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Topological, Smooth, and
Control Techniques for
Perturbed Systems

Fritz Colonius and Wolfgang Kliemann

ABSTRACT The theory of dynamical systems has become a center piece
in the systematic study of systems with deterministic or stochastic pertur-
bations, based on measurable, topological, and smooth dynamics. Recent
developments also forge a close connection between control theory and topo-
logical and smooth dynamics. On the other hand, the support theorem of
Stroock and Varadhan shows how control theoretic techniques may aid in
the Markovian analysis of systems perturbed by diffusion processes. This
paper presents an overview of topological, smooth, and control techniques
and their interrelations, as they can be used in the study of perturbed
systems. We concentrate on global analysis and parameter dependent per-
turbation systems, where we emphasize comparison of the Markovian and
the dynamical structure of systems with Markovian diffusion perturbation
process. A series of open problems highlights the areas in which the inter-
connections between different techniques and system classes are not (yet)
well understood.

1 Introduction

Dynamical systems theory has become a center piece in the study of per-
turbed systems: Differential equations with deterministic (time varying)
perturbations can be understood as skew product flows (see [38]), systems
with stochastic perturbations as flows over a probability space (see [8]),
and (open loop) control systems as flows over the space of admissible con-
trol functions (see [10]). The common feature of these approaches is that
perturbed systems are viewed as specific skew product flows, in which the
structure of the base flow determines the nature of the perturbation un-
der consideration and the kind of techniques that are appropriate for the
analysis of the systems.

At the same time, direct connections between different classes of per-
turbed systems have been developed, such as support theorems (see [39]
for the Markov diffusion case) connecting stochastic systems with control
theory, ergodic theory for families of time varying differential equations
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connecting to properties of stochastic systems (see e.g., [35]), or control
concepts that describe the recurrence structure of families of differential
equations (see [14]). Hence we have a dense net of interdependencies that
has propelled the study of perturbed systems in recent years. The mono-
graph by Ludwig Arnold [3] studies these connections, mainly from the
point of view of measurable and smooth dynamics, with applications to
stochastic bifurcation theory.

This paper collects some ideas from topological and smooth dynamics
and from control theory that seem to be useful in the study of perturbed
systems. We start from the topological dynamics of skew product flows
(in the form of so—called control flows) and point to possible connections
with deterministic and stochastic perturbation systems. For the Markov
diffusion perturbation model we compare some results obtained via this
flow point of view to those obtained via stochastic analysis and the the-
ory of Markov semigroups. In this, as well as in many other parts of our
presentation ideas from control theory serve as a unifying technique.

While the basic theory of random dynamical systems has reached a state
of maturity, this cannot be said for many of the interdependencies discussed
in our paper. The reader will find a variety of open problems and question
marks throughout this article for which we would like to know the solutions
and answers. We hope that these questions generate further interest in this
exciting area.

The analysis of perturbed dynamical systems is concerned mainly with
two circles of ideas, namely the global theory and linearization theory,
based on spectral concepts. Here we discuss aspects of global theory, such as
Morse decompositions, connections between Morse sets, and the behavior of
systems on Morse sets. These concepts of topological dynamics are based on
chains for (skew product) flows and they are applied to perturbed systems
in the first part of Section 3. Regular perturbed systems satisfy a Lie algebra
rank condition of the type (14). For these systems the limit sets of the
unperturbed flow are enlarged by the perturbation to sets with nonvoid
interior in the state space. The global behavior of these systems can be
analyzed via the trajectories of associated control systems as explained in
the second part of Section 3. One ends up with two global structures for
perturbed systems, one based on chains and one on trajectories. Under the
so—called inner pair condition (28) we show in Section 4 that these two
structures agree ‘almost always’. The argument is based on the analysis of
parameter dependent systems, which also hints at a bifurcation study of
the global behavior of perturbed systems.

A standing assumption throughout this paper is the compactness of the
perturbation range and of the state space of the system. We have chosen
this set—up, because it implies the existence of limit sets for all system tra-
jectories. This allows us to simplify the formulation of many results and a
comparison of the different techniques for various classes of perturbed sys-
tems becomes particularly illuminating. We refer the reader to [14] for the
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corresponding results on systems with noncompact state space. If the per-
turbation range is noncompact (such as the ‘white noise’ case for stochas-
tic systems), some of the interconnections discussed here remain valid (e.g.
those based on the support theorem, see [29]), but the systematic use of
topological dynamics would not be possible without restrictions.

This paper presents an overview of topological, smooth and control tech-
niques as they can be used in the study of deterministic and stochastic
perturbation systems. We concentrate on the study of global behavior and
the connection between topological and control techniques via parameter
dependence. An overview over the linearization approach, including spec-
tral concepts for perturbed systems, their associated linear subbundles and
invariant manifolds, will appear elsewhere. Most results in this paper are
not new. But we hope that our specific presentation of key concepts and
their interrelations provides new insights and encourages new research in
the area of stochastic dynamics.

2 Stochastic Systems, Control Flows, and Diffusion
Processes: Basic Concepts

Perturbed systems, as we understand them in this paper, consist of two
components, namely the perturbation model and the system model. A nat-
ural framework for these systems are skew product flows, which we consider
the starting point of our theory. In this section we recall several classes of
perturbed systems and describe their relation to skew product flows. An
important aspect of our set-up is that all spaces and the dynamical systems
on them have topological properties which aid in the qualitative analysis
in the subsequent sections.

On the most abstract level, a perturbation model is given by a continuous
flow on a topological space U/

0:RxU—U, (1)

i.e. it holds that 6, o 8, = 8, s and 6y = id. (We will often write &, for the
map (2, -).) Note that the flow (1) is defined on the two sided time interval
R, and hence 6, L' — ¢, for all t € R. The model of a system perturbed

by @ is a continuous skew product flow on the topological product space
Ux M

O RxUxM—UxM, &uzx)={0u,ptzu)), (2)

whose first component, the perturbation (1), affects the system component
w, but not vice versa. In particular, the w—component itself is not a flow.
The skew product flow ¢ is a prototype of a deterministically perturbed
system in continuous time. In a stochastic perturbation model one has,
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in addition to (2), a probability measure P on the Borel o—algebra of U,
which is invariant under the flow 8, i.e., ;P = P for all t € R. This set—up
differs from the one treated by Arnold [3] in the way that we require U to
be a topological space and € to be continuous, while Arnold’s perturbation
model is just measurable.

The specific perturbations treated in this paper are L°—functions with
compact range. In the deterministic case (1) we consider the following set—
up:

Let U C R™ be compact and convex, with 0 € int U/, the interior of U.
Denote by U = {u : R — U, measurable} the perturbation space, equipped
with the weak* topology of L (R,R™) = (Li(R,R™))*. This space is
compact and metrizable ([14]|, Lemma 4.2.1). The flow # is given by the
standard shift

0 RxU—U, 0:(ul-)) =ult+-), (3)

resulting in a continuous dynamical system ([14, Lemma 4.2.4]). Some stan-
dard interpretations of the model (3) are time varying perturbations with
a given range, as they are used in robustness theory, or open loop control
functions, as they are common in control theory. In a stochastic perturba-
tion model we are also given a #-invariant probability measure P on .
One way to arrive at such a measure is given by the Kolmogorov construc-
tion for stationary processes: Let 17 : R x 2 — U be a stationary stochastic
process on a probability space (2, F’, P’), with continuous trajectories. Let
C(R,U) be the space of continuous functions in R with values in U, and T
the o—algebra on C(R, U), generated by the cylinder sets. Then the process
n induces a probability measure P on (C(R,U), F), which is invariant un-
der the shift in C(R,U). We imbed €(R, U) into U, extend F to the Borel
o-algebra F of U, and extend P to a measure P on F, which is invariant
under the shift # in (3). Compare [22] for details on Kolmogorov’s construc-
tion. Note that the extension of the trajectory space to 4 allows us to use
topological properties of the flow 8 in (3).

The specific systems treated in this paper are smooth systems with affine
perturbations. Let M be a paracompact C'*—manifold of dimension d < oo,
and let Xy, Xy,...X,, be C*°—vector fields on M. The system dynamics
are given by the ordinary differential equation

m

&= Xo(z)+ Y _ui(t)X;(x) on M. (4)
i=1

where u(-) € U.

Since we restrict ourselves to global flows, we assume that (4) has a
unique solution (¢, z, ) for all (u, x) € U x M with (0, z,u) = z, which
is defined for all £ € R. Sufficient conditions for this are, e.g., globally
Lipschitz continuous vector fields or compactness of M, since we assume U/
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to be compact. Equation (4) together with the perturbation (3) define the
system flow

P RxUxM—-UxM, ®ux)={0wu,ptzu)), (5)

which is a continuous skew product flow, compare [14, Lemma 4.3.2]. The
topological study of (5) vields some of the basic ideas for the following
sections.

The rest of this introductory part is devoted to Markov diffusion systems
and to approaches for the analysis of their qualitative behavior. We start
from a stochastic perturbation given by a stochastic differential equation
on a C*™—manifold N (of finite dimension)

dn = Yo(n)dt + Y Yy(n) o dWy, (6)

where Y5, Yi, ... Y, are C™—vector fields on N and ‘o’ denotes the symmet-
ric (Stratonovich) stochastic differential. (We refer the reader to [2] and
[25] for basic facts on stochastic differential equations.) We assume that
Equation (6) admits at least one stationary Markov solution, see e.g. [28].
We force this solution to be the unique stationary Markov one by imposing
a Lie algebra rank condition of the form

dim LA{Y, ..., Ye}Hq) =dim N for all g € N. (7)

In (7) we have used the following notation: Let X(/N) be the set of vector
fields on N, and let Y C X(N) be a subset. LA(Y) denotes the Lie algebra
generated by Y in (N}, which induces a distribution A (in the differential
geometric sense) in the tangent bundle TN. For ¢ € N, the vector space
LA{Y}(q) C T, N is the distribution A evaluated at ¢. Condition (7) guar-
antees (see [31]) that Equation (6) has a unique stationary Markov solution
7y which we extend to all ¢ € R, compare [3]. We consider this process 1
as a background noise, which is mapped via a surjective function

fiN—=U (8)

onto the perturbation space U C R™, compare Lemma 3.17. Then & =
f(ny) is a stationary stochastic process on U. Combining this perturbation
model with the system (4) we arrive at the Markov diffusion process

¢
dn = Yo(n)dt+ > Yi(n)odW;, no =3,
=1

r = X0($)+Zfi(nt)Xi($)
i=1

on the state space N x M.
The behavior of the system (9) can now be studied using a variety of
approaches:
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e Stochastic analysis, compare, e.g., the standard references [25] or [21],
e Stochastic flows, compare [3],

¢ Imbedding of the stationary process 5; into the flow (5) as described
above,

e Connections with control theory via the support theorem of Stroock
and Varadhan [39].

In this paper we will use a combination of the last two approaches. To this
end we briefly describe a version of the support theorem that is suitable
for our purposes, compare [30], [32], [24] or [3].

Let L be a finite dimensional C**°—manifold and consider the stochastic
differential equation

dz = Zo(z)dt + Y _ Z(z) 0 dWy, (10)

with C> vector fields Zo, ..., Z,. Denote by C,(R", L) the space of con-
tinuous functions w : [0,00) — L with w(0) = p € L, equipped with the
topology of uniform convergence on compact time intervals. For the ini-
tial value p € L, the stochastic differential equation induces a probability
measure P, on C,(R™, L) which, intuitively, assigns to each Borel set B in
C,(RT, L) the probability that the functions in B appear as trajectories of
the solution of (10}. Stroock and Varadhan [40] associate with (10) formally
a control system of the form

i=Zo(2) + Y wilt)Zy (11)

with control functions w € W = {w : |0, 00) — R”, piecewise constant }. We
denote by (-, p,w) the solutions of (11) with initial value (0, p,w) = p,

and by ¥, = {4 (-, p,w), w € W} C C,(R ™, L) the set of all such solutions.
The support theorem now states

supp P, = cl ¥, (12)

where ‘supp’ denotes the support of a measure (i.e. the smallest closed
subset of full measure), and the closure ‘cl’ is taken in C,(R™, L). In the
form (12) the support theorem is not yet suitable for the study of (9) with
L = N x M, because it refers only to fixed initial conditions, the control
functions in W are taken to be piecewise constant, and we would have to
choose controls with values in R to first analyze the 5, and then the z—
component of (9). However, Kunita [31] shows that under the Lie algebra
rank condition dim LA{Z, ... | Z, }(p) = dim L for all p € L we have

o W, = C,(R, L) (13)
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This, together with an appropriate concept of controllability regions, will
allow us to reduce the control analysis to the system (4) with control func-
tions in U, and hence to the study of the skew product flow (5).

3 Attractors, Invariant Measures, Control, and
Chaos

Global analysis of dynamical systems deals with limit sets, connections
between limit sets, and the behavior of the system on limit sets. This infor-
madtion is pieced together to obtain a global picture of the system behavior
for t — o0 and ¢t — —oo. As it turns out, limit sets can be rather compli-
cated, particularly for systems with time varying perturbations, such as (4)
and (9). Therefore it is useful to study more robust concepts, such as ver-
sions of recurrence or attractors that do allow a global analysis for larger
classes of systems. In our context of perturbed systems it will turn out
that some control theoretic concepts simplify the study of recurrence and
of attractors, and that one obtains a fairly complete picture for Markov
diffusion models. We develop this theory stepwise, starting with general
recurrence concepts, the study of the perturbation model (3), and of the
system model (5), before we proceed to stochastic systems.

3.1 Concepts from Topological Dynamics

Throughout this section we avoid questions about the existence of limit
sets by assuming that the state space M of the system is compact. Gen-
eralizations of the basic results to the noncompact case can be found, e.g.
in [14]. Let S be a compact metric space and let ¥ : R x S — S be a
continuous flow. For V' C S we denote the w-limit set by w(V) = {z € 5,
there are z; € V and ¢, — oo with W(¢;,z;) — z}, and similarly for the
a-limit set w*(V), using t;, — —oo.

Definition 3.1. The flow V¥ is called topologically transitive if there erists
x € S with w(x) = S, and topologically mizing if for any two open sets
Vi, Vo C S there exists t > 0 with W{—t, V)NV, £ .

Note that a topologically mixing flow is topologically transitive. These
topological concepts are based on the trajectories of the flow and on limit
sets. One obtains more robust concepts by considering chains instead of
trajectories.

Definition 3.2. Forxz,y € S and £, T > 0 an (£,T)—chain from x to y is
gwen by a number n € N, points xg = x,21,... ,2, =y n S and times
to, ... ,tn—1 =T such that d(V(t;,z;), xiy1) <& fori=0,... ,n—1.
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For V' C S we denote the chain limit set by Q(V) = {z € S, for all £, T >
0 there exists y € V and an (¢,T) — chain from y to z}. Using chains one
can formulate the following recurrence concepts.

Definition 3.3. A subset V C S is chain transitive, if for all z,y € V we
have x € Qy). A point © € S is chain recurrent if © € Q(xz). We denole
the set of all chain recurrent points by R.

One can show that a closed subset V' C & is chain transitive iff it is
chain recurrent and connected. Furthermore, the connected components of
the chain recurrent set R coincide with the maximal chain transitive subsets
of R.

Finally, we introduce Morse decompositions of the flow (S, ¥).

Definition 3.4. A Morse decomposition of (S,V) is a finite collection
{M;,i = 1...n} of nonvoid, pairwise disjoint compact invariant sets such
that

(i) For all z € S we have w(z), w*(z) C U, | M,

() Suppose there are My, ... , My, and z1,...,2¢ € S\|J,_; M; with
w*(x;) CMy, , and w(z;) CMy, fori=1,... ¢ then My, # M;,.

The sets of a Morse decomposition are called Morse sets. A Morse decom-
position induces an order on the Morse sets through the relation M; < M;
if there exists € S with w*(xz) CM,; and w(x) C M.

Morse decompositions describe the flow ¥ via its movement from Morse
sets that are smaller (w.r.t. the order <) to ones that are greater. This
gives a fairly complete global picture of the flow W if it has a finest Morse
decomposition. The following result clarifies the relation between Morse
decompositions and chain recurrence.

Proposition 3.5. The flow (S, ¢) admits a finest Morse decomposition iff
the chain recurrent set R consists of finitely many connected components.
In this case, the Morse sels coincide with the (chain recurrent) components
of R and the flow restricted to each Morse set is chain transitive and chain
recurrent.

For the proof of this result and for further discussions of the concepts
above see, e.g. [1], [27], [36], or Appendix B in [14].

3.2 Deterministic Perturbed Systems

In the next step we apply the recurrence concepts 3.1 — 3.4 to the pertur-
bation model (3), compare [14], Proposition 4.2.7.

Proposition 3.6. Consider the shift system 68 : RxU — U as defined in
(3). This flow is topologically mixing, topologically transitive, and chain
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transitive. In particular, (U, 8) admits only the trivial Morse decomposition
{u}.

As a corollary we obtain that the shift ({4, ) is also topologically chaotic
in the sense of Devaney [19].

Definition 3.7. A continuous flow (S, V) is called topologically chaotic, if
(i) W is topologically mixing,
(#) W has a dense set of periodic points,

(i11) W has sensitive dependence on initial conditions, i.e. there erists & >
0 such that for all x € S and neighborhoods N of x there are y € N
and t > 0 such that d(V(t, z), ¥(t,y)) > .

Corollary 3.8. The shift system 8 : R x U — U from (3) is topologically
chaotic, if U consists of more than one point.

The proof of Corollary 3.8 uses the fact that the periodic functions are
dense in U (see [14, Lemma 4.2.2], which together with topological transi-
tivity implies sensitive dependence on initial conditions ([14, Prop. B.2.6]).

Our next step is the study of the system flow ® : RxUx M — U x M as
defined in (5). The global behavior of this flow can be much more intricate
than the one of the perturbation alone. It turns out that control theoretic
concepts help in the analysis of ® and we introduce the basic ideas next.

Consider the system dynamics (4) as a control system with state space
M and admissible control functions v € . We impose a nondegeneracy
condition on (4) which implies that M is the ‘right’ state space:

dim LA{Xo + Sw; X;, u € Ubz) =dim M for all w € M. (14)

Condition (14) implies that the positive (and negative) orbits from each
point have nonvoid interior, i.e. int OF (z) # @ for all z € M, where 01 (z) =
{y € M, there exist t > 0 and v € U with y = (¢, z,u)}, and similarly
for the negative orbit O (z) using times £ < 0. We remark that the orbits
are finite time objects of a control system (‘steering = to y in time ¢ with
an appropriate control’), but for any « € U it also holds that the limit
set, w(u, x) of the trajectory (-, z,u) in M is contained in ¢l O (x), the
closure of the positive orbit. Furthermore, we have the following result,
which is an easy consequence of the continuous dependence of the solution
of a differential equation on the right hand side.

Lemma 3.9. For each point x € M the closure clO7 (z) of its forward
orbit agrees with the closure of the forward orbit defined via piecewise con-
tinuous, piecewise constant, continuous, or C° controls. The same holds

for el O (z).
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For further information on control theoretic ideas see, e.g., [26] or Ap-
pendix A in [14]. We now define the basic objects that are useful for the
global analysis of perturbed systems.

Definition 3.10. A set D C M is called a control set of the system (4) if
(i) for all x € D there erists u € U with o(t,z,u) € D for allt > 0,
(i) for all x € D one has D C cl O (x),
(#i) D is mazimal (w.r.l. set inclusion) with the properties (i) and (i).
A control set C is called invariant if c1C = clO7(x) for all x € C, and
D C M is a main control set if it is a control set with int D #£ 0,

Note that according to Lemma 3.9 control sets are independent of the
class of control functions listed in the lemma.

In order to obtain a complete picture of the global behavior of control
systems, we introduce two concepts related to control sets:

The domain of attraction of a control set ) is defined as

AD) ={ye M, cOT(y)nD # 0. (15)
The reachability order on the control sets of (4) is given by
D <D if DNA(D') £0. (16)

The following result characterizes the global behavior of control systems
on compact spaces, compare [14, Chapter 3|for the noncompact case.

Theorem 3.11. Consider the control system (4) on the compact space M
and assume the Lie algebra rank condition (14).

(i) There exist at least one closed main control set C and one open main
control set C*.

(#) A main control set is closed iff it is invariant. The closed main control
sets are exactly the marimal sets under the order <.

(i1} The open control sets are exactly the minimal sets under the order <.

(i) There are finitely many closed and finitely many open main control
sets.

This theorem is an easy consequence of [14, Th. 3.15]. Theorem 3.11
describes the ‘flow’ of a control system from the minimal, open control sets
to the maximal. closed ones along the order <. Hence if suffices to know
the control sets and their order to obtain the picture of the global behavior
w.r.t. the orbits of a control system. The study of the global behavior of
the individual trajectories requires some knowledge about the system flow
(5), compare Proposition 3.22 below.
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The closures of the positive and negative orbits contain all limit sets of
trajectories in M (see the remark after (14)). However, limit sets are not
necessarily contained in the closures of main control sets. Therefore, we
need an analogue of control sets, but defined via chains.

Definition 3.12. Fiz z,y € M and pick &, T > 0. A controlled (¢,T)—
chain  from x to y is given by n € N, o = z,21,... , 2, = y in M,
Ug,y ... s Up—1 U andty, ... t, 1 > T such that d{p(t;, x5, uy), x501) <&
Jorallj=0,... . n—1.

Definition 3.13. A set F C M is called a chain control set of (4) if
(i) for all x € I there erists u € U with p(t,z,u) € E for allt € R,

(#) for all x,y € E and =, T > 0 there is a controlled (¢,T)—chain from
x lowy,

(#ii) E is mazimal (w.r.t. set inclusion) with the properties (i) and (ii).

For basic properties of chain control sets see [14, Section 3.4].

With these control theoretic preparations we are ready to study the flow
(5) of a perturbed system. We lift the main control sets D and the chain
control sets F from the state space M to the product space U x M:

D = cdf(u,z) el x M,p(t,z,u) €int D for all t e R},  (17)
£ = {(u,z)elU x M,p(t,z,u) € E for all t € R}. (18)

Theorem 3.14. Consider the system flow (5) and assume the Lie algebra
rank condition (14). Let D C U x M be compact such that the projection
7D = {x e M, there exists u € U with (u,z) € D} has nonvoid interior.

(i) D is mazrimal topologically mixing iff there is a main control set D C

M whose lift in the form (17) agrees with D.
(#) Statement (i) remains true for D mazimal topologically transitive.

(i1) If U contains more than one point, then for any lift D of a main
control set the flow (D, V) is topologically chaotic.

For the proof of this theorem see [14, Prop. 4.3.3, Th. 4.3.8, Cor. 4.3.9].
Theorem 3.14 establishes for perturbed systems the correspondence of con-
trollability, topological transitivity, and topological chaos. The reachability
order between control sets induces an order between the topologically tran-
sitive components of the perturbation flow. A similar relationship holds for
the chain transitive components.

Theorem 3.15. Consider the system flow (5). Then &€ C U x M is a
maximal invariant chain transitive set iff mp € is a chain control set. In
this case the lift of mps € is equal to E.
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A proof of this result can be found in [14, proof of Th. 4.3.11]. Combining
Theorem 3.15 with Proposition 3.5 we obtain the following consequence.

Corollary 3.16. Assume that the control system (4) has finitely many
chain control sets 1, ... | Ey. Then the lifts {€1,... &} are the (unique)
finest Morse decomposition of the system flow (U x M, D). Furthermore,
the order on this Morse decomposition (compare Definition 3.4) induces an
order between the chain control sets of (4).

The results 3.14 — 3.16 show two pictures of the global topological behav-
ior of the system flow (5), one with respect to controllability and topolog-
ically chaotic components, the other one with respect to chain recurrence
and Morse decompositions. Under an additional assumption we will merge
these two pictures into one in the next section.

3.3 Global Behavior of Markov Diffusion Systems

The rest of this section is devoted to consequences of the theory above
for stochastically perturbed systems, including a discussion of invariant
measures and attractors. Obviously, the global behavior of a stochastic
system, i.e. a system with an additional #—invariant probability measure
P on the perturbation flow (3), has to follow the lines of the topological
results above. However, depending on the support and the specific form of
the measure P a multitude of specific patterns is possible. Therefore we
begin this discussion with the Markov diffusion model (9), which shows a
particularly simple behavior, completely described by the control theoretic
results on the system (4).

We need two preparatory results. Consider the control system associated
with (9) in the sense of Stroock and Varadhan (compare (10}, (11}), i.e.

Yo(n) + 300 w;i(t)Y5(n) on N
Xo(x)+ >0 filnt) Xi(z) = X(z,n) on M (19)

1
&

where f : N — U is of the form (8), w € W = {w : [0,00) — Rf,
piecewise constant}, and assume the Lie algebra rank condition (7) for
the p—component. Furthermore, we assume the weaker Lie algebra rank
condition for the pair system

dim LA { (4 20), w0 e RO () = dim N | dim M
for all (7) € N x M. (90)

This condition implies, in particular, that (14) holds for the z—component.

Lemma 3.17. Let f : N — U be a continuous map such that there erists
a closed, connected subset L. C N with f|; is C' and Df(n) has full rank
for all n € L with f(n) € intU. Then for all (n,z) € N x M the orbits
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Ot (n,z) of the system (19) are of the form 1O (n,z) = N x el 0T (z),
where O (x) 4s the positive orbit of the system (4) from x € M. In par-
ticular, the invariant control sets C of (19) correspond one—to—one to the
invariant control sets C of (4) via C = N x C.

Proof. We start with the following two observations: By Kunita’s Theorem
(compare (13)), the Lie algebra rank condition (7) for the p—system implies,
that for all € N every continuous function in €,(R™, N') can be approxi-
mated by trajectories starting in n with controls w € W. Furthermore, by
boundedness of f, the z—components of the trajectories of the system (19)
satisfy (¢, n, z,w) — x for t — 0, uniformly for w € W.

In order to show that for z € M and n € N one has N x 107 (z) C
cl 0T (n,z), consider (n,z,) € N x O7(z) with z; = (T, z,u) € 07 (x),
where T" > 0. We may assume that »(t) € intU for all t € [0,7T] and
that w € U is a continuous control (compare Lemma 3.9). By the Implicit
Function Theorem one finds tg =0 <t; < ... <t, =T, opensets V; C U,
and C! maps h; : V; — N such that foh; = id on V; and [t;, ;1] C
{t € [0,T];u(t) € V;} for all i. Thus h;(u(t)), t € [t;,ti-1], I8 continuous.
Clearly, for all k € N there is a continuous function on [0, %] connecting n
and ho(u(%)); furthermore, there are continuous functions on [t;1— %, tit1]
connecting h; (w(t;—+)) and hiy1(u(t;41)); and, finally, there are continuous
functions on [t,, — 1,%,] connecting hy,_1(u(t, — +)) and ;. Together, we
have constructed continuous functions on [0, T starting in 7 and ending in
1. The two introductory observations imply that this construction yields
trajectories of the coupled system (19) establishing (ny, z) € 1O (n, z).
The converse inclusion is obvious. Now the final assertion on the invariant
control sets is a direct consequence of their definition.

If dim/N = 1, it suffices to assume that the restriction of f to a connected
subset of NV is continuous and bijective onto U. ]

According to Lemma 3.17 the global control structure of the x—compo-
nent (4) determines the control structure of the pair system (19). As we
will see, it is sufficient for the global analysis of the Markov diffusion model
to understand the invariant control sets of (4) and the corresponding mul-
tistability regions.

Definition 3.18. A point z € M is called multistable for the system (4) if
there erist invariant control sets C1,Co C M such that x € A(C;) for i =
1,2. (Compare (15) for the definition of the domain of attraction A(C).)
The set of all multistable points will be denoted by MS.

The set of multistable points is nonempty iff the system (4) has at least
two invariant control sets. Furthermore, there exist finitely many control
sets Dy, ..., Dy such that M.S = Ule A(D;). For further information on
multistable points and on the characterization of the sets D4, ..., D} see
[14, Section 3.3].
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The next result characterizes the global behavior of the Markov diffusion
model (9). We work on the canonical probability space Q = €(R™, N x M)
with the induced measures P, ) for fixed initial conditions (¢, z) € N x M.

By ﬁ(n*’m) we denote the measure corresponding to the stationary Markov
solution {n;,t > 0} in the n—component. Its marginal distribution on {2 =
C(RT, M) will be denoted by P,,z € M. The trajectories of the pair process
are (n(t,q,w), ¢(t, (¢, z),w)) for (¢q,z) € N x M, and the x—component
under the stationary solution {n;,¢ > 0} will be written as ¢(¢, z,w), z €
M. Finally, for a set A C M we introduce the first entrance time of the
z—component from x € M as

:(A) =inf{t > 0, p(t,z,w) € A}. (21)

With these notations we obtain the following characterization.

Theorem 3.19. Consider the Markov perturbation model (9) under the
Lie algebra rank conditions (7) and (20).

(i) The control system (4) has finitely many invariant control sets Cy,
L, Cr.

(i) For each x € M there exist numbers p;(x) >0, ¢ = 1... k with
Zlepi(ﬂf) =1 and pi(x) = Pol{72(Ci) < o0}

(#5i) We have pi(z) > 0 iff x € A(C}), the domain of atiraction of C;
(compare (15)), and p;(z) =1 iff z € A(C;)\MS.

(w) Bach invariant control set is invariant for the process {¢(t,z,w), t >
0}, ive. Pt z,w) € C; forallt >0} =1 forzeC;,i=1...k.

(v) Set C = Ule Ci, then 7,(C) has finite expectation for x € M.

Proof. Part (i) is [14, Theorem 3.2.8]. By Lemma 3.17 the invariant control
sets (19) are of the form N x C;, i« = 1...k. Hence we have 7,(C;) =
inf{t > 0,(nf,p(t,z,w)) € N x C;} =: 7.(N x C;) for all z € M, and
P A7, (Cy) < 00} = Pupray{72(N x ;) < oc}. Denote C = |JI_| C; and
observe that N x C is a disjoint union of (n*(¢), ¢(¢))-invariant sets, see (iv).
Therefore Py 9 {7 (N x Q) < 00} = S8 | Poe {7 (N x C) < o0}, But
for all (¢,z) € N x M we have ﬁ(q’m){%w(N x () < oo} = 1 (see [29]), hence
p(n*,w)(N x (') < oo} = 1, which proves (ii). Part (iii) follows immediately
from the support theorem (13), Proposition 3.22 below and the fact that
the distribution of 53 has a C°°—density with support equal to N. To show
(iv) it suffices to prove that for all i = 1... k& the sets N x C; are (0}, ©(f))—-
invariant. Since by Lemma 3.17 the sets N x C; are the invariant control
sets of (19), they are (n(t,q,w), ¢(t, (g, ), w))—nvariant for all (q,z) €
N xC;, compare [29]. Hence they are (), ¢(f, z,w))-invariant for all z € C;.
Finally, (v) is a standard argument using [20, Lemma 4.3], compare [29]. O
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Theorem 3.19 characterizes the global behavior of the Markov diffusion
model (9): The system enters from any initial value = € M the invariant
control sets of (4) in finite time and and stays there for the rest of its
life. The invariant set C = Ule C; i1s completely determined by control
analysis, as is the question of p;(x) = 0 or = 1, i.e. whether the system
reaches the set C; from x € M and whether this happens with probability
1. Therefore, these facts are independent of the specific background noise n;
and of the map f, as long as the Lie algebra rank conditions are satisfied
and f is surjective. Of course, if p;(z) € (0,1), then this quantity does
depend on 5y and on f. Hence one can consider the invariant control sets
as ‘limit sets’ for the Markov diffusion model.

3.4 Invariant Measures

It remains to investigate the behavior of the system on the limit sets, i.e. in-
variant measures and ergodicity. In the Markovian context we are interested
in invariant Markov measures: Denote by P, the Markovian semigroup of

(9) on C(R", N x M), a probability measure g on N x M (with the Borel
o—algebra) is called an invariant Markov measure of (9) if

Py — pforall t > 0. (22)

Theorem 3.20. Consider the Markov perturbation model (9) under the
Lie algebra rank conditions (7) and (20).

(i) There erists a unique invariant Markov measure v on N for the n—
component of (9) with supp v = N.

(#) For each invariant control set Cy,i = 1...k of the system (4) there
exists a unique invariant Markov measure p; for the pair process (9)
with supp p; = N X C;. Furthermore, the marginal of pu; on N is the
given measure V.

(#i1) The law of large numbers holds for all measures p;, i.e. one has for
all g € Li(p;) and for p;—almost all (q,2) € N x M

Pl im 5 [ ot = [ttty = 1.

(i) Under the stationary solution {n;,t > 0} in the n—component we have
for all x € M: (nf,p(t,r,w)) = Zlepi(:c),ui as t — 0o, where =
denotes convergence in distribution.

(v) For eachi=1...k the z—component has a unique stationary solution
*

xf(t) on C;, which is stationarily connected with n;, i.e. (nf,z}(t))

is a stationary Markov solution of (9).
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Furthermore, all invariant measures admit C™ —densities.

Proof. The results (i) — (iii) and the existence of C*°—densities for the in-
variant measures were proved in [29]. To show (iv) we note first of all that
the law of large numbers also holds for ]5(77*’@) = | N p(q,w)dy. Now the claim
follows via standard arguments, see e.g. [29], from Theorem 3.19, if the p;,
i = 1...k are the only invariant Markov measures of (9). But invariant
Markov measures of (9) have support on the invariant control sets of (19)
and these are exactly the sets of the form N x C; according to Lemma
3.17. Now the uniqueness part of (ii) shows that p;, i = 1...k are the
only invariant Markov measures of (9). Part (v) follows from the fact that
n; —stationary solutions of the x—component are in one—to—one correspon-
dence to the invariant Markov measures of the pair process (1, z;), since
components of stationary processes are stationary:. L]

Asg the results above show, Markov diffusion theory is basically a state space
theory in the sense that the qualitative behavior of the Markov perturbation
model (9) (stationarity, ergodicity, convergence of the distributions) can be
described using state space concepts in M and in N x M. The properties of
the associated system flow (5) (compare the remarks after (9)) did not enter
into our discussion. However, Theorems 3.19 and 3.20 have some immediate
consequences for the limit behavior of the trajectories.

Corollary 3.21. Under the assumptions of Theorem 3.19 and 3.20 we

have

(i) For all x € M there exists a P,—a.s. finite random variable T, (with
finite expectation) such that P.{p(l,z,w) e C = Ule C; for all t >
T.} = 1.

(i) For pi—almost all (q,x) € N x C; we have pq,f,;{deJ(q?x) =C;} =
1, where &(q,z) denotes the w—limit set of the trajectory (n(t,q, w),
w(t, (g, x)w)), t 2 0.

These almost sure statements for the Markov diffusion model have as
counterparts topologically generic statements for the system flow (5):

Proposition 3.22. Consider the system flow under the Lie algebra rank
condition (14).

(i) The set {(u,xz) € U x M, there erists T > 0 such that for allt > T
olt,x,u) e C' = Ule C;} is open and dense in U x M.

(#) For each i = 1...k the set {(u,z) € U x C}, mpyw(u,z) = Ci} is
residual in U x Cj, i.e. it contains a countable intersection of open
and dense subsets of U x C;.
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For a proof of this proposition see [14, Section 4.6]. In the real analytic
case we even obtain a generic set in U/ independent of z € M, i.e. the set
{vw e U, for all z € M there exists T' > 0 such that (¢, z,u) € C} for all
t > 1" is open and dense in . In this case, a stochastic system satisfies
the corresponding property w.p.1., if the #-invariant measure P on U puts
probability one on the generic set, which, of course, is in general difficult
to verify. However, some general statements can be made about the limit
behavior of perturbed stochastic systems, which we summarize below. For
this we need some facts on invariant measures and recurrence.

Definition 3.23. A point x € S is called recurrent for a flow ¥ on S if
x € w(x). A probability measure 1 on the Borel o—algebra of S is called
invariant for W if U = p for allt € R, and ergodic if pf(AAV_,A) =0
for all t € R implies A = 0 or nA = 1. Here A denotes the symmetric
difference of two sels.

Poincaré’s Recurrence Theorem states that on a separable metric space
S we have p{z € S,z &€ w(x)} = 0 for any U—invariant measure p, in other
words, p—almost all points are recurrent (compare, e.g. [33, Prop. [.2.1]).
Hence the support of any ¢—invariant measure is contained in the closure
of the set R¥ of ¢recurrent points. However, the union of the supports
of all invariant measures need not be dense in clR¥, compare, e.g. [34,
Sec. VIL.3].

For the flows (5) of perturbed systems the situation is simpler, as the
following results show. Here we denote by Ps the set of $—invariant mea-
sures on U x M. This set is nonempty, convex, weakly compact, and the
extremal points are ergodic measures, compare [27, Lemma 4.1.10].

Proposition 3.24. Consider the system flow (5) under the Lie algebra
rank condition (14).

(i) For every (u,x) € U X M there exists a chain control set E of (4)
such that w(u, ) C &, the lift of E, and hence myw(u,z) C E.

(it) For all (u,z) € U x M we have supp fiy » C w(u,x), where i, 45 s
the Krylov—Bogolyubov invariant measure from (u,z), compare, e.q.

(34, Th. VI1.9.05].

(#32) If (u,x) €U x M is —recurrent, then there erists a control set D of
(4) with x € D.

(w) If D is a main control set of (4), then for every x € D there erists
uw € U such that (u, x) is -recurrent.

These results follow from [14, Cor. 4.3.12, Prop. 4.4.1, 4.4.2, Th. 4.4.6].
As a consequence we obtain a characterization of the possible supports of
all d—invariant measures.
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Theorem 3.25. Consider the system flow (5) under the Lie algebra rank
condition (14). For a control set D of (4) denote the positive lift by Dt =
c{(u,z) €U x M, p(t,z,u) € D for allt > 0} and set D¥ = [ J{DT, D is

control set}.

(i) U{supp p, p € Pa} C el DF.

(#) If all control sets of (4) are contained in the closure of main control
sets, then cl |J{D, D is main control set} = mpel | J{supp p, 0 €
Po} = 7 RY, the projection of all ®—recurrent points.

(#i1) For each ®—invariant ergodic measure ju there erists one control set

D of (4) such that supp u C DT.

This result (compare [14, Cor. 4.4.7, 4.4.8]) concerns the existence and
location (supports) of ®-invariant measures as well as their relation to
recurrent points. In particular, all projections of recurrent points and of
control sets are contained in the closures of control sets. In general, a system
flow (5) will have many invariant measures, even over the same control set.

Consider now the stochastic perturbation model (5) with a given 6-
invariant probability measure P on . It is easy to see that a measure y on
U x M is $—invariant iff p(du, dz) = p,(dz)P(du), where P is 8—invariant
and p, = P(t, u, -)pg(s ). Measures of this type are studied, e.g. in [3] and
[15]. The existence of an invariant family {,,,« € U} is always guaranteed
over invariant control sets of (4) (recall that we assume M to be compact,
hence any invariant control set ' is compact and U/ x ' is $—invariant
for t > 0). The existence of invariant families over noninvariant control
sets D boils down to the question whether ®(¢,w, ) leads out of D with
positive P—probability. We discuss one set of conditions under which this is
true. The condition is modelled after the support theorem, which was the
crucial tool in the Markov diffusion case above (but for Markov invariant
measures ).

Let {n(t),t € R} be a stationary stochastic process with trajectory space
U and f—invariant measure P. Denote by supp P, ) the support of the
distribution of n(0) in U. We use the following assumption {compare [5,

p. 16]).

There exists yg € supp F,(0y such that for all 6 > 0 and all
w:[0,T] — U continuous with «(0) = yo
we have P{maxo<;<7 [n(t) —u(t)| < 6} > 0. (23)

Theorem 3.26. Consider the system flow (5) with stationary stochastic
perturbation satisfying (23). Assume the Lie algebra rank condition (14).

(i) For any point x € D, some control set of (4), we have for all € > 0
and all T > 0 that P{d(¢(t,z,w),z) < = for somet >T} > 0.
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(i) Any ®—invariant measure p with marginal P onlU satisfies wpsupp p
NC # 0, where C' = Ugc:l C; s the union of the invariant control sets
of (4).

Proof. Part (i) was proved in [5, Prop. 3.6]. Part (ii) follows from Proposi-
tion 3.22 (i) and the ‘real noise tube method’ in [5, p. 18]. ]

Under further conditions on the control structure of (4) one can obtain
stronger results.

Corollary 3.27. Under the conditions of Theorem 3.26 assume that all
invariant control sets Cy,i = 1...k of (4) are isolated, i.e. for all i there
exists v > 0 such that the open a—neighborhood B(Cj, &) does not intersect
any other control set. Then any ergodic invariant measure p satisfies Tay
supp p C Cy for some+=1... k.

Note that by Kunita’s theorem (13) the Markov diffusion model (9) sat-
isfies the condition (23). In fact, this model satisfies {23) for all yo € U.
Hence we obtain

Corollary 3.28. Consider the system flow (5) for the Markov diffusion
case (8) under the Lie algebra rank conditions (7) and (20). Then any $—
nwvariant measure p with marginal P on U satisfies mp supp p C C, where
again C is the union of the finitely many invariant control sets Cy, i =
L...k of (4). Furthermore, each ergodic ®—invariant measure has support,
whose projection lies in one of the C;.

The result forces us to study the relation between the invariant Markov
measures (22) and the invariant measures of the system flow. Each invariant
Markov measure induces a $—invariant measure, but, in general, the system
flow may have many more invariant measures, compare [15] for a thorough
discussion of this topic. Even if a ®-invariant measure p is induced by a
Markov measure, the study of its family {u,,u € U} reveals additional
detail information that cannot be seen from the state space density of the
Markov measure. These families are studied in detail in [3] and results for
specific systems are presented, e.g. in [17], [37], and [4], where the last two
articles contain mainly numerical results.

3.5 Attractors

We conclude this section with a brief discussion of attractors in perturbed
systems. The starting point are again some results for continuous flows
¥R x5 — 5 on compact metric spaces.

Definition 3.29. A compact invariant set A C S is an attractor of (S, V)
if it admits a neighborhood N such that w(N) = A. A repeller is a compact
invariant set R C 5 which has a neighborhood N* with w*(N*)= R. For
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an attractor A the setl A* ={z e S, w(z) N A=0} is a repeller, called the
complementary repeller, the pair (A, A*) is called an altractor—repeller pair.

The relation between attractors and Morse decompositions, see Defini-
tion 3.4, is described in the next result.

Lemma 3.30. A finite collection {My, ... , M, } of subsets of S is a Morse
decomposition iff there is a strictly increasing sequence of attractors

p=Ac C AL C...C A, =95 such that M, ;=A; 1 NA] for0 <i<n-—1.

Hence the attractor-repeller pairs can be reconstructed once all Morse
decompositions are known. The relation between attractors and the chain
recurrent set, compare Definition 3.3, is as follows (see [14, Prop. B.2.24
and Th. B.2.25]).

Lemma 3.31. (i) For V C S the chain orbit Q(V') is the intersection of
all attractors containing w(V).

(i) The chain recurrent set R satisfies R = N{AUA*, A is an attractor}.
Hence if the flow (S, V) has a finest Morse decomposition {My,... ,M,},
then the Morse sets are the components of R and each such component is
the intersection of unions of attractor—repeller pairs.

Note that the flow (S, ¥) has at most countably many attractors (see
[36, Lemma 9.1.7].

We apply these results to the flow (5) of perturbed dynamical systems.
Note first of all that the perturbation model (3) has only the trivial attrac-
tors ( and U. Hence the attractors of the system flow (5) result from the
skew component . For systems with finitely many chain recurrent compo-
nents the chain transitive attractors are the most important ones since, by
the results above, they form the nuclei of attractor sequences. For the flows
of perturbed systems these attractors are given by certain chain control
sets, compare [14, Prop. 4.3.19].

Theorem 3.32. Consider the system flow (5) and the associated control
system (4).

(i) Let (A, A*) be an attractor—repeller decomposition of (U x M, ®) such
that A is a chain recurrent component. Then there exists a chain control
set B, maxrimal w.r.t. the order = defined in Corollary 3.16, such that

A=E and A" = A(E)", (24)

where € is the Lift of E from (18), and A(E) = {(u,z) e U x M,w(u,z) C
&Y.

(#) If the number of chain control sets of (4) is finite, then for every
mazimal (w.r.t. <) chain control set E there is an attractor—repeller pair

(A, A*) such that (24) holds for the lift £ of F.
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Note that without the finiteness assumption part (ii) of the theorem is
false. According to this theorem, maximal chain control sets in A and chain
recurrent attractors in U x M coincide (under the finiteness assumption),
and hence these ‘minimal’ attractors {which do not contain other attractors
except for the empty set) can be characterized in the state space M of
the perturbed system. This is, in general, not true for other attractors,
as the existence of multistable points shows. Under the Lie algebra rank
condition (14), Proposition 3.22 shows that for attractors § £ A; C As C
Ux M, Ay # A, the set Ax\ A; is topologically thin, i.e. contained in the
complement of an open and dense set.

For stochastically perturbed systems the appropriate concept of a ‘sto-
chastic attractor’ is not so obvious. Recall that the w—limit set of V. C Ux M
is defined via sequences in time and in U/ x M, with the consequence that
cd(WHw(z,u), (u,z) € V}) Cw(V). Hence it is not obvious, how to combine
the given #-invariant measure P on U with sequences (u, x,) in V. One
possibility is to think of a ‘stochastic attractor’ as a set in the state space
M that contains all w-limit sets of random trajectories starting in some
neighborhood if this set. We refer the reader to [16] and [7] for concepts
and results along these lines. In any case, if the stochastic perturbation
process is sufficiently nondegenerate, a result analogous to Theorem 3.32
should hold. These and other problems concerning the characterization of
‘stochastic attractors’ seem to be open at this moment.

Remark 3.33. (On numerical methods). The results presented in this sec-
tion require the numerical computation of main and chain control sets, their
lifts, and of limit sets if the theory is to be applied to concrete examples. For
the computation of main control sets several algorithms are available: based
on the numerical solution of families of ordinary differential equations [23],
based on the solution of time optimal control problems (see [14, Appendiz
C.3]), and based on subdivision techniques [40], which were developed for
dynamical systems by Dellnitz and Hohmann. Since chain control sets are
‘almost always’ the closures of main control sets (compare Theorem. 4.2 be-
low) these algorithms also serve for chain control sets. The computation of
objects inU X M and their u—wise projection onto M requires algorithms for
time—varying differential equations, whose limit sels are, in general, fairly
complex. We refer to [6] and to [}] in this volume for a discussion of several
approaches in the stochastic conterl.

In this section we saw that the global behavior of Markov diffusion sys-
tems is determined by the orbit structure, i.e. the trajectories of the as-
sociated control system. In contrast, the limit sets, supports of invariant
measures, and attractors of general perturbed flows follow the topologi-
cal chain structure of these flows. In general, these two structures can be
different. However, in the next section we show that under an inner pair
condition the structures agree ‘almost always’. Hence the study of Markov
diffusion systems can be related to the topology of the corresponding per-



202 F. Colonius and W. Kliemann

turbed flow (2).

4  Global Behavior of Parameter Dependent
Perturbed Systems

This section serves mainly two purposes: to clarify the relation between the
control and the chain control structure of the system flow {5}, and to study
the global picture that was developed in Section 3 under the variation of
system parameters. We concentrate on the topological properties of the
flow (5), the consequences for stochastically perturbed systems follow from
a direct application to the stochastic results in Section 3. None of the results
in this section is new, the proofs can be found in [14], Chapters 3. and 4.,
primarily in Section 4.7. The model of perturbed systems, as introduced
in Section 3, can basically depend on parameters in two ways: The vector
fields in the system equation (4) may depend on a parameter oo € I C RP,
and the perturbation range U/ C R™ may vary. Therefore, we consider the
following family of perturbed systems on the compact C'°“—manifold M,
parametrized by («, p) € I x [0, 00)

T = XO(Q:? CE) + ZU’Z(t)X%(mJ Ol) - X(ZIZJ’UJ,(I)?Oﬁ < Iv

i=1
uwe U’ ={u:R — U” measurable} (25)
Ul =p-Ufor p>0,U CR™ convex and compact with 0 € int U.

which leads to a continuous system flow

PP R XU x M —UP x M, Di(u,z) = (Oyu, p(t, z,u)).
(26)

In the case of a stochastic perturbation model the shift invariant measure P
may also depend on a parameter, e.g., if the vector fields of the background
noise (6) on N are parameter dependent. We do not consider this situation
in the current paper, except for the fact that we vary the noise range, i.e.
for the Markov diffusion model we consider a family of maps f: N — U”
as in (8) and Lemma 3.17.

We continue to deal with regular systems and assume a Lie algebra rank
condition (compare (14)) of the form

dim LA{ Xo(a) + Yu; Xy, u € UPHz)=dim M forall z € M, € I, p > 0.
(27)

The following results require a relation between the limit sets of the system
flow &% and the control sets of (25)*#. For this we impose a so—called
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inner pair condition:

Fix ael. For all p, p/ €0, p*) with p < p’ and all chain control
sets F7 of (25)%° every (u,z) € EF C UP x M satisfies:
There exists T(u, ) > 0 such that o(T, z,u) eint OT# (x), (28)
the positive orbit of z € M under the control range U o
This condition says that the trajectories in chain control sets of (25)7 enter
the interior of the corresponding orbits of (25)*0/ for p’ > p. In fact, Con-
dition (28) is too strong for many of the results below, and we refer the
reader to [14, Chapter 4] for weaker versions and for sufficient conditions
which imply (28).

Our first result shows that, depending on («, p), control sets and chain
control sets enjoy complementary semicontinuity properties in the Haus-
dorfl topology on subsets of M.

Theorem 4.1. Consider the system flow (26)% under Assumptions (27)
and (28). Assume thal the vector fields Xg, ..., Xy, in (26)%F have C°°—

dependence on o.

(i) For (o, po) € int Ix(0,00) let D™ be a main control set of (25)>7.
Then there are unique control sets D™F such that the map (o, p) —
el DY on I x (0,00) is lower semicontinuous at (cug, po)-

(i) Pick (cp,po) € 1 x [0,00) and consider for a sequence (v, pr) —
(o, po) chain control sets E*:P%  Then there exists a chain control
set BP0 sych that

limsup %Pk =
(otre, o1 )— (0, 00)

1z € M, there are 2 € Eo%re yith xp — x} C Fooro

i.e. the map (o, p) — E%* on I x [0,00) is upper semicontinuous.

In general, one cannot expect the maps in Theorem 4.1 to be continuous,
even if a or p are fixed. However, for o fixed these maps are continuous
almost everywhere in p.

Fix ae€ I and consider the interval [py, p*| C [0, 00). Let EP* be a chain
control set of (25)? and define the maps into the compact subsets K(M ) of
M

o, p*) — K(M),p — Ef with EF* C E* (29)
(pe, Pl — K(M),p +— ¢l D” with E/+ C D* (30)

Theorem 4.2. Consider the system flow (26)° for fired o € I under As-
sumptions (27) and (28).

(i) The map (29) is well defined, increasing, and right continuous.
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(i) The map (30) is well defined, increasing, and left continuous.
(i#) For p, < p < p' < p* we have D? C Ef C intD? .

(i) The continuity points of (29) and (30) agree and at each continuity
point p we have clDP = EP. Furthermore, there are at most countably
many points of discontinuity.

According to this theorem, under the inner pair condition (28) the chain
control sets are ‘almost always’ closures of main control sets. This clari-
fies the connection between the chain structure and the orbit structure of
perturbed systems that was used in Section 3 for the study of Markov diffu-
sion systems. To complete the analysis of the relation between the control
structure and the chain control structure of control systems, we study the
different orders that were defined in (16) and Corollary 3.16.

Theorem 4.3. Consider the system flow (26)° for fized o € 1 under (27)
and (28), and assume that (26)°* has finitely many chain control sets
EP oo B

(i) If B = 15", then D] = DY for all p € (p, p*].
(it) If there are py, | py with D™ < D;n for all n € N, then Bl < E;*.

(#2) For p > p«, p — px small enough the invariant control sets of (25)°
correspond uniquely to the mazimal (w.r.t. <) chain control sets of

(25)°+.

These results open the door for a global analysis of parameter dependent
perturbation systems. For the moment, fix & € I and consider the system
(25)%F, (26)*° with varying perturbation range U”, p > 0. We start from
the unperturbed system (i.e. p = 0)

i = Xo(z,a)on M, O Rx M — M, (31%)

and assume that (31%) has a finest Morse decomposition {My,... M, }.
As p increases from 0, chain control sets (and hence main control sets) form
around the M; {(note that the map (29) is continuous at p = 0}, preserving
the order given by the Morse decomposition. In particular, invariant con-
trol sets form around the maximal Morse sets. However, it is not true, in
general, that the number of (main) control sets, even for p > 0 small, agrees
with the number of Morse sets of (31%), compare [14, Example 4.7.8]. At a
discontinuity point of the maps (29) and (30) the size of the (chain) control
sets jumps, often through the merging of different control sets. Note that by
the existence of multistability regions M S (compare Definition 3.18) two
invariant control sets can only merge for p > 0 if their union also includes
a set that was a noninvariant control set for p’ < p. Concrete results for
specific systems can be found, e.g., in [14, Chapters 8, 9, and 13]. For the
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Markov diffusion model the situation seems to be relatively simple, because
its invariant measures and stationary solutions live exactly on the invari-
ant control sets, compare Theorem 3.20 and Corollary 3.28. In fact, for
systems satisfying Assumptions (27) and (28} the parameter dependence
of the support of the invariant Markov measures is described through the
results above, compare [11], [9], [13] for several concrete examples. However,
a study of the families { g, w € U”} of the induced flow invariant measures,
compare Corollary 3.28 and the discussion thereafter, is still missing {com-
pare, however, [18] for the one—dimensional white noise case). This is true,
even more so, for the general stochastic perturbed model.

Finally, let us consider the parametric system flow (26)** depending
on « and p. For a given bifurcation scenario (in o € TI) of the Morse
sets of the unperturbed system (31%), Theorems 4.1 to 4.3 show that this
scenario can be recovered by a two parameter approximation in o and
p | 0 through perturbation systems of the type (26)*?  compare [12] for
the one—dimensional and [14, Sec. 9.2] for the Hopf bifurcation case. Along
the same lines one studies the continuity of the support of invariant Markov
measures. The field for a further analysis of stochastic perturbation models
is wide open.
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