Morse Decompositions and Spectra on Flag Bundles

Fritz Colonius' and Wolfgang Kliemann®

For linear flows on vector bundles, the chain recurrent components of the
induced flows on flag bundles are described and a corresponding Morse spec-
trum is constructed.

KEY WORDS: Morse spectrum,; linear flows; chain recurrence; flags.

1. INTRODUCTION

Smooth ergodic theory and the theory of random dynamical systems were
very successful in relating Lyapunov exponents to other local and global
characteristics of dynamical systems. An example is the Pesin formula
relating positive Lyapunov exponents to entropy. For the topological
theory the situation is less satisfactory (in spite of considerable progress).
This is, among other things, due to the fact that the ‘“linear algebra”
provided by the Oseledets Theorem is more efficient than the known topo-
logical concepts of spectra. In the present paper (continuous) linear flows
on vector bundles are considered. They encompass, in particular, linear
differential equations with almost periodic coefficients, linearized autono-
mous differential equations, and bilinear and linearized control systems;
compare Sacker—Sell [4, 8]. We show that the constructions used for the
chain recurrent components of linear flows in projective bundles (Salamon-—
Zehnder [10]) and for the Morse spectrum [3] can be generalized so that
they provide precise results in higher dimensions. This is based on a classi-
fication of the chain recurrent components for the induced flows on
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flag and Grassmann bundles providing the finest Morse decomposition.
The importance of flags in this context is also emphasized by related results
on the classification of control sets and chain control sets in the theory of
Lie semigroups (San Martin and Tonelli [11], Braga Barros and San
Martin [2]). Applications to other characteristics are left for further work.

In Section 2 we recall some concepts from topological dynamics and
their application to linear flows on projective vector bundles together with
the Morse spectrum. In Section 3, the chain recurrent components in flag
bundles are constructed via a finest Morse decomposition. In Section 4,
this is used for the construction of a Morse spectrum.

2. CHAIN TRANSITIVE COMPONENTS AND THE MORSE
SPECTRUM IN PROJECTIVE SPACE

In this section we collect some definitions and results related to the
spectral theory of linear flows on vector bundles.

We first recall the following notions and facts from the theory of flows
on compact metric spaces (going back to the work of Conley [5]; proofs
can, e.g., be found in [4, Appendix B]). A set K — X is called invariant if
x-R c K for all x € K; a compact subset K — X is called isolated invariant,
if it is invariant and there exists a neighborhood N of KX, i.e., a set N with
K cint N, such that x-Rc N implies x € K. Thus an invariant set K is
isolated if every trajectory that remains close to K actually belongs to K.
The w-limit set of a subset Y < X is defined as

there are t;, - oo and y, € Y}

co(Y)={yeX, = () cl(Y-[t, 0)).

t>0

such that y, -t, > y

Analogously, w*(Y) is defined for ¢ tending to — c0.

Definition 1. A Morse decomposition of a flow on a compact metric
space is a finite collection {.#;,i=1,...,n} of nonvoid, pairwise disjoint,
and isolated compact invariant sets such that:

() For all x € X one has w(x), o*(x) = UI_; A,.

(i) Suppose there are ., #,,..., M, and x,,...,x,€ X\U]_, 4,
with o*(x)c#,_, and w(x)c A, for i=1,..,1I; then
My, F M.

The elements of a Morse decomposition are called Morse sets.

A Morse decomposition {.4,..., #,} is called finer than a Morse
decomposition {.#,..., # )}, if for all je {1,...,n'} there is i€ {1,..., n}
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with .#; c .4, The intersection of two Morse decompositions {.4,..., .#,}
and {A,..., M)} defines a Morse decomposition {.# N .4, i, j}, where
only those indices i, j with 4 N .#;# & are allowed. Note that, in
general, intersections of infinitely many Morse decompositions do not
define a Morse decomposition. Morse sets are ordered via

M; X My if there are M, = M, M, ..., M; = My and X,,..., x; € X
with 0*(x;) < 4,

., andw(x,)c A, fork=1,..., 1 (2.1)

We enumerate the Morse sets in such a way that .4 <X 4, implies i < j.
Morse decompositions can be constructed from attractors and their
complementary repellers.

Definition 2. For a flow on a compact metric space X a compact
invariant set A is an attractor if it admits a neighborhood N such that
w(N) = A. A repeller is a compact invariant set R that has a neighborhood
N* with o*(N*) = R.

We also allow the empty set as an attractor. A neighborhood N as
in Definition 2 is called an attractor neighborhood. Every attractor is
compact and invariant, and a repeller is an attractor for the time reversed
flow. Furthermore, if 4 is an attractor in X and Y < X is a compact
invariant set, then 4 N Y is an attractor for the flow restricted to Y. For an
attractor 4, the set A*={xe X, w(x) n 4= &} is a repeller, called. the
complementary repeller. Then (A4, A*) is called an attractor-repeller pair.
Note that A and A4* are disjoint. There is always the trivial attractor-
repeller pair 4 =X, A* = (.

The following result characterizes Morse decompositions via attractor-
repeller sequences (it is often taken as a definition; cp. Rybakowski [7,
Definition II1.1.5 and Theorem III.1.8, Salamon [9], or Salamon and
Zehnder [10]).

Theorem 1. For a flow on a compact metric space X a finite collection
of subsets { M,,..., M,} defines a Morse decomposition if and only if there is
a strictly increasing sequence of attractors

H=AycAjcA,c---cA =X,

n

such that

M,_;=A, . NnA]  for 0<i<n—1.
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For x, ye X and ¢, T >0 an (g, T )-chain from x to y is given by a
natural number n € N, together with points

Xg = X, Xisees X, =V €EX and times T, ..., 7,

n—

1>T9

such that d(x;-T;, x;,;) <e for i=0,1,...,n—1. A subset ¥ < X is chain
transitive if for all x, y e Y and all ¢, T > 0 there exists a (¢, 7' )-chain from
x to y. A point x € X is chain recurrent if for all &, 7 > 0 there exists a
(&, T')-chain from x to x. The chain recurrent set £ is the set of all chain
recurrent points. The connected components of the chain recurrent set #
coincide with the maximal chain transitive subsets of #. Furthermore, the
flow restricted to a connected component of £ is chain transitive. The
connected components of #£ are called the chain recurrent components.
The chain recurrent set and attractors are related in the following way.

Theorem 2. The chain recurrent set # satisfies
R =\ {Au A*, Ais an attractor}.

In particular, there exists a finest Morse decomposition {M,,..., M,} if and
only if the chain recurrent set & has only finitely many connected compo-
nents. In this case, the Morse sets coincide with the chain recurrent compo-
nents of X and the flow restricted to a Morse set is chain transitive and chain
recurrent.

For the definition of vector bundles 7: ¥~ — B we refer to Karoubi [6]
(or [4, Appendix B]): Locally, they are the product of an open subset of
the metric space B with a finite dimensional Hilbert space. We always
assume that the base space B is compact and connected. A linear flow & on
a vector bundle n: ¥~ — B is a flow @ on ¥” such that for all xe R and
v, U, € ¥ with n(v,) = n(v,) and ¢ € R one has

n(D(t, v,)) = n(D(t, vy)), D(t, (v, +v,)) = ad(2, v,)+ad(t, v,).

Where notationally convenient, we write instead of @(¢, v) either @,(v) or
@(t) v. The flow @ induces flows on the base space B (corresponding to
transport of the fibers) and on the projective bundle P¥#". The following
theorem goes back to Selgrade [12].

Theorem 3 (Selgrade). Let @ be a linear flow on a vector bundle
7. ¥ — B with chain recurrent flow on the base space B. Then the chain
recurrent set of the induced flow P® on the projective bundle PV~ has finitely
many, linearly ordered, components {M,,..., M}, and 1 <] <d:=dim ¥},
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b € B. Every chain recurrent component #, defines an invariant subbundle of
V" via

V=P (M)={ve ¥, v¢ Z implies Pve M}
and the following decomposition into a Whitney sum holds:
V=740 - Y. 2.2)

For points v € ¥” not in the zero section Z in ¥~ the Lyapunov expo-
nent or exponential growth rate of the corresponding trajectory is given by

1
A(v) = lim sup " log |D,v] (2.3)

t— oo

and the Lyapunov spectrum 2}, of the linear flow @ is the set of all
Lyapunov exponents

2y, ={Av),ve ¥ \Z}. 2.4)

The concept of Morse spectrum is defined via (¢, T )-chains in the projec-
tive bundle. Recall that for ¢, 7> 0 an (¢, T")-chain { in P¥” of @ is given
byneN, T,,...,T,_, =T, and p,,..., p, in P¥" with d(D(Z}, p;), p:+1) < € for
i=0,...,n—1. Define the finite time exponential growth rate of such a
chain (or “chain exponent’’) by

(0= 1) T dogla, n)l—og

i=0

where v; € P7!(p)).

Definition 3. Let @ be a linear flow on a vector bundle n: ¥~ — B and
let £ <Py be a compact invariant set for the induced flow P® on Py~
such that P® | # is chain transitive. Then the Morse spectrum over & is

A € R, there are e¥ - 0, T* - oo and (&, T")-chains}

(&, D) =
mo(Z @) { ¢¥in & with A(C%) - Aask — o0

The Morse spectrum 2, (P) of @ is defined as the union of the Morse
spectra on the chain recurrent components in P¥".

The main results on the Morse spectrum are collected in the following
theorem.
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Theorem 4. Let @ be a linear flow on a vector bundle n. ¥~ — B with
chain recurrent flow on the base space B. Then

ZLy(Q) = ZMO(Q) = O ZMO('/”I'S Q)s

4

where M, <PV, i=1,...,1, are the chain recurrent components of the
projective flow P®. Furthermore, for everyi=1,...,1,

Z‘Mo('/”i’ Q) = [K*('//{i)s K(.//l,)]

with k*(M) <x*(M;) and k(M) <x(M;) for i <j; the boundary points
k*(M,), k(M) are Lyapunov exponents of P.

We also note that, for a chain recurrent base space, the Morse spec-
trum coincides with the Sacker—Sell spectrum; one obtains the exponen-
tially dichotomous subbundles provided by Sacker—Sell theory by taking in
the decomposition (2.2) the sum of all subbundles with intersecting Morse
spectral intervals.

3. MORSE DECOMPOSITIONS ON FLAG BUNDLES

In this section we describe the chain recurrent components in the flag
bundles. The existence of the corresponding finest Morse decomposition
follows from the linear structure of the attractors. The proof proceeds via
induction on the length of the flags; in the induction step, the argument is
reduced to the one-dimensional Selgrade theorem, Theorem 3, by constructing
appropriate vector bundles.

Throughout the rest of this paper, we consider a linear flow on a
d-dimensional vector bundle z: ¥~ — B with chain transitive compact base
space B. We find associated Grassmann bundles G,;¥” by repeating the
construction for vector bundles (cp., €.g., Appendix B in [4]): Grassmann
bundles are locally trivial fiber bundles where the fibers are Grassman-
nians. Recall that Grassmannians can be considered as elements of the
projective space of exterior products; a subspace is identified with the
line spanned by a simple element whose entries span the subspace.
Analogously, a Grassmann bundle can be identified with a subset of the
projective bundle of an exterior product bundle 4*¥". We consider the dis-
tance on the Grassmann bundle that is induced by the metric on the corre-
sponding projective bundle. We will also consider flag bundles whose
elements are sequences of subspaces V; in a fiber ¥,

VicVyc -V,
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with dim ¥, =i for i e k= {1,..., k} and k<d. We denote the correspond-
ing flag bundle by

beBandV,cv,withV,cV,,,
I]:k,y/‘= Fk=(b’ I/ls I/2’"°’ I/k)’ °

anddimV, =iforick

Thus for k=d we have the complete flag bundle F¥" :=[F,;¥". Further-
more, observe that n: F,¥" — [F,_,7 has a natural, locally trivial, fiber
bundle structure. Where convenient, we denote the corresponding fibers by
(Fe¥)5,_, for F,_, € F,_;#". With a slight abuse of notation we also write
ve F, if veV,. We supply the flag bundles with the metric induced by the
Grassmann bundles G, ¥”

d(Fy, Fy) = max_de, (b, V), (6, V).

In the following we denote the flows induced by the linear flow @ on the
Grassmann, the flag and the exterior bundles again by &; by the context it
will always be clear which flow is meant.

First we will discuss how Morse decompositions in [, and F;, k> j,
are related.

Proposition 1. Let {;M,,..., ; #M,} be a Morse decomposition in F, ¥
Jor the attractor sequence (J=;A,c ;A c ---c;A,=F¥". Define for
k>j

kAi = {(1?], I/j+ls'--s I/}'c) € IFk,V.s F'] ein}'

Then {y M,,..., . M,} is a Morse decomposition in F,¥". Conversely, consider
a Morse decomposition {y M,,..., . M,} in F.¥" with attractor sequence J =
Ao <Ay < - < A,. Then

jA;:={F,e 5, , there are V., < --- <V, with (F;, V;1,..., Vi) € 1 4;}
is an attractor sequence in [F;¥" with Morse sets
jMy:={F; e F,¥ , there areV,,, = --- < V; with (F;,V;,1,..., V) € y M; }

In particular, every projection of a Morse set to F;¥" contains a chain
recurrent component of F, 7"

Proof. Let ;N, be attractor neighborhoods of ;4,, i.e., one has
®(;N;) = ;A4;. Then

k]Vi = {(1:]’ I/j+1""’ I/k) € I]:k,y/"l'?j Ej]vi}
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are attractor neighborhoods of ,4;. The analogous construction for the
complementary repellers yields the assertion.

For the converse assertion observe that for attractor neighborhoods
«N; one obtains attractor neighborhoods of ;4; as

Ny :={F,eF,¥,thereareV,,, < --- <V, with (F}, V;,1,..., Vi) € V;}.
]

Remark 1. Observe that analogous results hold for arbitrary flag
bundles corresponding to dimensions i, <i, < --- <i; and k; <k, < ---
<k, provided that {i,,..., i;} < {ki,..., k; }.

The following first main result is a flag version of Selgrade’s Theorem.

Theorem 5. Consider a linear flow @ on a vector bundle . ¥~ — B and
suppose that the induced flow on the compact base space B is chain transitive.

(i) Then for every 1<k<d there exists a unique finest Morse
decomposition {,M, } of the induced flow @ on the flag bundle
F.7; here i; € {1,...,d}* is a multiindex; and the number of chain
transitive components in the flag bundle F,¥" is bounded by
d'/(d—k)\.

(ii) Let M, i€ {l,...,d}*"! be a chain recurrent component in the flag
bundle [F,_, V" and consider the d — k + 1-dimensional vector bundle
w W (M)~ M, with fibers W( M)y, =V;/Viy for Foy=
(b, V1s--.s Vi_1) € M;. Then every chain recurrent component p M,
j=1,..., k; <k—d+1, of the projective bundle PW (M,) determines
a chain recurrent component , M; of |,V via

kM, = {F=(Fy_, ) eV, F_y € M and P(V [V 1)C|Pv/” -

and every chain recurrent component in [F, V" is of this form. This inductively
determines the multiindex i;.

Proof. We proceed by induction over the dimension k. By Selgrade’s
Theorem, Theorem 3, the assertion holds for k = 1. Now suppose that the
assertion holds for k—1. Note first that by Proposition 1 there is a Morse
decomposition in [, ¥ which projects down to the finest Morse decompo-
sition in [F,_, ¥". Thus we may restrict our attention to attractor sequences

B=AycA,c---cA,=FYV
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with the following property: For the corresponding attractors and repellers
in F,_,7" one has that F,_,4,n[F,_,;4; is a chain recurrent component
of F,_,7 . Next observe that for a fixed chain recurrent component .# in
F._,7", every Morse decomposition {.#;} in [, ¥ induces a Morse decom-
position {#; nn~'.M} of n~'.M; this follows at once from the definition of
a Morse decomposition and compactness and invariance of #~'.#. For
every Morse set in [F,#” the projection to [F,_; ¥ contains at least one chain
recurrent component of [F,_,¥ . There exists a Morse decomposition in
[F.7" projecting down to the finest Morse decomposition in [F,_; and a
refinement of such a Morse decomposition in [F,¥” yields a refinement of
at least one Morse decomposition over a chain recurrent component in
F._,# . Hence we may restrict our attention to Morse decompositions
{M} of n~' M over a fixed chain recurrent component .# in F,_;#". Such a
Morse decomposition corresponds to an attractor sequence 4,, j=1,...,n,
in the fiber bundle

n_l.//l - {Fk - (Fk—l’ I/k) € [Fk’V‘, Fk—l € ./”}.
Now consider the vector bundle n: ' (#) — .# with fibers
(W('/”))Fk_l =3 /Vi_ for Fp_,=(0b,1,..Vi_1)e M. (3.1)

This is a vector bundle of dimension d—k+ 1, since it is obtained as a
quotient bundle of ¥ — .# modulo the k—1-dimensional sub-vector
bundle with fibers V,_, over F,_, = (b, V,,...,V;_;). Note that this is a
subbundle, since its fibers have constant dimension and it is closed. Next
we show that an attractor 4 in 7. yields an attractor 4 in the projective
bundle P# (). In fact, let N be an attractor neighborhood of 4 with
A = w(N) where

w(N) = {F, e n~' M, there are t’ —» o0 and F} € N with &(¢/, F}) - F,}.

Consider the subsets 4 and N in P#(.#) with fibers over F,_, =
(b’ I/Ia"'s 17]«7—1) giVCn by

Ap,_ =P{o+V;_,, thereis F, = (Fy_,, ;) € A with v e V};}
and
JVFk_l = P{v+V,_,, there is F, = (F;_;, V;) € N withve V. }.

Then N is a neighborhood of A and w(N) = 4 and hence N is an attractor
neighborhood of A. In fact, the neighborhood property follows easily in
the projective bundle with fibers P¥, over F,_, = (b, V,...,Vi_1) € # and
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remains true in W (), since the projection is open. To see the limit prop-
erty, consider P(v+V,_;) € A‘Fk—l with F, = (F,_,,V;) € A and v e V,. Since
w(N) = A, there are t/ - 0 and F] = (F]_,,V3) e N with &(¢/, F}) - F,.
Then also &(¢/,Vi_,) »V;_, and @®(¢/,V]) - V,. This implies that there
are v/ e V1 with

P +Vi_)) - P(v+V;_;).

Thus A = w(N). Conversely, consider a point P(v+V,_,) € w(N). Thus
there are t/ - o0 and v/, V4_, with (Fi_,,V})e N and &(¢/, P(v'+Vi_)))
— P(v+V,_,). Since o(N) = A, it follows by compactness that there is V;
such that for a subsequence &(t/, F}) - F, =(F,_,,V,) € A with veV,.
Hence P(v+V;_,) € A.

For the vector bundle #'(#), Theorem 3 implies that there exists a
finest Morse decomposition in the projective bundle, since the base space
# is chain transitive. By the construction it follows that a refinement of a
Morse decomposition in #~'.# yields a refinement of the corresponding
Morse decomposition in P#'(.#), hence there exists a finest Morse
decomposition in 7~'.# as claimed. [

Remark 2. The proof of this theorem shows, that the projections of
the chain recurrent components in flags F, 7" to flags ;7" with j <k yield
the chain recurrent components in [F;%".

The result above also allows us to describe the chain recurrent
components on the Grassmann bundles.

Proposition 2. There exists a finest Morse decomposition on every
Grassmann bundle G, ¥ . Its Morse sets which are the chain recurrent com-
ponents are given by the projection of the chain recurrent components from
the complete flag bundle.

Proof. Let .# — ¥ be a chain recurrent component. Then
{Vi € G, ¥, there is (Vy,..., Vi, Viy1s---s Vi) € M}

is obviously chain transitive in G,¥". Now consider a Morse decomposition
{rM,,..., s M} in F¥" with attractor sequence J =4y 4, < --- < ¢A,.
We claim that

6, i :={Vi € G, ¥, there are V] such that (V,,..., Vi, Viy 1., Vi) € £ 4;}
is an attractor sequence in G, ¥~ with Morse sets

6, M 1= {Vi € GV, there are ¥ such that (V},..., Vi, Viy15e--r Vy) € g M}
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In fact, for attractor neighborhoods N, of ;A4; one obtains attractor
neighborhoods of ¢, 4, as

N, :={V, € G, 7, there are V; such that (V},..., Vs, Viy15---5 Vy) €N}

The same arguments applied to the complementary repellers proves the
claim. This shows that the projections of the chain recurrent components of
the complete flag to a Grassmann bundle yield chain recurrent sets which
belong to a Morse decomposition. Hence the finest Morse decomposition
on the Grassmann bundle is given by the projection from the complete flag
bundle. O

Remark 3. For every linear flow on a chain recurrent compact base
space one obtains a tree in the following way: Above the root B, the nodes
at level 1 are the chain recurrent components in G,7". The nodes at level k
are the chain recurrent components .#; in the flag bundles F, 7" and there
is an edge from the node 4, cF,_, to M, cF,¥" if 4, projects down
to ;. This is equivalent to i, = (i;, m) for some me {1,..., k, }.

The chain recurrent components on Grassmann or flag bundles need
not be linearly ordered. However, one obtains a unique maximal (and, via
time reversal, minimal) element.

Corollary 1. On every flag bundle there is a unique maximal chain
recurrent component.

Proof. This is seen inductively: For k=1, this is part of Selgrade’s
Theorem. Suppose that .# is a maximal chain recurrent component in
[F._; 7 . Then there exists, again by Selgrade’s Theorem, a unique maximal
chain recurrent component in the projective vector bundle P# (.#). One
can easily see that this corresponds to a maximal chain recurrent compo-
nent in [, 7. O

Remark 4. It also follows that the chain recurrent components on
the complete flag bundle project down to the chain recurrent components
on arbitrary flag bundles.

Remark 5. In Salamon-Zehnder [10], the proof of Selgrade’s
theorem is based on the fact that attractors in the projective bundle define
subbundles, i.e., the intersection with a fiber is linear and has constant
dimension. An analogous construction for flag bundles shows that also the
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intersection of an attractor with a fiber W (.#)g,_, is linear and has con-
stant dimension. This may be used to give a direct proof of Theorem 5,
without taking recourse to the one-dimensional theorem.

Next we describe the relation of the chain recurrent components in the
flag bundles to the chain recurrent components in projective space by
constructing an appropriate Morse decomposition.

Theorem 6. Let @ be a linear flow on a vector bundle : ¥~ — B with
chain transitive compact base space B and dimension d. Let ¥; with dimen-
siond;, i=1,...,1, be the subbundles which project down to the finest Morse
decomposition of the projective flow P®: P¥" — B, according to Selgrade’s
Theorem. Define for 1 < k < d the index set

1) := {(ky, by k), ey Hhey + -+ =k and 0 < k, < d,}.

Then a Morse decomposition in the Grassmann bundle G,¥" — B is given by
the sets

-/V’l;,...,k, = Gk]%. @ - Gk,%.’ (klr"a kl) € I(k)a

with the interpretation that, on the right hand side we have in every fiber ¥,
over b € B the sum of arbitrary k;-dimensional subspaces of ¥;,. In particu-
lar, every chain recurrent component of G,V  is contained in one of these
Morse sets.

Remark 6. We can also write
Nty ={(b,V)eG¥,be Band dim((b, V) ¥;) =k, fori=1,..., 1}

={(b,V)eGk“//,V=E|—) V,.withV,.c"V,.’,,anddimV,-=k,}.

i

Proof. 1t is clear that the A~ ’,ﬁl x, are nonvoid, pairwise disjoint and
isolated compact invariant sets. First we show that every w-limit set is
contained in a set of the type A%, with (ky,..., k;) € I(k). The assertion
is clear for k=1, by Selgrade’s Theorem. Suppose that it holds for all
dimensions less than k£ and consider for an element (b, W) e G,¥  the
w-limit set w(b, W). Let the k-dimensional subspace W be spanned by

wl,..., wk ie.,

W = span{w,,..., W},
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and consider a sequence ¢, — oo such that &, W converges to some element
W+ e G,¥,+. Define

U = span{w,,..., w;_,} € G,_, 7.
Passing, if necessary, to a subsequence, we may assume that &, U con-
verges to an element Ut € G,_,¥,+. Using the induction hypothesis, we
find
Ute N g =Cu71® - @G ¥},

here (k,,..., k;) € I(k—1). Furthermore, we may assume that the sequences

converge. It is clear, that its distance to one of the subbundles ¥,
r € {1,...,I) converges to 0. Hence @, W converges to the set

k
mk],..., k+1,.. k"

Since this is an isolated compact invariant set, it contains the w-limit set
w(b, W). Similarly, one sees that every w*-limit set is contained in a set of
this type.

It remains to prove the no-cycle condition. First we introduce a (lexi-
cographic) order on I(k) and hence on {A} ., (ki,.... k)€ I(k)}. For
elements of I(k) define (ki,..., k7) < (ky,..., k;) if there exists t € {1,..., I}
such that

; <kls ;—1 <kl—19'-'s :—1 <kt—19 k: < kt'
We claim that for all (b, W) € G, ¥ the implication
if w*(b’ W) = m;ﬁi,..., k| a’nd w(b’ W) = mi],...,k[’ then '/V‘z'l,,k; -< '/Vzl,..., ky
holds. Then the no-cycle property (ii) in the definition of a Morse decom-
position is verified and the theorem is proven.
First observe that the assertion holds for k=1, again by Selgrade’s
Theorem. Now suppose that it holds for all dimensions less than k£ and

consider (b, W) € G, ¥~ with

w*(b, W) < /Vf'l k! and wb, W) < '/Vil,...,kr
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As before, let the k-dimensional subspace W be spanned by w',..., w¥, and
consider sequences tX — oo such that @, W converges to some element
W+ e G, 7;:. Define

U = span{wy,..., w;_,} € G,_, 7.

Passing, if necessary, to a subsequence, we may assume that &,:U con-
verges to an element U* € G, _, ¥;+. As earlier, we find

U_E'/Vllz'l_,}.,k§=Gk'1"/l® - @ GyY and
U+ € '/V‘Il;_,..l.,kl = leryl. DD GkI,Vl.’

where (k,,..., k;), (ki,..., k;) € I(k—1). The induction hypothesis implies
that (ki,..., k;) < (k,,..., k;). Furthermore, we may assume that the
sequences

D+ w*
t"

— 7 peN
D, w*’ ’

converge. It is clear, that for n —» + o0 its distance to one of the subbundles
¥+, rte{l,...,[) tends to 0 and r~<r*. Thus W™ e N}, ., 4 and
Wre NG  w+i1.i- Cleatly, (k... k- +1,..., k) < (k..o b+ + 1,0, K).
Furthermore, if here equality holds, then (b, W) is in the corresponding
Morse set. Thus the assertion holds. O

Remark 7. For autonomous differential equations X = Ax in R“ one
can show that the Morse decomposition constructed above is the finest
one. In general, this may not be the case.

4. THE SPECTRUM

In this section we define a Morse spectrum on flag bundles. We will
show that for every chain recurrent component in the complete flag F7~
one obtains exactly d intervals of Morse exponents; the jth interval corre-
sponds to the chain exponents of j-dimensional subspaces in the considered
flags. Thus the total spectrum consists of at most d! times d intervals.
Furthermore the intervals are contained in the sums of one-dimensional
growth rates.

Let @: Rx ¥  — ¥ be a linear flow on a vector bundle n: ¥~ — B. For
the induced flow on the complete flag bundle F¥~ let the chain recurrent
components be given by 4, cF¥",iel. For ¢, T >0 an (g, T )-chain { of @
in [F¥” is given by

neAN, To,..T,_, =T, F'=W,...V),.,F" =W}, . V)elFy
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with d(&(T;, F*), F'*") < ¢ for i =0,..., n— 1. Define the flag of exponential
growth rates of { by

n—1 -1 /n—1
40=(T.7) (3 oelowvi-togwit),  k=1...d
i=0 i=0

where norms are taken for elements in the exterior product spaces A*¥”
which project down to V; identified with the corresponding element in
PA*y".

Definition 4. Let . < F¥” be a compact invariant set for the induced
flow @ on F¥" and assume that &, is chain transitive. Then the Morse
(flag) spectrum over £ is defined as

ZMo(ga ¢)
B {(Al,..., A,) € R, there are ¥ —» 0, T* — oo and (&F, T")-chains}
¢*in & with (4, (Ck),---, Ad(Ck)) o oo(Aiseeey A7) .

Furthermore, the Morse spectrum of the linear flow on the flag bundle F¥~
is defined as

2Mo(¢) = U ZMO('/”s ¢)s

where the union is taken over all chain recurrent components .# in 7.

We also abbreviate
Ellfdo(gs ¢) = {Aks there is (Ala---a Aks---s Ad) € EMo(gs ¢)}

First we show that it is actually sufficient to consider periodic chains in the
definition of the Morse spectrum, i.e., the exponents of chains from a point
to itself. This property will be used frequently. The proof is based on [4],
Lemma B.2.23, which gives a uniform upper bound for the time needed to
connect two points in a chain recurrent component.

Proposition 3. For a linear flow ®@ on a vector bundle let £ c V" be a
compact invariant set of the induced flow @ on VY such that @,y is chain
transitive. Then the Morse spectrum of @ over £ satisfies

2 Mo(’g > ¢)

B {A = (A,,..., 4;) € R?, there are e¥ - 0, T* > oo and periodic }
L (&5 TY-chains £% in & with (A4,(L9),..., 4(%) > 1w Aryees 4) )
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Proof. Let A€ 2y (%, D) and fix &, T > 0. It suffices to prove that
for every 0 > 0 there exists a periodic (&, T')- chain { with |[A—A({)| <
(here we take the Euclidean norm in R?). By [4], Lemma B.2.23, there
exists T'(e, T) > 0 such that for all p, p' € & there is a (g, T)-chain from p
to p’ with total time < T(e, T). For T' > T choose an (g, T')-chain ¢’ with
|A—A({)| <$ given by, say, (V1,...,V]),..., Vi,....,VE) e F¥ with |V;| =1
and times 7°,..., 7" '>T". Thenforall j=1,...,d

4@ =3 1) 3 sty

Concatenate this with an (g, T)-chain ¢ from (V7,...,¥V3) to (V3,....,V))
with points (WS,..., W) = (Vees V2)seoy WP ooy W) = (VY,..., V'3) with
W] =1, and times S°,..., S™~' > T, and total time >'7-y S’ <T(¢, T). This
yields a periodic (g, T")-chain £ o {' with chain exponents

n—1 m—1 —1rn-1 m—1
4O =(TT+Y 5) | L oele i+ Y, togle(s W |
i=0 i=0 i=0 i=0
Choosing T” large enough one obtains for all j
n O
4, =4, = O <3,

which yields the assertion. 1

The following result describes the behavior of the spectrum under time
reversal. We omit the proof, since it is completely analogous to the one-
dimensional case; compare [4, Proposition 5.3.4].

Proposition 4. For a linear flow @ on a vector bundle n: ¥~ — B let the
corresponding time reversed flow @* be defined by

D*(t, v) = D(—t, v), teR, ve? .

Then R(D)= R(PD*) in F¥" and Xy (L, D*) = -2\, (&L, D) for every
compact invariant set &£ < F¥" such that @4 is chain transitive.

Next we will show that the Morse spectrum over a chain transitive set
in F¥" is an interval. The proof is based on a “mixing” of exponents near
the extremal values of the spectrum.
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Theorem 7. For a linear flow @ on a vector bundle n. ¥ — B let
& < V" be closed and invariant such that @ is chain transitive. Define for
ke{l,...,d}

K:(g) = infz‘lli{o(ga dj)s Kk(g) = Sup lefllo(gs ¢)
Then for every k one has
leido(ga ¢) = [Klt(g): Kk(g)]

Proof. It suffices to show that for all A € [k} (%), k., (Z£)], all 6 > 0,
and all ¢, T > 0 there is a periodic (&, T )-chain { in £ with

|4,(0)—4] <. 4.1)

Then closedness of the Morse spectrum will yield the result. For fixed 6 > 0
and &, T > 0, there are periodic (g, T )-chains in .# with

A4 <k} L)+ and A,(0) > Kk (L) —F.

Denote the initial points of {* and ¢ by F” and F°, respectively. By chain
transitivity there are (g, T')-chains ¢, from F* to F° and ¢, from F° to F",
both in .#. For me N let {*” and {™ be the m- fold concatenation of (¥,
and of (, respectively. Then for m,ne N the concatenation (™" =
{, oMo {; o{"1is a periodic (g, T )-chain in .£. Note that the exponents of
concatenated chains are convex combinations of the corresponding expo-
nents. Hence for every A € [ 4,({*), 4,(0)] one finds numbers m, n € N such
that |4,({™")—A| < d. This proves (4.1). O

Next we will discuss the relation of the Morse spectrum to the growth
rates on Grassmann bundles. We already know by Proposition 2 that the
chain recurrent components in the Grassmann bundles are the projections
of the chain recurrent components in the flag bundle. It is also clear that
every kth-interval of the flag spectrum is contained in the corresponding
interval for the Grassmannian bundle. We prove the following theorem
supplying an ergodicity result for the extremal growth rates.

Theorem 8. For every chain recurrent component M — ¥~ and every
k= 1,..., d there exist ergodic measures u(#) and u*(M) on M such that

1
K (M) 1= sup Ly, (M, P) = lim 7 logl|@(s, V)|

t—>+
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for G u(M)-almost all V € G, ¥, and
1
Ky(M):=inf Z¥ (M, D) = lim P log |D(z, V)|
t—> to
for G u*(M)-almost all V € G,V . Furthermore, for all j < k one has that

1
lim " log |®(¢t, V)|

t—> +

exist and are constant for G,u*(M)- almost all and G,;u*(M)-almost all
V € G;¥, respectively.

Proof. This is proven using the corresponding result for the one-
dimensional spectrum: The linear flow @ is cohomologous to a subflow of
a smooth linear flow ¥. Then for j=1,...,d, the flows A'® are coho-
mologous to subflows of A4’¥ and these are also smooth linear flows.
Hence we may assume that all the flows induced by & are smooth. Thus for
the flow on F¥~ the jth exponential growth rates in the chains are actually
integrals. Now one finds ergodic invariant measures with support in .#
for which the boundary points of the kth spectrum are attained as limits
of growth rates. Then the first assertion holds. By ergodicity of these
measures all jth growth rates are also limits and constant over the support
of #. The ergodic measures u*(#), u(.#) induce ergodic measures
u*(M,B), u(#,B) on the base space B. The Multiplicative Ergodic
Theorem of Oseledets (compare Arnold [1]), implies that the Lyapunov
exponents

%k %
Ay Ay and A iy

corresponding to these measures are constant almost everywhere. Their
sums give the growth rates of the volume elements. Hence one has for all k
and G, u(#)-almost all V € G, ¥~ a representation

1
lim ~log|®(t, V)| =4y + - +4;

t—> +o t

similarly for u*(.#). n

The following theorem collects the previous results on the structure of
the Morse spectrum.
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Theorem 9. Let @ be a linear flow on a vector bundle n. ¥~ — B with
chain transitive base space B and dimension d. Then the Morse spectrum on
the complete flag F¥" is given by

ZMO(Q) = U Z‘Mo('//{i)a

where M; cFY", i€ {l,...,d}*, are the chain recurrent components of the
induced flow @ on F¥". Furthermore, for every i the k-spectrum is an interval,

2o (M) = [k (M), k(M;)]

The boundary points kx(M,), k(M) are sums of regular Lyapunov exponents
of D.

Next we relate the Morse spectrum on flags to the one-dimensional
spectrum on the projective bundle. One will expect that the spectral values
of k-dimensional subspaces can be represented as the sum of k one-dimen-
sional spectral values. This is, in particular, provided by the following
theorem which relates the spectrum of a chain recurrent component to the
Morse set A4, . as defined in Theorem 6.

Theorem 10. Let M be a chain recurrent component in the complete
flag F¥" and consider the Morse set

'/Vzl,...,kl = GkI,VI. ® - GkI,Vl.’ (kla"'a kl) € I(k)9

containing the projection to the Grassmann bundle G, .# according to
Theorem 6. Then the kth interval of the Morse spectrum of # satisfies

ZE(M)E S Epo(¥).

I=iq

Proof. For an ergodic measure u on A%, , the projection to B is
ergodic and hence the bundle ¥ can be written as the direct sum of mea-
surable subbundles V;(u) consisting of points where the Lyapunov expo-
nents A;(x) are attained as limits; furthermore for every k-dimensional
subspace V' the volume growth rate is the sum of k Lyapunov exponents:
On the other hand, every Oseledets bundle V,(u) is contained in a bundle
v;; see [4, Corollary 5.5.17]. Hence the (Oseledets) Lyapunov exponents
are elements of the Morse spectrum of a corresponding bundle ¥;. For the
Lyapunov exponents in G,.#, these bundles must be the ¥, i, =1i,,..., i,
and they occur with the multiplicity of the Lyapunov exponents. Applying
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this to the ergodic measures x4 and u* where the supremum and infimum,
respectively, of X%, _(.#), are attained, yields the assertion. O

Another consequence of the ergodic presentation result in Theorem 8
is the following result on the spectrum over chain recurrent components in
Grassmann bundles. It shows that the Morse spectrum of chain recurrent
components in Grassmann bundles is well defined.

Corollary 2. Let M, and M; be chain recurrent components in the
flag bundle V¥~ such that their projections to the Grassmann bundle G,¥"
coincide. Then

[xx (M), 0 (M;)] = [K6 (M), 1, (M)].

Proof. By Theorem 8, x,(.#;) is attained in an ergodic invariant
measure u with Lyapunov exponents A,(u)...., 4;(u#) and corresponding
Oseledets subspaces Vi,...,V;, I <d. Then for b in the support of the
measure u projected to B consider an element in the corresponding fiber of
M;. Since G, M; = G, M;, the corresponding growth rates must coincide
yielding r;(#;) <, (M;). Exchanging i and j and applying analogous
arguments to the lower bounds of the spectral intervals one concludes the
proof. [

Remark 8. In the same vein one sees that the Morse spectrum
defined over subflag bundles coincides with the restriction of the Morse
spectrum on the complete flag bundle.

Finally, we mention the relation of the Morse spectrum to singular
values. Recall that for a linear map 4 on a Hilbert space H the singular
values o, are given by the eigenvalues o; of 4*4 ordered such that
o, = --- 2 g, and the singular value function is

wy(4) = 61(A) - - 03 (4).

Then (Temam [13, Chap. V, Proposition 1.4]) w, is the norm of the
operator 4*A induced by 4 on the exterior product A*H and

wi(4) = | 4*4]| = sup{[|4x, A - - Adx |, %0 A -+ Axe]l =1}
Writing the cocycle maps on the fibers as

D(2,b) :=D, |V} : ¥V = Vs
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we define the supremal uniform growth rate of the kth singular value
function as

1
Q, = lim sup — sup log w,(D(z, b)).

t— o0 beB

The relation to the Morse spectrum is described in the following corollary.

Corollary 3. For a linear flow @ on a vector bundle n. ¥ — B the
supremal growth rate in the Grassmann bundle G,¥v" and the supremal
uniform growth rate of the kth singular value function coincide, i.e.,

1
sup ZX (¥, P):= sup limsup —log|®D,V|=Q,.

VeGry t— o t

Proof. This follows, as in the one-dimensional case (see, e.g., [4;
Proposition 5.4.15 and Lemma 5.2.7]), from Fenichel’s Uniformity
Lemma, now applied in the exterior product bundle. [

We conclude this paper with a simple example illustrating the chain
recurrent components in the flag bundle and the Morse spectrum.

Example 1. Consider the autonomous differential equation

X =Ax
with
1 0 0 0
0 -1 0 0
A= ]
0 0 -1 0
0 0 0o -2

In projective space P?= G, one obtains three (linearly ordered) chain
recurrent components. In G, there are the four chain recurrent components
(here e; denote the canonical base vectors of R)

M, , = {span{e,, x}, x € span{e,, e;} };
M . =span{e;,e,}  (equilibrium);
M, 5 = span{e,, e, } (equilibrium);

M, . = {span{x, e, }, x € span{e,, e;}}.
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In the order defined in (2.1) 4, ; and 4, , are not comparable, and
My X My3 X My, and My s X My X M

For the matrix

1 0 0 0
0 -1 0 0
A=
0 0 -2 0
0 0 0 -2

one also obtains three chain recurrent components in G, and the four chain
recurrent components in GG, given by

12 =span{e;, e,} (equilibrium);
13 = {span{e,, x}, x e span{e;, e,} };
53 = {span{e,, x}, x € span{e;, e,} };

3.4 =span{e,, e, } (equilibrium),
and

! ’ ’ ’
3,4< 2,3< 1,3< 1,2

One see that these two equations, which are topologically (but not C'-)
conjugate, can be distinguished topologically, if their extensions to the
Grassmann manifold are considered. This example can modified to a linear
flow with nontrivial base flow. For matrices 4,,..., 4,, € R?*% a set U c R™

with 0 e U and a parameter p > 0 consider a bilinear control system given
by

x=Ax+p ), u(t) 4;x, 4.2)
i=1

with u=(w)e¥={ueL,(R,R™), u(t)eU for almost all teR}. If
U < R™ is compact and convex, the map

D:RxUXR >R D(t,u, xy) = (u(t+ -), x(¢, u, x;))

is a linear flow (the control flow) over the compact metrizable and chain
transitive base space % endowed with the weak* topology; here the flow on
 is the shift, and x(¢, x,, ) denotes the solution of (4.2) with initial value
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x, at t =0 and control function . The chain recurrent set and the Morse
spectrum depend upper semicontinuously on the parameter p > 0. Hence
the chain recurrent components and the eigenvalues for X = Ax blow up to
chain recurrent components and Morse spectral intervals, respectively, for
the corresponding control flow over the base space %; for small p > 0 the
structures in the chain recurrent components and the Morse spectrum are
retained. For larger p-values, some of the chain recurrent components may
merge yielding less Morse spectral intervals.
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