
UNIQUENESS OF CONTROL SETS FOR PERTURBATIONS OF

LINEAR SYSTEMS
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Abstract. Linear systems with controllable (A,B) and bounded control range
have a unique control set. This control set is bounded if and only if A is hyper-

bolic. Then uniqueness also remains valid under small nonlinear perturbations.
Examples show that for nonhyperbolic A small nonlinear perturbations may
lead to infinitely many (invariant) control sets.

1. Introduction

In this paper, we study the control sets for small nonlinear perturbations of
linear control processes. More precisely we consider the maximal subsets of the
state space Rd where complete controllability of the following perturbation of a
linear control process (with restricted controls) holds

ẋ(t) = Ax(t) +Bu(t) + εF
¡
u(t), x(t), ε

¢
, u(t) ∈ U,(1.1)

where U is a compact and convex subset of Rm with nonvoid interior, and A and
B are constant matrices of respective dimensions d×d and m×d. We assume that
the pair (A,B) is controllable, i.e., rank

£
B,AB, . . . , Ad−1B

¤
= d, and that F is a

C1-function. We also assume that

kD1Fk ≤M1 and kD2Fk ≤M2 uniformly.(1.2)

Throughout we assume that for all x0 ∈ Rd and all controls u there exists a unique
solution ϕ(t, x0, u), t ∈ R, of (1.1) with initial value ϕ(0, x0, u) = x0.
The term u(t) may be interpreted as a control function or as a time varying

perturbation acting on the system. Control sets are of interest, in particular, since
they contain all limit sets of the trajectories as time tends to infinity. Furthermore,
they are related to the support of invariant measures for associated stochastic sys-
tems, compare [4]. This paper is focused on control sets with nonempty interior,
as it is known that control sets which do not enjoy this property may have a very
complicated structure (see e.g. [3] for examples). It is known, that the unperturbed
equation (with ε = 0) has a unique control set (with nonempty interior), if the pair
(A,B) is controllable and 0 ∈ intU . As shown by simple examples (see Section
2, below), the number of the control sets of (1.1) may vary dramatically when ε
changes from zero to non zero values.
The main aim of this paper is to give conditions ensuring the existence of exactly

one control set with nonvoid interior when ε is small enough. It will turn out that
hyperbolicity of the matrix A is the crucial assumption.
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As an application, we consider the following control process:

ẋ(t) = Ax(t) +Bu(t) +G
¡
u(t), x(t)

¢
, u(t) ∈ U,(1.3)

where U is compact and convex in Rm and G : Rm×Rd → Rd is C1, and we prove
that if there exist M1 > 0 and M2 > 0 (depending only on A and B) such that,
for any G which satisfies kD1Gk ≤ M1 and kD2Gk ≤ M2 uniformly, (1.3) admits
exactly one control set with nonvoid interior. Further applications will be shown
in a forthcoming paper.

In Section 2, we recall the definition of control sets and give conditions which
imply that in the interior of a control set there exists a periodic trajectory corre-
sponding to a continuous control. Then we give a number of examples which show
that (1.1) may admit multiple control sets for any ε > 0, while it has a unique
control set for ε = 0. In Section 3 we discuss properties of the unique control set
for the linear system. In particular, we give conditions ensuring its boundedness.
In Section 4, the nonlinear problem is discussed.
Notation. We denote by CT (R

d), T > 0, the space of continuous T -periodic
function y : R → Rd endowed with the sup-norm kyk0 := max {|y(t)| , t ∈ [0, T ]}.
Similarly, C1T (R

d) is the space of T -periodic continuously differentiable functions
y : R→ Rd endowed with the norm kyk1 := max {kyk0 , kẏk0}.

2. Problem Formulation and Examples

In this section, we give some definitions and prove preliminary results on control
sets. Then some examples and counterexamples are discussed.
Consider the system

ẋ(t) = f(x(t), u(t)), u(t) ∈ U,(2.1)

where U ⊂ Rm is bounded and f is C1. We assume that unique solutions ϕ(t, x0, u),
t ∈ R, exist for all x0 ∈ Rd and all measurable control functions u. A useful
notion that we use in the sequel is local accessibility, i.e. the system (2.1) is locally
accessible if, for all T > 0 and x

int {ϕ(t, x, u), T ≥ t > 0 and u : R→ U, piecewise continuous} 6= ∅.
In the sequel, we show that for ε > 0 small enough one always has the local
accessibility of (1.1) (see Remark 4.4). We start with the following definition.

Definition 2.1. A subset D of Rd with nonvoid interior is a control set of (2.1)
if for all x ∈ D one has

D ⊂ cl
n
ϕ(t, x, u), t > 0 and u : R→ U, piecewise continuous

o
,

and D is a maximal subset of Rd with this property.

This definition does not change if piecewise continuous controls are replaced by
locally integrable ones (cp. [3], Section 3.2). If local accessibility is assumed, exact
controllability in the interior of control sets holds. Thus for all x, y ∈ intD there
are T > 0 and a piecewise continuous control u such that ϕ(T, x, u) = y. However,
in the next section we will need this property for a continuous control function. We
can guarantee this under a controllability condition for the linearized system.
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Proposition 2.2. Let D be a control for (2.1) set with nonvoid interior, and as-
sume that local accessibility holds in D. Suppose that there is a point x0 ∈ intD,
for which there are a constant control u0 ∈ intU and a time T0 > 0 such that the
linearized control system

ẏ = D1f(ϕ(t, x0, u0), u0)y +D2f(ϕ(t, x0, u0), u0)u(t), u(t) ∈ Rm,

is controllable on every interval [0, T ], T0 ≥ T > 0.
Then there are T1 > 0 and a continuous control function u1 ∈ U such that

(ϕ(·, x0, u1), u1) is T 1-periodic.

Proof. As in [7], Section 3.7, Th. 7, the map

α : L∞([0, T ],Rm)→ Rd, u 7→ ϕ(T, x0, u)

is continuously differentiable. By the controllability assumption, it follows that the
restriction

α : {u ∈ C([0, T ],Rm), u(0) = u(T ) = u0}→ Rd, u 7→ ϕ(T, x0, u),

has a surjective derivative at u(t) ≡ u0 ∈ intU (this can be derived from [7] sec.
2.8, Th. 1). Hence, by the Surjective Mapping Theorem (see e.g. [5]), the set

Q :=

½
y ∈ Rd,

there is a continuous control u ∈ U with
u(0) = u(T ) = u0 and y = ϕ(T, x0, u)

¾
has nonvoid interior. Without loss of generality, we may assume that T > 0 is small
enough such that Q ⊂ intD.
Pick y ∈ intQ. By the local accessibility assumption, controllability in the

interior of D holds. Hence one finds a (piecewise constant) control v and S > 0
with ϕ(S, y, v) = x0. Since the final value problem depends continuously on the
right hand side, one also finds a continuous control w ∈ U with w(0) = w(S) = u0
and z ∈ intQ with ϕ(S, z, w) = x0. By the definition of Q there is a continuous
control u ∈ U with u(0) = u(T ) = u0 and ϕ(T, x0, u) = z.
Concatenation of v and w and periodic continuation yields a continuous (T +S)-

periodic control u1 with ϕ(T+S, x0, u1) = x0. With T1 := T+S, the corresponding
trajectory is T1-periodic .

We note the following consequence for a control system of the form (1.1).

Proposition 2.3. Consider the control system (1.1), assume that (A,B) is con-
trollable and that U is bounded. Then there exists a constant c∗ depending only on
A, B, M1, M2 (an explicit expression for c∗ will be given in Remark 4.4) such that
for all ε ∈ (0, c∗], and every control set D with nonvoid interior the following holds.
For every x0 ∈ intD there are T > 0 and a continuous control function u0 ∈ U
such that (ϕ(·, x0, u0), u0) is T -periodic.
Proof. The controllability assumption together with the boundedness of the deriv-
ative of F implies that there exists a constant c∗ > 0 depending only on A, B,
M1 and M2 such that, for ε ∈ (0, c∗], and u0 ∈ intU the linearized system is con-
trollable on arbitrarily short time intervals. Hence the assertion follows from the
preceding proposition.
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Next we turn to a number of examples which illustrate the behavior of control
sets for ε = 0 and ε > 0. They show that the unique control set of the unperturbed
system may split into different control sets for positive ε.

Example 2.4. Let

F (x, ε) =


1− cos(επx)

ε
for x ∈ [−2/ε, 2/ε] and ε 6= 0,

0 otherwise,

and consider the scalar control process ẋ(t) = u(t)+ εF (x(t), ε) with u(t) ∈ [−1, 1].
The linear system ẋ(t) = u is obviously controllable and, while for ε = 0 the only
control set is R, for ε > 0 there are 3 control sets, namely two unbounded intervals
and one bounded interval.

In Example 2.4, F depends explicitly on ε. The next example shows that things
may go wrong even for ε-independent F ’s.

Example 2.5. For n ∈N ∪ {0}, let

Fn(x) =

n− n cos

µ
π(x− 2n)
2n−1

¶
for x ∈ [2n, 2n+1],

0 otherwise,
F (x) =

∞X
n=1

Fn(x),

Consider the scalar control process ẋ(t) = u(t)+εF
¡
x(t)

¢
with u(t) ∈ [−1, 1]. Then,

for ε = 0 the only control set is R; whereas, for ε > 0 there are infinitely many
control sets with nonempty interior.

In both Examples 2.4 and 2.5, the matrix A is singular. Below, we exhibit an
example with nonsingular A, where multiple birth of control sets does arise. To do
that, we have to increase the dimension by one.

Example 2.6. Consider the control process (1.1) with

A =

µ
0 1
−1 0

¶
, B =

µ
1 0
0 1

¶
,

where U is the closure of the unit ball in R2 with center at (0, 0), and

F (x) = ρ
³p

x2 + y2
´
(x, y) , with ρ(r) =

∞X
n=1

Fn(r),

where Fn is defined as in Example 2.5. With this choice of A, B, F and U , for
ε = 0 there exists only one control set, and, although (A,B) is controllable and A
is nonsingular, for ε > 0 the control process (1.1) admits infinitely many control
sets with nonempty interior.

Remark 2.7. Example 5.5 in [1] shows that for ε→ 0+ the number of control sets
near an equilibrium of the system may tend to infinity.

Remark 2.8. The countably many control sets occurring for positive ε in Example
2.5 are in fact invariant, i.e. they satisfy

D = cl
n
ϕ(t, x, u) : t > 0, u : R→ Upiecewise continuous

o
.

Hence this system has countably many different generic limit behaviours, see [2], [3]
for precise statements.
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For the analysis of associated stochastic systems the invariant control sets are in
1-1 correspondence to the invariant measures (see [4] and [2]). Thus Example 2.5
gives a ‘bifurcation’ result for the associated stochastic systems.

3. Periodic solutions of linear systems and control sets

In this section we focus on the linear control process (with restricted controls)
in Rd: ½

ẋ(t) = Ax(t) +Bu(t),
u ∈ U ,(3.1)

where A : Rd → Rd and B : Rm → Rd are (constant) linear operators,

U = {u : R→ U is continuous } ,
and U is a compact convex subset of Rm. We will prove some results on the
boundedness and uniqueness of control sets of (3.1). For related topics on linear
control processes with restricted controls see e.g. [6], Sec. 5.3, or [7], Sec. 3.6. The
results that will be presented go beyond their intrinsic interest as the underlying
idea is at the root of the corresponding proofs for nonlinear perturbations provided
in the next section.

Let us consider the periodic solutions of the following linear differential equation
in Rd

ẋ = Ax+ y,(3.2)

where A is a hyperbolic matrix and y is a given periodic function. In particular,
we will prove that there exists K > 0 such that, if y is T -periodic, then, for every
T > 0 given, the T -periodic solution x of (3.2) (which is unique by the hyperbolicity
of A) is bounded by a constant depending on A and kyk0.
Theorem 3.1. Let A be hyperbolic (i.e. such that σ(A) ∩ iR = ∅). Then there
exists K > 0, depending only on A, such that for any T > 0 and y ∈ CT (Rd), the
T -periodic solution x of (3.2) satisfies kxk1 < K kyk0.
The proof of this theorem relies on several lemmas discussing the behavior with

respect to Jordan blocks.

Lemma 3.2. Let a 6= 0 and consider the scalar differential equation
ẋ = ax+ y.(3.3)

Then for every T > 0 and y ∈ CT (R), there exists K > 0 such that, if x is the
unique T -periodic solution of (3.3), then kxk1 < K kyk0 .
Proof. Assume first a < 0. The unique T -periodic solution of (3.3) is given by

x(t) =
eta

1− eTa

Z T

0

e(T−s)ay(s) ds+
Z t

0

e(t−s)ay(s) ds,

hence

|x(t)| ≤ −2
a
kyk0 .

From (3.3) we find |ẋ(t)| ≤ |a| kxk0 + kyk0 ≤ 2 kyk0. And finally
kxk1 ≤ (2− 2/a) kyk0 .
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Assume now a > 0 and consider the equation

ẋ = −ax− ỹ, ỹ(t) := −y(−t).
Any T -periodic solution of this last equation is a time reversed T -periodic solution
of (3.3). Hence the assertion follows from the first part of the proof.

Lemma 3.3. Assume that A = diag{α1, . . . , αd} with αi ∈ R \ {0}. Then for
every T > 0 and y ∈ CT (R

d), there exists K > 0 such that, if x is the unique
T -periodic solution of (3.2), then kxk1 < K kyk0.
Proof. Let y(t) =

¡
y1(t), . . . , yd(t)

¢
, equation (3.2) splits in the following system of

d uncoupled linear differential equations
ẋ1 = α1x1 + y1,

...
ẋd = αdxd + yd.

The assertion follows applying Lemma 3.2 to each one of the equations above.

Lemma 3.4. Assume that the square d× d matrix A has the following form:

A =


α 1 0 · · · 0

0 α 1
...

...
. . .

. . . 0
0 · · · 0 α 1
0 . . . . . . . . 0 α

 ,

with α 6= 0. Then for every T > 0 and y ∈ CT (R
d), there exists K > 0 such that,

if x is the unique T -periodic solution of (3.2), then kxk1 < K kyk0.
Proof. With y(t) =

¡
y1(t), . . . , yd(t)

¢
, the d-th component of equation (3.2) takes

the form

ẋd(t) = αxd(t) + yd(t).

Hence by Lemma 3.2 we get that there exists Kd > 0 such that

kxdk1 ≤ Kd kydk0 ≤ Kd kyk0 .
The (d− 1)-st component of (3.2) has the form

ẋd−1(t) = αxd−1(t) + xd(t) + yd−1(t).

Applying Lemma 3.2 again we get the existence of Kd−1 > 0 such that

kxd−1k1 ≤ Kd−1 kxd + yd−1k0 ≤ (1 +Kd)Kd−1 kyk0 .
Analogously we can then estimate kxd−2k1 and so on. Hence, in a finite number of
steps, we get an estimate for every component of x.

Lemma 3.5. Let a 6= 0 and

A =

µ
a b
−b a

¶
.

Then for every T > 0 and y ∈ CT (R2), there exists K > 0 such that, if x is the
unique T -periodic solution of (3.2), then kxk1 < K kyk0.



UNIQUENESS OF CONTROL SETS 7

Proof. Consider the complex-valued differential equation

ż = (a+ ib)z + η,(3.4)

with η(t) = y1(t) + iy2(t). Clearly it is enough to show that there exists a positive
number K such that for any T -periodic y1 and y2 the T -periodic solution z of (3.4)
satisfies

|z| ≤ K sup
t∈[0,T ]

|η(t)| .

Assume first a < 0. As in the case of equation (3.3), the unique T -periodic solution
of (3.4) is given by:

z(t) =
et(a+ib)

1− eT (a+ib)

Z T

0

e(T−s)(a+ib)η(s) ds+
Z t

0

e(t−s)(a+ib)η(s) ds,

Analogously to the proof of Lemma 3.2 and taking into account that
¯̄
et(a+ib)

¯̄
= eta

we get

|z| ≤ 2 |a|−1 sup
t∈[0,T ]

|η(t)| .

In the case when a > 0, the proof is performed, analogously to Lemma 3.2, by time
reversal.

Lemma 3.6. For a 6= 0 define

A =
µ
a b
−b a

¶
, I =

µ
1 0
0 1

¶
,

and let A be the (2d× 2d)-matrix given by

A =


A I

A . . .

. . . I
A

 .

Then for every T > 0 and y ∈ CT (R2d), there exists K > 0 such that, if x is the
unique T -periodic solution of (3.2), then kxk1 < K kyk0.
Proof. Let y(t) =

¡
y1(t), . . . , y2d(t)

¢
. Equation (3.2) splits into the following system

of 2-dimensional differential equations
ξ̇1 = Aξ1 + ξ2 + η1,

ξ̇2 = Aξ2 + ξ3 + η2,
...

ξ̇d = Aξd + ηd,

where, for j = 1, . . . , d, we put ηj = (y2j−1, y2j) and ξj = (x2j−1, x2j).
Applying Lemma 3.5 to the d-th equation of the system above, we get the ex-

istence of a positive constant Kd such that kξdk1 < Kd kηdk0. Following the same
argument of the proof of Lemma 3.4, we get an estimate of any component of x.

Proof of Theorem 3.1. Up to a coordinate change we can assume that the matrix A
is in real Jordan canonical form. Hence, equation (3.2) splits up into independent
linear subsystems of the forms considered in Lemmas 3.3 — 3.6.
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Theorem 3.1 enables us to prove some facts about the control sets of (3.1).
Defining UT = U ∩CT (Rm), we have that

intUT = {u ∈ UT : u(t) ∈ intU for all t ∈ R}.
We will need the following consequence of Proposition 2.3. Observe that local

accessibility holds for (3.1) by the controllability assumption.

Lemma 3.7. Let D be a control set of (3.1) with non empty interior and let p
belong to intD. Then there exists u0 ∈ intUT such that ẋ(t) = Ax(t) +Bu0(t) has
a periodic orbit whose image contains p.

The remaining part of this section will be devoted to proving, as applications
of Theorem 3.1, some facts about the boundedness of control sets with non empty
interiors (Theorems 3.9 and 3.11, below), and a uniqueness result for such control
sets (Theorem 3.12, below). These results are to be compared with those contained
in [3], Chapter 3, where a uniqueness result for the control sets of a linear systems
is proved assuming that U contains the origin in its interior.
Notice that in our theorems below, we always assume the hyperbolicity of the

matrixA. This assumption cannot be dropped since we are considering sets U which
do not necessarily contain the origin. In fact, for such U ’s we do not necessarily
have the existence of control sets. The following simple example from [3] illustrates
this fact:

Example 3.8. Consider the scalar control process

ẋ(t) = u(t), u(t) ∈ U ⊂R.
If U ⊂ (0,∞) then there are no control sets at all. If U = {0} then every point is
a control set.

Theorem 3.9. Let A be hyperbolic. Then the control sets of (3.1) which have non
empty interior are bounded.

Proof. Assume by contradiction that it exists an unbounded control set with non
empty interior. Then by Lemma 3.7, there exists an unbounded sequence of periodic
solutions of (3.1). This contradicts Theorem 3.1 since supu∈U kuk0 ≤ max{|v| : v ∈
U} is finite.
We will also need the following

Lemma 3.10. Assume that the pair (A,B) is controllable. Given T > 0 and
ū ∈ intUT , every T -periodic solution of

ẋ(t) = Ax(t) +Bū(t),(3.5)

is contained in the interior of a control set of (3.1).

Proof. Denote by ϕ(·, u, p) the solution of the Cauchy problem½
ẋ(t) = Ax(t) +Bu(t),
x(0) = p,

and let p0 be the starting point of a T -periodic solution of (3.5). Denote by ET the
space of continuous functions v such that v(0) = v(T ) = 0, and take

V = {v ∈ ET : ū(t) + v(t) ∈ int(U)} .
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Obviously V is an open subset of the Banach space ET . Define Θ : V → Rm as

Θ(v) = ϕ(T, ū+ v, p0) = eTAp0 +

Z T

0

e(T−s)AB (ū(s) + v(s)) ds.

Notice that Θ(0) = p0. For any ω ∈ ET , we have

Θ0(0)ω =
Z T

0

e(T−s)ABω(s) ds.

The controllability assumption implies that Θ0(0) is surjective. The Surjective
Mapping Theorem (see e.g. [5]) implies that there exists a neighborhood V0 of p0
which is made up of images of Θ. In particular, p0 can be driven to any point of
V0.
Applying the same argument to the time reversed control process, we have that

there exists a neighborhood V1 of p0, any point of which can be driven to p0. Hence
V0 ∩ V1 is contained in control set.
Take now any point q ∈ ϕ([0, T ], ū, p0) and let t0 ∈ [0, T ] be such that q =

ϕ(t0, ū, p0). By the continuity of ϕ(t0, ū, ·) there exists a neighborhoodW of q such
that

ϕ(t0, ū, ·)−1(W ) ⊂ V0 ∩ V1.
Analogously, by the continuity of the time reversed system, shrinking W if neces-
sary, we can assume that

ϕ(t0, ū,W ) ⊂ V0 ∩ V1.
Hence, any point of W can be driven to any other point of W . That is W is
contained in a control set. The assertion now follows from the compactness of
ϕ([0, T ], ū, p0).

This lemma can be used to prove two remarkable facts:

Theorem 3.11. Assume the pair (A,B) is controllable and that U is convex with
0 ∈ int(U). Then the control sets of (3.1) which have nonempty interior are bounded
if and only if A is hyperbolic.

Proof. We already know that, if A is hyperbolic, the control sets with nonempty
interior are bounded.
Let A be non hyperbolic. If detA = 0 then kerA 6= {0}. Any point of kerA is

a periodic solution of (3.1), which, by Lemma 3.10 is contained in the interior of a
control set.
If detA 6= 0 there exists a pair of conjugate imaginary eigenvalues, say ±iβ,

β 6= 0. By the Jordan real canonical form of the matrix A, there exists a 2-
dimensional subspace V of Rm such that

A|V =
µ
0 β
−β 0

¶
.

Hence each point of V is the starting point of a periodic solution of ẋ = Ax (that
is of equation (3.1) with control function u(t) ≡ 0) and period 2π/β. Thus, by
Lemma 3.10 each point of V is contained in the interior of a control set.

Theorem 3.12. Assume that the pair (A,B) is controllable, A is hyperbolic and U
is convex. Then there exists a unique control set with non empty interior of (3.1).
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Proof. Let T > 0 and ū ∈ intUT . The hyperbolicity of A guarantees the existence
of a T -periodic solution of ẋ(t) = Ax(t) +Bū(t), whose image is, by Lemma 3.10,
contained in the interior of a control set. This proves the existence part of the
assertion.
Let us now prove the uniqueness. Assume by contradiction that there exist two

control sets D0 and D1 with nonempty interior. By Lemma 3.7 we know that there
exist periodic continuous controls u0 and u1 (say T0- and T1-periodic, respectively)
which take values in the interior of U and such that the Ti-periodic solution of

ẋ(t) = Ax(t) +Bui(t),

is contained in Di, i = 0, 1. Define

uλ(t) = λu1

µ
T1

λT1 + (1− λ)T0
t

¶
+ (1− λ)u0

µ
T0

λT1 + (1− λ)T0
t

¶
.

Since U is convex by assumption, one has uλ ∈ intUTλ , with Tλ = λT1+(1−λ)T0.
The equation

ẋ(t) = Ax(t) +Buλ(t),

has a unique Tλ-periodic solution xλ(·) whose image is contained in the interior
of a control set by Lemma 3.10. We want to show that these images constitute a
continuum joining D0 and D1. This will yield the desired contradiction.
Consider the time transformed system

ξ̇(τ) = Tλ (Aξ(τ) +Buλ(τ Tλ)) ,

and observe that x̂(λ, τ) = xλ(Tλτ) gives its unique 1-periodic solution. Since
the map (λ, τ) 7→ x̂(λ, τ) is continuous, the set x̂([0, 1] × [0, 1]) is connected and
coincides with the set of images of the maps xλ(·), for λ ∈ [0, 1].

4. Nonlinear perturbations

This section is devoted to studying the control process (1.1). The main result
is Theorem 4.8 which states that, under reasonable assumptions, the uniqueness of
control sets with nonvoid interior for (1.1) holds. As we mentioned the argument of
the proof is inspired by that of Theorem 3.12 above, although the technical details
are more subtle.

Consider the following nonlinear perturbation of a linear hyperbolic control sys-
tem.

ξ̇(t) = Aξ(t) +Bu(t) + εF (u(t), ξ(t), ε),(4.1a)

u(t) ∈ U.(4.1b)

Throughout this section F will be assumed C1 with kD1F (v, p, ε)k ≤ M1 and
kD2F (v, p, ε)k ≤M2 uniformly. Furthermore, let KA denote the constant given by
Theorem 3.1.

Lemma 4.1. Let F and A be as above. Take ε ∈ [−ε0, ε0] with

ε0 = min

½
1 ,

1

2KAM2

¾
.

Then for every T > 0, the differential equation (4.1a) has a unique T -periodic
solution, ξ(·, u, ε), for u ∈ UT , and the map UT × [−ε0, ε0] → C1T (R

m) given by
(u, ε) 7→ x(·, u, ε) is continuous.
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Furthermore, assuming in addition that U contains the origin of Rm in its in-
terior, one has

sup
t∈[0,T ]

|x(t, u, ε)| ≤ 2cUKA

³
kBk+M1

´
, cU := max{|v| : v ∈ U},(4.2)

for every u ∈ UT and ε ∈ [−ε0, ε0].
Proof. Rewrite the equation (4.1a) in the form:

Lx− Āx− B̄u− εF̄ (u, x, ε) = 0(4.3)

where we put

L : C1T (R
d)→ CT (Rd) with (Lx)(t) = ẋ(t),

Ā : C1T (R
d)→ CT (R

d) with (Āx)(t) = Ax(t),
B̄ : CT (Rm)→ CT (Rd) with (B̄u)(t) = Bu(t),
F̄ : UT ×C1T (R

d)×R→ CT (Rd) with F̄ (u, x, ε)(t) = F (u(t), x(t), ε).

From Theorem 3.1 follows that there exists KA > 0 (independent of T > 0) such
that if

¡
L− Ā

¢
x = y then kxk1 ≤ KA kyk0. In other words°°°¡L− Ā

¢−1°°° ≤ KA.

Let Φ : UT ×C1T (R
d)×R→ C1T (R

d), be given by

Φ(u, x, ε) = − ¡L− Ā
¢−1 ¡

B̄u+ εF̄ (u, x, ε)
¢
.

Then equation (4.3) is equivalent to

Φ(u, x, ε) = x.(4.4)

Let us show that for |ε| < (2KAM2)
−1, equation (4.4) admits exactly one solution

for every u ∈ UT . In fact, for ε = 0 this follows from the hyperbolicity of A, and
for |ε| < (2KAM2)−1 we have

kΦ(u, x1, ε)−Φ(u, x2, ε)k1 ≤ |ε|
°°°¡L− Ā

¢−1°°°°°F̄ (u, x1, ε)− F̄ (u, x2, ε)
°°
0

≤ |ε|KAM2 kx1 − x2k1 ≤
1

2
kx1 − x2k1 .

Hence, for |ε| < (2KAM2)
−1 and every u ∈ UT , Φ(u, ·, ε) is a contraction. Then, the

Banach Contraction Theorem yields the existence of a unique fixed point which we
denote by x(·, u, ε). Furthermore, for fixed T > 0, x(·, u, ε) depends continuously
on (u, ε) ∈ UT × [−ε0, ε0] (see e.g. [8], Proposition 1.2).
To prove the last assertion, notice that for a fixed point x of Φ(u, ·, ε) one has
kxk1 = kΦ(u, x, ε)−Φ(0, 0, ε)k1

≤ kΦ(u, x, ε)−Φ(u, 0, ε)k1 + kΦ(u, 0, ε)−Φ(0, 0, ε)k1
≤ 1
2
kxk1 +

°°(L− Ā)−1
°°³cU kBk+ ε

°°F̄ (u, 0, ε)− F̄ (0, 0, ε)
°°
0

´
≤ 1
2
kxk1 + cUKA

¡kBk+M1

¢
.

which implies the inequality (4.2).

This lemma, combined with Proposition 2.3, yields a bound on the control sets
with nonvoid interior.
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Corollary 4.2. Let A, B and F be as in Lemma 4.1, and assume that U contains
the origin of Rm in its interior and take

ε0 = min
n
1 ,

1

2KAM2
, c∗

o
,

c∗ as in Proposition 2.3. Then every control set with nonvoid interior of (1.1) is
contained in the closed 2cUKA

¡ kBk+M1

¢
-ball of Rd centered at the origin.

Proof. Assume that there exist a point p, laying outside the 2cUKA

¡ kBk +M1

¢
-

ball centered at the origin, but belonging to the interior of a control set. Then, by
Proposition 2.3, there exists a periodic solution of (4.1a) whose image contains p.
This contradicts the inequality (4.2).
The assertion follows since the local accessibility ensures that, for a control set

D with nonvoid interior, one has D ⊂ cl intD.
In what follows we denote by ϕε(·, u, ξ) the solution of the Cauchy problem½

ẋ(t) = Ax(t) +Bu(t) + εF
¡
u(t), x(t), ε

¢
,

x(0) = ξ,
(4.5)

where u ∈ UT , ξ ∈ Rd, and ε ∈ R are given.
We want to prove that, reducing ε0 if necessary, given T > 0 the image of the

periodic solution given by the lemma above is contained in the interior of a control
set, provided that the pair (A,B) is controllable.
Let E be the Banach subspace of C(R,Rm) given by

E =
n
v ∈ C(R,Rm) : supp(v) ⊂ [0, 1]

o
.

Let ū with ū(t) ∈ intU for all t ∈ R be given. Define the open subset Vū of E as
follows:

Vū =
n
v ∈ E : ū(t) + v(t) ∈ intU, for all t ∈ R

o
.

Given ε ∈ R and p0 ∈ Rd define the map Θε,p0 : Vū → Rd by

Θε,p0(v) = ϕε(1, ū+ v, p0).

Let p1 = Θε,p0(0), we want to show that, under suitable assumptions on A, B
and F , for ε small enough, there exists a neighborhood of p1 which consists of
images of Θε,p0 .

Lemma 4.3. Assume that the pair (A,B) is controllable and that F is C1 with
kD1Fk ≤ M1 and kD2Fk ≤M2 uniformly. Then there exists ε0 > 0 such that for
|ε| ≤ ε0, p0 ∈ Rd, ū ∈ intU, there exists a neighborhood V of 0 in E, such that
Θε,p0(0) = ϕε(1, ū, p0) lies in the interior of Θε,p0(V ).
Furthermore, one can actually choose ε0 of the form

ε0 = min

(
1 ,

e−2kAkrA,B
M1 +M2

¡kBk+M1

¢
eM2

)
,(4.6)

where rA,B > 0 depends only on A and B.

Proof. By the Surjective Mapping Theorem, it is enough to prove that there exists
ε0 > 0, independent of ū such that Θ

0
ε,p0(0) is surjective for all |ε| < ε0, and p0.
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For ε = 0 one can write explicitly

Θ00,p0(0)ω =
Z 1

0

e(1−s)ABω(s) ds

Note that Θ00,p0(0) : E → Rd does depend neither on ū nor on p0, and, by the
controllability assumption on (A,B), it is surjective. Let us put Θ00,p0(0) = Λ.
Since the surjective linear maps form an open subset of the space L

¡E,Rd
¢
,

we have that there exists rA,B > 0 such that any H ∈ L
¡E,Rd

¢
, which satisfies

kH − Λk ≤ rA,B, is surjective.
Let us consider now ε > 0. Observe that Θ0ε,p0(0) = D2ϕ(1, ū, p0). For ω ∈ E we

put

α(t) = D2ϕε(t, ū, p0)ω,

β(t) = D2ϕ0(t, ū, p0)ω.

We get

α(t) =

Z t

0

h
Aα(s) +Bω(s) + εD1F

¡
ū(s), ϕε(s, ū, p0), ε

¢
ω(s)

+ εD2F
¡
ū(s), ϕε(s, ū, p0), ε

¢
α(s)

i
ds,

(4.7)

and analogously

β(t) =

Z t

0

h
Aβ(s) +Bω(s)

i
ds.(4.8)

Hence,

|α(t)| ≤ kωk (kBk+ εM1) +

Z t

0

(εM2 + kAk) |α(s)| ds

where M1 and M2 are upper bounds for kD1Fk and kD1Fk respectively. By the
Gronwall inequality, we get the following estimate for |α|

|α(t)| ≤ kωk (kBk+ εM1) e
t(kAk+εM2).(4.9)

Moreover, using (4.7) and (4.8),

|α(t)− β(t)| ≤ ε

µ
M1 kωk+

Z 1

0

M2 |α(s)| ds
¶

+

Z t

0

kAk |α(s)− β(s)| ds.
(4.10)

Plugging (4.9) into (4.10), and assuming ε ≤ 1, we get
|α(t)− β(t)| ≤ ε kωk

³
M1 +M2(kBk+ εM1)e

kAk+εM2

´
+

Z t

0

kAk |α(s)− β(s)| ds

≤ εD kωk+
Z t

0

kAk |α(s)− β(s)| ds,

(4.11)

where we have put

D = ekAk
³
M1 +M2

¡ kBk+M1

¢
eM2

´
.
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Note that the estimate (4.11) is independent of ū and p0. Applying the Gronwall
inequality to (4.11),

sup
t∈[0,1]

|α(t)− β(t)| ≤ εD kωk ekAk.

In other words, recalling the definitions of α and β, for

ε ≤ min
(
1 ,

e−2kAkrA,B
M1 +M2

¡ kBk+M1

¢
eM2

)
,

we have °°Θ0ε,p0(0)−Θ00,p0(0)°° = °°Θ0ε,p0(0)− Λ°° ≤ rA,B,

independently of ū and p0, which yields the surjectivity of Θ
0
ε,p0(0) for each ū.

Remark 4.4. Lemma 4.3 says that, if ε is small enough, then, given ū ∈ intU,
it is possible to reach any point in a suitably small neighborhood of ϕε(1, ū, p0) by
varying the control function in a neighborhood of ū.
With only minor changes in the proof one can show that the set which can be

reached in a given time τ ∈ (0, 1] from any given point p0 has nonempty interior.
This property, often called strong accessibility, obviously implies local accessibility.
Hence one can actually choose the constant c∗ which appears in Proposition 2.3
equal to ε0 in (4.6).

We need to extend the result of Lemma 4.3 to the case of a time T > 1.
For any v ∈ E, we put ṽ(t) = v(t− T + 1) and define

ΨT,ε,p0(v) = ϕε(T, ṽ, p0) = Θε,ϕε(T−1,ū,p0)(v).

Thus we immediately get

Corollary 4.5. Assume that the pair (A,B) is controllable and that F is C1 with
kD1Fk ≤M1 and kD2Fk ≤M2 uniformly. Then, there exists ε0 > 0 such that for
|ε| ≤ ε0, p0 ∈ Rd, ū ∈ U and T > 1 given, there exists a neighborhood V of 0 in E,
such that intV ⊂ ΨT,ε,p0(V ).
Furthermore, one can actually choose ε0 of the form (4.6).

Proof. It follows from Lemma 4.3 applied to the function ˜̄u : t 7→ ū(t− T + 1) and
to the point Θε,ϕε(T−1,ū,p0)(p0).

This corollary allows us to prove for (1.1) a result which is analogous to Lemma
3.10. From now on we will assume that

ε0 = min

(
1 ,

e−2kAkrA,B
M1 +M2

¡ kBk+M1

¢
eM2

,
1

2KAM2

)
(4.12)

Lemma 4.6. Let U have non empty interior. Assume that A is hyperbolic, that the
pair (A,B) is controllable and that F is C1 with kD1Fk and kD2Fk bounded. Then
if |ε| ≤ ε0, given T > 0 and ū ∈ intUT , (4.1a) has a unique T -periodic solution.
Furthermore this solution is contained in the interior of a control set of (1.1).

Proof. Observe that, given T > 0, a T -periodic function is also nT -periodic, n ∈ N.
Hence, without loss of generality, we can assume T > 1.
Lemma 4.1 yields the existence of a unique T -periodic solution of (4.1a) for

|ε| ≤ ε0 and ū ∈ intUT .
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Fix ū ∈ intUT , let p0 be the starting point of the unique periodic T -periodic
solution of (4.1a). From Corollary 4.5 it follows that there exists a neighborhood
V of p0 in R

d such that for any q ∈ V there exists w ∈ intUT such that q =
ϕε(T,w, p0).
Considering the time reversed system and reducing V , if necessary, we can as-

sume that within this set any point can be driven into any other point. Hence V is
contained in the interior of a control set. To prove that the whole ϕε([0, T ], ū, p0)

is contained in the interior of a control set, we proceed as in the last part of the
proof of Lemma 3.10.

A noteworthy consequence of Lemma 4.6 combined with Proposition 2.3 is the
following.

Remark 4.7. Assume, in addition to the hypotheses of Lemma 4.6, that U con-
tains 0 in its interior and that F (0, 0, ε) ≡ 0 for any |ε| ≤ ε0. Then the origin of
Rd is contained in the interior of a control set. In fact, the origin can be regarded
as a 1-periodic solution of (4.1a).

We are now in a position to prove the main result of this section.

Theorem 4.8. Let U be convex with non empty interior. Assume that (A,B) in
(1.1) is controllable and A is hyperbolic. Let F be C1 with kD1Fk and kD2Fk
bounded. Then the control process (1.1) admits exactly one control set D with
nonvoid interior if |ε| ≤ ε0, ε0 as in (4.12).
Furthermore,

1. for |ε| ≤ ε0 the control set D is contained in the 2cUKA

¡ kBk +M1

¢
-ball of

Rd centered at the origin,
2. if F (0, 0, ε) ≡ 0 for any |ε| ≤ ε0, then the origin is contained in the interior
of D.

Proof. Let T > 1 and ū ∈ intUT . Lemma 4.1 guarantees the existence of a T -
periodic solution of (4.1a), whose image is, by Corollary 4.5, contained in the
interior of a control set. This proves the existence of at least one control set.
Let us prove the uniqueness assertion. Assume by contradiction that for some

ε ∈ [−ε0, ε0] there exist two different control sets, say D0 and D1. Then, by
Proposition 2.3, there exists ui ∈ intUTi , i ∈ {0, 1}, such that the corresponding
Ti-periodic trajectory of (4.1a) is contained in the interior of Di. As in the proof
of Lemma 4.6 we can always assume that Ti > 1 for i ∈ {0, 1}.
As in the proof of Theorem 3.12, put Tλ = λT1 + (1− λ)T0 and define

uλ(t) = λu1

µ
T1t

Tλ

¶
+ (1− λ)u0

µ
T0t

Tλ

¶
.

Since U is assumed convex, uλ ∈ intUTλ . By the choice of ε0, the equation
ẋ(t) = Ax(t) +Buλ(t) + εF (uλ(t), x(t), ε),

admits a unique Tλ-periodic solution whose image is contained in the interior of a
control set. By the argument used in the proof of Theorem 3.12 we get the existence
of a continuum which joins D0 and D1 and whose points are all contained in the
interior of a control set. This yields the desired contradiction.
The last two assertions follow from Corollary 4.2 and Remark 4.7.
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Theorem 4.8 has the following remarkable consequence.

Corollary 4.9. Assume (A,B) controllable. Let G : Rm × Rd → Rd be a C1

function such that kD1G(v, p)k ≤ M1 and kD2G(v, p)k ≤ M2, for any (v, p) ∈
Rm ×Rd. If the bounds M1 and M2 for the partial derivatives are small enough,
then the control process (1.3) admits a unique control set D with nonempty interior.
Moreover D turns out to be bounded, and, if G(0, 0) = 0, then D contains the origin
of Rm in its interior.

Proof. If M1 and M2 are small enough then ε0 = 1 in formula (4.12). Hence the
assertion follows directly from Theorem 4.8.
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