regularity than in the previous
chapter, say u ∈

∏N
i=1 H2(curl,Ωi), we have that infµh∈Mh

‖λ − µh‖L is at least

of order O(h3/2), which to some extend justifies Assumption 2. We refer to
[Woh99c, WY05] for similar assumptions.

A consequence of Assumption 2 is that ‖λ − λh‖L ≤ C‖eu‖ah
. Moreover, we

assume that χ and β are piecewise constant functions and that the triangulation
is fine enough to resolve the jumps of the coefficients, i.e. we assume that the
jump occurs at the faces of the elements.

From a physical or mathematical point of view, the contributions of the error
estimator are straightforward. If the coefficients are continuous and no surface
charges or currents are present, we expect both the normal component of the elec-
tric field and the tangential component of the magnetic field to be continuous.
Globally, we cannot expect the discrete solution uh to fulfill the strong formula-
tion of our problem. However, locally on each element T the discrete solution is
smooth and thus we expect it to fulfill the strong formulation. From this point of
view, it is easy to understand that the error estimate involves element and face
residuals and is given by

η2 :=
N∑

i=1

[∑
T∈Ti

2∑
ν=1

(η
(ν)
T )2 +

∑
F∈F int

h (Ωi)

(
(η

(1)
F )2 + (η

(2)
F )2

)]
+ (6.5)

+
M∑

k=1

[ ∑
F∈Fh(δk)

(
(η

(3)
F )2 + (η

(4)
F )2

)
+

∑
F∈Fh(%k)

(η
(5)
F )2

]
,

where the element residuals η
(ν)
T , 1 ≤ ν ≤ 2, are given by

η
(1)
T := min{ hT√

χT

,
1√
βT T

}‖fh − curl(χT curl uh)− βT uh‖0,T , (6.6)

η
(2)
T :=

hT√
βT

‖ div(βT uh)‖0,T . (6.7)

Here fh is the integral mean of f on T ∈ Ti, 1 ≤ i ≤ N , and χT and βT denote
the restrictions of χ and σ to the element T , respectively. The face residuals η

(ν)
F ,

1 ≤ ν ≤ 5, are given by
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η
(1)
F :=

√
hF

χa

‖[n ∧ (χT curl uh ∧ n)]|F‖0,F , F ∈ F int
h (Ωi) , (6.8)

η
(2)
F :=

√
hF

βa

‖[n · (βTuh)]|F‖0,F , F ∈ F int
h (Ωi) , (6.9)

η
(3)
F :=

√
hF

χT

‖λh − {n ∧ (χT curl uh ∧ n)}‖0,F , F ∈ Fh(δk) , (6.10)

η
(4)
F :=

√
χT

hF

‖[uh ∧ n]|F‖0,F , F ∈ Fh(δk) , (6.11)

η
(5)
F :=

√
hF

χT

‖λh − {n ∧ (χT curl uh ∧ n)}‖0,F , F ∈ Fh(%k) , (6.12)

where χa := 0.5 · (χTin
+ χTout), βa := 0.5 · (βTin

+ βTout), and Tout, Tin ∈ Th are
two adjacent elements of the face F . Furthermore, the error estimation involves
the data oscillations

osc2
1 :=

N∑
i=1

∑
T∈Ti

osc2
T , oscT :=

hT√
χT

‖f − fh‖0,T . (6.13)

The data oscillations oscT , T ∈ Ti, 1 ≤ i ≤ N , are of higher order if the right
hand side f is sufficiently smooth. After these preliminaries we are able to state
the following a posteriori estimate for the error eu measured in the broken energy
norm.

Theorem 6.1 (Efficiency and reliability of the error estimator)
There exist positive constants Γν and γν , 1 ≤ ν ≤ 2, depending only on the shape
regularity of the triangulations Ti, 1 ≤ i ≤ N , such that

γ1η
2 − γ2osc2 ≤ ‖eu‖2

ah
≤ Γ1η

2 + Γ2 osc2 . (6.14)

The proof of this theorem will be done in two steps. First we will prove the second
inequality in (6.14), which shows that the error estimator is reliable. Afterwards
we show that the error estimator is efficient, i.e. the first inequality is valid.

6.1 Reliability of the Error Estimator

Without loss of generality, we assume in the following that hT√
χT

= min{ hT√
χT
, 1√

βT
}.

According to Assumption 2, it can easily be seen that the error eu satisfies the
continuous variational problem

ah(eu,v) = r(v) , v ∈ V , (6.15)
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where the residual r(·) is given by r(v) := (f,v)0,Ω − bh(v, λ) − ah(uh,v). Fol-
lowing [Woh99c] and using the decomposition eu = e0

u + e⊥u , we have

ah(eu, eu) = ah(eu, e
0
u) + ah(eu, e

⊥
u ) (6.16)

with

ah(e
0
u, e

0
u) = ah(eu, e

0
u) = (f, e0

u)0,Ω − ah(u
0
h, e

0
u) =: r1(e

0
u) , (6.17)

ah(e
⊥
u , e

⊥
u ) = ah(eu, e

⊥
u ) = (f, e⊥u )0,Ω − bh(e

⊥
u , λ)− ah(uh, e

⊥
u ) =: r2(e

⊥
u ) . (6.18)

We will first consider r1(e
0
u). Recalling that e0

u = gradϕ, ϕ ∈ V , and using the
Galerkin orthogonality r1(gradψh) = 0, ψh ∈ Vh, we obtain by integration by
parts

r1(e
0
u) = r1(grad(ϕ− ψh)) = (6.19)

=
N∑

i=1

(∑
T∈Ti

∫
T

div(βTuh) · (ϕ− ψh) dV +
∑

F∈F int
h (Ωi)

∫
F

[βTuh]|F (ϕ− ψh) dσ
)

≤
N∑

i=1

(∑
T∈Ti

|
∫

T

div(βTuh) · (ϕ− ψh) dV |+
∑

F∈F int
h (Ωi)

|
∫

F

[βTuh]|F (ϕ− ψh) dσ|
)
.

Equation (6.19) shows that an upper bound for r1(e
0
u) strongly depends on the

choice of ψh. For the construction of ψh we use the Scott-Zhang interpolation
operator

P
(i)
S,h : H1

0 (Ωi) → S1,0(Ωi; Ti) , (6.20)

which has the following properties (cf. [SZ90]):

Lemma 6.2 (Properties of the Scott-Zhang interpolation operator)
For T ∈ Ti and F ∈ Fh(Ωi) let D̃T and D̃E be given by

D̃T :=
⋃

{T ′ ∈ Ti | Nh(T
′) ∩Nh(T ) 6= ∅} ,

D̃F :=
⋃

{T ′ ∈ Ti | Nh(T
′) ∩Nh(F ) 6= ∅} ,

where Nh(T ) and Nh(F ) denote the set of nodes of T and F , respectively. Then
there exists a constant C > 0 only depending on the shape regularity of Ti, such
that for v ∈ H1

0 (Ωi) the operator P
(i)
S,h satisfies

‖P (i)
S,hv‖0,T ≤ C‖v‖0,D̃T

,

‖grad P
(i)
S,hv‖0,T ≤ C‖grad v‖0,D̃T

,

‖v − P
(i)
S,hv‖0,T ≤ ChT‖grad v‖0,D̃T

,

‖v − P
(i)
S,hv‖0,F ≤ Ch

1/2
F ‖grad v‖0,D̃F

.
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Setting ψh|Ωi
= P

(i)
S,hϕ|Ωi

we obtain for the integrals in (6.19)

|
∫

T

div(βTuh) (ϕ− ψh) dV | ≤ C
hT√
βT

‖ div(βTuh)‖0,T ‖
√
βT gradϕ‖0,D̃T

,

|
∫

F

[n · βTuh]|F (ϕ− ψh) dσ| ≤ C

√
hF

βa

‖[n · βTuh]‖0,F‖
√
βT gradϕ‖0,D̃F

.

Summing over all elements and faces and observing that ‖e0
u‖ah

= ‖
√
σ gradϕ‖0,Ω,

we have

‖e0
u‖ah

≤ C

 N∑
i=1

(∑
T∈Ti

(η
(2)
T )2 +

∑
F∈F int

h (Ωi)

(η
(2)
F )2

)1/2

. (6.21)

Proving an upper bound for r2(e
⊥
u ) is more involving and hinges on Assumptions 1

and 2. Since Vh is not a subspace of V, we cannot use the Galerkin orthogonality
in this case, but have

ah(uh,vh) + bh(vh,λh) = (f ,vh)0,Ω ∀vh ∈ Vh , (6.22)

and therefore

ah(e
⊥
u , e

⊥
u ) = r2(e

⊥
u ) + bh(vh,λh)− ah(eu,vh)− (f ,vh)0,Ω (6.23)

=
N∑

i=1

∑
T∈Ti

[ ∫
T

(f − fh) z dV +

∫
T

(fh − curl(χT curl uh)− βTuh) z dV
]

+
N∑

i=1

∑
F∈F int

h (Ωi)

∫
F

[n ∧ (χT curl uh ∧ n)]|F z ∧ n dσ

−
M∑

k=1

∑
F∈Fh(δk)

∫
F

(λh − {n ∧ (χT curl uh ∧ n)}) z ∧ n dσ

−
M∑

k=1

∑
F∈Fh(%k)

∫
F

(λh − {n ∧ (χT curl uh ∧ n)}) z ∧ n dσ

+ bh(e
⊥
u ,λh − λ) ,

where z := e⊥u−vh. From equation (6.23) it is clear that upper bounds for ‖e⊥u‖ah

crucially depend on the choice of qh. As mentioned before, standard interpolation
as defined in Chapter 4 cannot be used, since degrees of freedom located on edges
cannot be extended to continuous functionals on H1(Ωi).

To circumvent this problem, one has to resort to quasi-interpolation operators or
averaging operators to determine qh. However, for functions in H(curl; Ω) a good
quasi-interpolation operator (like the Clément interpolator in the case of H1(Ω))
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defined on the whole space H(curl; Ω) is currently not available. In [Sch01, Sch]
a quasi-interpolation operator for Lipschitz domains was introduced that can be
viewed as an analogue of the Clément interpolator. However, its properties make
it difficult to apply it in (6.23). Based on Assumption 1 we use the vector-valued
quasi-interpolation operator

P
(i)
Nd,h : H1(Ωi) ∩H0,Γi

(curl; Ωi) → Nd1,Γi
(Ωi; Ti) , (6.24)

that was introduced in [BHHW00]. The stability and approximation properties

of P
(i)
Nd,h are given by the following lemma [BHHW00, Lemma 5.1].

Lemma 6.3 (Stability and approximation properties of P
(i)
Nd,h)

For T ∈ Ti, F ∈ Fh(Ωi), and E ∈ Eh(Ωi) let DT , DF , and DE be given by

DE :=
⋃

{T ∈ Ti | E ∈ Eh(T )} ,

DF :=
⋃

{DE | E ∈ Eh(F )} ,

DT :=
⋃

{DE | E ∈ Eh(T )} .

Then there exists a constant C > 0, only depending on the shape regularity of
Ti, such that for q ∈ H1(Ωi) the operator P

(i)
Nd,h satisfies

‖P(i)
Nd,hq‖0,T ≤ C ‖q‖1,DT

,

‖ curlP
(i)
Nd,hq‖0,T ≤ C |q|1,DF

,

‖q−P
(i)
Nd,hq‖0,T ≤ C hT |q|1,DT

,

‖q − P
(i)
Nd,hq‖0,F ≤ C h

1/2
F |q|1,DF

.

Choosing vh|Ωi
= P

(i)
Nd,he

⊥
u |Ωi

we get the following estimates for the volume inte-
grals on the right hand side of (6.23)

|
∫

T

(f − fh) z dσ| ≤ C
hT√
χT

‖(f − fh)‖0,T ‖
√
χT e⊥u‖1,DT

, (6.25)

|
∫

T

(fh − curl(χT curl uh)− βTuh) z dσ| ≤ (6.26)

≤ C
hT√
χT

‖fh − curl(χT curl uh)− βTuh‖0,T ‖
√
χT e⊥u‖1,DT

.
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For the face integrals on the right hand side in (6.23) we obtain

|
∫

F

[n ∧ (χT curl uh ∧ n)]|F z ∧ n dσ| ≤ (6.27)

≤ C

√
hF

χa

‖[n ∧ (χT curl uh ∧ n)]|F‖0,F‖
√
χT e⊥u‖1,DF

,

|
∫

F

{λh − {n ∧ (χT curl uh ∧ n)} z ∧ n dσ| ≤ (6.28)

≤ C

√
hF

χT

‖λh − n ∧ (χT curl uh ∧ n)‖0,F‖
√
χT e⊥u‖1,DF

.

Using Assumption 2, we obtain for the last term on the right hand side in (6.23)

bh(e
⊥
u ,λh − λ) ≤

M∑
k=1

∑
F∈Fh(δk)

‖λh − λ‖0,F ‖[e⊥u ∧ n]|F‖0,F

=
M∑

k=1

∑
F∈Fh(δk)

√
hF

χT

‖λh − λ‖0,F

√
χT

hF

‖[e⊥u ∧ n]|F‖0,F

≤ ‖λh − λ‖L ‖[e⊥u ∧ n]|S‖L−1 ≤ C‖eu‖ah
‖[e⊥u ∧ n]|S‖L−1 ,

where ‖[e⊥u ∧ n]|S‖2
L−1 :=

M∑
k=1

∑
F∈Fh(δk)

χT

hF
‖[e⊥u ∧ n]|F‖2

0,F . Using Assumption 1 to

switch from H1-norms back to the relevant energy norm and summing over all
elements gives

‖e⊥u‖2
ah
≤ C

 N∑
i=1

(∑
T∈Ti

((η
(1)
T )2 + osc2T ) +

∑
F∈F int

h (Ωi)

(η
(1)
F )2

)
+ (6.29)

+
M∑

k=1

( ∑
F∈Fh(δk)

(
(η

(3)
F )2 + (η

(4)
F )2

)
+

∑
F∈Fh(%k)

(η
(5)
F )2

)
+

1/2

‖eu‖ah
.

Finally, combining (6.21) and (6.29) gives the assertion of the second inequality
in Theorem 6.1.

6.2 Local Efficiency of the Error Estimator

To establish the lower bound for η, as given by (6.5), we use local bubble func-
tions. For T ∈ Ti, 1 ≤ i ≤ N , and F ∈ Fh(Ωi) we define element bubble functions
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κT and face bubble functions κF according to

κT :=
4∏

ν=1

λ(T )
ν , κF :=

3∏
ν=1

λ(F )
ν ,

where λ
(T )
ν , 1 ≤ ν ≤ 4, and λ

(F )
ν , 1 ≤ ν ≤ 3, are the barycentric coordinates

associated with the vertices p
(T )
ν , 1 ≤ ν ≤ 4, of T and p

(F )
ν , 1 ≤ ν ≤ 3, of F . For

ph ∈ Pk(T ), k ∈ N0, and qh ∈ Pk(F ), k ∈ N0, the following norm equivalences
hold

‖κ1/2
T ph‖0,T ≤ ‖ph‖0,T ≤ C‖κ1/2

T ph‖0,T , (6.30)

‖κ1/2
F qh‖0,F ≤ ‖qh‖0,F ≤ C‖κ1/2

F qh‖0,F . (6.31)

Moreover, we will frequently use the following inverse inequalities for polynomials

‖grad ph‖0,T ≤ h−1
T ‖ph‖0,T , ph ∈ Pk(T ) , k ∈ N0 , (6.32)

‖ curl ph‖0,T ≤ h−1
T ‖ph‖0,T , ph ∈ Pk(T ) , k ∈ N0 , (6.33)

‖ divΓ qh‖0,F ≤ h−1
F ‖qh‖0,F , qh ∈ Pk(F ) , k ∈ N0 . (6.34)

To prove the first inequality in Theorem 6.1, we will consider the local contri-
butions of η separately. We start by proving an upper bound for the volume
residuals.

Lemma 6.4 (Upper bound for the volume residuals)
Let T ∈ Ti, 1 ≤ i ≤ N . Then upper bounds for η

(1)
T and η

(2)
T are given by

η
(1)
T ≤ C (‖eu‖ah,T + oscT ) , (6.35)

η
(2)
T ≤ C ‖eu‖ah,T . (6.36)

Proof:

We start with the proof of (6.35) and set gh := fh − curl(χT curl uh) − βTuh.
Applying the norm equivalence (6.30), we get

χT

h2
T

(η
(1)
T )2 = ‖fh − curl(χT curl uh)− βTuh‖2

0,T ≤ (6.37)

≤ C

∫
T

(fh − curl(χT curl uh)− βTuh) · (κTgh) dV =

= C
[ ∫

T

(fh − f) · (κTgh) dV +

∫
T

(f − curl(χT curl uh)− βTuh) · (κTgh) dV
]
.

Taking into account that (κTgh)|∂T = 0, we obtain using Stokes’ theorem∫
T

curl(χT curl uh) · (κTgh) dV =

∫
T

χT curl uh · curl(κTgh) dV .
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On the other hand, the solution u satisfies∫
T

f · (κTgh) dV =

∫
T

[
χT curl u · curl(κTgh) + βTu · (κTgh)

]
dV . (6.38)

Moreover, using the inverse inequality (6.33), we have

‖gh‖2
ah,T = χ‖ curl gh‖2

0,T + βT‖gh‖2
0,T (6.39)

≤ C

(
χ

h2
T

‖gh‖2
0,T + βT‖gh‖2

0,T

)
≤ C

1

h2
T

‖√χgh‖2
0,T .

Combining equations (6.30),(6.38), and (6.39) yields

‖gh‖2
0,T = ‖fh − curl(χT curl uh)− βTuh‖2

0,T ≤ C
[ ∫

T

(fh − f) · (κTgh) dV+

+

∫
T

(χT curl eu · curl(κT gh) + βTeu · (κT gh)) dV
]

≤ C

(
‖ 1
√
χT

(f − fh)‖0,T ‖
√
χTgh‖0,T + ‖eu‖ah,T ‖gh‖ah,T

)
≤ C

(
‖ 1
√
χT

(f − fh)‖0,T +
1

hT

‖eu‖ah,T

)
‖√χTgh‖0,T .

Finally, observing equation (6.37), the volume residual η
(1)
T is bounded from above

by
η

(1)
T ≤ C (‖eu‖ah,T + oscT ) .

Likewise, in order to verify (6.36), we set gh := div(βTuh). Green’s formula
together with (6.30) yields

βT

h2
T

(η
(2)
T )2 = ‖ div βTuh‖2

0,T ≤ (6.40)

≤ C

∫
T

div(βTuh)(κTgh) dV = −C
∫
T

βTuh · grad(κTgh) dV .

Recalling that div f = 0, we obtain for the solution u∫
T

βTu · grad(κTgh) dV =

∫
T

f · grad(κTgh) dV = −
∫
T

div f · κTgh dV = 0 .

Combining the equations above, we get

‖ div βTuh‖2
0,T ≤ C

∫
T

βTeu · grad(κTgh) dV ≤ (6.41)

≤ C‖
√
βTeu‖0,T‖

√
βT grad(κTgh)‖0,T ≤ Ch−1

T ‖
√
βTgh‖0,T‖

√
βTeu‖0,T .
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Inserting (6.41) into (6.40) gives

η
(2)
T ≤ C‖eu‖ah,T ,

which proves (6.36).
•

In the second step we prove an upper bound for the face residuals in the interior
of Ωi.

Lemma 6.5 (Upper bound for the face residuals η
(1)
F and η

(2)
F )

For F ∈ F int
h (Ωi), 1 ≤ i ≤ N , such that F = T̄1∩ T̄2 for some Tν ∈ Ti, 1 ≤ ν ≤ 2,

let η
(1)
F and η

(5)
F be given by (6.8) and (6.9), respectively. Then the face residuals

η
(1)
F and η

(5)
F are bounded from above by

η
(1)
F ≤ C

2∑
ν=1

(
‖eu‖ah,Tν + η

(1)
Tν

+ oscTν

)
, (6.42)

η
(2)
F ≤ C

2∑
ν=1

(
‖eu‖ah,Tν + η

(2)
Tν

)
. (6.43)

Proof:

In order to prove (6.42), we set gh := [n ∧ χT curl uh]|F and define a continuous
piecewise polynomial function g̃h on T1 ∪ T2 such that

g̃h ∧ n|F = gh and ‖g̃h‖0,Tν ≤ Ch
1/2
Tν
‖gh‖0,F , 1 ≤ ν ≤ 2 .

Using (6.31), we obtain

χa

hF

(η
(1)
F )2 = ‖[n ∧ (χT curl uh ∧ n)]|F‖2

0,F ≤ (6.44)

≤ C

∫
F

[n ∧ (χT curl uh ∧ n)]|F · (κF g̃h ∧ n) dσ .

Applying Stokes’ theorem, we can rewrite the term on the right hand side of
(6.44) according to∫

F

[n ∧ (χT curl uh ∧ n)]|F · (κF g̃h ∧ n) dσ =

=
2∑

ν=1

∫
Tν

χT curl uh · curl(κF g̃h) dV −
2∑

ν=1

∫
Tν

curl(χT curl uh) · (κF g̃h) dV .
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Observing that u satisfies

2∑
ν=1

∫
Tν

[
χT curl u · curl(κF g̃h) + βTu · (κF g̃h)

]
dV =

2∑
ν=1

∫
Tν

f · (κF g̃h) dV

and that κF g̃h is bounded by ‖κF g̃h‖ah,Tν ≤ C 1
hT
‖√χκF g̃h‖0,T , we get

‖[n ∧ (χT curl uh ∧ n)]|F‖2
0,F ≤ C

[ 2∑
ν=1

∫
Tν

(f − fh) · (κF g̃h) dV+

+

∫
Tν

(fh − curl(χT curl uh)− βTuh) · (κF g̃h) dV−

−
∫
Tν

(
χT curl eu · curl(κF g̃h) + βTeu · (κF g̃h)

)
dV
]
≤

≤ C‖√χagh‖0,F

2∑
ν=1

[√hTν

χT

(
‖f − fh‖0,Tν+

+ ‖fh − curl(χT curl uh)− βTuh‖0,Tν

)
+ h

−1/2
Tν

‖eu‖ah,Tν

]
.

Finally, in view of the shape regularity of the triangulations Ti, 1 ≤ i ≤ N , we
arrive at

η
(1)
F ≤ C

2∑
ν=1

(‖eu‖ah,Tν + η
(1)
Tν

+ oscTν ) ,

which proves (6.42).

For the proof of (6.43) we follow along the same lines. We set gh := [n · βT uh]|F
and extend it continuously to a polynomial function g̃h on T1 ∪ T2 such that

‖g̃h‖0,Tν ≤ Ch
1/2
Tν
‖gh‖0,F , 1 ≤ ν ≤ 2 . (6.45)

Applying Green’s theorem and (6.31) to the face residual η
(2)
F yields

βa

hF

(η
(2)
F )2 = ‖[n · βT uh]|F‖2

0,F ≤ C

∫
F

[n · βT uh]|F κFgh dσ =

= C

2∑
ν=1

∫
Tν

(
div(βTuh)(κFgh) + βTuh · grad(κFgh)

)
dV .

Since div f = 0 the solution u satisfies

2∑
ν=1

∫
Tν

βTu · grad(κFgh) dV = 0 .
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If we observe (6.31), (6.32), and (6.45), we end up with

‖[n · βT uh]‖2
0,F ≤ C

2∑
ν=1

∫
Tν

(
div(βTuh)(κFgh)− βTeu · grad(κFgh)

)
dV ≤

≤ C‖
√
βagh‖0,F

2∑
ν=1

(
h

1/2
Tν
‖ div

√
βTuh‖0,Tν + h

−1/2
Tν

‖
√
βTeu‖0,Tν

)
,

which gives

η
(5)
F ≤ C

2∑
ν=1

(
‖eu‖ah,Tν + η

(2)
Tν

)
.

•
An upper bound for η

(4)
F is given by the following lemma.

Lemma 6.6 (Upper bound for η
(4)
F )

For F ∈ Fh(δk), 1 ≤ k ≤ M , let the face residual η
(4)
F be given by (6.11). Then

the sum of these face residuals is bounded from above by

M∑
k=1

∑
F∈Fh(δk)

χT

hF

‖[uh ∧ n]|F‖2
0,F ≤ C ‖eu‖2

ah
. (6.46)

Proof:

Let Qδk
h : (L2(γk))

2 → Mh(δk) be the L2-projection operator of Lemma 5.1. Then
there exists a constant CΓ > 0 such that∑

T∈γk

1

hF

‖q−Qδk
h q‖2

0,γk
≤ CΓ |q|21

2
,γk

, ∀q ∈ (H
1
2 (γk))

2 . (6.47)

Moreover, since both [Qδk
h (uh∧n)]|F = 0 and [Qδk

h (u∧n)]|F = 0, we get by means
of (6.47) and Assumption 1

M∑
k=1

∑
F∈γk

χF

hF

‖[uh ∧ n]|F‖2
0,F =

=
M∑

k=1

∑
T∈γk

χF

hF

‖[(u ∧ n− uh ∧ n)−Qδk
h (u ∧ n− uh ∧ n)]|F‖2

0,F

≤
M∑

k=1

(
χΩs(k)

|(u|Ωs(k)
− uh|Ωs(m)

) ∧ n| 1
2
,γk

+

+ χΩm(k)
|(u|Ωm(k)

− uh|Ωm(k)
) ∧ n| 1

2
,γk

)
≤ ĈΓ‖eu‖2

ah
,
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where χΩi
is the maximum of χ restricted to Ωi and the constant ĈΓ depends on

the variation of χ on the subdomains.
•

In order to finish the proof of Theorem 6.1, we have to deal with the face residuals
η

(3)
F and η

(5)
F . An upper bound for η

(3)
F can be established quite easily and is given

by the following lemma.

Lemma 6.7 (Upper bound for η
(3)
F )

Assume F ∈ Fh(δk) such that F = T̄ ∩ δk for some T ∈ Ts(k) and let η
(3)
F be given

by (6.10). Then the face residual η
(3)
F satisfies

η
(3)
F ≤ C(‖eu‖ah,T + η

(1)
T +

√
hF

χT

‖λ− λh‖0,F + oscT ) . (6.48)

Proof:

For the proof of (6.48), we set gh := n ∧ (χT curl uh ∧ n) − λh and define a
continuous piecewise polynomial function g̃h on T such that

‖g̃h‖0,T ≤ Ch
1/2
T ‖gh‖0,F and (g̃h ∧ n)|F = gh . (6.49)

Then we have

χT

hF

(η
(1)
F )2 = ‖n ∧ (χT curl uh ∧ n)− λh‖2

0,F ≤ (6.50)

≤ C

∫
F

(n ∧ (χT curl uh ∧ n)− λh) · (κF g̃h ∧ n) dσ .

Applying Stokes’ theorem gives∫
F

(n ∧ (χT curl uh ∧ n)) · (κF g̃h ∧ n) dσ = (6.51)

∫
T

χT curl uh · curl(κF g̃h) dV −
∫
T

curlχT curl uh · (κF g̃h) dV .

According to Assumption 2, the solution u satisfies∫
T

f · (κF g̃h) dV = (6.52)

∫
T

[
χT curl u · curl(κF g̃h) + βTu · (κF g̃h)

]
dV −

∫
F

λ · (κF g̃h ∧ n) dσ .
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Using (6.51), (6.52) in (6.50) and observing (6.33), (6.49), we get

‖λh − n ∧ (χT curl uh ∧ n)‖2
0,F ≤

≤ C
[ ∫

T

(f − fh) · (κF g̃h) dV +

∫
T

(
fh − curl(χT curl uh)− βTuh

)
· (κF g̃h) dV

−
∫
T

(
χT curl eu · curl(κF g̃h) + βTeu · (κF g̃h)

)
dV+

+

∫
F

(λ− λh) · (κF g̃h ∧ n)
]

≤ C‖√χTgh‖0,F

[√hT

χT

(
‖f − fh‖0,T + ‖fh − curl(χT curl uh)− βTuh‖0,T

)
+

1
√
χT

‖λ− λh‖0,F + h
−1/2
Tν

‖eu‖ah,T

]
.

Finally, in view of the shape regularity of the triangulations Ti, 1 ≤ i ≤ N , we
arrive at

η
(3)
F ≤ C

(
‖eu‖ah,T + η

(1)
T +

√
hF

χT

‖λ− λh‖0,F + oscT

)
,

which is (6.48).
•

In contrast to the previous lemma, the restriction of (λh−n∧(χT curl uh∧n))|F
to faces of the master interface is not a polynomial on F . Thus an upper bound
for η

(5)
F cannot be established as easily as for η

(3)
F .

Lemma 6.8 (Upper bound for η
(5)
F )

For F ∈ Fh(%k), 1 ≤ k ≤M , let the face residuals η
(5)
F be given by (6.12). Then

an upper bound for the sum of these face residuals is given by

M∑
k=1

∑
F∈Fh(δk)

hF

χT

‖λh − n ∧ (χT curl uh ∧ n)‖2
0,F ≤ C(‖eu‖2

ah
+ osc2) . (6.53)

Proof:

Let ΠF : (L2(F ))2 → P0(F ), F ∈ Fh(%k), be the weighted L2-projection given
by ∫

F

κF ΠF (v)p dσ =

∫
F

κFvp dσ ∀p ∈ P0(F ) .

Then we have

‖λh − n ∧ (χT curl uh ∧ n)‖0,F ≤
≤ ‖ΠF (λh)− n ∧ (χT curl uh ∧ n)‖2

0,F + ‖λh − ΠF (λh)‖0,F .
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Using the same techniques as in the proof of Lemma 6.7, we get√
hF

χT

‖ΠF (λh)− {n ∧ (χT curl uh ∧ n)}‖0,F ≤

≤ C
(
‖eu‖ah,T + η

(1)
T +

√
hF

χT

‖λ− ΠF (λh)‖0,F + oscT

)
≤ C

(
‖eu‖ah,T + η

(1)
T +

√
hF

χT

‖λ− λh‖0,F +

+

√
hF

χT

‖λh − ΠF (λh)‖0,F + oscT

)
,

where F ∈ ∂T . To finish the proof, we have to estimate ‖λh−ΠF (λh)‖0,F . Since
the projection ΠF preserves constant vectors, we surely have

‖λh − ΠF (λh)‖0,F ≤ ChF‖ divΓ λh‖0,F .

Observing the shape regularity of the triangulations and that λh|γk
∈ H(div, γk),

we get ∑
F∈Fh(%k)

hF‖ divΓ λh‖0,F ≤ C
∑

F∈Fh(δk)

hF‖ divΓ λh‖0,F .

Moreover, using (6.34) gives

hF‖ divΓ λh‖0,F ≤ ‖λh − {n ∧ (χT curl uh ∧ n)}‖0,F ,

for F ∈ Fh(δk). Summing over all faces F and using the shape regularity of the
triangulations together with the results of the previous lemmas, we obtain (6.53).

•
Finally, combining the results of Lemmas 6.4 - 6.8 proves the first inequality in
(6.14).
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Chapter 7

Multilevel Based Iterative
Solution

In realistic three-dimensional problems the edge element discretization of the
saddle point problem (4.28) can result in a high dimensional system of linear
equations where the number of unknowns can range from 105 to 108. If we
want to solve these equations, we cannot rely on direct solvers, but have to
use iterative methods. However, in the setting of Maxwell’s equations standard
iterative solvers like the Jacobi or Gauss-Seidel method fail [AFW00, Hip98].
Especially, if β � χ, the convergence rates can be worse than 0.9999, which
indicates the poor behaviour of standard solvers for these problems.

The reason for this failure is the fact that the bilinear form a(·, ·) behaves in an
utterly different way on the large kernel of the curl-operator and its orthogonal
complement. Thus an essential feature of an efficient iterative solver will be
the appropriate treatment of the nontrivial kernel of the discrete curl-operator.
In [AFW00, Hip98] two different approaches have been proposed in order to
come to terms with this problem. In [Ste03] the multigrid method described
in [Hip98, Hip02a] has been successfully applied for time harmonic eddy current
equations. Mortar edge element methods based on Nédélec’s edge elements of the
second family have been treated in [BBM02]. For the solution of the resulting
linear equation the conjugate gradient method has been used with an additive
multigrid as preconditioner. However, no special treatment of the kernel has
been done. So far the author is not aware of any attempt to apply adaptive
multigrid ideas to mortar edge element methods that take care of the kernel of
the curl-operator in an appropriate way.

In order to address the problems arising for the construction of a good iterative
solver for mortar edge element methods, we will first discuss this issue for an edge
element discretization with respect to a shape regular and conforming simplicial
triangulation Th of the computational domain Ω before we extend the results to
the mortar setting.

91
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7.1 Iterative Solver for the Conforming Setting

In case of a single grid approximation, we have to compute uh ∈ Nd1,0(Ω; Th)
such that∫

Ω

(
χ curl uh ·curl qh +βuh ·qh

)
dV =

∫
Ω

f ·qh dV ∀qh ∈ Nd1,0(Ω; Th) . (7.1)

Following standard procedures, we define a finite element basis of Nd1,0(Ω; Th),

i.e. we assume Nd1,0(Ω; Th) = span{q(ν)
E | 1 ≤ ν ≤ nh}. Identifying the edge

element function uh ∈ Nd1,0(Ω; Th) with a vector uh ∈ IRnh , the algebraic form
of (7.1) can be written as (

Aχ
h + Aβ

h

)
uh = bh , (7.2)

where Aχ
h = (aνµ,χ)nh

ν,µ=1, Aβ
h = (aνµ,β)nh

ν,µ=1, and bh = (b1, ..., bnh
)T are given by

aνµ,χ :=

∫
Ω

χ curl q
(ν)
E · curl q

(µ)
E dV , 1 ≤ ν, µ ≤ nh ,

aνµ,β :=

∫
Ω

β q
(ν)
E · q(µ)

E dV , 1 ≤ ν, µ ≤ nh ,

bν :=

∫
Ω

f · q(ν)
E dV , 1 ≤ ν ≤ nh .

The stiffness matrix Aχ
h has a nontrivial kernel due to the kernel of the discrete

curl-operator. The influence of this nontrivial kernel will be illustrated by the
following example. For simplicity, we assume that the algebraic system (7.2)
reduces to (

Aχ
h + βAβ

h

)
xh = bh , (7.3)

where

Aχ
h :=

(
1 −1

−1 1

)
, Aβ

h :=

(
1 0

0 1

)
,

and β > 0. The eigenvalues of Aχ
h are λ

(1)
h = 0 and λ

(2)
h = 2 with the associated

eigenvectors v
(1)
h = (1, 1)T and v

(2)
h = (1,−1)T , respectively. If we use the damped

Jacobi iteration with damping parameter ω1 > 0 to solve equation (7.3), the error

e
(k)
h := xh − x

(k)
h with respect to the k-th iterate x

(k)
h ∈ IR2 satisfies

e
(k+1)
h = Mhe

(k)
h , (7.4)
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where
Mh := Ih −

ω1

1 + β
(Aχ

h + βAβ
h) . (7.5)

If we split the error according to e
(k)
h = α

(1)
k v

(1)
h + α

(2)
k v

(2)
h , we obtain for the

individual components of the error

Mhv
(1)
h = (1− ω1

β

1 + β
)v

(1)
h ,

Mhv
(2)
h = (1− ω1

2 + β

1 + β
)v

(2)
h .

If we use the optimal damping parameter ω1 = 1, we have

Mhv
(1)
h = +

1

1 + β
v

(1)
h ,

Mhv
(2)
h = − 1

1 + β
v

(2)
h .

In the case β � 1 the fraction 1/(1 + β) tends to 1, which means that both
components of the error are hardly reduced. However, if we choose the damping
parameter according to ω1 = (1 + β)/(2 + β), we obtain

Mhv
(1)
h =

2

2 + β
v

(1)
h ,

Mhv
(2)
h = 0

for the components of the error. This choice of the damping parameter is optimal
with respect to α

(2)
k v

(2)
h . However, for β � 1 we observe a very bad damping for

the component α
(1)
k v

(1)
h . The best available damping for α

(1)
k v

(1)
h will be obtained

if we choose the biggest possible damping parameter ω1 = (2β+2)/(2+β). This
choice yields

Mhv
(1)
h =

2− β

2 + β
v

(1)
h ,

Mhv
(2)
h = −v

(2)
h .

We see that even in this case small values of β lead to a poor damping of the
error. Taking this into account, we see that the component α

(1)
k v

(1)
h , living in the

kernel of Aχ
h, experiences a very bad damping in case β � 1, whereas the other

component α
(2)
k v

(2)
h , living in the orthogonal subspace, is satisfactorily damped if

we choose the damping parameter appropriately.

A convenient remedy to improve the convergence of the iterative process, as
proposed in [Hip99], is to perform a defect correction on the kernel of Aχ

h. Given

the iterate x
(k+1/2)
h obtained by applying one step of the damped Jacobi iteration
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to (7.3) with x
(k)
h as startiterate, the defect with respect to this iterate is given

by

d
(k)
h = bh − (Aχ

h + βAβ
h)x

(k+1/2)
h ,

x
(k+1/2)
h =

(
Ih −

ω1

1 + β
(Aχ

h + βAβ
h)
)
x

(k)
h +

ω1

1 + β
bh .

For the correction on the kernel of Aχ
h we have to define the matrix Ch and

the vector rk
h which represent the restriction of Aχ

h + βAβ
h and of dk

h onto this
subspace, respectively. Setting

Ch := (v
(1)
h )T

(
Aχ

h + βAβ
h

)
v

(1)
h = (v

(1)
h )TβAβ

hv
(1)
h = 2β ,

r
(k)
h := (v

(1)
h )Td

(k)
h ,

the scalar defect correction takes the form

Chc
k
h = r

(k)
h

and results in the new iterate

x
(k+1)
h = x

(k+1/2)
h + ω2c

k
hv

(1)
h = x

(k+1/2)
h + ω2

(
C−1

h r
(k)
h

)
v

(1)
h , (7.6)

where the correction has been damped by the factor ω2 > 0. The iteration
operator M̂h associated with (7.6) is given by

M̂h =
(
Ih − ω2v

(1)
h C−1

h (v
(1)
h )T (Aχ

h + βAβ
h)
)(

Ih −
ω1

1 + β
(Aχ

h + βAβ
h)
)
.

Taking into account that Ch = 2β, we obtain for the two components of the error

M̂hv
(1)
h = (1− ω2)(1− ω1

β

1 + β
)v

(1)
h , (7.7)

M̂hv
(2)
h = (1− ω1

2 + β

1 + β
)v

(2)
h , (7.8)

which shows that excellent damping properties for both components of the error
can be achieved if we choose the damping parameters ω1 and ω2 appropriately.

This simple example already showed the main ingredients of the hybrid smoother
introduced in [Hip99]. In the context of iterative solvers for the edge element
discretization (7.1) the above mentioned defect correction will be performed on
the nontrivial kernel of the discrete curl-operator. This kernel is given by the
subspace of irrotational vector fields spanned by the gradients of the conforming
P1 finite elements.

Then for the defect correction we have to compute ϕh ∈ S1,0(Ω; Th) such that∫
Ω

β gradϕh · grad vh dV = r(vh) ∀vh ∈ S1,0(Ω; Th) (7.9)
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where r(·)(k+1/2) denotes the residual

r(vh)
(k+1/2) := `(grad vh)− ah(u

(k+1/2)
h ,grad vh) , vh ∈ S1,0(Ω; Th) .

Assuming S1,0(Ω; Th) = span{ϕ(ν)
h | 1 ≤ ν ≤ mh}, we define the stiffness matrix

Ch = (cνµ)mh
ν,µ=1 and the residual vector r

(k+1/2)
h = (r

(k+1/2)
1 , ..., r

(k+1/2)
mh )T according

to

cνµ :=

∫
Ω

β gradϕ
(ν)
h · gradϕ

(µ)
h dV , 1 ≤ ν, µ ≤ mh ,

r(k+1/2)
ν := r(k+1/2)(ϕ

(ν)
h ) , 1 ≤ ν ≤ mh .

If we identify ϕh ∈ S1,0(Ω; Th) with a vector ϕh ∈ IRmh , we obtain for the defect
equation (7.9) the algebraic form

Chϕh = r
(k+1/2)
h . (7.10)

Recalling the example, we obtain a hybrid iterative process, applying classical
iterative methods to the fully edge element discretized problem and to the de-
fect correction problem. In particular, if we use the symmetric SOR method as
smoother, a cycle of the hybrid iterative solver is given by the following steps:

Step 1: SSOR step on the edge element discretized problem

Compute u
(k+1/2)
h ∈ IRnh by applying ν1 steps of the symmetric SOR method to

the algebraic system
Ahuh = bh ,

using u
(k)
h as a startiterate.

Step 2: Correctional SSOR sweep on the defect correction problem

Compute ϕ
(k+1/2)
h ∈ IRmh by performing ν2 steps of the symmetric SOR scheme

on
Chϕh = r

(k+1/2)
h ,

using 0 as a startiterate.

Step 3: Additive correction

Denoting by ψ
(k+1/2)
h ∈ IRnh the vector representing gradϕ

(k+1/2)
h ∈ Nd1,0(Ω; Th),

ϕ
(k+1/2)
h ∈ S1,0(Ω; Th), the new iterate u

(k+1)
h ∈ IRnh is given by

u
(k+1)
h = u

(k+1/2)
h +ψ

(k+1/2)
h .

Although the hybrid smoother as defined above, has improved damping properties
the performance of an iterative solver using this smoother in each step is still

95



CHAPTER 7. MULTILEVEL BASED ITERATIVE SOLUTION

poor for high-dimensional algebraic systems. This behavior, also observed for
other standard smoothers, suggests to use multigrid methods applying the hybrid
iterative process as a smoother on all levels j of the hierarchy Tj, 0 ≤ j ≤ L,
of nested simplicial triangulations of the computational domain Ω as well as an
iterative solver on the lowest level j = 0.

The convergence of multigrid V-cycles with the hybrid smoother and canonical in-
tergrid transfers has been analyzed in [Hip98] (cf. also [Hip02b]) in the framework
of multiplicative Schwarz iterations with respect to a multilevel decomposition of
the edge element space Nd1,0(Ω; TL) with respect to the finest grid.

Considering the superior smoothing properties of the hybrid smoother, a natural
idea is to apply this smoother to problems discretized by mortar edge elements.
However, as will be shown in the following sections, transferring these concepts
to linear equations arising from mortar methods shows severe problems. To
illustrate this, we will first consider the iterative solution of algebraic equations
that arise when using the constrained space.

7.2 Iterative Solver for the Constrained Formu-

lation

To simplify the presentation, we will restrict ourselves to the case of two domains
Ω̄ = Ω̄s∪Ω̄m, where Ωs and Ωm denote the slave and master domain, respectively.
Of course we require Ωs ∩ Ωm = ∅ and denote by Σ̄ = Ω̄s ∩ Ω̄m the common
interface of the two domains. Following Section 5.1, we equip both domains with
meshes Ts and Tm. Using the L2-projection QΣs

h , we introduce the constrained
mortar edge element space Ṽh:

Ṽh := {qh ∈ Vh | QΣs
h (qh ∧ n|Σm) = QΣs

h (qh ∧ n|Σs)} ,
Vh := {qh ∈ L2(Ω)3 | qh|Ωi

∈ Nd1,Γi
(Ωi; Ti) , i = s,m} ,

where Σ̄s = Ω̄s ∩ Σ̄ and Σ̄m = Ω̄m ∩ Σ̄. Then we have to find uh ∈ Ṽh such that

ah(uh,qh) = l(qh) ∀qh ∈ Ṽh , (7.11)

where the bilinear form ah(·, ·) : Ṽh × Ṽh → IR is given by

ah(uh,qh) =
∑

i=s,m

∫
Ωi

(χ curl uh · curl qh + β uh · qh) dV . (7.12)
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In order to apply the hybrid smoother, we have to consider the spaces Ṽ0
h and

Ṽ⊥
h which are given by

Ṽ0
h := {gradϕh | ϕh ∈ Sh, and for any Σs = Σm = Σ,

QΣs
h (gradϕh ∧ n|Σm) = QΣs

h (gradϕh ∧ n|Σs)} ,
Sh := {ϕh ∈ L2(Ω) | ϕh|Ωi

∈ S1,Γi
(Ωi; Ti) , i = s,m} ,

Ṽ⊥
h := {qh | qh ∈ V⊥

h , and for any Σs = Σm = Σ,

QΣs
h (qh ∧ n|Σm) = QΣs

h (qh ∧ n|Σs)} ,
V⊥

h := {qh ∈ L2(Ω)3 | qh|Ωi
∈ (gradS1,Γi

(Ωi; Ti))
⊥ , i = s,m} .

If we follow the steps of the hybrid smoother, we first have to perform one smooth-
ing step on the full problem (7.12) discretized by the space Ṽh followed by a
correction step of (7.12) restricted to the space Ṽ0

h. Although this approach was
quite successful in the conforming setting, it fails in this case. This failure is due
to the fact that the space Ṽh is not a direct sum of the spaces Ṽ⊥

h and Ṽ0
h, but

we have

Ṽh = Ṽ0
h ⊕ Ṽ⊥

h ⊕ Ỹh . (7.13)

To give a characterization of the space Ỹh, we have to take a closer look at the
mortar constraint. Considering the spaces S1,Γm(Ωm; Tm) and S1,Γs(Ωs; Ts), we
cannot expect that

QΣs
h

(
gradS1,Γm(Ωm; Tm)

)
⊂ QΣs

h

(
gradS1,Γs(Ωs; Ts)

)
or

QΣs
h grad

(
S1,Γs(Ωs; Ts)

)
⊂ QΣs

h

(
gradS1,Γm(Ωm; Tm)

)
in the general case of nonmatching triangulations at the interface Σ. Therefore,
it is possible that there exists ϕm,h ∈ S1,Γm(Ωm; Tm) with no matching function
ϕs,h ∈ S1,Γs(Ωs; Ts) such that

QΣs
h (gradϕm,h ∧ n|Σm) = QΣs

h (gradϕs,h ∧ n|Σs) . (7.14)

However, due to the fact that QΣs
h is a surjective mapping of Nd1,Γs(Ωs; Ts) onto

Mh(S), it is possible to find qs,h ∈ Nd1,Γs(Ωs; Ts) such that

QΣs
h (gradϕm,h ∧ n|Σm) = QΣs

h (qs,h ∧ n|Σs) . (7.15)

This means that the function q̃h which is defined according to

q̃h|Ωs := qs,h ,

q̃h|Ωm := gradϕm,h
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is an element of Ṽh but neither an element of Ṽ⊥
h nor of Ṽ0

h. Moreover, q̃h cannot
be written as a linear combination of elements of these two spaces. Of course it
might also be possible that there exist functions ṽh ∈ Ṽh such that

ṽh|Ωm = qm,h , qm,h ∈ Nd1,Γm(Ωm; Tm) ,

ṽh|Ωs = gradϕs,h , ϕs,h ∈ S1,Γs(Ωs; Ts) .

From the definition of these functions it is clear that they are neither pure gra-
dients nor are they pure elements of the orthogonal complement. Therefore, Ỹh

might be called the space of “mixed gradients”. If we compare the eigenvalues of
Ah, the matrix representation of ah(·, ·), we notice that the eigenvalues related
to Ỹh are greater than the ones related to Ṽ0

h, but smaller than those related
to Ṽ⊥

h . Thus the spectrum of Ah consists of three nonintersecting blocks, while
in the conforming case we have only two blocks. The new block of eigenvalues
associated with Ỹh causes great problems for an iterative solver as will be shown
by the following two-dimensional example. Although the example is very simple
— two subdomains, eight triangles — it incorporates all important aspects that
are encountered in more complicated problems.

Ωm
Ωs

PPm
Ps

Σm Σs

x

y

Figure 7.1: 2D computational domain of the example.

For this example we use the computational domain depicted in Figure 7.1 and set
χ = 1 and β = 10−2. Moreover, we assume zero Dirichlet boundary conditions
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and choose the left subdomain as master side and accordingly the right subdomain
as slave side.

As in the conforming case, we assume Nd1,Γi
(Ωi; Ti) = span{q(ν)

E,i | 1 ≤ ν ≤ ni},
i = s,m, ns = nm = 6, and identify the edge element function ui ∈ Nd1,Γi

(Ω; Ti)
with a vector ui ∈ IRni . We divide the unknowns in each subdomain into two
blocks: the first block ui

Int contains the unknowns associated with edges in the
interior of Ωi, while the second block ui

Σi\∂Σi
contains the unknowns associated

with edges in the interior of Σi. So far we have ns +nm = 12 variables. However,
the actual number of unknowns is smaller, since us

Σs\∂Σs
is connected to um

Σm\∂Σm

via the mortar matching conditions. We have

us
Σs\∂Σs

= Qum
Σm\∂Σm

,

where Q is a rectangular full rank matrix obtained from the discretization of the
matching condition. Introducing the following matrices

A :=

(
Am 0

0 As

)
, Q̃ :=


Id 0 0

0 Id 0

Q 0 0

0 0 Id

 ,

where Ai := Ai
χ + Ai

β, i = s,m, is given by

ai
νµ,χ :=

∫
Ωi

χ curl q
(ν)
E,i · curl q

(µ)
E,i dV , 1 ≤ ν, µ ≤ ni ,

ai
νµ,β :=

∫
Ωi

β q
(ν)
E,i · q

(µ)
E,i dV , 1 ≤ ν, µ ≤ ni ,

and setting y := (um
Σm\∂Σm

,um
Int,u

s
Int)

T and b := (bm1 , ..., b
m
nm
, bs1, ..., b

s
ns

)T , with

biν :=
∫
Ωi

f ·q(ν)
E,i dV , 1 ≤ ν ≤ ni, the solution of (7.11) is computed by solving the

symmetric positive definite system

Ã y = Q̃TAQ̃y = Q̃Tb . (7.16)

Before applying the hybrid smoother to this problem, it is advisable to first have
a look at the spectrum of Ã. As mentioned before, the elements of Ỹh depend
strongly on the relationship between the triangulations Ts and Tm on Σm and Σs.

To show the influence of this relationship, we start with a matching triangulation
at the interface and increase the y-coordinate of the point P on the master side
gradually to obtain nonmatching triangulations. The scaling of the four smallest
eigenvalues of the matrix Ã are shown in Figure 7.2.
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Figure 7.2: Scaling of the four smallest eigenvalues of Ã.

In the case of matching triangulations on Σm and Σs, we have Ỹh = ∅, which
gives a similar situation as in the conforming case. The three smallest eigenvalues
are connected with the subspace Ṽ0

h, while the other eigenvalues are associated
with Ṽ⊥

h . If we increase the y-coordinate of point P , one of the three smallest
eigenvalues is increasing drastically compared with the others. This increase is
due to the fact that in this case the space Ỹh is no longer empty. Now, we have
the following situation:

• The two smallest eigenvalues, which do not change their value much, are
connected with the space Ṽ0

h.

• The third smallest eigenvalue, which is increasing by a great amount, is
related to the space Ỹh, which is one-dimensional in this example.

• The remaining eigenvalues are related to the space Ṽ⊥
h . Their values do

not change much with increasing values of the y-coordinate.

Applying standard iterative solvers to (7.16) gives a similar result as in the con-
forming case. If β � χ, error components related to both the spaces Ṽ0

h and
Ỹh are hardly reduced, while we get a good reduction of the error on Ṽ⊥

h . If we
apply a correction step on Ṽ0

h, we can achieve that the error components related
to Ṽ0

h and Ṽ⊥
h are reduced quite well but we still have almost no reduction of the

error on Ỹh.

A natural consequence would be to perform a second correction step on Ỹh. How-
ever, this idea is connected with the problem that we have to compute a basis for
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Ỹh. Since the elements of Ỹh depend on the relationship of the triangulations at
the interface and on the operator QΣs

h , this task can be extremely complicated for
arbitrary independent meshes on the subdomains. Not to mention how difficult
it would be to give a finite element basis for Ỹh.

Moreover, in order to perform the correction on Ṽ0
h, we have to compute a basis

for this space. Again this is quite a difficult task, since it involves the operator
QΣs

h , which is defined via surface integrals. Thus for general problems we will not
be able to find a finite element basis for these two spaces without increasing the
computational cost considerably.

Summarizing the results of this section, we can expect the hybrid smoother,
extended by a second correction step on Ỹh, to be a good choice to solve (7.11)
from the theoretical point of view. However, this method is connected with great
problems for practical implementation, which makes it impossible to use unless
a relative easy way is found to compute basis functions for Ṽ0

h and Ỹh.

7.3 Iterative Solver for the Unconstrained For-

mulation

As seen in the last section, one major problem for the iterative solution of (7.11)
is that we have to compute basis functions for the constrained space Ṽ0

h, which
involves the operator QΣs

h . However, we can avoid these computationally expen-
sive calculations if we use unconstrained spaces. Of course, this change is not
for free, since in this case we have to solve an indefinite saddle point problem.
Recalling Section 4.4, this saddle point problem is given by:

Find (uh,λh) ∈ Vh ×Mh(S) such that

ah(uh,qh) + bh(qh,λh) = `(qh) ∀qh ∈ Vh , (7.17)

bh(uh,µh) = 0 ∀µh ∈ Mh(S) .

Introducing finite element bases for the spaces Vh (Ω) and Mh (S), the mortar
edge element approximation (7.17) can be written as the algebraic saddle point
problem (

Ah BT
e,h

Be,h 0

)(
uh

λh

)
=

(
bh

0

)
, (7.18)

where Be,h denotes the matrix associated with the bilinear form bh(·, ·) and the
block matrix Ah is given by

Ah :=


A

(1)
h 0

. . .

0 AN
h

 ,
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where the A
(i)
h , 1 ≤ i ≤ N , are the matrix representations of the edge element

discretized subdomain problems. The right hand side vector bh = (b
(1)
h , ...,b

(N)
h )T

results from the representation of `h(·) restricted to Nd1,Γi
(Ωi; Ti), 1 ≤ i ≤ N .

In order to solve the symmetric but indefinite linear system (7.18), we use iterative
schemes based on the iterative solver proposed in [BD98, BDW00]. This solver
is based on the following concept. Suppose that Ph is a preconditioner for Ah

which satisfies

vT
h Ahvh ≤ vT

h Phvh , vh ∈ Vh ,

and has the property that the linear system(
Ph BT

e,h

Be,h 0

)(
vh

µh

)
=

(
dh

eh

)
(7.19)

can be solved more easily. Then the iterative solver has the form:

Given
(
u

(0)
h ,λ

(0)
h

)
, compute

(
u

(k+1)
h ,λ

(k+1)
h

)
by

(
u

(k+1)
h

λ
(k+1)
h

)
=

(
u

(k)
h

λ
(k)
h

)
+ (7.20)

+

(
Ph BT

e,h

Be,h 0

)−1 [(
bh

0

)
−

(
Ah BT

e,h

Be,h 0

)(
u

(k)
h

λ
(k)
h

)]
,

where the superscripts denote the iteration indices of the smoothing steps. Ac-
cording to the construction of the smoother, the iterates u

(k)
h always satisfy the

mortar constraint, i.e.

Be,hu
(k)
h = 0 , k > 0 .

As mentioned in Section 7.1, the successful application of iterative schemes to
Maxwell’s equations crucially depends on treating the kernel of the curl-operator
and its orthogonal complement in an appropriate way. If we consider the iterative
error of (7.20), which is given by(

e
(k+1)
u

e
(k+1)
λ

)
=

(Idh −P−1
h BT

e,h

(
Be,hP

−1
h BT

e,h

)−1
Be,h

) (
Idh −P−1

h Ah

)
e

(k)
u(

Be,hP
−1
h BT

e,h

)−1
Be,h

(
Idh −P−1

h Ah

)
e

(k)
u

 ,

where e
(k)
u = u∗h − u

(k)
h , e

(k)
λ = λ∗h − λ

(k)
h , and (u∗h,λ

∗
h) is the solution of (7.18),

we observe that the Lagrangian error e
(k+1)
λ does not depend on e

(k)
λ but is only

dependent on e
(k)
u . Additionally, e

(k)
u strongly depends on Idh − P−1

h Ah, which
indicates that we have to use a preconditioner that performs well on both spaces
V0

h and V⊥
h .
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The natural consequence of these properties is to use the hybrid smoother as
preconditioner Ph. This choice has the benefit of guaranteeing good smoothing
on both the kernel and its complement on each subdomain independent of the
triangulations at the interfaces. Especially we have no counterpart of the space
Ỹh in this case. However, this choice is not advisable from the algorithmic point
of view as will be described in the following section.

7.3.1 Hybrid Smoother as Preconditioner Ph

One condition for the choice of the preconditioner Ph was the requirement that
the linear system (7.19) is relatively easy to solve. In actual computations the
solution of this system is given by

Shµh = Be,hP
−1
h dh − eh , (7.21)

vh = P−1
h (dh −BT

e,hµh) , (7.22)

where
Sh := Be,hP

−1
h BT

e,h (7.23)

is the Schur complement of (7.19). According to the definition of the hybrid
smoother, the inverse of Ph is given by

P−1
h = P−1

e,h + ThP
−1
n,hT

T
h (Idh −AhP

−1
e,h) ,

where P−1
e,h and P−1

n,h denote an iterative step, like a Jacobi or Gauss-Seidel step, on
Ah and Ch, respectively. Th denotes the matrix associated with the embedding
of V0

h into Vh. Then the Schur complement has the form

Sh = Be,h(P
−1
e,h + ThP

−1
n,hT

T
h (Idh −AhP

−1
e,h))B

T
e,h =

= Be,hP
−1
e,hB

T
e,h + Be,hThP

−1
n,hT

T
h (Idh −AhP

−1
e,h)B

T
e,h =: Se,h + Sn,h .

For the further analysis it is important to consider Se,h and Sn,h separately.
Since Be,h satisfies an inf-sup condition, the matrix Se,h is regular and well-
conditioned if Pe,h is chosen appropriately. However, for Sn,h the situation is less
encouraging. According to the properties of Th, Ah, and Pe,h, we can neglect
Be,hThP

−1
n,hT

T
hAhP

−1
e,hB

T
e,h and can assume that

Sn,h ≈ Be,hThP
−1
n,hT

T
hBT

e,h .

Since TT
h is a rectangular matrix that has a large kernel, the square matrix Sn,h

is not regular. If we compare the spectrum of Se,h and Sn,h, we observe that
for β � χ the positive eigenvalues of Sn,h are much bigger than the eigenvalues
of Se,h. In some sense this situation is similar to the situation in Section 7.1.
Recalling the example given in that section, standard iterative solvers or even the
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conjugate gradient method would fail for the solution of the Schur complement
equation (7.21), since error components related to the kernel of Sn,h will not be
damped effectively.

To solve (7.21) an new hybrid smoother would be needed that performs a cor-
rectional step on the kernel of Sn,h. Since the kernel of Sn,h is caused by the
interaction of the matrices Th and BT

e,h, the kernel has to be calculated and can-
not be stated a priori as in the case of the kernel of the curl-operator. Moreover,
the structure of this kernel crucially depends on the relationship between the
triangulations on the master and on the slave interface. Thus finding a basis for
the kernel can result in an extremely ill-conditioned problem, which means that
the hybrid smoother would be an excellent choice for the preconditioner if we
were be able to solve the Schur complement system, which is not possible at the
moment.

7.3.2 Split Preconditioners

In the last section we used the hybrid smoother as preconditioner for the iterative
solver. However, this method is not a direct implementation of the ideas of the
hybrid smoother. In Section 7.2 we observed that the application of the hybrid
smoother to the constrained algebraic system would be successful if we could
avoid the occurrence of the space Ỹh. As mentioned in that section, the space
Ỹh would be empty if for given ϕm(k),h ∈ S1,Γm(k)

(Ωm(k); Tm(k)), 1 ≤ k ≤M , there
existed at least one ϕs(k),h ∈ S1,Γs(k)

(Ωs(k); Ts(k)) such that

Q
Σs(k)

h (gradϕm(k),h ∧ n|Σm(k)
) = Q

Σs(k)

h (gradϕs(k),h ∧ n|Σs(k)
) .

Recalling the simple example in Section 7.2, this condition will not be fulfilled
for independent triangulations on the interfaces γk. Therefore, we have to require
that the triangulations Tδk

and T%k
obey certain compatibility conditions. At the

moment we are only able to show that the space Ỹh is empty if the triangulation
T%k

is contained in Tδk
, i.e. Tδk

is an arbitrary refinement of T%k
. Although this

does not allow for independent triangulations on the interfaces, we are still able
to use different mesh sizes on the subdomains.

Then, defining the space of discrete potentials by

Sh := {ϕh ∈ L2(Ω) | ϕh|Ωi
∈ S1,Γi

(Ωi; Ti) , 1 ≤ i ≤ N} ,

we have to compute a correction (ϕh,νh) ∈ Sh ×Mh(S) such that

ch(ϕh, ψh) + bh(gradψh,νh) = r(gradψh) ∀ψh ∈ Sh , (7.24)

bh(gradϕh,µh) = 0 ∀µh ∈ Mh(S) , (7.25)
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where the bilinear form c(·, ·) is given by

ch(ϕh, ψh) :=
N∑

i=1

∫
Ωi

β gradϕh|Ωi
· gradψh|Ωi

dV . (7.26)

Introducing a nodal basis for S1,Γ(Ωi; Ti), 1 ≤ i ≤ N , the defect correction (7.24)
can be written as the algebraic saddle point problem(

Ch DT
h

Dh 0

)(
uh

νh

)
=

(
rh

0

)
, (7.27)

where by Ch denotes the block matrix

Ch :=


C

(1)
h 0

. . .

0 C
(N)
h

 ,

where the C
(i)
h , 1 ≤ i ≤ N , and Dh are the matrix representations of ch(·, ·) and

bh(·, ·) restricted to S1,Γ(Ωi; Ti)×S1,Γ(Ωi; Ti) and gradSh×Mh(S), respectively.

Moreover, rh = (r
(1)
h , ..., r

(N)
h )T denotes the vector associated with rh(·) restricted

to gradS1,Γ(Ωi; Ti).

However, equation (7.27) does not have a unique solution for νh, since Dh does
not fulfill an inf-sup condition for the whole space Mh(S). In order to guarantee
the existence and uniqueness of a solution to (7.27), we have to use a subspace of
Mh(S) for the correction equation. To determine this subspace, we have to look
at the mortar matching condition

bh(gradϕh,µh) :=
∑
γk∈S

∫
γk

[n ∧ gradϕh] |γk
µh dσ = 0 ∀µh ∈ Mh(S) , (7.28)

more closely. Using (7.28), we can write the Lagrange multiplier space Mh(S) as
the direct sum of two spaces, i.e.

Mh(S) = M1
h(S)⊕M2

h(S) ,

M1
h(S) := {µh ∈ Mh(S) | bh(gradϕh,µh) = 0 ∀ϕh ∈ Sh} ,

M2
h(S) := {µh ∈ Mh(S) | ∃ϕh ∈ Sh : µh = n ∧ gradϕh|S} .

Note that according to the construction of Mh(S) the space of M2
h(S) is well-

defined and is the orthogonal complement of M1
h(S) with respect to the L2 inner

product on S. Since equation (7.28) is automatically fulfilled if we take Lagrange
multipliers from M1

h(S), it is sufficient to consider M2
h(S) as Lagrange multiplier

space for the defect correction. Then the correction problem is given by(
Ch BT

n,h

Bn,h 0

)(
uh

νh

)
=

(
rh

0

)
, (7.29)
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where Bn,h denotes the matrix associated with the bilinear form bh(·, ·) restricted
to gradSh ×M2

h(S). Resulting from the definition of M2
h(S), the bilinear form

bh(·, ·) restricted to Sh × M2
h(S) fulfills an inf-sup condition, which guarantees

the existence and uniqueness of a solution of (7.29).

We are now in a position to state the hybrid iterative process with respect to the
mortar edge element approximation of the eddy current equations:

Step 1: Iterative sweeps on the mortar edge element discretized prob-
lem

Compute (q
(µ1)
h ,µ

(µ1)
h ) by applying µ1 > 0 preconditioned Richardson iterations

to the saddle point problem (7.18):(
q

(k+1)
h

µ
(k+1)
h

)
=

(
q

(k)
h

µ
(k)
h

)
− (7.30)

−

(
Pe,h BT

e,h

Be,h 0

)−1{(
Ah BT

e,h

Be,h 0

)(
q

(k)
h

λ
(k)
h

)
−

(
bh

0

)}
,

where Pe,h := diag (P
(1)
e,h, ...,P

(N)
e,h ) with P

(i)
e,h, 1 ≤ i ≤ N , represent damped

Jacobi or Gauss-Seidel sweeps on the subdomain problems. As startiterates we
choose (q

(0)
h ,µ

(0)
h ) = (u

(j)
h ,λ

(j)
h ) and set (u

(j+1/2)
h ,λ

(j+1/2)
h ) := (q

(µ1)
h ,µ

(µ2)
h ).

Step 2: Defect correction on the irrotational part

Compute (ϕ
(µ2)
h ,η

(µ2)
h ) by the application of µ2 > 0 preconditioned Richardson

iterations to the defect correction problem (7.27):(
ϕ

(k+1)
h

ν
(k+1)
h

)
=

(
ϕ

(k)
h

ν
(k)
h

)
− (7.31)

−

(
Pn,h BT

n,h

Bn,h 0

)−1 {(
Ch BT

n,h

Bn,h 0

) (
ϕ

(k)
h

ν
(k)
h

)
−

(
r
(j+1/2)
h

0

)}
,

where Pn,h := diag (P
(1)
n,h, ...,P

(N)
n,h ) with P

(i)
n,h, 1 ≤ i ≤ N , are damped Jacobi or

Gauss-Seidel sweeps on the defect correction problems associated with the indi-
vidual subdomains and r

(k+1/2)
h is the vector representing rh(·) with uh replaced

by u
(j+1/2)
h . Moreover, we choose (ϕ

(0)
h ,ν

(0)
h ) = (0, 0) as startiterates.

Step 3: Additive correction

Denoting by vh the vector representing the embedding of gradϕ
(µ2)
h , ϕ

(µ2)
h ∈ Sh,

into the space Vh, set

u
(j+1)
h := u

(j+1/2)
h + vh ,

λ
(j+1)
h := λ

(j+1/2)
h + ν

(µ2)
h .
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Since the Schur complements of (7.30) and (7.31) are given by

Se,h = Be,hP
−1
e,hB

T
e,h

and Sn,h = Bn,hP
−1
n,hB

T
n,h ,

we have to compute P−1
e,h and P−1

n,h for the solution of the corresponding Schur
complement systems, which can be very costly. From a computational point of
view, a significant simplification of the Schur complement can be achieved if we
use a nondiagonal preconditioner only for the unknowns associated with edges
(Step 1) and grid points (Step 2) in the interior of the subdomains, whereas we
apply a diagonal preconditioner on the skeleton of the decomposition.

Splitting the unknowns uh andϕh into blocks associated with the unknowns in the
interior of the subdomains and those situated on the skeleton, this simplification
results in the solution of block systems of the form

P̃e,h 0 0

0 α1Idh B̃T
e,h

0 B̃e,h 0




u
(I)
h

u
(S)
h

λh

 =


b

(I)
h

b
(S)
h

0

 (7.32)

and 
P̃n,h 0 0

0 α2Idh B̃T
n,h

0 B̃n,h 0



ϕ

(I)
h

ϕ
(S)
h

ηh

 =


r
(I)
h

r
(S)
h

0

 . (7.33)

When solving (7.32) and (7.33), we are faced with the solution of Schur comple-
ment systems with the Schur complements

S̃e,h := α−1
1 B̃e,h B̃T

e,h , (7.34)

S̃n,h := α−1
2 B̃n,h B̃T

n,h . (7.35)

As shown in [BD98], the fact that both B̃e,h and B̃n,h fulfill inf-sup conditions
imply the existence of constants Ci > 0, 1 ≤ i ≤ 2, independent of the subdomain
triangulations and the number of subdomains such that the spectral condition
numbers κ(B̃e,h B̃T

e,h) and κ(B̃n,h B̃T
n,h) are bounded by

κ(B̃e,h B̃T
e,h) ≤ C1 , (7.36)

κ(B̃n,h B̃T
n,h) ≤ C2 . (7.37)

Therefore, the Schur complement systems encountered in the smoothing steps
can be efficiently solved by a conjugate gradient iteration.

Assuming that the problem is H2-regular in the sense that for given f ∈ L2 (Ω)
the solution u is an element of H2(Ω)∩H0(curl; Ω), a smoothing and an approx-
imation property can be established by following the steps described in [BDW00]
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and applying classical multigrid convergence theory combined with duality argu-
ments for nonconforming finite element approximations.

These properties assure the multigrid convergence of W-cycles with a convergence
rate that is independent of the number of subdomains, the number of levels in the
hierarchies of triangulations, and the granularities of the triangulations [Hac85]
if sufficiently many smoothing steps are chosen. However, in most practical real-
izations multigrid iterations with V-cycles and only a few smoothing steps show
a better performance [BDW00].
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Chapter 8

Numerical Results

In Chapter 6 we showed that the error estimator provides a norm equivalence
for the true error with constants that depend on the domain Ω, the physical
coefficients β and χ, and the shape regularity of the triangulations. Moreover,
in Chapter 7 we developed a multigrid iterative scheme with a convergence rate
which is independent of the number of levels. However, there is no information
about the actual size of these constants or about the convergence rate. Addition-
ally, we had to make assumptions on the solution and the domain that are not
met in many cases relevant for practical applications.

Since the performance of the error estimator and the multigrid scheme is deter-
mined by these constants, it is desirable to know more about them. In many cases
we will not be able to find values for these constants or for the convergence rate
theoretically. To offset these shortcomings, we have to demonstrate the perfor-
mance of the error estimator and the multigrid scheme by actual computations.
Of course we are not able to cover the whole range of electromagnetic problems
with our test problems. Therefore, we will present a variety of typical settings,
confirm the validity of the methods, and give information about the constants
for these problems.

8.1 Multigrid Convergence

We first study the convergence of V(1,1)-cycles applied to (4.28). For simplicity,
we start with experiments carried out on the domain Ω with Ω̄ = Ω̄m∪ Ω̄s, where
Ωm = (0, 1)3 is the master and Ωs = (1, 2)× (0, 1)2 the slave domain (cf. Figure
8.1). Each domain is equipped with a uniform tetrahedral mesh. Moreover, in
order to comply with the compatibility condition on the triangulations at the
interface, we choose the initial triangulations such that the triangulation of the
slave interface is a regular refinement of the master triangulation, i.e. we have
hm = 2hs.
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Figure 8.1: Initial triangulation of the computational domain for Experiments
1 to 5. The triangulation of the slave interface (right) is a regular refinement
of the triangulation of the master interface (left).

The coarsest grid T0 consists of 26 tetrahedra, which are successively regularly
refined to create the hierarchy of triangulations T1, ... , TL. Since we use linear
finite elements for the discretization of the problem, it is sufficient to use Gaussian
quadrature of order 2 for the computation of the stiffness matrix.

We set the right hand side f = 0 and impose homogenous Dirichlet boundary
conditions on ∂Ω. The rate of convergence is determined from the reduction of
the Euclidian norm of the residual in the last of 30 multigrid iterations, i.e. we
set

ρL :=
‖r30

L ‖
‖r29

L ‖
.

To prevent results depending on the startiterate we use a random guess for the
startiterate and present the average rate of two runs in each experiment.

Experiment 1 (V(1,1)-Multigrid with full split preconditioner)
As mentioned in Chapter 3, the values of β are determined by the conductivity σ
and the timestep τ . In computations we have to face problems with both small
and big values for σ and τ . To address this we investigate the influence of the
relative scaling of different parts of the bilinear form and set the coefficients χ ≡ 1
and β = const, but vary the ratio χ/β.

For the solution of (4.28) we apply multigrid V(1,1)-cycles using the full split
preconditioner, given by (7.30) and (7.31), for pre- and postsmoothing and as
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iterative solver on the lowest level. In both steps of the smoother symmetric
Gauss-Seidel sweeps are used for P

(1)
h and P

(2)
h . In each smoothing iteration the

computationally most costly process is the solution of the Schur complement sys-
tem. The best way to minimize this hidden cost is to solve the Schur complement
system by preconditioned conjugate gradient iterations. Since it would be to ex-
pensive to assemble the Schur complement matrices Se,h and Sn,h, we have to use
a simplification of Se,h and Sn,h for preconditioning. Setting

De,h := diag(Ah) ,

Dn,h := diag(Ch) ,

we approximate Se,h and Sn,h by

D̃
(1)
e,h := Be,hD

−1
e,hB

T
e,h , (8.1)

D̃
(1)
n,h := Bn,hD

−1
n,hB

T
n,h , (8.2)

and use a symmetric Gauss-Seidel step on D̃
(1)
e,h and D̃

(1)
n,h as preconditioner. The

convergence rates of the multigrid V(1,1)-cycle are given in Table 8.1.

Level 2 3 4 5

β = 10−4 0.505 0.606 0.657 0.678

β = 10−2 0.504 0.606 0.657 0.678

β = 1 0.492 0.601 0.656 0.677

β = 102 0.224 0.446 0.578 0.678

β = 104 0.212 0.220 0.257 0.310

Table 8.1: Multigrid convergence rates for Experiment 1.

For small values of β the convergence rates quickly saturate for increasing number
of levels. For β = 102 and β = 104 this saturation cannot be seen for the
considered number of levels. If the number of levels is small, equation (4.28) is
dominated by the properties of the matrix Aβ

h. Since β � χ the eigenvalues of Aχ
h

are relatively small on coarse grids. However, if we increase the number of levels,
the eigenvalues of the matrix Aχ

h will tend to infinity, while the eigenvalues of Aβ
h

stay bounded. Thus on coarse grids the convergence rate will be determined by
the properties of the matrix Aβ

h, while on finer grids Aχ
h is dominant as in the

case of small values of β. Therefore, a saturation of the convergence rates will be
observed if we further increase the number of levels. Considering this behaviour,
the computations show that the convergence rates are uniformly bounded as
predicted in Chapter 7. Moreover, the convergence of the multigrid method is
robust with respect to the values of χ/β.
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Experiment 2 (V(1,1)-Multigrid without node correction)
To investigate the influence of the additional smoothing in potential space, we use
the same setting as in Experiment 1, but apply multigrid V(1,1)-cycles omitting
the defect correction on the subspace of irrotational vector fields. The conver-
gence rates of this multigrid method are given in Table 8.2.

Level 2 3 4 5

β = 10−4 - - - -

β = 10−2 0.998 0.999 0.999 0.999

β = 1 0.949 0.979 0.981 0.985

β = 102 0.354 0.623 0.872 0.943

β = 104 0.257 0.291 0.297 0.394

Table 8.2: Multigrid convergence rates for Experiment 2. “-” indicates that the
convergence rate is worse than 0.9999.

As expected from the analysis in Chapter 7, the standard multigrid methods
fails for small values of β. However, if β is considerably big and the mesh is
not too fine, this multigrid method might still be able to produce satisfactory
results. As mentioned in Experiment 1, this is due to the fact that in this case
equation (4.28) is dominated by the properties of Aβ

h. Since Aβ
h does not contain

a differential operator, multigrid methods which do not take care of the kernel
of the curl-operator can cope with the problem. However, if we proceed to finer
grids, this multigrid method will fail as well.

Experiment 3 (V(1,1)-Multigrid without compatibility condition)
In Chapter 7 we had to introduce a compatibility condition to obtain an efficient
smoother for our problem. It is natural to ask if this condition is really necessary.
To address this question, we repeat Experiment 1, however, this time we choose
the initial triangulation at the interface such that the compatibility condition is
not fulfilled. As indicated by Tables 8.1 and 8.2, the performance of the smoother
is determined by small values of β. Therefore, we only consider β = 1 in this
experiment. Note that for smaller values of β the results will be even worse. The
convergence rates for this experiment are given in Table 8.3. The results show
that the compatibility condition is really essential for the smoother.

Although in Experiments 1 and 2 an approximation of the Schur complement is
used for preconditioning, it can be extremely time consuming to assemble these
matrices. Without parallelization of the assembling routines, a successful appli-
cation of this multigrid method is limited by the high computational cost needed
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Level 2 3 4 5

β = 1 0.531 0.733 0.877 0.949

Table 8.3: Multigrid convergence rates for Experiment 3.

for the preconditioner. Of course we could use a more simplified Schur comple-
ment matrix as preconditioner for the conjugate gradient method. However, this
results in an increase of the number of iterative steps needed to solve the Schur
complement system. A remedy of this problem is given by replacing the full split
preconditioner by its simplified version.

Experiment 4 (V(1,1)-Multigrid with simplified split preconditioner)
In order to compare the performance of multigrid cycles based on the simpli-
fied split preconditioner with previous results, we repeat Experiment 1, but
use the simplified split preconditioner, given by (7.32) and (7.33), for pre- and
postsmoothing and as iterative solver on the lowest level. We use symmetric
Gauss-Seidel sweeps for P̃

(1)
h and P̃

(2)
h , whereas we apply a damped Jacobi sweep

for the unknowns on the skeleton of the decomposition.

For the solution of the Schur complement systems we use the conjugate gradient
method preconditioned by

D̃
(2)
e,h := diag(D̃

(1)
e,h) and D̃

(2)
n,h := diag(D̃

(1)
n,h) ,

respectively. The convergence rates obtained by this multigrid method are given
in Table 8.4.

Level 2 3 4 5

β = 10−4 0.540 0.650 0.729 0.744

β = 10−2 0.540 0.648 0.720 0.744

β = 1 0.527 0.626 0.678 0.726

β = 102 0.351 0.521 0.613 0.723

β = 104 0.320 0.369 0.402 0.463

Table 8.4: Multigrid convergence rates for Experiment 4.

As in Experiment 1, the convergence rates saturate for small values of β, while
for bigger values a saturation is not observed for the considered number of levels.
However, applying the same arguments as in Experiment 1, the convergence
rates will saturate on higher levels as well. Comparing Tables 8.1 and 8.4, we
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see that the convergence of the full split preconditioner is not significantly better
than the convergence of the simplified split preconditioner. However, if we take
into account that the simplified split preconditioner offers more possibilities for
parallelization and that solving the Schur complement system is cheaper in this
case, it is more efficient to use the simplified split preconditioner.

So far we considered examples with constant coefficients. As mentioned in Sec-
tion 3.2, problems with discontinuous coefficients β or χ can benefit from the
application of mortar methods. Therefore, we will investigate the behaviour of
the multigrid method for problems with strongly varying coefficients.

Experiment 5 (Discontinuous coefficient β and χ)
In this experiment we use the same geometric setting as in Experiment 1, but
now the coefficients depend on space. We set

β(x) :=

{
β0 , x ∈ Ωs

1 , x ∈ Ωm

, χ(x) :=

{
χ0 , x ∈ Ωs

1 , x ∈ Ωm

,

and vary χ0 and β0. Moreover, in order to compare the full and simplified split
preconditioner, we use both preconditioners for the solution of the algebraic equa-
tions. The convergence rates for this experiment are given in Table 8.5. The
values in parentheses are the convergence rates obtained by the simplified split
preconditioner whereas the others are the convergence rates of the full split pre-
conditioner. If we set χ|Ωs ≡ 1, β|Ωs ≡ 1, and vary χ and β on Ωm, we get
similar results. Comparing the results of Tables 8.1, 8.4, and 8.5, we see that
the convergence rates are almost the same, which shows the robustness of the
method with respect to large jumps in the coefficient functions χ and β.

Level 2 3 4 5

χ0 = 1 β0 = 10−4 0.50 (0.53) 0.61 (0.64) 0.66 (0.69) 0.68 (0.74)

χ0 = 1 β0 = 10−2 0.51 (0.53) 0.61 (0.64) 0.66 (0.69) 0.68 (0.74)

χ0 = 1 β0 = 102 0.23 (0.49) 0.45 (0.59) 0.58 (0.68) 0.68 (0.75)

χ0 = 1 β0 = 104 0.21 (0.43) 0.34 (0.59) 0.46 (0.68) 0.60 (0.75)

χ0 = 10−4 β0 = 1 0.53 (0.62) 0.63 (0.70) 0.66 (0.72) 0.71 (0.76)

χ0 = 10−2 β0 = 1 0.53 (0.62) 0.63 (0.70) 0.66 (0.71) 0.71 (0.76)

χ0 = 102 β0 = 1 0.21 (0.48) 0.39 (0.55) 0.52 (0.66) 0.60 (0.70)

χ0 = 104 β0 = 1 0.28 (0.33) 0.35 (0.53) 0.52 (0.66) 0.60 (0.71)

Table 8.5: Multigrid convergence rates for Experiment 5.
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The previous experiments were carried out on a domain with only two subdo-
mains. However, from the practical point of view, it is important to know if the
previous results are still obtained for several subdomains. Since the results of
the previous experiments indicate that the simplified split preconditioner is the
method of choice, we will in the following only consider multigrid V(1,1)-cycles
based on this smoother.

Experiment 6 (Continuously varying χ)
In this experiment we consider the domain

Ω̄ = Ω̄s1 ∪ Ω̄s2 ∪ Ω̄m1 ∪ Ω̄m2 , (8.3)

where the slave subdomains are Ωs1 = (0, 1)3 and Ωs2 = (1, 2)2 × (0, 1) and the
master subdomains are Ωm1 = (1, 2) × (0, 1)2 and Ωm2 = (0, 1) × (1, 2) × (0, 1)
(cf. Figure 8.2). For the initial triangulation we choose hs := hs1 = hs2 and
hm := hm1 = hm2 and require that hm = 2hs. Moreover, the triangulations of
the slave interfaces are a refinement of the corresponding triangulations of the
master interface. The initial triangulation consists of 108 tetrahedra.

We set β ≡ 1, whereas the other coefficient χ is given by

χ(x) = 1.5 + sin(2πx1) sin(2πx2) sin(2πx3) .

Again we choose a zero right hand side and use random guesses for the startiter-
ate. The results of this experiment are documented in Table 8.6.

Experiment 7 (Continuously varying β)
We repeat the last experiment, however, this time we set χ ≡ 1 and

β(x) = 1.5 + sin(2πx1) sin(2πx2) sin(2πx3) .

The convergence rates are given in Table 8.6.

Comparing the convergence rates of Table 8.6 with the previous results, we see
that the performance of the smoother does not depend much on the number of
subdomains.

Level 2 3 4 5

Experiment 6 0.74 0.76 0.77 0.77

Experiment 7 0.71 0.73 0.74 0.74

Table 8.6: Multigrid convergence rates for Experiments 6 and 7.

To finish the experiments for the multigrid convergence, we consider irregularly
shaped domains and locally refined unstructured meshes.
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Figure 8.2: Initial triangulation of the computational domain for
Experiments 6 and 7.

Experiment 8 (Uniformly refined “L-shaped” domain)
In this experiment we consider the three-dimensional nonconvex “L-shaped” do-
main

Ω̄ = Ω̄s ∪ Ω̄m1 ∪ Ω̄m2 ,

where the slave domain is Ωs = (0, 1)3 and the master domains are Ωm1 =
(1, 2) × (0, 1)2 and Ωm2 = (0, 1) × (1, 2) × (0, 1). For the initial triangulation
we choose hm := hm1 = hm2 and require that hm = 2hs1 . As in the previous
experiments, the triangulations of the slave interfaces are a refinement of the
corresponding triangulations of the master interface. The initial triangulation
consists of 60 tetrahedra. Figure 8.3 shows the computational domain together
with the initial triangulation. We set χ ≡ 1 and choose

β(x) = 1.5 + sin(2πx1) sin(2πx2) sin(2πx3) .

The convergence rates of this experiment are presented in Table 8.7.

Level 2 3 4 5

Experiment 8 0.68 0.70 0.77 0.78

Experiment 9 0.68 0.68 0.73 0.73

Table 8.7: Multigrid convergence rates for Experiments 8 and 9.

Experiment 9 (Locally refined “L-shaped” domain)
This experiment deals with the performance of the multigrid V(1,1)-cycle on lo-
cally refined unstructured tetrahedral meshes. We use the same computational
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domain and initial triangulation as in the last experiment. Throughout the do-
main we set χ and β to 1 and employ such boundary conditions and right hand
side that the solution is given in cylindrical coordinates by

u = grad(r
2
3 sin(

2

3
φ+

π

3
)) .

Note that the gradient field u is both irrotational and divergence-free. Moreover,
the solution u has a singularity along the edge {x1 = 0, x2 = 0} and does not
even belong to H1(Ω). The hierarchy of triangulations is obtained by adaptive
mesh refinement based on the error estimator of Chapter 6. However, in order
to prevent problems arising from a violation of the compatibility condition, only
the slave domain Ωs is refined. Due to this restriction, most of the refinement
takes place near the singular edge and on the interface (see fig. 8.3). Comparing
the results of this experiment (cf. Table 8.7) with the previous results, we see
that the convergence is not severely affected by local refinement.

Figure 8.3: Triangulations of the computational domain for Experiments 8
and 9. On the left side the initial triangulation is shown, while the other side
displays the grid after adaptive refinement.

8.2 Performance of the Error Estimator

In Chapter 6 we showed that the error estimator provides lower and upper bounds
for the true error of the solution. Since we want to use this error estimator for
adaptive grid refinement, we split the error estimator into local contributions in
order to obtain an estimate for the local error. Following [Ver96, Woh99c] we
define for an element T of the triangulation its local error estimate by
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η̂2
T := (η

(1)
T )2 + (η

(2)
T )2 +

∑
F∈F(T )∩F int

h (Ω)

1

2

(
(η

(1)
F )2 + (η

(2)
F )2

)
+ (8.4)

+
∑

F∈F(T )∩Fh(δk)

(
(η

(3)
F )2 + (η

(4)
F )2

)
+

∑
F∈F(T )∩Fh(%k)

(η
(5)
F )2 .

Note that the error estimator is given by η2 =
∑N

i=1

∑
T∈Ti

η̂2
T . Based on this

local estimate we mark an element T for refinement if

η̂2
T > σ

η2

nT

, (8.5)

where nT denotes the number of elements of the triangulation and σ = 0.95 is
a safety factor. To test the quality of the error estimator and of our adaptive
refinement strategy, we introduce different quality measures.

The quality of the error estimate is measured by the effectivity index ε := η
ηTrue

,
which is the ratio between the estimated η and the true discretization error ηTrue.
Good error estimators are characterized by an effectivity index which rapidly
approaches a constant as refinement proceeds. Since the proposed error estimator
provides only a norm equivalence of the true error, the effectivity index may be
far off the ideal value of 1.

Since we want to use the error estimator for local refinement, we have to know
how much our marking based on the local error estimators differs from the ideal
marking based on the true error. To address this problem, we introduce the sets

Â :=

{
T ∈ Th | η̂2

T ≥ σ
η2

nT

}
,

A :=

{
T ∈ Th | η2

T ≥ σ
η2

True

nT

}
,

where ηT denotes the true local error of the element T and Th denotes the global
triangulation of Ω. Since Â is the set of elements that are marked by our refine-
ment strategy and A the set of elements that should have been marked, we define
the percentage of incorrect decisions µ(1) by

µ(1) :=
1

nT

#
{

(A ∩ CÂ) ∪ (CA ∩ Â)
}
.

For a good error estimator we have to require that µ(1) stays bounded well below
1 as refinement proceeds.

Although µ(1) provides a good measure for the quality of the error estimator, it
is important to know how much our refinement strategy is affected by incorrect
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decisions. According to the theory presented in Chapter 5, we expect that the
refinement of a single element reduces the local error by a factor of 2. Therefore,
the total error on the adaptively refined mesh is approximately given by

η2
new =

1

4

∑
T∈Â

η2
T +

∑
T∈CÂ

η2
T ,

while the “optimal” new error can be expressed as

η2
opt =

1

4

∑
T∈A

η2
T +

∑
T∈CA

η2
T .

Then a measure for the severity of incorrect decisions is given by

µ(2) :=
|η2

new − η2
opt|

η2
opt

.

Of course, we have to require that µ(2) stays bounded well below 1.

One aim of adaptive grid refinement is to obtain an error that is equally dis-
tributed on the elements of the triangulation. Therefore, the error estimator
must be able to detect local errors and zero in on singularities. Introducing the
quantity

µ(3) :=

√√√√∑
T∈Th

(
|ΩT |

(
η̂2

T

‖η̂2
T‖L1

− η2
T

‖η2
T‖L1

))2

,

where
‖η2

T‖L1 :=
∑
T∈Th

η2
T |ΩT | , ‖η̂2

T‖L1 :=
∑
T∈Th

η̂2
T |ΩT | ,

an estimator fails to tell the approximate spatial distribution of the discretization
error if µ(3) is big.

To demonstrate the performance of the error estimator in actual computations, we
choose several numerical experiments. In each experiment we use an unstructured
tetrahedral grid. For the computation of the stiffness matrix and the right hand
side we use Gaussian quadrature of order 5 and interpolate boundary values by
the same order. The solution of the algebraic equations is obtained by multigrid
V(1,1)-cycles using the simplified split preconditioner as pre- and postsmoother
and as basesolver. The iterations are stopped when the Euclidian norm of the
residual vector for the current iterate is less than 10−10 times the Euclidean norm
of the algebraic right hand side.

Following the steps of the last section, we first consider test problems related to
different relative scaling of the coefficients χ and β.
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Experiment 10 (Performance for varying values of β)
We repeat Experiment 4 and set χ ≡ 1 and keep β constant all over the domain,
but vary the value of β. For our computations the boundary data and the right
hand side are chosen such that we obtain the smooth solution

u(x) = (0, sin(πx1), 0)T .

The results of this experiment are reported in Table 8.8.

As expected, the effectivity index does not obtain the ideal value of ε = 1.
However, the index reaches a stable limit on finer grids, which indicates that
the true error can be estimated by the error estimator. Concerning the quality
measures µ(1), µ(2), and µ(3), we see that the error estimates shows the properties
of a good error estimator. Moreover, the performance is not severely affected by
different values of β.

Experiment 11 (Performance for strongly discontinuous values of β)
This experiment considers a strongly discontinuous coefficient function β. Using
the same setting as in the previous experiment, we set χ ≡ 1 and

β(x) :=

{
β0 , x ∈ Ωs

1 , x ∈ Ωm

.

The quality measures for this experiment are given in Table 8.9. Comparing
Tables 8.8 and 8.9, we see that the proposed error estimator behaves equally well,
which shows that the error estimator is hardly affected by strongly discontinuous
values of β.

Experiment 12 (Performance for solenoidal solution)
In order to address problems with solenoidal solutions, we repeat Experiment 10.
However, this time we employ boundary conditions and right hand side such that
the smooth solenoidal solution

u = curl(sin(πx2x3), sin(πx1x3), sin(πx1x2))
T

is generated. The quality measures of this experiment (cf. Table 8.10) indicate
that the error estimator is insensitive to solenoidal solutions.

Experiment 13 (Performance for irrotational solution)
For this experiment we consider the same geometric setting as in the last exper-
iment but choose the boundary conditions and the right hand side such that we
obtain the smooth irrotational solution

u = grad(x1x2x3) .

The quality measures of this experiment are recorded in Table 8.11. Again, the
measures reflect the behaviour of a good error estimator, which shows that the
error estimator is able to cope with irrotational solutions.
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Level 2 3 4 5

Effectivity index ε

β = 10−4 6.40 7.62 7.75 7.85

β = 10−2 6.40 7.60 7.73 7.82

β = 1 5.07 7.43 7.52 7.60

β = 102 3.41 4.58 5.05 5.34

β = 104 8.13 5.44 4.99 5.05

Percentage of incorrect decisions µ(1)

β = 10−4 0.077 0.051 0.045 0.047

β = 10−2 0.077 0.051 0.046 0.048

β = 1 0.137 0.042 0.047 0.049

β = 102 0.051 0.058 0.055 0.053

β = 104 0.239 0.112 0.063 0.051

Severity of incorrect decisions µ(2)

β = 10−4 0.035 0.0082 0.0116 0.0169

β = 10−2 0.035 0.0082 0.0078 0.013

β = 1 0.13 0.016 0.00073 0.00039

β = 102 0.038 0.031 0.025 0.039

β = 104 0.68 0.17 0.024 0.015

Detection of local errors µ(3)

β = 10−4 0.11 0.076 0.023 0.0078

β = 10−2 0.11 0.076 0.023 0.0077

β = 1 0.11 0.073 0.022 0.0076

β = 102 0.20 0.088 0.026 0.0082

β = 104 0.74 0.10 0.027 0.0079

Table 8.8: Quality measures for Experiment 10.

In the previous experiments we considered regularly shaped domains with only
two subdomain and piecewise constant coefficients. However, it is important to
know how the performance changes if the domain consists of several subdomains.
Moreover, the case of less regularly shaped domains and coefficients which are
not piecewise constant is not covered by the theoretical analysis.
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Level 2 3 4 5

Effectivity index ε

β0 = 10−4 5.07 7.47 7.57 7.65

β0 = 10−2 5.07 7.47 7.57 7.65

β0 = 102 4.18 5.60 5.89 6.06

β0 = 104 7.33 5.00 5.04 5.15

Percentage of incorrect decisions µ(1)

β0 = 10−4 0.094 0.041 0.046 0.047

β0 = 10−2 0.094 0.041 0.046 0.047

β0 = 102 0.14 0.094 0.080 0.061

β0 = 104 0.30 0.12 0.07 0.056

Severity of incorrect decisions µ(2)

β0 = 10−4 0.090 0.018 0.0049 0.0044

β0 = 10−2 0.090 0.018 0.0049 0.0043

β0 = 102 0.095 0.18 0.11 0.076

β0 = 104 0.65 0.15 0.054 0.034

Detection of local errors µ(3)

β0 = 10−4 0.11 0.073 0.022 0.0076

β0 = 10−2 0.11 0.073 0.022 0.0076

β0 = 102 0.082 0.072 0.022 0.0073

β0 = 104 2.07 0.10 0.011 0.0034

Table 8.9: Quality measures for Experiment 11.

Experiment 14 (Continuously varying coefficient χ)
In order to study the performance of the error estimator on several subdomains,
we repeat Experiment 6. Recall that for this experiment β = 1, whereas χ is
given by

χ(x) = 1.5 + sin(2πx1) sin(2πx2) sin(2πx3) .

As in Experiment 10, we choose the boundary conditions and the right hand side
such that we obtain the smooth solution

u(x) = (0, sin(πx1), 0)T .
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Level 2 3 4 5

Effectivity index ε

β = 10−4 5.24 6.86 7.55 7.65

β = 10−2 7.59 7.47 7.57 7.65

β = 1 7.59 7.40 7.47 7.55

β = 102 3.56 4.39 4.99 5.51

β = 104 6.55 4.68 4.77 4.92

Percentage of incorrect decisions µ(1)

β = 10−4 0.11 0.13 0.12 0.10

β = 10−2 0.23 0.13 0.12 0.10

β = 1 0.17 0.13 0.11 0.099

β = 102 0.25 0.12 0.084 0.078

β = 104 0.35 0.14 0.091 0.079

Severity of incorrect decisions µ(2)

β = 10−4 0.074 0.12 0.084 0.063

β = 10−2 0.26 0.12 0.084 0.063

β = 1 0.17 0.11 0.076 0.057

β = 102 0.15 0.041 0.041 0.023

β = 104 1.12 0.14 0.052 0.038

Detection of local errors µ(3)

β = 10−4 0.14 0.050 0.023 0.010

β = 10−2 0.14 0.057 0.023 0.010

β = 1 0.18 0.055 0.023 0.0097

β = 102 0.18 0.085 0.028 0.0082

β = 104 1.78 0.12 0.030 0.0084

Table 8.10: Quality measures for Experiment 12.

The quality measures, given in Table 8.12, show qualitatively the same behaviour
as in the previous experiments. This shows that the error estimator performs
equally well for this setting.
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Level 2 3 4 5

Effectivity index ε

β = 10−4 4.67 5.19 5.26 4.85

β = 10−2 4.67 5.19 5.29 5.26

β = 1 4.75 5.22 5.29 5.27

β = 102 4.63 5.04 5.25 5.31

β = 104 7.28 5.33 5.13 5.16

Percentage of incorrect decisions µ(1)

β = 10−4 0.12 0.089 0.089 0.10

β = 10−2 0.12 0.089 0.089 0.086

β = 1 0.12 0.088 0.089 0.086

β = 102 0.094 0.090 0.088 0.084

β = 104 0.21 0.10 0.085 0.082

Severity of incorrect decisions µ(2)

β = 10−4 0.084 0.082 0.042 0.14

β = 10−2 0.084 0.082 0.044 0.040

β = 1 0.086 0.080 0.043 0.041

β = 102 0.013 0.030 0.031 0.034

β = 104 0.33 0.061 0.037 0.035

Detection of local errors µ(3)

β = 10−4 0.27 0.063 0.034 0.012

β = 10−2 0.27 0.063 0.035 0.013

β = 1 0.25 0.060 0.034 0.013

β = 102 0.20 0.051 0.031 0.012

β = 104 0.65 0.057 0.029 0.010

Table 8.11: Quality measures for Experiment 13.

Experiment 15 (Continuously varying coefficient β)
We repeat the last experiment, however, this time we exchange the roles of the
coefficients. We set χ ≡ 1,

β(x) = 1.5 + sin(2πx1) sin(2πx2) sin(2πx3) ,
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and choose the same solution as in the last experiment. The results of this exper-
iment are given in Table 8.13. Again, the error estimator performs satisfactorily.

Level 2 3 4 5

ε 5.76 7.09 7.22 7.44

µ(1) 0.0 0.0 0.0032 0.0055

µ(2) 0.0 0.0 0.0065 0.011

µ(3) 0.051 0.047 0.015 0.0049

Table 8.12: Quality measures for Experiment 14.

Level 2 3 4 5

ε 4.54 6.86 7.34 7.41

µ(1) 0.0 0.0 0.0032 0.0024

µ(2) 0.0 0.0 0.0086 0.0065

µ(3) 0.085 0.052 0.016 0.0054

Table 8.13: Quality measures for Experiment 15.

In all previous experiments we used a rather smooth solution for our tests. There-
fore, we cannot expect that adaptive refinement will show superior results com-
pared to adaptive refinement. However, problems with singular solutions should
greatly benefit from adaptive refinement, since only the singular regions should
be refined in this case.

Experiment 16 (Singular solution on “L-shaped” domain)
In Experiment 9 we considered the three-dimensional nonconvex “L-shaped” do-
main

Ω̄ = [0, 1]3 ∪ [1, 2]× [0, 1]2 ∪ [0, 1]× [1, 2]× [0, 1] ,

together with the singular solution (in cylindrical coordinates)

u = grad(r
2
3 sin(

2

3
φ+

π

3
)) .

In [BHHW00] it was shown that in the conforming case adaptive grid refinement
results in a great reduction of the computational cost. Therefore, we repeat this
experiment in order to test the quality of the error estimator.

As mentioned in Experiment 9, adaptive grid refinement poses a severe problem
on the convergence of the multigrid scheme, since we have to make sure that the
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compatibility condition on the interface triangulation is fulfilled. At the moment
it is not possible to obey this condition without reducing the performance of the
error estimator considerably. However, in order to show the qualities of the error
estimator, we modify the setting of Experiment 9. Since the solution is singular
at the edge {x1 = 0, x2 = 0}, we consider in this experiment the domain

Ω̄ = [0, 2]3 ∪ [2, 4]× [0, 2]2 ∪ [0, 2]× [2, 4]× [0, 2] ,

and use an initial triangulation with matching interface triangulations. By in-
creasing the computational domain we hope to reduce the refinement at the inter-
faces. Moreover, for the solution of the algebraic equations we use the conjugate
gradient method preconditioned by the multigrid V(1,1)-cycle. Surprisingly, it
turned out that an average of 16 iterations is enough to reduce the Euclidean
norm of the initial residual by a factor of 10−10, although the multigrid method
itself performs poorly.

In the first part of the experiment we use an initial triangulation consisting of 294
triangles and refine the grid uniformly. The quality measures for this experiment
are presented in Table 8.14 (top). For the second part of this experiment we use
the same initial triangulation, however, this time the grid is adaptively refined
by the error estimator. Figure 8.4 displays the initial triangulation and the
triangulation after 5 refinement steps. Note that most of the refinement takes
place in the slave domain. Table 8.14 (bottom) shows the quality measures in
this case. The results of this experiment indicate that we can rely on the error
estimator in both cases.

Level 2 3 4 5

Uniform refinement

ε 4.24 4.06 4.05 4.25

µ(1) 0.25 0.094 0.022 0.0050

µ(2) 0.016 0.0060 0.016 0.0034

µ(3) 0.16 0.13 0.070 0.034

Adaptive refinement

ε 4.24 4.00 4.19 4.17

µ(1) 0.25 0.13 0.094 0.050

µ(2) 0.016 0.023 0.0050 0.011

µ(3) 0.16 0.053 0.14 0.055

Table 8.14: Quality measures for Experiment 16.

126



8.2. PERFORMANCE OF THE ERROR ESTIMATOR

Figure 8.4: Triangulations of the computational domain for Experiment 16.
On the left side the initial triangulation is shown, while the other side displays
the grid after adaptive refinement.

As mentioned above, the vector field is singular at the edge {x1 = 0, x2 = 0}.
Therefore, the error estimator should provide favourable grids and reduce the
computational cost considerably. Indeed, Figure 8.5 clearly shows a superior
performance if we use adaptive mesh refinement.
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Figure 8.5: True error of the edge element discretization for uniform and adap-
tive mesh refinement (Exp. 16) measured in the L2-norm.
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8.3 Optimal Convergence of the Discretization

In the last two sections we considered the convergence of the multigrid scheme
and the performance of the error estimator by solving several test problems.
However, it still remains to be shown that the optimal error estimates for the
mortar finite element method (cf. Chapter 5 and [XH05]) can be observed in
numerical computations. This is particularly important, since in [BBM02] it is
doubted that approximations based on the first family of Nédélec’s edge elements
show an optimal error estimate.

As in the previous sections, it is not possible to validate this estimate by nu-
merical computations for all problems that fulfill the conditions of Theorem 5.7.
Therefore, we resort to the test problems of the last sections, since they address
typical situations encountered in eddy current computations. The asymptotic
behaviour of the error for Experiments 12, 13, 14, and 15 is presented in Figures
8.6, 8.7, and 8.8, respectively. Note that the other experiments of the last section
show similar results. Comparing the error of the numerical experiments with the
optimal error estimate (O(h)), we see that the error agrees with the optimal error
estimate stated in Theorem 5.7.
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Figure 8.6: Error (in logarithmic scale) of the edge element discretization for
Experiment 12. For comparison a line with optimal error O(h) is drawn in the
figure.
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Figure 8.7: Error (in logarithmic scale) of the edge element discretization for
Experiment 13. For comparison a line with optimal error O(h) is drawn in the
figure.
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Figure 8.8: Error (in logarithmic scale) of the edge element discretization for
Experiments 14 and 15. For comparison a line with optimal error O(h) is
drawn in the figure.
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Chapter 9

Conclusions

In the first part of this work we presented and analyzed a mortar edge element
method for the computation of three-dimensional eddy current problems. We
showed that the resulting discrete saddle point problem fulfills an inf-sup condi-
tion and therefore has an unique solution. Moreover, we proved that the discrete
solution converges to the solution of the continuous problem by establishing an
optimal error estimate.

The second part dealt with adaptive multilevel methods for the numerical solution
of the mortar edge element discretized eddy current problem. We designed a
local a posteriori error estimator and could show that this estimator is both
efficient and reliable if several assumptions hold true. However, we point out
that these assumptions are not fulfilled in many realistic settings. Although
numerical experiments indicate that the error estimator performs satisfactorily
beyond the scope of the theoretical analysis, it is desirable to extend the theory
to problems with nonconstant coefficients and arbitrarily shaped domains.

For the development of an efficient iterative solver for the solution of the algebraic
equations arising from the mortar edge element discretization, we analyzed several
approaches. From the theoretical point of view most of these approaches could
provide an excellent smoother for a multilevel iterative solver. However, their
practical implementation is connected with severe problems which prohibits their
realization at the moment. In the end we decided to use a multilevel iterative
scheme which is based on a hybrid smoother that takes care of the nontrivial
kernel of the discrete curl-operator by performing a defect correction on the
subspace of irrotational vector fields.

In order to guarantee the efficiency of the solver, we had to impose compatibility
conditions on the triangulations of the master and slave interfaces. This poses a
serious limitation on the application of the method, since for realistic problems we
have to use grid generators which, in general, do not take care of these conditions.
A possible remedy for this problem could be given by the construction of new
Lagrange multiplier spaces or by considering different matching conditions at
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the interfaces. Considering the latter, an interesting approach was proposed
in [LVL05]. Its main characteristic is the introduction of an additional set of
variables on each subdomain interface together with impedance like transmission
conditions. The resulting matrix equation does not have a zero block, which
avoids the solution of a Schur complement system.

In order to be able to treat more complex problems, it is advisable to parallelize
the iterative method. Especially the computation of a preconditioner for the
Schur complement could benefit from parallel routines. Since UG was designed
for parallel computations, it should be possible to parallelize the implemented
code without encountering severe problems.
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Notation

Domains

Ω Domain (open and connected) in IRd

Ω̄ Closure of Ω

Ωe := IRd \ Ω̄

Ωi subset of Ω

Γ Boundary of Ω

Γi := ∂Ωi ∩ ∂Ω

n Unit outer normal

S Skeleton of the decomposition of Ω

General Notation

c, C Positive constants

· dot product for IRd and Cd

∧ vector product for IRd and Cd

[·]Γ Jump of a vector field along Γ

Re(a) Real part of the complex number a

Im(a) Imaginary part of the complex number a

∀ For all

ker(L) Kernel of the linear mapping L

eij Common edge of two adjacent faces Γi and Γj of an polyhedron

ϕi =eij
ϕj ⇔

∫
Γi

∫
Γj

|ϕ(x)−ϕ(y)|2
‖x−y‖3 dσ(x) dσ(y) <∞

Ii :=
{
j ∈ 1, ..., K | Γ̄i ∩ Γ̄j = eij 6= ∅

}
Differential Operators

grad Gradient of a scalar function

div Divergence of a vector-valued function

curl Curl of a three-dimensional vector-valued function

gradΓ Tangential gradient
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curlΓ Tangential curl of a scalar function

divΓ Tangential divergence

curlΓ Tangential curl of a two-dimensional vector-valued function

u̇ Weak time derivative of u

Electromagnetic Quantities

E Electric field intensity

H Magnetic field intensity

D Electric displacement

B Magnetic induction

J Current density

ρ Electric charge density

ε Electric permittivity

µ Magnetic permeability

χ := µ−1

ε0 = 4π · 10−7 Hm−1

µ0 ≈ 8.854 · 10−12 Fm−1

σ Electric conductivity

ω Frequency

Trace Operators

γ0(u) := u|Γ, u ∈ H1(Ω)

γn(u) := u|Γ · n, u ∈ H(div; Ω)

γt(u) := n ∧ u|Γ, tangential trace

γT (u) := n ∧ (u ∧ n) |Γ, tangential components trace

Function Spaces

Cm(Ω) Space of m times continuously differentiable functions

C(Ω) ≡ C0(Ω)

Cm
0 (Ω) Space of m times continuously differentiable functions with com-

pact support in Ω

C∞(Ω) :=
⋂∞

m=0C
m(Ω)

C∞
0 (Ω) Space of functions u ∈ C∞(Ω) with compact support

Cm(Ω̄) :=
{
u|Ω | u ∈ Cm

0 (IRd)
}

L2 (Ω) Space of square Lebesgue-integrable functions on Ω

L2 (Ω) := (L2 (Ω))d, d = 2, 3

X ′ Dual space of X
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Hm(Ω) Standard Sobolev space of order m

Hm(Ω) := (Hm(Ω))d, d = 2, 3

H1
0 (Ω) := {u ∈ H1(Ω) | γ0(u) = 0}

H1/2(Γ) Trace space of H1
0 (Ω)

H−1/2(Γ) Dual space of H1/2(Γ)

ũ Extension of u defined on Σ ⊂ Ω to Ω by zero outside Σ

Hm
00(Σ) := {u ∈ Hm(Σ) | ũ ∈ Hm(Ω)}, Σ ⊂ Ω

H(div; Ω) := {u ∈ L2 (Ω) | div u ∈ L2 (Ω)}
H0(div; Ω) := {u ∈ H(div; Ω) | γn(u) = 0}
H(curl; Ω) := {u ∈ L2 (Ω) | curl u ∈ L2 (Ω)}
H0(curl; Ω) := {u ∈ H(curl; Ω) | γt(u) = 0}
HΓ0(curl,Ω) := {u ∈ H(curl; Ω) | γt(u)|Γ0 = 0}, Γ0 ⊂ Γ

Hs(curl,Ω) := {u ∈ Hs(Ω) | curl u ∈ Hs(Ω)}
TH1/2(Γ) := {q : Γ → IR3 | q = (q1, q2, q3)

T ∈ H1/2(Γ) , n · q = 0}
TH−1/2(Γ) Dual space of TH1/2(Γ)

TH
1/2
00 (Γ0) :=

{
q ∈ TH1/2(Γ0) | q̃ ∈ TH1/2(Γ)

}
, Γ0 ⊂ Γ

TH−1/2(Γ0) Dual space of TH
1/2
00 (Γ0)

L2
t (Γ) := {u ∈ L2(Γ) | u · n|Γ = 0}

H
1/2
− (Γ) :=

{
λ ∈ L2

t (Γ) | λj ∈ H1/2(Γj) , 1 ≤ j ≤ K
}

H
1/2
‖ (Γ) :=

{
u ∈ H

1/2
− (Γ) | ui · τ ij =eij

uj · τij , 1 ≤ i ≤ K , j ∈ Ij

}
H
−1/2
‖ (Γ) Dual space of H

1/2
‖ (Γ)

H
1/2
⊥ (Γ) :=

{
u ∈ H

1/2
− (Γ) | ui · τ i =eij

uj · τj , 1 ≤ i ≤ K , j ∈ Ij

}
H
−1/2
⊥ (Γ) Dual space of H

1/2
⊥ (Γ)

H
−1/2
‖ (divΓ,Γ) :=

{
λ ∈ H

−1/2
‖ (Γ) | divΓ λ ∈ H−1/2(Γ)

}
H
−1/2
⊥ (curlΓ,Γ) :=

{
λ ∈ H

−1/2
⊥ (Γ) | curlΓ λ ∈ H−1/2(Γ)

}
X0 := {w ∈ H0(curl; Ω) | (w,grad p)0,Ω = 0 ∀p ∈ H1

0 (Ω)}
Lp(a, b;B) :=

{
u : [a, b] → B | u is Bochner measurable,

∫ b

a
‖u‖p dt <∞

}
W (0, T ;X) := {u ∈ L2(0, T ;X) | u̇ ∈ L2(0, T ;X′)}
X := {q ∈ L2 (Ω) | q|Ωi

∈ HΓi
(curl,Ωi)}

V :=
{
q ∈ X | [n ∧ q]|Γij

∈ TH
1/2
00 (Γij) ∀Γij ⊂ S

}
M(S) :=

∏
Γij⊂S TH−1/2(Γij)

Norms and Products

‖ · ‖0,p,Ω :=
(∫

Ω
| · |p dV

)1/p
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‖ · ‖m,Ω :=
(∑

|α|≤m

∫
Ω
|Dα

w · |2 dV
)1/2

| · |m,Ω :=
(∑

|α|=m

∫
Ω
|Dα

w · |2 dV
)1/2

‖ · ‖Hs
00(Σ) := ‖̃·‖s,Ω, Σ ⊂ Ω

‖ · ‖div,Ω :=
(
‖ · ‖2

2,Ω + ‖ div ·‖2
2,Ω

)1/2

‖ · ‖curl,Ω :=
(
‖ · ‖2

2,Ω + ‖ curl ·‖2
2,Ω

)1/2

‖ · ‖s,curl,Ω :=
(
‖ · ‖2

s,Ω + ‖ curl ·‖2
s,Ω

)1/2

‖ · ‖‖,1/2,Γ Hilbert norm for H
1/2
‖ (Γ)

‖ · ‖⊥,1/2,Γ Hilbert norm for H
1/2
⊥ (Γ)

‖ · ‖‖,−1/2,Γ Dual norm for H
−1/2
‖ (Γ)

‖ · ‖⊥,−1/2,Γ Dual norm for H
−1/2
⊥ (Γ)

‖ · ‖X :=
(∑N

i=1 ‖ · ‖2
H(curl,Ωi)

)1/2

‖ · ‖V :=
(
‖ · ‖2

X + ‖[n ∧ ·]‖2
1/2,S

)1/2

‖ · ‖M(S) :=
(∑

Γij⊂S ‖ · |Γij
‖−1/2,Γij

)1/2

‖ · ‖+ 1
2
,h,γk

:= h−1/2‖ · |γk
‖0,γk

‖ · ‖+ 1
2
,h,S := (

∑
γk⊂S

‖ · |γk
‖2

+ 1
2
,h,γk

)1/2

‖ · ‖Vh
:= (‖ · ‖2

X + ‖[n ∧ ·]|S‖2
+ 1

2
,h,S

)1/2

‖ · ‖−1/2,h,δk
:= h1/2‖ · |δk

‖0,δk

‖ · ‖Mh(S) := (
M∑

k=1

‖ · ‖2
−1/2,h,δk

)1/2

‖ · ‖ah
:= ah(·, ·)1/2

‖ · ‖L−1 := (
M∑

k=1

∑
F∈Fh(δk)

χT

hF
‖ · ‖2

0,F )1/2

(·, ·)0,Ω Inner product of L2 (Ω) and L2 (Ω)

(·, ·)m,Ω Inner product of Hm(Ω) and Hm(Ω)

(·, ·)div,Ω := (·, ·)0,Ω + (div ·, div ·)0,Ω

(·, ·)curl,Ω := (·, ·)0,Ω + (curl ·, curl ·)0,Ω

< ·, · >X Dual pairing between X ′ and X

< ·, · >1/2,Γ Dual pairing between H−1/2(Γ) and H1/2(Γ)

< ·, · >‖,1/2,Γ Dual pairing between H
−1/2
‖ (Γ) and H

1/2
‖ (Γ)

< ·, · >⊥,1/2,Γ Dual pairing between H
−1/2
⊥ (Γ) and H

1/2
⊥ (Γ)

< ·, · > 1
2
,h,δk

Dual pairing between Mh(δk)
′
and Mh(δk)
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Finite Element Discretization

Ti Triangulation of subdomain Ωi

Tδk
Triangulation of the slave interface

T%k
Triangulation of the master interface

hi := max{diam T | T ∈ Ti}
hδk

:= max{diam T | T ∈ Tδk
}

h%k
:= max{diam T | T ∈ T%k

}
N Number of subdomains

M Number of interfaces

Fh(Σ) Set of faces in Σ

Eh(Σ) Set of edges in Σ

Nd1(T ) := {q := a + b ∧ x | a, b ∈ IR3, x ∈ T}, lowest order edge
element of Nédélec’s first family

Nd1(Ωi; Ti) := {qh ∈ H(curl; Ωi) | qh|T ∈ Nd1(T ), T ∈ Ti}
Nd1,Γi

(Ωi; Ti) := {qh ∈ Nd1(Ωi; Ti) | γt(qh)|Γi
= 0}

S1(TΩ) Space of continuous, piecewise linear functions

S1,0(TΩ) := {qh ∈ S1(TΩ) | γ0(qh)|Γ0 = 0}, Γ0 ⊂ ∂Ω

S1,Γ0(TΩ) := {qh ∈ S1(TΩ) | γ0(qh)|∂Ω = 0}
Sh := {ϕh ∈ L2(Ω) | ϕh|Ωi

∈ S1,Γi
(Ωi; Ti) , 1 ≤ i ≤ N}

Vh := {qh ∈ L2 (Ω) | qh|Ωi
∈ Nd1,Γi

(Ωi; Ti) , 1 ≤ i ≤ N}
Vh := { vh ∈ L2 (Ω) | vh|Ωi

∈ S1,Γi
(Ωi; Ti) , 1 ≤ i ≤ N}

RT0(T ) := {q = a + bx | a ∈ IR2, b ∈ IR , x ∈ T}, lowest order
Raviart-Thomas finite element

RT0(δk; Tδk
) := {qh ∈ H(div; δk) | qh|T ∈ RT0(T ) , T ∈ Tδk

}
RT0,0(δk; Tδk

) := {qh ∈ RT0(δk; Tδk
) | γn(qh)|∂δk

= 0}
Mh(S) Discrete Lagrange multiplier space

Mh(δk) Local discrete Lagrange multiplier space on δk
Qδk

h L2-projection Qδk
h : L2(γk)

2 → Mh(δk)

Ṽh := {qh ∈ Vh | Qδk
h (qh ∧ n|%k

) = Qδk
h (qh ∧ n|δk

) , 1 ≤ k ≤M}
Ỹh Space of “mixed gradients”
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