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Abstract. The controllability behavior of nonlinear control systems is de­
scribed by associating semigroups to locally maximal subsets of complete 
controllability, i.e., local control sets. Periodic trajectories are called equiv­
alent if there is a ‘homotopy’ between them involving only trajectories. The 
resulting object is a semigroup, which we call the dynamic index of the local 
control set. It measures the different ways the system can go through the 
local control set. A  number of examples are considered.
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1 Introduction

The aim of this paper is to contribute to the (formidable) task to classify 
the controllability behavior of nonlinear control systems. More precisely, we 
restrict our attention to certain subsets of complete controllability, local con­
trol sets as introduced in [3]. These are locally maximal subsets of complete 
controllability. They are composed of periodic trajectories.

The basic idea for the classification of local control sets is to call periodic 
trajectories equivalent if there is a ‘homotopy’ between them; however, these 
homotopies should involve only trajectories in order to capture the dynamic 
properties of the considered system. This leads to considerable technical 
difficulties. The resulting object is a semigroup, which we call the dynamic 
index of the local control set. It measures the “different“ ways the system 
can go through the local control set. It turns out, that for linear systems with 
controllable (A, B) and admissible control range U the index is always trivial. 
If the control range is small enough, the same is true for local control sets 
around a hyperbolic equilibrium of the uncontrolled system. Furthermore, if 
the control range is small enough, we can also show that for a local control set 
around an attracting periodic solution of the uncontrolled system the index 
is isomorphic to the natural numbers N. The index can distinguish such 
control sets from those occurring around a homoclinic orbit. Compare also 
San Martin and Santana [10], where the homotopy type of Lie semigroups 
and invariant control sets is studied. We remark that in our construction the 
direction of the trajectories plays a decisive role. This is a decisive difference 
of our semigroup from homotopy groups. Katok and Hasselblatt [6, p. 117] 
briefly discuss other constructions of topological invariants using trajectories 
of dynamical systems.
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452 A Dynamic Index for Control Sets

Perhaps closest in spirit to our paper are the papers [11, 12] by A. 
Sarychev. He studied homotopy properties of the space of trajectories. How­
ever, he was interested in the case, where the systems are completely control­
lable or, in our terminology, where the control set coincides with the whole 
state space.

In Section 2 we specify our assumptions on the considered control systems 
and recall some basic notions. In Section 3 we define the key notion for 
the construction of the index, the so-called ‘strong inner pairs’ , and show 
some of their relevant properties. Section 4 is devoted to the construction 
of the index and some simple examples are provided, whereas in Section 5 
we investigate the relation between the indices of nested local control sets. 
Section 6, finally, presents the explicit computation of the index in the case 
of the control set which arises, for a small control range, around an attracting 
periodic orbit of the uncontrolled system.

2 Preliminaries

In this section we specify the considered class of control systems and recall 
some basic notions.

Throughout all the paper we will let 17 be a compact convex neighbor­
hood of the origin in Rm  and for 0 < p < 1, we put pU — {p ■ x  : x  E U}. 
Moreover we denote by Up the set of all Loo(R, R m ) control functions taking 
values in pU. For simplicity, when p = 1, we shall simply omit it. If not 
specified otherwise, the space U will be considered in the weak* topology 
inherited from the inclusion l l  C £oo(K, R m ) = (Li(R, R"1))*. Notice that 
U is in this topology a compact and separable metrizable space (see, e.g., 
Dunford/Schwartz [4]); an appropriate metric will be denoted by ‘d ’.

We will consider the following control-affine system in Rd

771

(2.1) i(t) = f(x (f), := f 0 (x(t)) + u G U p .
1=1

with sufficiently smooth vector fields i =  0,1, We assume that for 
every control u G U and every initial condition x(0) = XQ G R d  there exists 
a unique trajectory which we denote by tp(t, x, u), t G R. Our results will 
also hold -with some technical modifications- for systems on manifolds. Note 
that for control affine systems, the trajectories tp(t, x, u) depend continuously 
on (t, x, u), uniformly on bounded time intervals; here U is endowed with the 
weak* topology; see [1, Lemma 4.3.2].

The following definitions specify subsets of complete approximate con­
trollability, which are our primary concern in this paper.
Definition 2.1. A subset D with, nonempty interior of the state space Rd 
is a precontrol set if for all x ,y  G D and every £ > 0 there exist T  > 0 and 
u & U such that

tp(t, x,u) G D  for all t G [0, T] and ^ (T , x, u) — y\ < e.
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D efin ition  2 .2 . A precontrol set D  o f R d is a local control set i f  there 
exists a neighborhood V  of cl D  such that for every precontrol set D ' with 
D  C  D ' C  V  one has D ' =  D .Thus a local control set is a locally maximal precontrol set. Note also that control sets (with nonvoid interior) as discussed in [1] are globally maximal precontrol sets. The sets of reachable points from x  and controllable to z  6 JRd in time T  >  0 are denoted by

O < T (x) — { y  € there are 0 <  t <  T  and u E ld  with y =  ip(t, x , u )} 
andO < T (r) =  there are 0 <  t <  T  and u E ld  with x  =  iplt, y, u )} ,
respectively. Furthermore let

O + (x) — O < T (x) and 0 ~ (x) =  O < T (x) 
T>0 T>0denote the reachable set from x  and the set controllable to x, respectively. We also call O ± (x )  the positive and negative orbits of x , respectively.Throughout this paper we require local accessibility, that is, O f T (x) and 

O ^ r (x) have nonvoid interiors for all x  E and all T  >  0. Recall also that local accessibility is guaranteed by the following accessibility rank condition:( 2.2) d im A c(x) =  d for all x  Ewhere £  denotes the Lie algebra generated by the vector fields f o , .. . ,  f m , and △ c(r) is the subspace of the tangent space (identified with R d ) generated by the vector fields in C .

3 Strong inner pairsIn this section we specify the subclass of periodic trajectories which will be used for the construction of the dynamic index.First note that for a control u E Id =  Id1 there is > 0 such that 
d(u(t\ dU} >  ¿o for almost all t >  0 iff u £ ldp  for some p <  1.
D efin ition  3 .1 . A  pair (u ,x) E ld  x R d is called a strong inner pair, if:

(i) there is p <  1 such that u E ldp ;
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(ii) the control u is piecewise constant and there is d > 0 such that for all 
y € with < 5 and all r  > 0 small enough, the following
property holds: For all 0 < t < r there are neighborhoods N ^(y ) of 
<p(±t,y,u) such that for any curve A G Nf~ (y) a n d A 
A ^ y ) , z o ~  there are continuous maps

A ~ ( ± t±  u ± ) : [ O ,l ] - ( O ,T ) x t f ,

with u± piecewise constant for A € [0,1], and

(± t± ,u£) = (± t,u ) and <p(±t±,y,u±) = z±.

Moreover, we say that a strong inner pair is T-periodic if (u,tp(-,x,u)) 
is T-periodic. Remark 3.2. Observe that for the point (ii) in Definition

3.1, one has
> y, u o ) = y , u );

and the neighborhoods N ±(y) are contained in the reachable sets O±(y) from 
y provided they are connected.
Remark 3.3. In [1], inner pairs were defined as those pairs (u, x) satisfying

(p(±t,x,u) £ in tO ^ x )

for some t > 0. Here, in order to construct the dynamic index, we need the 
stronger properties required in Definition 3.1.

It is convenient to introduce the following notation (compare e.g. [1, 9]): 
When u is a constant control, we shall write et x x, with X  =  /(•, u), in place 
of ip(t,x,u).

We now note that strong inner pairs are abundant provided tha t local 
accessibility holds.
Proposition 3.4. Consider a pair (u, x) E Id x with piecewise con­
stant control u € ldp  with p < 1 which, on the intervals [0, s^] and
[— s~, 0], with s± > 0, takes the values

u(t) — u^ E int U for t E (si + ... + s,, +  ... 4- Si+i),
u(—t) = u~ E int U for t E ( -S i — ... — Si — Si+ i, —si — ... — sf).

Suppose that there is e > 0 such that s± ,..., s^ E (0,e) and for X ±  := 
f(-,u± ) the two maps

(td ,...,^* -*  e ^ ^ *  ■■■e±S 1 X i x

have full rank on (0, s) x ... x (0, e). Then (u,x) is a strong inner pair.
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Proof. Obviously, property (i) of strong inner pairs holds. Property (ii) is 
satisfied, because the rank condition holds for y in a neighborhood of x and 
neighborhoods of y, u) are of the form

{e± t d X d ...e± t l X 1 x, with tb  ...,td € (0,e)}.

Hence the required continuous families are obtained by changing the times 
ti. □
Remark 3.5. Assume that accessibility rank condition (2.2) holds and fix 
x  € Rd . Then, as in the proof of Krener’s Theorem (cp. [7] or [1, Th. A-4-4])> 
one can show that there exist constants u^,. . .  ,ud € int U with the property 
that the two maps

(td , ..., ij) i-» e
± td X d  • • ■ e±t l X 1 x,

Xi = f(-,Ui), have full rank on (0,s) x ••• x (0,e). Therefore, one can 
construct a piecewise constant function u as in Proposition 3-4, so that (u, x) 
is a strong inner pair.

A further class of strong inner pairs is obtained when the linearized 
control system is controllable. Recall that for two vector fields X , Y  one 
defines ad^Y  =  Y  and for k = 1, 2, ... one defines ad^Y as the Lie bracket 
adx Y  — [A ^ad^Y ].

Proposition 3.6. Let x  6 Rd and assume that

(3.1) span{ad^0 /i(z), i — 1 , k  =  0,1,...} =  Rd .

Then for p > 0, small enough, each (u, y) € 14P x Rd with u piecewise constant 
and u g l l p , for some p' < p and \y — x| < p', is a strong inner pair.
Proof. The stated Lie algebraic assumption also holds for all p(T, y, u) with 
||u||oo < P and all y in a neighborhood of x  provided that p > 0 and T  > 0 
are small enough. It guarantees, for all 0 <  r  < T, controllability for the 
linearized control system

z(t) = D if(ip(t,y ,u),u(t))z(t) + D2 f(p (t,y ,u),u(t))v(t), t e  [0,r],

with unbounded controls v € ¿^([O, r],®7”). Then a standard result in 
nonlinear control theory, see, e.g. [1, Theorem A.4.11 and Remark A.4.12] 
guarantees that the nonlinear control system with controls in Up  is locally 
controllable about the trajectory p(t, y, u), provided that u £ Up for some 
p' < p. This is based on an application of the inverse function theorem, 
which also provides the existence of neighborhoods N±  as in Definition 3.1. 
□
Remark 3.7. A slight modification of [1, Proposition 4-5.19] shows that in 
Proposition 3.6 one may consider, instead of condition (3.1), the following:

span{fo(x),adfkofi(x), i =  1, ...,m, k — 0,1,...} =  Rd -
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This is based on a controllability condition due to Nam and Araposthatis [8/.

We will need that the set of periodic strong inner pairs is open in the 
following sense.
Proposition 3.8. Let (no, XQ) aTo-periodic strong inner pair. Then there 
exists S > 0 such that for every T±-periodic strong inner pair (u i,x i) 6 Z7xRd 
with |To — Ti| < b. d(uo,ai) < S, and |xo — xi| < S there exists a continuous 
map H  : [0,1] —> R+  x 14 x Rd , H(a) = (Ta ,x a ,Ua) with the following 
properties:

1. for all a  £ [0,1], (ua ,x a ) is a Ta -periodic strong inner pair;

2. H(0) =  (To,uo,xo) and H (l)  =  (T i,u i,x i).

Proof. As a first step we construct a ‘homotopy’ from (TO, UO, XQ) to an 
appropriate triple (T, v, xo) where ip(t, XQ, V), t E [0, T], is a T-periodic tra­
jectory satisfying

< (̂i,X0 ,U0 ) =  9?(t,Xi,U!)
for t € [T,TQ — r] for a suitable time r  > 0. Let r  > 0 and N ±(XQ), for 
0 < i < r, be as in Definition 3.1. Take for short

N +  = N+(XQ) and N~ = N ~ (x 0 ).

Since N + and N ~  are neighborhoods of ip(r, XQ, UQ) and — D XQ, UQ) re­
spectively, by continuous dependence on the control function (cp. [1, Lemma 
4.3.2]), choosing 6 > 0 small enough, we can assume

sup |y7(t, x0 ,u 0 ) -  ¡p(t,X!, U1)| 
te [0,max{7b ,Ti}]

as small as we please. Therefore we can take

x^ := <̂ (TQ — r ,x i,u x )  £ N ~  and x j  := ^>(r,X I , UA) € N + ,

where u\ := Auj -I- (1 — A)UQ. (Recall that also |To — T J < <L) As in 
Definition 3.1 (ii), there are continuous maps A ।— ► (± t± ,v± ), with v± 
piecewise constant for A £ [0,1], and

(±¿0 , t^ )  =  (± T, u0 ) and ip(±t± ,x0 , v±) — x± for all A £ [0,1],

The concatenations

° “ AIKX’?o -  ¿A] 0  Tx , a n d A I-» To -  r  +  +  t^ ,

yield the desired continuous family of periodic trajectories.
As a second step, reducing S if necessary, we essentially repeat the con­

struction above and connect (T i,u i,x i) with the triple (T ,U,XQ) that we
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have just constructed. More precisely, if 6 is small enough, we can find 
a point z = W(T, X\ ,U\) near x0 lying on <̂ ([0,T ],x0 , V) and such that 
(9?(r,xi, ui), « i(r  +  •)) is a strong inner pair. Moreover, reducing 6 if neces­
sary, one can find r -  > 0 such that for A € [0,1] one has

xx  —  ip(T -  T - T - ,  z, vA ) e  N~(z) and vx := Aui + (1 -  X)v.

Then using property (ii) in the definition of strong inner pairs, one finds a 
continuous family of controls connecting these points to z. Concatenating 
the elements of this family with vx as in the first step, one gets a homotopy 
between (T j,u i,x i)  and (T, v ,z 0 )-

The two steps together yield the desired homotopy. □
The following lemma establishes a local controllability property around 

the trajectory of a periodic strong inner pair.

Lemma 3.9. Let (u,x) be a T-periodic strong inner pair. Then every 
neighborhood V  of {<p(t,x,u), t G [0, T]} contains a neighborhood D which 
is a precontrol set.

Proof. First observe that, trivially, the periodic trajectory is a precontrol 
set. By assumption, there are T  > T > 0, arbitrarily small, and open neigh­
borhoods of x, u) contained in O^fx), respectively. By continuous 
dependence on initial values, we may assume that for every xi G N +  one 
has ip(T — 2T , X ^,U(T + •)) € N~. Hence, one can steer x  into every point 
of N +  and one can steer every point of into N~ (using the control u) 
and from there into x. By continuous dependence on the initial value, the 
piece of the periodic trajectory {</?(t,x,u), t  € [T , T  — T]} is contained in a 
precontrol set contained in V. Now consider {ip(t,x,u), t G [—r ,T]}. Again, 
by continuous dependence on the initial value, the set N~ is mapped via the 
shifted control u(T — r  +  ■) onto a neighborhood of any point x, u) in 
time T + t, and similarly, a neighborhood of this point is mapped into N +  
via u(t +  •) in time r — t. We conclude that V  contains a precontrol set D  
which is a neighborhood of {ip(t,x,u), t G [0,T]}. □

Lemma 3.10. Let D  be a local control set for (2.1) and assume that the 
accessibility rank condition holds in D. Then, for any x ,y  G int D, there are 
T  > 0 and a T  -periodic control function u Eld such that (u, x) is a strong 
inner pair and y G [0, T ],x,u).

vspace2mmProof. By the accessibility rank condition, as in the proof of 
Krener’s Theorem, it follows that there exist u i , . . .  ,Ud E int U and d > 0 
such that,

N +  =  int {etd X d  • • ■ et l X 1 x  : 0 < t, < d, i — 1,..., d] 0,

N~ =  int {etd X d  • • • et l X i x : —5 <t{ <0, i = 1, ...,d} 0,

where A , = f(-,Ui) for i = 1, ...,d.
Take x +  G N + . Since in the interior of D  approximate controllability 

holds, one can find a control function vo and a time So such that x~ ~
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<p(So, x + ,v) € N  . By continuous dependence we can assume that v is a 
piecewise constant function belonging to Up for some p < 1. Let v+ , G U 
and S + ,S -  > 0 be such that

x + = <p(S+ ,x ,v + ) and x = ip (S-,x  ,v_).

Concatenating v_, v+  and VQ, and taking T  = S+ + SQ + S -  one gets a 
T-periodic trajectory driven by some T-periodic piecewise constant control 
function u. One can also construct u as a control function which connects 
x +  to y and y to x_, in a way that essentially follows the line of the first 
part of the proof. □  

4  T he dynam ic in d ex

In this section we construct a dynamic index for local control sets. We 
consider a local control set D for (2.1) and assume throughout that the 
accessibility rank condition holds. Define the set

{ (it, x) is a T-periodic 
(T, it, x) E (0, oo) x U x : strong inne

x, u) E D ^ t E  [0, T]

endowed with the metric topology given by

dist((T, u, x), (S,v,y)) =  |T  -  Sj 4- ||x — yŴ d +  d(u, v).

Remark 4.1. Although the above definition is valid for any subset of the 
state space the theory that we are developing is relevant only for (local 
and global) control sets in which the accessibility rank condition holds. In 
fact, by Lemma 3.10, if  D is such a control set, then 'P(D) 0; and, by
Lemma 3.9, for every T-periodic strong inner pair (it, x) the point x  is in 
some control set. Below, when no confusion can possibly arise, we shall omit 
the explicit dependence on the base set D. Let us now introduce a relation 
on P . Definition 4.2. (T, it, x) ~  (S, v, y) in P  if there are k 4- 1 elements 
(To, UQ, XO), ■ ■ ■, (Tk, Uk,Xk) in P  with the following properties:

(i) (To ,izo ,xo) =  (T ,u ,x) and (Tk ,Uk,Xk) = (S, v,y);

(ii) for i =  0 ,..., k there are

0 = r f  < ... < r ^  = Ti and 0 =  crt°+ 1  < ... < =  Ti + i ,

such that ip(r?,Xi,uf) = n  and <p(aJ
i+ 1 ,x i+ 1 ,Ui+i') =  £¿+1 for alii and 

all j;
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(Hi) there are continuous maps H) : [0, Ij —> P such that for i =  0, —,k  
and j  =  0 , ki — 1

=  ( T f + 1  - i ^ U i t f  +  a n d

# / ( ! )  =  ( ^ + i  - ^ + i > « i - i - i ( ^ + i  +  - ) ^ i + i ) -

In other words, (Ti,Ui,Xi) and (Tj+ i,Ui+ i,Xi+ i) are chopped into ki pe­
riodic pieces of period i f + 1  -  7/ and crf^1 -  a(+1 respectively, and the cor­
responding pieces are homotopic via trajectories.

Notice that the relation introduced above is an equivalence relation. 
Then, consider on P  f  the set Q of all the formal (juxtaposition) prod­
ucts, i.e. the free semigroup on P f  ~ . (See, e.g., Howie [5] for some general 
facts about the algebraic theory of semigroups.) As usual, we write [T, u, x]n  
instead of

[T, u, x] • • • [T, u, x],
n  tim es

for any n > 0. Here the square parentheses denote the equivalence classes.
Clearly Q is a semigroup which, besides its non-commutativity, is far 

too large for being of any use. Below we factorize it over the congruence 
induced by two families of equations among the elements of Q. Recall that 
a  congruence on a semigroup (5, •) is an equivalence relation ‘= ’ such that

a = a' and b = b' imply a b  = a' b',

for any a, a', b, b' € S.
Consider the following families of relations:

F  =  {[T, u, x][S, V, x] =  [T4- S,u  o v,x] : (T, u ,x),(S , v, x) 6 p } ,

Q =  {[T, u, x][S, v, y] =  [S, v, y][T, u,x] : {T, u, x), (S, v, y) € p } .

Notice that the elements of F  are well defined. In fact, by the definition of 
one has that

(T, u ,x ) ~  (T, u, x) and (S, v, x) ~  (S,v,x)

imply
(T + S, u o v, x) ~  (T 4- S, u o v, x).

The union of the families F  and Q clearly can be seen as a relation on Q, 
i.e., as a subset of Q x Q. Now, since the intersection of congruences is again 
a congruence, it makes sense to consider the congruence (^ U ^ )*  generated 
by the set F  U Q, namely the intersection of all the congruences containing 
F  U Q (see e.g. [5]).
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Remark 4.3. An alternative definition for the congruence (F  U Q)# is the 
following (see [5, Proposition 5.9]):

Let Q1 be the semigroup obtained from Q by formally adjoining (if nec­
essary) a unity element, and define the relation in Q given by

Then is the equivalence relation generated by (i.e. the intersection
of all the equivalence relations containing H).

Finally, we define the dynamic index T(D) of D as the quotient

1(D) := Q (D )/(F u g )*  .

Notice that, 1(D) is a commutative semigroup.
Remark 4.4. Instead of the family Q above, we could take

O' = |  [T, u, x][S, v, y] =  [S, v, yjfT, u, x] : (T, u, x), (S, v ,y ) E P, X

In fact, for (T, u, x), (S, v, x) G P, it follows that

(T + S ,u o v ,x )  ~  (S + T ,v  ou, x), 

as one can see with the ‘homotopy’

H(X) = (T + S ,(u o  v)(XT + ■), y(XT,p, u )), A G [0,1].

Example 4.5. (Linear Systems) Consider the following linear control 
system with restricted control range

x(t) = Ax(t) + Bu(t) in Rd , u G U,

where U C Rm  is convex and compact with 0 G int U and A and B are 
constant matrices of dimensions d x d and d x m, respectively. We assume 
that the pair (A ,B) is controllable, i.e., that rank (B, A B , = d.
Then the index T(D) of the unique control set D reduces to the unity.

This follows from the uniqueness proof of D (cp. [1]): Consider a T- 
periodic strong inner pair (u,x) in the interior of D. Define a homotopy to 
the origin via

H (a) := (T, au, ax), a  G [0,1]-
Linearity implies that ip(T,ax,au) = ax for all a G [0,1]. Hence this is a 
periodic solution, and for a = 0 one obtains the equilibrium. It is also of
interest to consider the following pointed notion of the index. For x  in a 
local control set D define

I x (D) = { [T ,u ,x ] :[T ,u ,x ]e l(D )} .
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Clearly I x  is a subsemigroup of X. An important property enjoyed by this 
new object is the following.
Theorem 4.6. I f  XQ 6 D is an equilibrium for f , i.e., there exists a constant 
u G int U such that / ( TO, u) =  0, then XXQ is a monoid (i.e. admits unity)-
Proof. The unity can be written as [l,u, XQ]. In fact, if [T, u ,x 0 ] is  a n y  
element of Xx o , then the homotopy H(X) = (T  + X, ux,x0 Y where ux is the 
(T  +  A)-periodic extension to R of the following function:

( u for t G [0, A]
[ u(t — X) for i G [A,T +A], 

shows that

[1, U, To][T, U,To] =  [T +  1, u 0 U, To] — [T, U, To].

Analogously, one can see that [T,U,T0 ][1,U, XQ] =  [T,u,TO]. □ 

5 C hanging th e  base set

If D and D' are local control sets with D C D ' then the inclusion i D D' 
determines a natural homomorphism i* : X(D) —» X (D 'f Analogously, if 
To G D one has a natural homomorphism it ,XQ : XXQ (D) —♦ Xx o (D'Y Indeed, 
it is easy to see that the following diagram is commutative:

X(D') Xx o (D'}
4

X{D} Xx o (D)

By commutativity of this diagram, injectivity of i* implies that i . xo is in­
jective as well. Furthermore, the following fact holds.
Theorem 5.1. Let D and D' be local control sets for (2.1) such that D C D' ■ 
Then i* is injective and, if D Y  D ', then i* is not surjective. The proof is 
based on the following lemma
Lemma 5.2 Take (T, u, T ) G P(D') \  P(D). Then, if (T', u', x') ~  (T, u, x), 
one necessarily has (T ',u ',x ') G P(D') \P (D Y
Proof. By the definition of local control sets, there exists an open neighbor­
hood V  of cl D such that D is the maximal subset of complete controllability 
of V . Without loss of generality, we can assume that cl D C V  (and, clearly, 
D ' V). Assume by contradiction that (T', u', x') G P(DY  Since the 
relation

(T ',u ,x ')  ~  (T ,u,xj
holds, by our definition of there exists a  continuous H  : [0,1] —♦ P (D 'Y  
A >—> (Tx,ux,xxY  such that 77(0) € P(D) and 77(1) € P(D') \  P(D).
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Put Ox =  9?([0, T\], xx, «A)- By continuity, there exists some A e  [0,1] 
such that O\ C V  for all 0 < A < A and O\ ft- D. Let 6 > 0 be the distance 
between U A<XOA and the boundary of V . Lemma 3.9 implies that there 
exists a neighborhood W  of this union that is a precontrol set contained in 
U A<A Ox +  B(0, ¿/2). Obviously, W  U D C V  is a precontrol set containing 
D properly. This contradicts the choice of V. □
P r o o f o f  T h eorem  5.1 . If D = D' there is nothing to prove, thus we 
assume D f  D1. To prove that i„ is injective we have to show that given any 
(T, u, x) and (T ^u ^x ')  in P(D), with [T, u, x] t  [T',u',x'] in T(D), they 
cannot be joined by a continuous curve in P(D').

In fact, if they were connected by some H  : [0,1] —► P(D '), A i-> 
(Tx,ux,xx), there would exist Ao G [0,1] such that (7\0 , U AO, X AO) €  P(D’) \  
P(D), but this is impossible by Lemma 5.2.

As for the non-surjectivity of i*, it is enough to notice that, by Lemma 
5.2, no element of P(D ') \  P(D) can be joined to any one of P(D ) by a 
continuous curve in P(D'). This means that, given any (T, u, x) G P(D ’) \  
P(D) one has [T, u, x] i, (T(D )). □

The above theorem allows us to drop the ‘L ’ and consider 1(D ) as a 
subsemigroup of T(D'). When D D', Theorem 5.1 just says that T(D) is 
a proper subsemigroup of 1(D).

6 T he ind ex o f a  control se t near a  period ic  orb it

This section is devoted to the computation of the index of the control set 
for (2.1) which arise for a small control range around an isolated attract­
ing periodic orbit 7 =  </?([0, T],xo, 0), with (minimal) period T  > 0, of the 
uncontrolled system, assuming that the linearized system along 7 is control­
lable. Recall that a periodic orbit (of an autonomous differential equation) 
is called attracting, if the eigenvalues of the linearized Poincare map are 
strictly smaller than one in modulus; compare [9].
P ro p o sitio n  6 .1 . Let 7 be a attracting orbit of the uncontrolled system, and 
let A be a neighborhood o fy . Assume that the controllability rank condition 
(3.1) holds. Then there exist p$ such that for any 0 < p < po there exists a 
unique control set Dp  with 7 C D p  a  A.
P roof. The controllability rank condition implies by Proposition 3.6 that 
all pairs (x,0) G 7 x Up are strong inner pairs, hence inner pairs. Then 
Corollary 4.7.6 in [1] implies the assertion. □

We shall prove that, when p is small enough, the index of the control 
set Dp , relative to system (2.1) containing 7, is isomorphic to N. To prove 
this result we need to show that when (T \,u \,x i)  G P (D P) is such that 
y?([0,7i],zi, ui) goes n times around 7, then (T j,iii,x i) ~  (nT, 0, x0 ) and 
therefore [Ti,ui,xi] — [T,0 ,xo]n . To make this precise we shall introduce 
Definition 6.3 below.

However, it is first necessary to establish some preliminaries on the 
Poincare map for control systems. We begin the following notion from Colo- 
nius/Sieveking [2],
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D efin ition  6 .2 . Let x 0  6 R n , L  : R " -♦ R  linear and a  >  0. I f L f ( x ,  u) > a  
fo r  all x  in  a neighborhood W  o f XQ and all u e  pU then the connected 
component o fW  A l r '^ o )  containing XQ is called a local transversal section 
through XQ .

The definition above allows us to  formulate precisely what is m eant by 
saying th a t an  orbit goes n  times around another.
D efin ition  6 .3 . Let Q be a neighborhood of 7. We say that a closed orbit 
71 =  G Q goes n  times around 7 (relatively to Cl) i f  there
exists a linear map L  as in Definition 6.2 such that

1. S  :=  Q n  Z - 1 (TO) is a local transversal section to 7,

2. 7 n  s  =  {x0 },

3. Xi G S , and

4- there exist exactly n  times ti €  (0, Ti], i  =  1, such that

<p(ti,x\,ui) e  S.

An im portant fact about local transversal sections is the following (see 
[2, Proposition 2.14]).

L em m a 6 .4 . I f  0 f(xo ,p U ) then XQ admits a local transversal section. 
Therefore, if 0 f  /(xo,O ) then XQ admits a local transversal section for 
p  small enough. Another useful notion from [2] is th a t of a flow  box for 
control systems.
D efin itio n  6 .5 . Let S  be a local transversal section through XQ, and let 
V  C V$ be neighborhoods of XQ. The triple (Vo, V i,S) is a flow box around 
XQ i f  it has the following property:

I f  </?(•, XQ, U) satisfies

ip(to,Xo,u) ^V o , ip(ti,X 0 ,u )  e  Vi, ^ 2 , 1 0 , ^  Vo

fo r  some 0 <  to <  ti  <  t2, then there exists t € (to, ¿2) such that ip(t, XQ , U) € 
S  and ip (s,xo ,u )  €  Vo fo r  all s between t and ty.

From the  proof of Theorem 2.16 in [2], one immediately gets the following 
result.
L em m a 6 .6 . Let S  be a local transversal section through XQ. Then, fo r  any 
neighborhood W  o f S  there are neighborhoods Vo and Vj of XQ contained in 
W  such that (Vo,Vi,S) is a flow box around XQ.

We now tu rn  to  the  Poincare map.
P r o p o s itio n  6 .7 . Let S  be a local transversal section through XQ €  7. I f  
p is small enough, there exists a neighborhood V  of XQ in S  such that the 
Poincare first return map P  : V  x U p  S is well-defined and continuous.
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Moreover, the map that takes (x, u) into the ‘first return time ’ T (X , U) is 
continuous.

Proof. Let us first show that P  is well-defined. Notice that the orbits can 
cross S  only from one side; therefore it is sufficient to show that there exists 
a neighborhood V  C  S  of XQ such that the orbits return to S  after a finite 
time.

Let IV be a neighborhood of XQ in Rd and (Vb, Vi, S) be a flow box around 
XQ with cl Vb C W. Taking if necessary a smaller TV, we can assume that 
there are times to and ij, with 0 < to < T  < ti, for which ^(io,xo,O) and 
< (̂tj, XQ, 0) are in W  \ cl Vb-

By continuous dependence on initial data there exist a neighborhood 
V c  Vi of XQ in S  and po > 0 such that, if 0 < p < po

p(to, x, u) E W  \ cl Vb 
<p(ti, x, u) E W  \ cl Vb 
p(T, x,u) E VI

> for every (x, u) E V  x Up .

Since (Vb, V i,S) is a flow box, for each (x, u) E V  x U p there exists a time 
r[x,u), with to < r(x, u) < ti such that ip(r(x, u), x, u) E S. For W  small 
enough this time is unique proving that P(x, u) := <p(r(x, u), x, u) is well- 
defined.

We shall now prove continuity of the map (x, u) >—> P (x ,u ). Consider a 
sequence {(£n , un )} in S  x Up converging to (¿o, «o)- Fix a neighborhood W  
of P{f,o,uo) in S  and let W  be a neighborhood of P(^o,uo) in Rd  such that 
IV = W  D S. Let (Vb, V i,S )  be a flow box around P(^o, ^o) with cl Vb C W.

Let r = r(^o,u ofi As in the first part of the proof, taking W  smaller if 
necessary, one can find times 0 < TO < T < TI such that

x0 , uo), <p(ri, x0 , uo) € W  \ cl Vp

From [1, Lemma 4.3.2] one has

nl
—
im

>oo
<p(r,£n ,u n ) = <p(r,£o ,uo) =  P ( € o ,« o ) ,  

lim  ^ ( T b ^ n .U n )  =  92(TO ,£O, UO), 
n—’ OO

nl—im*oo
 =  <̂ (TI,<O , UO)-

Therefore, for n large enough,

92(r0 ,x n ,u n ),^ (T i,x„,u n ) Vo and <p(r,xn , un ) G Vp

Since (Vb, Vj, S) is a flow box there exists rn  E (TO, T I) such that P (x n , un ) =  
lp(Tn ,x n ,u n ) E S  Cl TV. This proves that, for n large, P (x n ,u n ) E W  and 
continuity follows. Notice also that, in the construction above, rn = r ^ n , un ) 
satisfies

n  -  To >  |T  -  Tn |,
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and that, by shrinking W, we can make the differences r\ — TQ as small as 
we please, therefore proving the continuity of the map (x, u) H-► r(x, u). □

Given a control function u and a time T  > 0 it is convenient to denote 
by M r the function u | [0, T] extended periodically to R.
Proposition 6.8. Let A i—> Tx : [0,1] —► R be continuous. For a (fixed) 
control function u E Up , the map A H-> ux := Afu]^ is continuous.
Proof. Suppose An  —+ A as n —> oo. For notational simplicity, assume 
that Txn < Tx and p =  1. In order to show that uxn —* ux let W  be 
a neighborhood of ux; we shall show that uxn belongs to W  for n large 
enough.

There are s > 0 and x i , E Zi(R,Rm ) with

L  E “ V ® ’X M  1 c  w
[ v y =  1,..., N  and v(t) E U a.e. J

because the sets of this form constitute a subbase of the neighborhoods of 
ux in the weak* topology (see, e.g., Dunford/Schwartz [4]).

Since Xj E £i(R , Rm ) there is k E N such that for j  = 1,..., N

[  |x,(t)ldi < ■ ,
JR \[-k T x ,kTx ] 2 diamt/

where diamt/ =  sup{|ui — € U}. Then, for j  =

f kTx
< /  <«An (i)

J -k T x R \[-kT x ,kTx ]
(«A„(í) -  ux(t),Xj(ty)dt

The second summand is bounded from above by

diamiZ / \xj(t)\dt < e/2.
J ^ \[ -k T x ,kTx ]

The first summand is

uxÇtfixfit^dt

where
/■b+i)^

Si := /  (u x „ (t)-u x(t),x3 (t))dt .
JiT x
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We have, for n large enough, that

So =
o

Jo JTXn

< [ÎA|An-A| +  |rA-TA„|(An +  |A -A n |)d ia m q  max ||x J |L1 < .
j=l,...,N QK

Now consider S i. By definition

ux (t) = Xu(t -  Tx) for t € [TA, 2TA],

and
, (D = f  ~ T x ^  FOR * E  P A„, 27A„],

X n [>  1 An u(i -  2TA n) for t e  [2TA n ,3TAJ .

For n  large enough, one has Tx < 27\n . Thus

S!
/•2TA

/  (“>„(*) -  ux(t),Xj(t))dt
JTX

' {uX n (t) -  ux(t),Xj(t))dt

/ {Xn u(t -  T xJ  -  Xu(t -  Tx),Xj(t))dt 
JTX

+2|7A -  7A„| (An  +  |A -  A„|) diamt/ max IIX JUL,.
j=l,...k

For n  large enough, the first summand can be made less than e/(8k) since 
the shift in U is continuous (see [1, Lemma 4.2.4]); and, as in the case of So, 
we can assume

p
2|TA -  TA„| (An +  |A -  A„|) diamCZ max Ik jlk i < — 

OK

Hence, one has Si <
Proceeding analogously for all summands Si, i = —k ,...,k  — 1, we see 

that for n large enough Si < e/(4k). Thus
k— 1rkT x Î—J Ikr/  <«A„(i) -  ux(t),Xj(t))dt < Si < —
— k

We have proved that, for j  = 1,..., N  and n  large enough,

/ {uX n(t) -  ux(t),Xj(t))dt
JR

e.

= e/2.
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This implies that, for n large enough, u \n belongs to the neighborhood W. 
□

We also need the following fact which can be proved by standard argu­
ments.
Lemma 6.9. The set of continuous functions is dense in Up . The next 
fact is crucial for the construction of the homotopy between the orbits that 
wind n times around 7 and [T, 0, x]n . We shall make use of the following 
parametrized version of the Implicit Function Theorem:
Theorem 6.10. Let T , X  and Y  be Banach spaces and let J- be a topological 
space. For any u G F  let : T  x X  —>Y be C 1 and let (t, x, u) 1—» z)
and (t,x ,u ) 1—> ^'u (t,x) be continuous. Assume in addition that:

1. there exist X Q E X  such that (0,ZQ) = 0 for all u G T ;

2. there exists 6 > 0 such that for every u  G F, D ^ u  (0, ZQ) is invertible, 
and

|| (£>1^ (O,zo)) J | |< 5  fo ra n y u & F ,

3. it holds
I™ , | | ’O > * ) - = °

uniformly in u.

Then, there exist an open neighborhood W  ofxo in X  and a (unique) C l 
function ru : W  —► Y  such that TU (ZO) = 0 and ^ U (TU (X),X) =  0, for any 
u e F.
Lemma 6.11. Assume that the T-periodic orbit 7 =  <̂ ([0, T], XQ, 0) is at­
tracting, and let S  be a local transversal section for 7 through XQ . Then there 
exists p > 0 and a neighborhood V  of ZQ such that P(-.,u) is a contraction, 
uniformly for u E.UP ■
Proof. Without loss of generality we can assume that S  lies on the hyper­
plane X  := {zd =  0} C Rd . Here and along all this proof the exponent d 
denotes the d-th component in Rd . Take T  = R, Y  := R and

with the Loo topology, and define the C 1 function : T  x X  Y  as

V u (t, y) := <pd (t + tu , y, u) -  yd ,

where tu  = T (XQ, U). One has ^„(0 , zo) = 0. Moreover, reducing p if 
necessary, one can find 6 > 0 such that

(0, z 0 ) =  f d (r(x0, u), u) > 1/5.
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Continuous dependence, ensures that also condition 3 in Theorem 6.10 is 
satisfied. Therefore we get the existence of a neighborhood V of XQ in S  and 
of a C 1 function ru  : V  R such that =  0 for every x  E V.

Clearly, if p is small enough and x E V, then the time r(x , u) for the 
Poincare map coincides with ru (x) + tu . Thus D^T X̂ , U) is well defined and 
the map

(x,u) i—> D iP(x,u) = Dnp(r(x, U) ,X , U)D \T (X , U) + D ^ ir^ x ^  u), x, u)

is continuous. Since 7 is attracting, the eigenvalues of D^P^xo, 0) are strictly 
smaller than one in modulus. Thus there exists a norm on S  such that 
the operator D I P(XQ,0) has norm smaller than one. By continuity and 
restricting V  and p if necessary, we can assume that the same is true for 
D iP(x, u) for every x E V  and u E Up  A C ^R , R”1). Whence it follows that 
P(-,u) is a contraction with constant

k =  sup ||L>I P U ,M)II<1- 
(i,M)eVx«p

Let us show that P(-,u) remains a fc-contraction when u is a general (not 
necessarily continuous) element of Up . Since the C 1 functions are dense in 
14 p in the weak* topology, there is a sequence {un } of C 1 functions in 14 p 
converging to UQ in the weak* topology. Take x  and y in V, by Proposition 
6.7 we know that P  is continuous when 14P is endowed with the weak* 
topology. Therefore, for E > 0, one has

|P(z, u) -  P(x, Un )| +  |P(y, u) -  P(y, Un)| < £,

for n  sufficiently large. Therefore

\P(x,u) -  P(y,u)\ < |P (z ,u ) -  P (x ,u n )| +  \P (x,u n ) -  P (y ,u n )\ 
+ \P(y,un ) -  P(y,u)\

< fc |z - y |+ £ .

Since E > 0 is arbitrary, this proves the assertion. □
Proposition 6.12. Assume that the T-periodic orbit 7 =  <̂ ([0, T],xo,0) is 
attracting, and let S  be a local transversal section for 7 through XQ. Then 
there exists p > 0 and a neighborhood V  of XQ such that for every n E N and 
every (x,u) E V  x Up  the map (x,u) —> P n (r ,u ) is well defined.

Moreover, for every u E Up , there exists a Tu  > 0 and a unique Tu - 
periodic solution <p(-,xu , [U]TU ) winding n times around y, and the functions 
u Tu  and u ^ i u  are continuous.
Proof. In Lemma 6.11 we proved that for u E 14P , with p sufficiently 
small, P{-,u) is a contraction on cl V .Consequently, we can assume that 
P(cl V, u) C cl V for any u E 14P. In particular P n (-,u) is well-defined for 
any n E N and u E Up . Notice also that for every n E N and u E 14P also
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P  (-, u) is a contraction. Therefore, given n  and u as above, there exist a 
unique fixed point x u  for P n (-,u) in N  which depends continuously on u. 
Define Tu  as the time needed for (/?(•, x u , u) to reach x u  after winding n times 
around 7. Continuous dependence of Tu  on u follows from continuity of the 
first return time as shown in Proposition 6.7. □

Notice that in P n  (x, u) the control u restricted to [0, Tu \ is applied n 
times. We are finally in a position to prove the claim we made at the 
beginning of this section.
Theorem 6.13. Assume that the uncontrolled system has an attracting T- 
periodic solution </?(•, XQ,0) unth T  > 0, and that the controllability condition 
(3.1) is satisfied. Then, when p is small enough, the dynamic index T(DP) 
of the control set Dp containing y  := <^([O,T],zo,O) is isomorphic to N.
Proof. Let N  =  cl V  be the compact neighborhood of XQ found in the 
proof of Proposition 6.12 above. Consider a Tj-periodic orbit x, u) with 
x E N, u E Up  for some 0 < p' < p and n piecewise constant. There exists 
n  such that tp(Ti,x,u) = P n (x,u). By Proposition 6.12, there exist Tx > 0 
and a unique 7\-periodic solution <̂ (-, x \, [Au]^) winding n times around 7. 
By Proposition 6.8 the map X u\ ~  is continuous. Hence, again 
by Proposition 6.12, it follows that T\ and x \  depend continuously on A. In 
particular, To =  nT. Since, by Proposition 3.6, (MJ^ XA) is a strong inner 
pair for each A, this yields the desired homotopy between (T \,u \,x f)  and 
(TQ,O,TO). O

We conclude the paper with a remark showing that the dynamic index 
allows us to distinguish control sets around an attracting periodic orbit as 
above from control sets around a homoclinic orbit.
Remark 6.14. Suppose that the uncontrolled system has a homoclinic orbit 
given by

(p(t,xi,ui), t E R, with lim p (t,x i,u i)  = xo, ►±00
where xo is an equilibrium of the uncontrolled system. I f  the controllability 
condition (3.1) holds for all points in 7 := {x0 } U {<p(t,x^Ui), t E R} and 
this is a chain recurrent component of the uncontrolled system, then for every 
P > 0 there is a control set D p containing this set in its interior and

Q DP = T ,
p>0

see Corollary ^.7.6 in [1]. For any small p, the index T(DP) contains an 
element [T,XQ,0] which is idempotent, i.e., [T,xo,O]2 — [T,xo,O]. Hence 
T{DP} is not isomorphic to N.
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