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1. INTRODUCTION 

We consider the following family of control-affine 
systems depending on a real parameter a : 

m 

±(t) = fo(a,x(t)) + 2: Ui(t)J;(a , x(t)), (1.1) 
i=l 

u = (Ui) E U = {u : R ---> U c Rm
, integrable}, 

where fo, ... , fm are smooth vector fields on Rd 
and the control range U is convex and compact; 
the parameter a takes values in an interval A = 
[a , b) c R. We assume that unique solutions 
'P(t, xo, u, a) , t E R, exist for all xo, u, and a. We 
will replace a by a time dependent, slowly varying 
parameter, and our goal is to discuss the changes 
in the controllability behavior as a evolves. 

For simplicity, we study the local behavior near 
the singular point x' = 0 assuming 

fi(a , 0) =0 

for all i = 0, L ... , m and all considered a . The 
linearized (bilinear) control system is 

m 

y(t) = Ao(a)y(t) + 2: ui(t)Ai(a)y(t)) , (1.2) 
i=l 

u = (u;) E U , 
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where Ai(a) := :xJ;(a,O) for all i. The corre­
sponding Lyapunov exponents are given by 

>.(u, Yo) = limsup ~ log lyO«t, Yo, u)l , 
t->oo t 

and the Lyapunov spectra are 

EO< = {>.(u, Yo), Yo #- 0 and u E U}. 

By Griinvogel (Griinvogel, 2000), it is known that, 
for fixed a, the Lyapunov spectrum determines 
the controllability behavior near the origin (see 
below for a precise statement) . 

We model slowly varying a by requiring that 
ci(t) = c > 0, small. In other words , we consider 
the systems in Rd+! 

m 

±(t) = fo(a(t),x(t)) + 2: Ui(t)J;(a(t) , x(t)), 

ci(t) = c, 

u EU. 

i=l 

(1.3) 

Prescribing an initial value ao for a at time t = 0, 
the equation in Rd can also be rewritten as the 
nonautonomous equation 

m 

±(t) = fo(ao +ct, x(t)) + 2: Ui(t)J;(ao +ct, x(t)) . 
i=l 

(1.4) 
The solutions of (1.4)ao,E are determined by the 
initial value x(O) = Xo E Rd and the control 



u . We denote them by 'lj;'(t , xo,ao , u) and the 
corresponding reachable sets are 

O~°r"+(x) = {'lj;'(t , xo,ao,u), O:S t:S T , u E U}. 

Note that these objects are defined for all e 
with lel small enough. Equation (1.3) describes 
a singularly perturbed system. Some results on 
the stability behavior and the Lyapunov spectrum 
of these systems are known; see, in particular , 
Grammel/Shi (Grammel and Shi, 2000), Vigodner 
(Vigodner, 1997), Artstein (Artstein, 1998). They 
are based on averaging techniques, which do not 
play a role in this paper. Instead we concentrate 
on control sets and their properties. See (Colonius 
and Kliemann, 2000) for an exposition of their 
basic properties. 

2. PRELIMINARIES AND PROBLEM 
FORMULATION 

In this section, we cite a result on the existence 
of control sets near singular points and formulate 
the corresponding problem for the singularly per­
turbed system (1.3) . 

The following result due to Griinvogel (Griinvogel, 
2000, Theorem 8.1) shows that control sets near 
the singular point are determined by the Lya­
punov spectrum. Recall that a subset D of]Rd with 
nonvoid interior is a control set if it is a maximal 
set with the property D C c!{ <p(t , x , u) , t > 0 and 
u E U} for all x E D; here a E A is fixed. 

Theorem 1. Consider control system (1.1) and 
assume that 

(i) there are periodic control functions US and u h 

such that for US the linearized system is expo­
nentially stable, i.e. , the corresponding Lyapunov 
(Floquet) exponents satisfy 

0> Af > ... > Ad , 
and for u h the corresponding Lyapunov exponents 
satisfy 

(ii) All pairs (u h . x) E U x ]Rd with I =I 0 are strong 
inner pairs . i.e .. :.,;(t, I , u h

) E intO° '+(x ) for all 
t > 0 where O° '+(x ) := {:";(T.X.U . Q). T > 0 and 
u E U}. 

Then there exists a control set DO with nom'oid 
interior such that 0 E aDo. 

Remark 1. Griinvogel (Griinvogel. 2000) shows 
that there are no control sets in a neighborhood 
of the origin if zero is not in the interior of the 
:'Iorse spectrum of the linearized system. This 
also follows from a Hartman-Grobman Theorem 
for skew product flows: see Bronstein / Kopanskii 
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(Bronstein and Kopanskii, 1994) . One has to take 
into account, that the spectral condition implies 
hyperbolicity, since the base space U is chain 
recurrent. Then the use of appropriate cut-off 
functions yields the desired local version. 

Remark 2. Assumption (i) in the previous theo­
rem is in particular satisfied, if 0 is in the interior 
of the highest Floquet spectral interval and the 
corresponding subbundle is one-dimensional. 

3. DYNAMIC BIFURCATIONS 

In a number of control systems one observes 
numerically the following behavior: for some a­
values the singular point x· is exponentially stable 
for all controls, hence there are no control sets 
near x·. Then, for increasing (constant) a-values, 
control sets DO< occur with x· E aDo< and grow. 
For some upper a-value, they move away from x· . 
It is our aim to show that, for e > 0, small enough, 
also the resulting singularly perturbed system 
shows a similar controllability behavior. It is not 
obvious, however , how to formulate the desired 
property. Clearly, the resulting time dependent 
system has no control sets. On the other hand, 
only the component in ]Rd is of interest , and 
the parameter a(t) changes on a different time 
scale. We consider controllability only for the ]Rd_ 
component. 

We will assume the following accessibility rank 
condition: Let 

LO< =.cA{Jo(a, .), .. . , fm(a ,' )} 

denote the Lie algebra generated by these vector 
fields , and for x E ]Rd let /::::"co (x) be the subspace 
of the tangent space ]Rd generated by the vector 
fields in Lo<. The accessibility rank condition re­
quires for all a 

dim/::::"co(x) = d for all 0 =I x E]Rd (3.1) 

This implies local accessibility, that is, O~;(x) 

and O~i(x) have nonvoid interiors for all T> 0 
and allO =I I E ]Rd 

Theorem 2. Assume that conditions (i) and (ii) in 
Theorem 1 are satisfied for all Q E A. Consider an 
interval 1= [ao . bo) C A . Then for ewry compact 
subset Q C nOEl intDO there is To > 0 with the 
following property: For all x, z E Q and for every 
E > 0, small enough. there are a control function 
u E U and a time 0 < T < To such that ao + ET E I 
and 

~:'(T.x.ao,u) = z. 

Proof. It is clear that for E = 0 a subset Q as 
abow is contained in a control set for every Q­

system. We have to show that the controllability 
property remains valid for small E . 



Let x, Z E Q and ao E A. As in the proof 
of Krener's theorem (see, e.g., (Colonius and 
Kliemann, 2000)), accessibility rank condition 
(3.1) implies that we may choose u l , ... , ud E 

U and T > 0 with the following proper­
ties: Consider the map F : (0, T)d C IRd -> 

IRd: T := (Tl, ... Td) 1-+ ip(2:1=ITi , x,uT , ao) 
where UT E U is a control with u(t) = ui 

for t E [TO + Tl + ... + Ti-l , TO + Tl + ... + Ti] and 
2:1=1 Ti = T. Then the rank of F equals d at 
every T. Choose T > 0 small enough such that 
Yl := ip(T,x,uT,ao) E intD"o. By definition, 

ip(T,x,uT,ao) = '!j;°(T,x,ao,uT). 

The implicit function theorem applied to the map 
IRxlRd

-> IRd, (c, (Tl' ... Tn )) 1-+ '!j;E (2:7=1 Ti , x, aa, UT) 
at c = 0 implies that there are 151 > 0 and a 
neighborhood Nr(yr) with N l (yr) C oao ,E,+ (x) 
for all c < 151 . There exists a time 51 > 0 and a 
control Ul such that ip(51 ,YI,uI,ao) = z. With 
the same arguments as above one finds Y2 = 
ip( - T2, YI, u2' ao) and a neighborhood N2(Y2) C 
N l (yr) with N2(Y2) C oao,E,- (z) for c < 152. 
Together, we have found 150 := min(bl , b2 ) > 0 
and the open set N(Y2) such that x can be steered 
into every point of N(Y2) and every point in N(Y2) 
can be steered into z in the system with c < 80 . 

Interchanging the roles of x and z and then us­
ing continuous dependence on initial values, we 
conclude that the compact set Q can be covered 
by finitely many open sets where controllability 
in uniformly bounded time is possible for the 
systems with c > 0, small enough. This proves 
the assertion. • 

This result is still unsatisfactory, because the 
intersection nc>E [intD" may be small. Instead 
we will generalize the notion of control sets for 
the singularly perturbed control system (1.3). The 
control(lability) set is replaced by a family of 
subsets of the state space IRd depending on 0 E A, 
which we call controllability bundles . or for short, 
control bundles. 

Definition 1. Consider the singularly perturbed 
control system (1.3). A family of subsets DO C 
R d

, 0 E A, of IRd with nonvoid interiors is called 
a control bundle , if for all a < a' in A and all 
x E DO and all Y E intDO ' there are co > 0 and 
To > 0 such that for all 0 < c < co there are 0 < 
t < To and a control 11 E U with l.: E (t . x , 0, 11) = y , 
and the family DO is maximal with this property, 
i.e .. if a family of subsets {Do. 0 EA} satisfies 
these properties and DO C DO for all 0 E .4 . then 
DO = DO for all 0 E .4. 

Remark 3. It is tempting to define cont rol bun­
dles for general nonautonomous control systems 
by considering families of subsets Dt of the state 
space depending on time t. Then . hO\\'e\'er, (ap-
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proximate) controllability from every point in Dt 
to D S with t < s is not appropriate; in the au­
tonomous case it would reduce to controllability in 
arbitrarily short time. In the singularly perturbed 
situation we can extend time by reducing c. 

The following theorem is the main result of this 
paper. 

Theorem 3. Consider a family of nonempty sub­
sets {DC>, a EA} such that cl intDC> = cl DC> for 
all a and the map a 1-+ clDc> is continuous in the 
Hausdorff metric. Then the following properties 
are equivalent: 

(i) For every a E A the set DC> is a control set for 
system (1.1)" with frozen parameter value a EA ; 

(ii) The sets {DO, a EA} form a control bundle 
for singularly perturbed system (1.4). 

Proof. Let {DC>, a EA} be a control bundle with 
the indicated properties. Then every set Dao is a 
control set of the system with frozen parameter 
value ao E A. In fact, 

n intDC> 
"Elao,ao+l/nl 

converges to Dao for n -> CXl . For x, Y in this inter­
section and c small enough for one finds controls 
uE and times tE < To with '!j;E (tE, x, aa, uE

) = y. By 
compactness of U in the weak" topology (compare 
(Colonius and Kliemann, 2000)), boundedness of 
tE and continuity, cluster points t and u for c --+ 0 
satisfy 

ip(t,x,u , ao) = '!j;°(t,x,ao,u) = y. 

Conversely, consider a family {DO , 0 EA} such 
that DO are control sets for system (1.1)C> and 
the map 0 1-+ clD" is continuous. Fix a < 0' 

in A and points x E intDC> and Y E intDC> ' . By 
continuous dependence on the parameter there are 
finitely many points 

with 

and 

00 = 0 < 01 < ... < Om = a' 

x E n intDC> 
OE loo.od 

n intDO of- 0 for all j = 1. .. ., m - 1.. 
oE[Q) .OJ ..... d 

Thus there are finitely many points 

XCi = x E intDO, XI E intDol. 

Xm-I E intDOm-l, Xm = yE intDO m 

with 

n int DO for all j. 



Now we apply Theorem 2 on each of the finitely 
many intervals [aj, Qj+d and obtain numbers 
Co, Cl, .. . ,Cm-l > 0 such that Xj can be steered 
to Xj+l for all 0 < C < Cj . Taking 0 < C < 
max{Cj, j = O, ... ,m - 1} we conclude that 
we can steer the point x = Xo to Y = Xm . 

Thus the family {intDO, a EA} satisfies the 
controllability property required in the definition 
of control bundles. Hence there exists a control 
bundle containing these sets. It must coincide 
with {DO, a EA} since its sets are control sets 
containing DO. . • 

Remark 4. A control set depends continuously on 
parameters, if its closure coincides with the chain 
control set containing it; compare (Colonius and 
Kliemann, 2000, Corollary 3.4.7). 

4. CONCLUSIONS 

We have seen how controllability properties of 
dynamically perturbed systems are inherited from 
the corresponding systems with frozen parameter 
values. It appears possible to generalize at least 
part of the arguments to more general singularly 
perturbed systems, where instead of Q = cone 
has a slow system of the form 

i(t) = cg(z(t), u(t)) in]Rk 

with an appropriate vector field 9 on ]Rk. 
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