HYPERBOLIC CONTROL SETS
AND CHAIN CONTROL SETS
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ABSTRACT. A shadowing lemma for hyperbolic control flows is
proved. A consequence is that hyperbolic chain control sets are clo-
sures of control sets.

1. INTRODUCTION

In this paper we discuss controllability problems for control affine sys-
tems. Via a shadowing lemma, we show that chain control sets which are
hyperbolic (in a sense made precise below) are closures of control sets. This
is motivated, in particular, by parameter dependent problems. Here it is
known that control sets whose closures are chain control sets depend contin-
uously on parameters. Hence our results show that hyperbolicity guarantees
this continuity property.

More precisely, we consider control-affine systems of the form

m

i(t) = Xo(z(t)) + Z wi () Xi(z(t)), teR,

veld ={u:R—=R", (u(t)) €U for almost all t € R};

(1.1)

here Xg, X1,...,X,, are vector fields on a d-dimensional Riemannian man-
ifold N and U C R™. We assume throughout that for all (u,z) € U x N
there is a unique solution ¢(t, z,u), t € R, of this differential equation with
the initial condition ¢(0,z,u) = 2 and control u. Furthermore, we assume
that the vector fields are sufficiently smooth. If the control range U is a
convex and compact set, one can associate with system (1.1) the control
flow given by

P:RXxUXN—->UXN, P(u,x)= (ut+-),0(t,z,u)).
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Then (see, e.g., Colonius and Kliemann [2]) ® becomes a continuous dy-
namical system if we endow U with the weak* topology of Ly, (R,R™), and
U X N is a metrizable space with U compact. We fix a metric on this space.

We will use hyperbolicity assumptions for this skew product flow to show
a shadowing lemma. Another version of a shadowing lemma for general
discrete time skew product flows has been proved by Meyer and Sell [6].
Their version, however, does not allow for jumps in the base space. The
version presented here closes jumps in the smooth component, naturally,
without eliminating jumps in the base space where no smooth structure is
present.

In Sec. 2, we collect basic definitions and cite some relevant material.
In Sec. 3, a shadowing lemma is proved and used to show that a chain
control set with hyperbolic lift (i.e., there is a hyperbolic decomposition of
the control flow restricted to the lift of the chain control set) coincides with
the closure of a control set.

This paper addresses the regular situation, where local accessibility holds.
Griinvogel [5] studied the controllability behavior near a singular point
(which remains fixed under every control). He constructed control sets
using properties of Lyapunov exponents via stable and unstable manifold
theory.

2. PROBLEM FORMULATION AND BACKGROUND

In this section we cite some notions and results from nonlinear control
theory (cf. [2]).

Throughout we assume that system (1.1) is locally accessible, i.e., for all
z € N and all T > 0 one has

int O .(z) # 0 and int O, (z) # 0,

where O%,(z) = {y € N, y = p(t,2,u) with 0 <t < T and u € U} and
OZp(x) ={y € N, z = o(t,y,u) with 0 < t < T and u € U} are the
positive and negative reachable sets (or orbits) from x. This is guaranteed
by the accessibility rank condition

dimAg4(z) =dimN =d for all z € N. (2.1)

where LA = LA{X(-,u), u € U} denotes the Lie algebra generated by the
system vector fields and Az 4(z) is for € N the subspace of the tangent
space TN generated by the vector fields in LA.

To describe the global behavior of system (1.1) we consider the following
concepts.
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Definition 1. A control set D is a subset of N with the following prop-
erties: (i) for all 2 € D the inclusion D C ¢l O(z) holds, (ii) for all x € D
there is u € U with p(t,z,u) € D for allt > 0, and (iii) the set D is maximal
(with respect to set inclusion) with these properties. A control set C is an
invariant control set if c1C = clOT () for all x € C.

Note that the local accessibility assumption guarantees that the invariant
control sets are the closed control sets and that they have nonvoid interior;
and in the interior of control sets complete controllability holds. A set with
nonvoid interior is a control set if it is a maximal set where approximate
controllability holds. We also introduce a variant allowing for (small) jumps
between pieces of trajectories.

Definition 2. Fix x,y € N and let ¢,7 > 0. A controlled (¢,T)-chain
¢ from x to y is given by n € N, zg,... ,z, € N, ug,... ,up_1 € U and
to,... ,tn—1 > T with g = x, ,, = y, and

d(e(tj,zj,uj),zj41) <e forall j=0,...,n—1

If for every e, T > 0 there is an (¢, T)-chain from z to y, then the point z is
chain controllable to .

In analogy with control sets, chain control sets are defined as maximal
regions of chain controllability.

Definition 3. A set E C N is called a chain control set of system (1.1)
if (i) for all z € E there is u € U such that p(t,z,u) € E for all t € R, (ii)
for all z,y € E and ¢, T > 0 there is a controlled (e, T)-chain from z to y,
and (iii) £ is maximal with these properties.

Thus chain control sets E have the properties that through every point
there is a trajectory that remains in F for all times ¢ € R (not just for ¢t > 0,
as we require for control sets) and one can reach each point from any other
point by trajectories with arbitrarily small jumps. Chain control sets are
closed and every control set is contained in a chain control set. However,
there may exist points in a chain control set, which do not belong to a
control set. The maximality property guarantees that chain control sets are
disjoint. The following result from [2], Theorem 4.3.11 shows that the chain
control sets coincide with the projections on the state space of the chain
recurrent components of the control flow ®. Recall that for a continuous
flow ¥ : R x X — X on a metric space X and £, T > 0 an (&, T)-chain from
€ X toye Xisgiven by n e N, zg,...,x, € X, and tg,... ,t,_1 > T
with zg = x, 2, = y, and

d(\I’(tj,CL‘j),l‘jJrl) <¢ for all j =0,...,n—1.
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A subset Y C X is chain transitive, if for all z, y € Y and all ¢, > 0 there
is an (g,T')-chain from z to y.

The set U is compact and metrizable in the weak™ topology of
Loo(R,R™) = (L1 (R,R™))*; a metric is given by

SRR OR O
d(u,v)zzﬁ R

gy ] R[(u(t) —o(t), zn(t)) dt

where {z,,, n € N} is a countable, dense subset of L;(R,R™), and (-,-) de-
notes an inner product in R™. With this metric, U is a compact, complete,
separable metric space. On U x N we take the metric d((u,z), (v,y)) =
max{d(u,v),d(z,y)}.

For a chain control set F, we consider its lift to & x N defined by

E={(u,z) €U x N, p(t,z,u) € E forall t € R}. (2.3)
Observe that £ is compact iff F is compact.

Theorem 1. L et E C N be a chain control set. Then € CU X N as
defined by (2.3) is a mazimal invariant chain transitive set for the control
flow (U x N, ®). Conversely, let E CU x N be a mazimal invariant chain
transitive set for (U x N,®). Then the projection mnE on N is a chain
control set.

We note that, analogously, the lifts of control sets are the topologically
transitive sets of the control flows.

In order to state a result on continuous dependence of control sets, we
consider parameter-dependent control-affine systems of the form

m
&= Xo(o,z) + Zui(t)Xi(a,z), uelU, (2.4)
i=1
where Xo,...,X,, are C*-vector fields on a Riemannian manifold N de-
pending continuously on their arguments (o, z) and X;(-,«) and the set U
of admissible controls are as above; the parameters a are chosen in a subset
A of R*. We indicate the parameter dependence by a superscript . Then
the following continuity result holds (see [3]). We assume in this theorem
that the state space NN of the control system is compact. If N is not com-
pact one has to appropriately restrict the attention to a compact invariant
subset.

Theorem 2. Let D* be a control set of (2.4)* with ag € A, and as-
sume that system (2.4)*° satisfies the accessibility rank condition (2.1) on
the closure clD*.  Assume that cl D* coincides with the chain control
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set E*° containing D*°. Then for all o in a neighborhood of ag there are
unique control sets D% depending continuously in the Hausdorff metric on
a at o = o with D® N int DY £ ().

3. CHAIN CONTROL SETS AND A SHADOWING LEMMA

In this section, we prove a shadowing lemma for control flows following
the arguments of Franke and Selgrade [4]. Then this is applied to chain
control sets.

First we introduce some notions. For the control flow ® on U X N we
write, where convenient, ®;(u, ) = (u,z) -t. The set (u,z) - R is called the
orbit of (u,x). A reparametrization of an orbit is an orientation-preserving
homeomorphism on R fixing the origin. An (¢,T)-chain given by n € N,
Toy... ,Too1 > T, (up, o)y s (Un,Tn) € U X N, will be written in the
form

i—1 i—1 7
(ug, o) ¥t = (ui,xi)-<t—ZTj> for > T;<t<>» Tj,i=0,...,n—1;
j=0 =0 =0

analogously for (g,7")-chains with infinitely many jumps. An orbit (u,x) -
R is said to d-shadow an infinite (e,7)-chain (ug,zg) - R if there ex-
ists a reparametrization g such that for the projections on N one has
d(mn ((uo, zo) * t), mn((v,y) - g(t))) < 6 for all t € R, and analogously on
subintervals of R by restricting g. Observe that we require the shadowing
property only for the smooth component.

Let A be a compact isolating a-neighborhood of the lift £ of a compact
chain control set E and 0 = d(€,U x N \ N). Define for some X € (0, 1)

Wt (u,z) = {y € N, (u,y) € N and
d(p(t,x,u), p(t,y,u)) < et for all t > 0},

W~ (u,2) = {y € N, (u,y) € N and
d(p(t,,u), p(t,y,u)) < aX™" for all t > 0},

WH((u,2) - (a,0) = | W ((u,2) 1)
te(a,b)
The following shadowing property holds (see Franke and Selgrade [4],
Lemma 3.1).

Lemma 1. Suppose that system (1.1) satisfies the following condition (S):

There are «, B,a,A > 0 such that for all (u,z), (v,y) € & with
d((u, ), (v,y)) < B the intersection Wt ((u,z) - (—a,a)) N W™ (v,y) is a
single point.
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Then for each § > 0 there is € > 0 such that each finite (,1)-chain in
€ is §-shadowed by some q € N. Also, if the (e,1)-chain is (ug, xo) * |a,b]
with 0 € [a,b], then the parametrization g can be chosen such that

3 a 5 a
2+ 2 g <224
te - l<el)<gt-g5+

Proof. Given 6 > 0, choose « so that o < 6/2 and so that

0

o
O¢+CY+—>\(1_>\) <§,

where ) is the hyperbolic constant for £. Let 0 < v < 1/2 be so small that
d((u,z) - t, (u,x)) < min{d/3,a/3} for all |t| < v and (u,z) € N. By the
hypothesis, there are positive numbers v (possibly smaller than v above)
and 3 < 0/2 such that W ((u,z)) "W~ ((v,y)-(—,7)) is a single point for
all (u,x), (v,y) € N with d((u,z), (v,y)) < 8. Choose an integer M > 2
large enough so that A a < 3/2.

> 1
Choose K € N such that > o < g and choose M large enough such
=K
that foralln=1,... | K "

(u(t) —v(t), z,(¢)) dt‘ < B/4.

R\[—M,M)]

Thus for all u, v € U one has

JGu(t) = v(t), 2a (1)) dt’

R

<

1
d(u,v) = =
w1 2 1+ ’H{(u(t) —u(t), z,(t)) dt‘

00 M
<y 2% / [ult) — v(t), 2a (D) di + 5/2.
M

n=1

Choose € < min(,1/M) small enough such that every (g, 1)-chain (uq, zo) *
[a,b] with b—a < M and at most M +1 jumps satisfies d((uo, o) -t, (ug, To) *
t) < 3/2 for all ¢t € [0, M]. This is possible by the uniform continuity of ¢.

Take an integer 7 > 0 and consider an (g, 1)-chain (ug, o) % [0,7M]. Note
that the number of jumps in any segment of (ug, zg) % [0,7M] of time length
M is at most M + 1. This chain can be chosen in &£, since £ is a chain
recurrent component (see [2], Theorem B.2.20).

We define inductively a set of r points (uj,, x}) in € as follows:

(ug, z) = (uo, o) € €
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and for k=0,1,... ,r—1
Thr1 = W ((up, 2k) - M) - 7o) O W ((wo, 20) * (k + 1) M),
where |Tp+1] < ; the corresponding controls uj, are defined by the relation

o ugx (k+1)M  for ¢>0,
LT uf (M + 1eq +t) for £ <0.

This definition is correct: assume that (u},z},) € £ for k£ > 0. The segment
of (ug, zo)*[0, rM] from (ug, zo)*kM to (ug,zo)*(k+1)M is an (&, 1)-chain
with at most M + 1 jumps, so by our choice of €,

d(((ug,z0) * kM) - M, (ug,z0) * (k+ 1)M) < g
Since x}, € W ((ug,z0) * kM), one has

d(o(M, xl, ug * kM), p(M, (ug, z0) * kM) < \Ma < g

Together, these two estimates give
d(mn ((uo * kM, x},) - M), mn((uo, zo) * (k+1)M)) =
= d(‘)D(M7 ZIJ;C,U,O * kM)aTrN((ume) * (k + 1)M) <
< B.

Observe that by definition the control ug * kM coincides with uj, on the
interval [0, 00). Hence

(M, xy, u % kM) = (M, z},, uj)
and we find
d(p(M, z,up), 7 ((uo, o) * (kK + 1)M) < 3.
We already know that
d((uwo * kM) - M, ug * (k+ 1)M) < 3/2.

Since the control (ug*kM)-M coincides with uj - M on the interval (—M, M),
it follows that
d(uj, - M, (ug, 20) * (k+ 1)M) < 8.
We conclude that the distance of (uj,, x},) - M, (ug, o) * (k+1)M € € is less
than (. Hence there is a unique point
Thpr = W ((uh, 23) - (M + 7i41)) N W ((uo, w0) * (k + 1)M))

for some 7j41 with |7py1| < 7. Since @ < /2 and x,, € WH((ug,x0) *
(k+1)M)), it follows that d(p(t, ) 1, uo * (k+ 1)M),E) < o for all t > 0.
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And since xj; € W™ ((uy,, z,) - (M +7i41)), it follows that d(p(t, 2}, uj, -
(M +1411)),€) < afor all t < 0. Thus, (uj,,,7},,) €E.

The orbit of (u.,z!.) will be our d-tracing orbit. The occurrence of i
causes some technical difficulties. They can be solved as in [4], proof of
Lemma 3.1, pp. 30-31. We omit the details. O

As in [4], Lemma 3.4, one proves the following result.

Lemma 2. Under the assumptions of Lemma 1, for each 6 > 0 there is a
number ¢ > 0 such that each infinite (¢,1)-chain in & is é-traced by some
(u',2") € E.

These lemmas imply the following main result of the paper. For sys-
tem (1.1) condition (S) implies that every chain control set is the closure of
a control set.

Theorem 3. Assume that system (1.1) is locally accessible and consider
a chain control set E with nonvoid interior. If condition (S) holds for the
lift € of F, then E coincides with the closure of a control set D with nonvoid
mterior.

Proof. By Theorem 1, we know that £ is a compact maximal invariant chain
transitive set for the control flow (U x N, ®) and P(¢,-)|€ is chain transitive.
Consider z € int E and take an arbitrary point z € E. By local accessibility
there are ¢t > 0 and points

xo € int (O;(z) NE) and z; € int (OZ,(2) N E).

There are u, ug, uy € U such that (u, 2), (ug, xo), (u1,z1) € €. By Lemma 2,
we find that for §,, = 27" there are ,, > 0 such that every (g, 1)-chain is -
shadowed by an orbit. Now take such (e, 1)-chains from (ug,zo) to (u,2)
and from (u,z) to (u1,z1). Their concatenation is a chain from (ug, o)
to (u1,x1), passing near (u,z). For é, — 0 one finds a trajectory of the
system from (’)}Lt(:c) to OZ,(z). Hence x and, therefore, the whole trajectory
belongs to a control set D, which, by continuous dependence on initial
values, has nonvoid interior. Since the trajectories pass arbitrarily close to
z, this point belongs to the closure of D. This completes the proof. O

The crucial assumption in the shadowing lemma above (and hence in
the equality between chain control sets and control sets) is assumption (S).
For a single differential equation it follows from the standard hyperbolicity
condition; see [4]. In what follows we show that this hyperbolicity condition
for the uncontrolled system also implies assumption (S) for systems with
small control range.
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More specifically, we consider the control system (1.1) with controls in
U :={u:R —R" u(t) € p- U for almost all t € R},

where U C R™ is convex and compact with 0 € U, and p > 0 indicates the
size of the control range. Observe that for every p > 0 these systems can
be considered as given by the system of equations with fixed control range

&(t) = Xo(z(t)) +p- Zui(t)Xi(l’(t))» teR,

ueld ={u:R—R" (ut)) €U for almost all t € R}.

Let M be a compact chain transitive set for the uncontrolled system & =
Xo(z) and suppose that the following (uniform) hyperbolicity condition is
satisfied: the tangent flow T'®; leaves a continuous splitting

TR = VOt @ V0@ V-

invariant, where for some 0 < A < 1 and some adapted Riemannian metric
(i) if (z,v) € V>~ and t < 0, then |T®(x,v)| > A~tv;
(i) if (z,v) € V*F and t > 0, then |T®;(x,v)| < At|v];
(iii) V90 is the span of the vector field Xj.

This implies condition (S) for this flow (see Franke and Selgrade [4], p. 29).

Theorem 4. Suppose that the uncontrolled system © = X (x) is hyper-
bolic on a compact chain transitive component M. Then for all p > 0 small
enough, condition (S) holds on the lift £ of the chain control set Ef of
(1.1)? containing M. If, in addition, local accessibility holds and E? has
nonvoid interior, then EP = cl D for a control set D with nonvoid interior.

Proof (sketch). Obviously, there exists an increasing family {E},>¢ of
chain control sets containing the set M. The hyperbolicity condition for
the uncontrolled system is equivalent to condition (S) on {0} x M for the
skew product flow, again denoted by ®;, induced on the vector bundle

Ter (U x N) = {(u,x,0) €U x TN, (u,z) € E*}.

Then, for every p > 0 the control flow ® has a finest Morse decomposition
in the projective bundle Pg, (U x N) which yields a decomposition into
subbundles

Teo(U x N)=V{ @ -+ VE;

the Morse sets in the projective bundles are given by the projections of the
subbundles V; the Morse spectrum, and hence the Lyapunov spectrum is
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determined by these subbundles; and the Morse sets and the Morse spectra
depend continuously on p for p — 0, i.e.,

gi\lj(l) VP =V and /}li% Yaro(VP) = Saro(VY)

(cf. [2], Sec. 6.2, [1]; for the relation to the dichotomy or Sacker—Sell spec-
trum see also [2], Sec. 5.5). Hence hyperbolicity of the uncontrolled system
implies hyperbolicity of the systems with p > 0 small enough. For these
p > 0 the bundle Tg, (U x N) has a decomposition into a stable subbundle,
an unstable subbundle and a one-dimensional subbundle which in the fibers
for (u,z) with w = 0 is the subspace spanned by the vector field Xq(x).
According to the local invariant manifold theorem ([2], Theorem 6.4.3). the
nonlinear system has local stable and unstable subbundles which are Lips-
chitz close to the linear subbundles. Since £ is compact and the stable and
that unstable manifolds as well as the flow are continuous with respect to
(u,x), the transversality condition (S) holds with a uniform time interval
(—a,a) over £, provided that p > 0 is small enough. The second assertion
follows as Theorem 3.

Remark 1. The chain control sets E? have nonvoid interiors provided
that an inner pair condition holds (see [2], Corollary 4.5.11); this can be
guaranteed, if 0 € int U and the linearized system satisfies a Lie algebraic
condition, cf. [2], Proposition 4.5.19.

Remark 2. The considered system (1.1) is defined in continuous time.
Nevertheless, there may exist nontrivial invariant sets with a trivial center
bundle (this cannot occur for autonomous differential equations). In fact, for
small control range, the chain control set around a hyperbolic equilibrium
of the uncontrolled system will have trivial center bundle. This follows
from lower semicontinuous dependence of the Morse spectrum on the control
range; see [2], Corollary 13.1.5. In this situation, one can prove a shadowing
lemma (with less technical difficulties) and obtain completely analogous
results. We omit the details.
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