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1 Introduction

Semigroups of operators or of homeomorphisms show up in a natural way in
many areas in mathematics, such as dynamical systems (one parameter groups of
homeomorphisms), Markov processes (one parameter groups of operators), con-
trol theory (control semigroups), or (random) skew product flows (measurable
or continuous families of diffeomorphisms connected by one parameter groups of
shifts). In all these examples the semigroups depend on a real parameter, usually
interpreted as time, which allows to study their asymptotic behavior and conse-
quently their dynamic characterization, to various degrees of completeness. In the
"abstract’ setting of semigroup actions on a state space, such a parameter is not
available. However, several basic dynamical concepts, such as orbits, regions of
transitivity, etc. can be formulated for general semigroup actions. Recently, also
the idea of chain transitivity has been studied for general classes of semigroups,
Barros/San Martin [2].

This paper outlines some ideas for an asymptotic or dynamic theory of semi-
group actions. To this end we briefly describe the basic settings for two proto-
typical areas: dynamical systems and control theory. In the theory of dynamical
systems, the basic objects are flows given by one parameter families of diffeomor-
phisms. Their asymptotic analysis is developed around the ideas of transitivity,
chain transitivity, linearization (with its two components on fiber bundles and
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associated linear cocycles), and ergodic theory. Control systems can be viewed
as dynamical systems over a shift space of admissible control functions, leading
to a skew product flow on the state space. For these control flows the theory of
dynamical systems is used to study their asymptotic behavior. However, when
viewed as control systems on a state space, the flow property is lost and the basic
concepts appear as objects of the control semigroup (control sets, chain control
sets and their order, spectral intervals, etc.). Sections 2. and 3. give an outline
of this approach to dynamical systems and to control theory. In Section 4. we in-
terpret the basic setting of control theory in the language of semigroups and their
actions. Emphasis is placed on bilinear control systems in R% and its semigroup
analogue, the action of subsemigroups of Si(d,R) on flag manifolds.

Several important concepts for control semigroups are easily generalized to
abstract semigroups, such as orbits or control sets. These concepts do not need
an explicit parameter ’time’. Semigroups with an additional structure, defining
a neighborhood of ’infinity’ also allow for the idea of chain control sets and their
analysis with respect to control sets. This circle of ideas is described in Section
5., together with the resulting problems of characterizing semigroups with re-
spect to their (chain) transitivity behavior. This leads naturally to a concept of
bifurcations of semigroups. As we will see, several standard topics in semigroup
theory (invariance, compression semigroups, compactification, algebraic charac-
terizations, in particular, for subsemigroups of semi-simple Lie groups) enter into
this discussion.

The last section outlines some ideas on topological classification. Such a
classification, based on topological equivalence or conjugacy of systems, is cur-
rently available for hyperbolic linear dynamical systems and for hyperbolic linear
random flows. Both require the study of the compact component (invariant sub-
spaces) and of the associated linear cocycle (Lyapunov exponents).

2 Dynamical Systems

The basic considerations for the study of global and asymptotic behavior are best
explained for dynamical systems, since this theory has made numerous advances
during the last decades. We will discuss some of the underlying ideas, keeping in
mind the possibility of generalizations to control systems, random systems, and
eventually to semigroups. The presentation here concentrates on the continuous
time case (i.e., on flows induced by vector fields), but the basic ideas are similar
for discrete time systems (i.e. for flows induced by iterations of maps).

Let M be a finite dimensional (sufficiently smooth) manifold and denote by



X (M) the vector fields on M. In this paper we only discuss complete vector fields
(i.e., the solutions exist for all times ¢ € R), which holds true for all X € X(M),
e.g., if M is compact. A dynamical system is then a flow of homeomorphisms or
even diffeomorphisms

O:RxM—-M (1)

where ®(¢, x) is the solution of & = X (x) with initial value x = ®(0,x) € M. The
goal now is to study the space X(M) via the behavior of the associated flows.

For an individual vector field X € X(M) the analysis of the flow (1) could be
accomplished in the following steps:

1. Find the limit sets w () and w* (z) for = € M. Here the positive limit set
w(z) is defined as w(x) = {y € M, there exists a sequence ¢ T co such that
y = limg_,o0 P(tx, )}, and similarly for the negative limit set w*(z) using
sequences tp | —oo.

2. Determine the behavior of (1) on limit sets which includes the study of
transitivity, mixing, invariant measures, chaos, etc.

3. Analyze the flow (1) around the limit sets, e.g. attraction and repulsion, or
via linearization and Lyapunov exponents.

4. Combine the results of (i) — (iii) into a global picture.

Instead of studying individual dynamical systems X € X(M), one often
imbeds the flow (1) into a family of systems ®“, with « in some index set, studies
the regular elements of this family, and tries then to characterize the ’patholog-
ical’ cases by comparison with the regular ones. Typical families are continuous
paths, where the index set is a (multidimensional) interval in R?, p > 1, which
leads to the approach of bifurcation theory, or a neighborhood of X in the Whit-
ney C*-topology of X(M) with k > 1, which leads to the approach of structural
stability. Recently, time varying families of vector fields have also been consid-
ered in a deterministic or stochastic context, compare Sections 3. and 6. below.
For low dimensional systems with simple limit sets (fixed points, periodic orbits)
bifurcation theory is successful for obtaining solutions to the problems 1. — 4.,
see, e.g. the monographs Chow/Hale [3], Ruelle [18], and also Wiggins [20]. The
book [16] by Palis/de Melo presents some basic concepts and results on structural
stability.

Unfortunately, the program 1. — 4. turns out to be very difficult due to the
following obstacles (among others):



e The structure of the limit sets may be topologically quite complicated. In
particular, they need not be isolated and the flow restricted to the limit sets
need not be topologically nice (e.g. mixing) and need not define natural
invariant measures.

e The Lyapunov spectrum is difficult to characterize and, in general, has no
reasonable continuity properties.

For these reasons, one introduces some modified concepts, which we describe
briefly. To simplify notations, we assume that the manifold M is compact. A
compact invariant set A C M is an attractor, if it admits a neighborhood N
such that A = w(N) := {y € M, there exist t; | oo and xp € N such that
y = limg oo ®(tx, zx)}. Similarly, a repeller is a compact invariant set R C M
which has a neighborhood N* with w*(N*) = R. If A C M is an attractor, then
the set A* = {y € M, w(y) N A =0} is its complementary repeller, and the pair
(A, A*) is an attractor-repeller decomposition of M. In particular, if x ¢ AU A*,
then w*(z) C A* and w(x) C A. The set R = [(J{AU A*, A is an attractor} is
the chain recurrent set of the flow (1) and it contains all limit sets. If R has only
finitely many components My, ..., M,,, then the M, are the Morse sets (of the
finest Morse decomposition) of the system, carrying an order which is induced by
the relation M; < M, iff there exists x € M with w*(xz) C M; and w(z) C M.
The Morse sets and hence all attractors and repellers, are isolated invariant sets of
the system, and for a continuous family ®*, a € I C R?, of dynamical systems the
Morse sets depend upper semicontinuously on a. Hence Morse decompositions
are a suitable starting point for the study of dynamical systems using topological
tools. But the flow (1) restricted to a Morse set is, in general, not topologically
mixing or transitive. For the study of ® on one of the M, one needs the more
general concept of chains: For z, y € M and ¢, T' > 0 an (¢, T)-chain from z to
y is given by a finite sequence of points g = x, x1,...,2, = ¥y in M and times
To,...,T,—1 > T such that d(®(T;, x;), ;1) < € for all 4, where d(-,-) denotes a
metric on M. A subset N C M is chain transitive, if for all z, y € N and all
g, T > 0 there exists an (g, T)-chain from z to y. A point z is chain recurrent if
for all e, T' > 0 there exists an (g, T")-chain from z to x. The set R defined above
is exactly the set of all chain recurrent points of the flow. Furthermore, the flow ®
restricted to a Morse set M; is chain transitive (and, of course, chain recurrent).
We refer the reader to [8, Appendix B] for some basic facts on attractors, Morse
decompositions, and chain recurrence, and to Conley [10], Ruelle [18], Robinson
[17] for a detailed analysis of dynamical systems using these concepts.

A closer analysis of the asymptotic behavior of dynamical systems is possible
via its linearization, the resulting stable, center, and unstable bundles, and the



corresponding stable, center, and unstable manifolds. Briefly, the basic idea goes
as follows: For a vector field X € X(M) denote by T'X € TX(M) its linearization
on the tangent bundle T'M. The vector field T X induces a flow on T'M

TP :RxTM —TM (2)
which splits into its compact component on the projective bundle PM
P®:R x PM — PM (3)
and its linear component, the cocycle over P®
Do (t,x) : ToM — Ty M (4)

The compact component (3) on PM is independent of (4) and is studied via
the concepts described above, while the linear component (4) determines the
exponential convergence behavior via the Lyapunov exponents: For x € M and
v € T, M we define

1
A(z,v) = lim sup n log |D®(t, z)v| (5)

t—o0

If J C M is an invariant set of (1), its Lyapunov spectrum is given by
Ery(J) ={\(z,v), v € J,ve T, M} (6)

For a fixed point z* of (1), i.e., X(2*) = 0, the set J = {z*} is invariant, the
linearization of the vector field X at «* is simply the Jacobian matrix D, X (z*) =:
A and X, ({z*}) consists of the real parts of the eigenvalues of A. Similarly, for
a periodic trajectory v C M of (1) the Lyapunov spectrum X, () consists of
the Floquet exponents of the linearization over 7, which is a periodic matrix
function. In both cases, the lim sup in (5) is actually a limit and the Lyapunov
spectrum consists of finitely many numbers. The stable, center, and unstable
subbundles of T, M (and of T, M, respectively) are easy to obtain by computing
the eigenvectors of the linearization. These bundles are ’projected’ onto M to
yield the stable, center, and unstable manifolds of the flow, locally at the fixed
point z* (and at the periodic trajectory +, respectively). But, in general, the
cocycle (4) is a time varying matrix function in 7'M, whose Lyapunov spectrum
and corresponding subbundle decomposition are difficult to obtain. Furthermore,
for a family ®“ of dynamical systems the Lyapunov spectrum has, in general, no
reasonable continuity properties in «. Therefore, one often considers modified
spectral concepts. One approach is to study the regular spectrum of & over



an invariant set J C M, i.e. parts of the Lyapunov spectrum for which the
exponents are given by limits and for which 'nice’ subbundle decompositions exist.
This is accomplished via the Multiplicativ Ergodic Theorem of Oseledets, which
guarantees regularity of the spectrum with p-measure one for any ®-invariant
measure g in J, compare [15]. Another approach is to extend the Lyapunov
spectrum to the topological spectrum, which contains all numbers A € R such that
the flow eM®(t,-) does not admit an exponential dichotomy, compare Sacker/Sell
[19]. The topological spectrum, which contains all Lyapunov exponents, enjoys
an upper semicontinuity property for continuous families ®¢ of flows, cp. Coppel
[11], Johnson/Palmer/Sell [14].

Motivated by the concepts for the study of the flow ® on M, one might also try
to develop a spectral concept using attractor-repeller decompositions and Morse
sets of ® and of the compact component P® of the linearization. This leads to
the Morse spectrum, which we introduce in the next section, where we discuss
generalizations of concepts from the theory of dynamical systems to control sys-
tems. These generalizations are a first step towards the study of the dynamic
behavior of semigroups, because they lead from one-parameter semigroups (i.e.,
®(t,-), t € R) to more general semigroups of diffeomorphisms on a manifold, or
to linear semigroups on flag manifolds.

3 Control Theory

The dynamic behavior of control systems is studied via an associated flow which
leads to a semigroup of homeomorphisms (or diffecomorphisms) on the state space
as explained in the next section. While dynamical systems, treated as in Section
2. generate one parameter groups of homeomorphisms on the state space M, a
control system gives rise to two semigroups (forward or backward in time), but
the basic concepts for dynamical and for control systems are analogous. We start
with a brief description of control systems and their associated flows.
The prototype of a nonlinear control system is of the form

m

&= Xo(x)+ > ui(t)X; () (7)

=0

where we assume that the manifold M and the vector fields Xy, ..., X,,, are smooth.
The admissible control functions v : R — U C R™ may be measurable or piece-
wise constant, or of some regularity type between these two possibilities. For
the following results we assume that U is a compact, convex subset of R with



0 € int U. We denote by
U ={u:R — U, measurable} (8)

the set of admissible control functions.
Associated with the control system (7), (8) is the so-called control flow

O RxUXM—UxM, (t,u,x) — (Opu, p(t, z,u)) 9)

Here 0 : R xU — U, (t,u) — u(t + -) is the shift on U, and (¢, z,u) denotes
the solution of (7) at time ¢ under the control function u € U with ¢(0,z,u) =z
as initial value. If U C Loo(R,R) is endowed with the weak® topology, then &
becomes a continuous flow of homeomorphisms on U x M, which can be analyzed
using topological dynamics.

Just as for dynamical systems in Section 2., one can use (controlled) trajecto-
ries or (controlled) chains for the study of the dynamic behavior. The trajectory
point of view leads to control sets of (7) and to transitivity of (9), while chains
give rise to chain control sets of (7) and to chain transitivity of (9).

Controllability and Transitivity

For the control system (7) we define the positive orbit O" (z) and the negative
orbit O~ (z) for a point x € M as

Ot (x) = {y€ M, thereexistu € Uandt > Owithy = (¢, z,u)}
O (x) = {ye€ M, thereexistu € Yandt > Owithx = p(t,y,u)}
A set D ¢ M with nonvoid interior is a control set if D is a maximal set with

the property that D C ¢l OF (z) for all z € D.
We impose a condition that guarantees int OF(z) # () for all z € M:

m
dim LA{Xo+ Y u;X;, u € U}(z) = dim M for all z € M (H)
i=1
The main result on the connection of control sets for (7) and transitivity for (9)

can be formulated as (compare [5]):

Theorem 1 Consider the control system (7) and assume that (H) holds. For a
control set D C M define the lift to U x M as

D =cl{(u,z) eUU x M, p(t,x,u) € int D for all t € R} (10)

Then D is a mazximal topologically transitive and topologically mixing component
of (U x M, ®). Vice versa, if D C U x M is mazximal topologically mizing with
int wp;D # (), then there exists a control set D C M such that D is its lift.



There is a reachability order < between control sets given by
D =< D' if there exists z € D with clO*(z) N D' # 0 (11)

This order describes the global reachability structure of (7) and for compact M
the invariant control sets C (i.e. C = clOT(z) for all x € C) are maximal with
respect to this order.

Control sets need not contain all the limit sets of a control system, and they
need not be isolated. (These remarks also remain true, if slightly a slightly more
general notion of control sets is used which allows for void interior.) As in the case
of dynamical systems, one therefore introduces the notion of controlled chains.

Chain Controllability and Chain Transitivity

A controlled (g,T)—chain from zto y is given by finite sequences of points
Tg = T,...,Tn =y in M, of controls ug,...,u, in U, and of times Ty,..., T, > T
such that d(o(T;, zi, u;), zi+1) < € for i = 0,1,...,n — 1. The positive chain orbit
Of(z) is given as

for all g, T' > 0 there exists a controlled

+ —
Oc (@) =1 €M, 1) chain from 2 to y

}

Chain control sets of (7) are now defined similar to control sets with O (z)
replaced by O} (z): a chain control set E C M is a maximal set with the property
that E C cl O} (z) for all z € E and for all x € E there is a control u € U with
o(t,z,u) € E for all t € R. We emphasize that the definition of chain orbits
and hence of chain control sets contains the concept of time via the requirement
T; > T for all T' > 0, while positive orbits and control sets do not depend explicitly
on an idea of time.
The analogue of Theorem 1 for chains takes the following form.

Theorem 2 Consider the control system (7) and let E C M be a chain control
set with lift

E={(u,x) eU X M, p(t,x,u) € E for all t € R} (12)

Then & is a maximal chain transitive set of (Ux M, ®). Vice versa, let E C UX M
be a mazimal chain transitive set of (9), then mp€ C M is a chain control set of

(7).

The proof of this result can be found in [5]. If Mis compact, then U x
M is a compact space and therefore the chain recurrent components of (U x



M, ®) are the maximal chain transitive sets, which define a unique finest Morse
decomposition of the control flow (9). The associated order induces an order of the
chain control sets of (7) on M, because the shift space ( U, ©) is chain recurrent.
Hence one obtains a global structure of the control system with respect to chain
controllability. This order and the reachability order between the control sets
agree, if all chain control sets of (7) are closures of control sets. The following
discussion shows, under which conditions one can expect an agreement.

Controllability and Chain Controllability

There are different ways of imbedding the control system (7) into a family
of such systems. Here we introduce one such imbedding, which has a natural
extension to semigroups, compare Section 4. At the same time, this imbedding
reveals relations between trajectories and chains of the system (7), and of various
spectral concepts, as described below.

The basic idea is to vary the control range U of the admissible control func-
tions. For p > 0 we denote

UP=p-U, U’ = {u: R — U, measurable} (13)

leading to a family (7)” of control systems and ®” of control flows. We need
an inner pair condition which guarantees that larger control ranges increase the
corresponding system orbits:

For 0 < p< p' < oo we require that for all (u,x) € £° (I)
there exists ¢ > 0 such that (¢, 2,u) € int OH* (2)

Here £ are the lifts of the chain control sets of (7)” and O (z) are the positive
orbits from x of the control system (7)”'.
We obtain the following result (see [6], [8]).

Theorem 3 Consider the family (7)°, p > 0, of control systems under the As-
sumptions (H) and (I), and let M be compact.

(i) For each p* > 0 and each chain control set E°" of (7)P" there exist control
sets DP for p > p* such that EF" = ﬂp>p* DP. (For p* =0 the EP" is any of the
Morse sets of the uncontrolled system & = Xo(x).)

(ii) For all but at most countably many p > 0 we have that for all chain
control sets EP there exists a control set DP such that EP = cl DP. In particular,
if w(u,x) (or w*(u,x)) is a limit set of P, then myw(u,z) (and wyw*(u,x)) is
contained in the closure of some control set of (7)°.

(iii) The control sets DP and the chain control sets EP depend continuously
on p (in the Hausdorff topology) for all p where (i) holds.



Theorem 3 is the starting point of a bifurcation theory for control systems
with varying control range: The 'pathological’ systems of the family (7)” are those
systems for which there exists a chain control set which is not the closure of a
control set. For these exceptional p’s the (chain) control sets vary discontinuously,
and the closures of the control sets may not contain all the limit points of the
system. On the other hand, we can describe for all p* > 0 the chain control sets
Er" as limits of control sets D? for p | p* according to Theorem 3(i). Hence we
have found, under Assumption (I), a characterization of the chain control sets
that does not depend explicitly on a concept of time and which, therefore, allows
for a generalization to certain abstract semigroups, compare Section 4. This
range of ideas can be made more precise for bilinear control systems, for which
the vector fields Xy, ..., Xy, are linear, compare [4] and Section 4.

The Linearized Control System

A more detailed study of the dynamic behavior of control systems is possible
via the linearized system — just as for dynamical systems. We briefly explain
some of the basic ideas of linearization, its compact and radial component, and
Lyapunov exponents. For the details on these concepts and for associated stable
manifolds we refer to [8].

Let X be a smooth vector field on a smooth manifold M. We denote by T'X
the linearized vector field on T'M, the tangent bundle of M. With this notation
the linearization of the control system (7) takes the form

(TJ}) = TX()(TiL‘) + Em:uz(t)TXz(Tx) on T'M (14)

=1

where Tz € TM. Writing TX = (X, DX) the corresponding flow reads with
vel, M

TO :RXxUXTM —UXxTM, (t,u,z,v) — (Opu, Dp(t,z,u)v)
As in (2)—(4) this flow splits into a compact component on PM
P& : R x U x PM — U x PM (15)
and a radial component, the cocycle over P®
Do(t,z,u) : TeM — Ty 20 M (16)

Note that the cocycle (16) depends on all three components (¢, u,z) € Rx U x M.
The dynamic behavior of the compact component (15), which is a control flow

10



itself, is studied via the theory outlined above, using the Assumptions (H) and (I)
for the control system on the projective bundle. If M is compact, then PM is a
compact space, and hence Theorems 1-3 are valid with the obvious modifications.
It remains to study the radial component (16), which we will do for the special
case of a control system with singular point. The general theory can be found in
[8].

Consider the control system (7) and let 2 € M be a singular point, i.e.,
Xo(z*) = ... = Xp(2z*) = 0. Since ¢(t,z*,u) = z* for all t € R, u € U,the
linearization at #* can be identified with the bilinear control system

b=Aww+ Y w(t)Av  in R (d = dim M) (17)
=1

where A; = D, X;(z*) is the Jacobian of z* at z* for ¢ = 0,...,m. The compact
component of (17) reads

m

p=h(p,u) =ho(p) + > _ui(t)hi(p)  in P! (18)

i=1
with h;(p) = (A; — gi(p,u) - Id)p, qi(p,u) = pT A;p. Note that (18) is a (real ana-
lytic) system of the form (7), hence Theorems 1-3 describe its dynamic behavior.
The cocycle over (18) is for ¢t € R, u € U, and any v € R?\ {0} which projects to

p € P41 given by
|9(t, v, u)|

o] 19)

o (t,u,p) =

where (¢, z,u) denotes the solution of (17) and |-| is a prescribed norm in R
An alternative description is given by

t
o (t,u,p) = exp/ q(p,u) dr
0

where g(p, u) = qo(p) + Y i1 ui(7)¢gi(p). Its dynamic behavior is described by the
Lyapunov exponents and the associated Lyapunov subspaces of U x R%:

1
A(u,v) = lim sup n log |1 (t, v, u)| (20)

t—o0

We denote the Lyapunov spectrum of (17) by

Y1y = {Mu,), (u,v) €U x RY, v #£ 0} (21)

11



As for dynamical systems the spectrum X, cannot be characterized easily.
Therefore, one rewrites the exponents in terms of the solutions of (18)

1 t
Au,v) = lim sup t/o q(p,u) dr

t—o00

and uses the control and chain control structure of the control system (18) to
obtain inner and outer approximations of the Lyapunov spectrum.

The Lyapunov Spectrum

The control system (18) has a finite number of control sets Dy, ..., Dy, k < d,
which are linearly ordered through the reachability order (11). Without loss of
generality we set D1 < ... = Di. We define the Floquet spectrum of each D; as

u is piecewise constant periodic with

Er(Di) = {A(w, v), period T and ¥(T,v,u) =v € int D; } (22)

The closures cl¥ g (D;) are intervals which are ordered in the same way as the con-
trol sets, i.e., infClEFl(Di) < infClZFl(Dj) and sup CIEFZ(Di) < sup CIEFZ(D]')
for 7 < j. However, the intervals may overlap. It holds that ¥, D Ule clXp(Dy).

On the other hand, the control system (18) has [ chain control sets (1 <1 <
k <d) Ey = ... X E;, which are ordered by the Morse decomposition structure of
the control flow associated with (18). We define the Morse spectrum of each E;
in the following way:

Let ¢ = (@, u,, T, 7 =0,...,n) be a controlled (¢,T)-chain in E;, denote by

1 |O(T,v,u) B
NQ = i los = ?01; [ o (23

the (finite time) exponent of ¢, and define

there exist sequences €, | 0 and T, T co and

Eao(Ej) ={X €R, (€a, T )—chains (, with X\ = limgy—00 A(Ca) }

The sets X0(E;) are intervals, which are ordered in the same way as the chain
control sets. Hence the order of the Morse spectral intervals reflects the attractor-
repeller decompositions of the control flow associated to the system (18). Each
chain control set F; contains at least one control set and we have

Ymo(Ej) D Ery(Ej) ={Mu,v), ¥(t,v,u) C Ej for all t > 0}

D Ucl Yri(D), D C Ej is a control set (24)
k
U ZMO(EJ') D) ZLy D) U ClEFZ(Di)
j i=1

12



Note that all three spectral concepts require an idea of time according to the
definitions (20), (22), and (23), although the requirement of periodicity in the
definition (22) of the Floquet spectrum is only related to the positive orbit of the
control system (18).

The relation between the different spectral concepts in (24) can again be
studied via imbedding the control systems (17) and (18) into a family of systems
with varying control range as in (13) (see [8]).

Theorem 4 Consider the family (18)°, p > 0, of control systems under Assump-
tions (H) and (I).
(i) For all but at most countably many p > 0 we have that

Enmo(EY) = X1y (EY) = clZp(D]), j=1,....k(p)

where Df is the unique control set with cl D;-) = E;? (compare Theorem 3).
(ii) The spectral intervals depend continuously on p for all p where (i) holds.

At the exceptional p-values from Theorem 4(i) we have the following situation:
There exists a pair (u,v) € U x R?, v # 0, and a chain control set E C P41 such
that mpa—1w(u,v) C E\ (Jint D), where the union is taken over all control sets
contained in F. This can occur, in particular, at the discontinuity points of
the (chain) control sets of the system (18), compare Theorem 3. Here the limit
structure of the control system on the compact component P! enters into the
spectral theory, i.e., the exponential behavior of the radial component.

Associated with the Morse spectrum is a decomposition of the bundle I/ x R?
into Morse subspaces

l
U xR = @ V; (Whitney sum)
j=1

such that mpe—1V; C E; and (u,v) € V; implies A(u,v) € Epso(E;). This decom-
position is continuous in u € U, i.e. the V; are constant dimensional in u € U.
This fact may open the door for a topological classification of bilinear control
systems, compare Section 6.

Similar to the situation for dynamical systems the subbundles V; ’'project’
onto invariant manifolds of the original nonlinear system locally at the singular
point z*, compare [8]. However, we will not consider implications of this fact in
the present paper.

13



4 Semigroups and Control Theory

In the study of a control system Lie semigroups enter through the so called sys-
tems semigroup. Starting with the system (7) suppose that its control functions
are taken within the set piecewise constant functions. Then the trajectories are
given by concatenations of trajectories of the family of vector fields

m
N = {XO+ZUiXia u € U}
=1

Hence if a trajectory starts at  and ends at y € M, we have that y is the image of
x under successive compositions of flows of vector fields of V. These compositions
give rise to the 'semigroup’

S:{}ﬁo--~o)/;i:ti20,Yi€N}

Here Y; stands for the flow of the vector field Y. The systems semigroup is
naturally imbedded in the systems group

G={Ylo oV t;eR Y €N}

In general S and G are huge sets of local diffeomorphisms of M. However if one
knows beforehand that the vector fields in N come from the action a Lie group,
say H, then G turns out to be a Lie subgroup of H and S a subsemigroup of G.
More precisely, suppose that ¢ : H x M — M is an action of the Lie group H on
M. If h stands for the Lie algebra of H then each Y € b induces the vector field

d
Y (z) = ﬁﬁs (exptY, @),

on M. The flow of Y is just the action of exp (tY"). Hence if the vector fields in N
are of the form X; = Y; with Y; € h,i=0,...,m, we have that GG is a subgroup
of H. Moreover, G is a nice connected submanifold of H which makes it a Lie
subgroup. Its Lie algebra g is the subalgebra of h generated by {Yp,..., Y}
This can be seen by considering the system lifted to the Lie group:

m

g=Ys(9+> Y (9), geH (25)
=1

Here Y* stands for the right invariant vector field in H defined by Y € h. The
trajectories of the original system are “projections” of the trajectories of (25), in
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the sense that ¢ (« (t),x) is a trajectory starting at € M if « is a trajectory of
(25), and every trajectory of the system in M is obtained this way. The systems
group G turns out to be the orbit of (25), that is, the set of points reachable form
the identity in H, forward and backwards in time. In the same way, S is the
forward orbit of the identity in H. Since g is generated by {Yp, ..., Y, } it follows
that (25) satisfies the Lie algebra rank condition (H). This condition implies in
particular that S has nonempty interior in G, and moreover

clint S =clS.

One of the main classes of systems on Lie groups are the bilinear systems (17)
discussed in Section 3 : For d x d matrices A;, 1 =0,...,m let

=1

be the system in R? with u € U. Such a system can be lifted to the system

=1

in the general linear group Gl (d,R). The solutions of (26) are the fundamental
solutions of (17). The systems group G is a connected Lie subgroup of Gl (d, R)
and the systems semigroup S has nonempty interior in G.

For the asymptotic analysis of (17) we use the polar decomposition of R?. Let
P4=! be the projective space and 7 : R%\ {0} — P9~! the canonical projection.
This projection turns R?\ {0} into a fiber bundle over P4~ (actually a principal
bundle with R\ {0} as structure group). The system (26) induces a system

$=Ag (s) + iuz (t) A (s), s e pi-t (27)
i=1

on P41, which is the projection of (17) onto P! and is also the system induced
by (26) through the transitive action of Gl(d,R) on P4~!. Complementary to
(27) is the radial component of (17). This component is described by a cocycle
of the G1(d, R)-action on P?~! as follows: For g € Gl(d,R) and s € P4~! put

o(g,s) = ‘ffl‘ (28)
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where z is any representative of s in R%\ {0}, and |-| is a prescribed norm in RY.
Then p satisfies the cocycle property

o (gh,s) =0 (g,hs)o (h,s).

The bilinear system (17) decomposes into the compact component (27) and the
cocycle (28) so that the asymptotic behavior of (17) is described by the dynamical
properties of (27) together with the behavior of (28) at oc.

A similar polar decomposition occurs on the level of Gl(d,R) on the flag
manifolds. In order to explain this decomposition we let F (rq,...,75) be a flag
manifold. Its elements are flags of the type

(V’lcc]fs)

with V; a subspace of R% of dimension r;. In particular, we consider the full flag
manifold B =F (1,2,...,d — 1). The group Gl (d,R) acts transitively on any flag
manifold. The action is given by the formula

with g an invertible matrix. Hence the bilinear system (26) on the group level
induces systems on the flag manifolds. These systems form the compact part of
(26) and they encompass the system on projective space. Note that the system
on the full flag B projects onto the system on any other flag manifold and hence
the controllability properties of the systems on the flag manifolds are embodied
in those of the system on B. The complementing radial part of the systems on
the flag manifolds are the values of the cocycles in the trajectories. In view of the
situation in projective space it appears natural to take cocycles for the Gl (d, R)
action on B which are invariant under the orthogonal group in the sense that
o (k,b) =1 for all orthogonal matrices k and all b € B.

The same kind of decomposition works for systems on a semi-simple Lie group.
Let G be such a group and take an Iwasawa decomposition G = KAN of G. If
M denotes the centralizer of A in K then P = M AN is a (minimal) parabolic
subgroup and B = G/P is a compact homogeneous space of G and plays the
role of the maximal flag manifold so that the compact component of a system
on G is described by the induced system on B. For the radial part we consider
K-invariant cocycles for the G-action on B. These cocycle have a well known
description (see e.g. ): For g € G write g = K (g) A(g) N (g) for its Iwasawa
decomposition. Let a denote the Lie algebra of A and a* its dual. Then any
K-invariant cocycle on B is of the form

oy (g,b) = eogAlgh))
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where A € a* and k € K is such that kby = b where by = P is the origin of B.
These cocycles have a geometric interpretation analogous to the decomposition
R4\ {0} — P91 which gives rise to the cocycle (28). In fact, consider the closed
subgroup M N and form the homogenous space G/MN. There is a canonical
fibration

G/MN — G/P

Since M N is normal in P this is a principal bundle with structure group A =
P/MN. Incidentally this bundle is trivial, i.e., is diffeomorphic to B x A and it
turns out that if h denotes the A-component of g (b,1) in B x A then p) (g,b) =
exp (A (log h)). This means that the K-invariant cocycles on B are read off from
the A-component of the decomposition of G/M N and this component may be
viewed as the radial part of the systems on G.

For the general nonlinear system (7) we consider the polar decomposition of
its linearization: Let BM be the frame bundle of M, which is a principal bundle
with Gl (d,R) as structure group. For a vector field X on M we denote by X its
lifting to BM. The flow X, of X is given by the differential dX; of the flow of references
X. Let

m
p=Xo)+Y w()X()  peBM (29)
i=0
be the lifting of (7) to BM. This system plays a role analogous to a system
in a Lie group in the sense that it induces control systems on the fiber bundles
associated to it, like e.g. the tangent bundle T'M, the projective bundle PM or
a flag bundle FM made of flags of TM. As for the bilinear systems we here have
polar decompositions, which are obtained fiberwise from the linear decomposi-
tions explained above. For instance, the compact part of the system in T'M is
the system induced on PM, and its radial part is given by a norm as in (28).

5 Asymptotic Behavior of Semigroups - the Compact
Component

In this section we outline the contours of a research program on the behavior
of semigroups at oo, and relate it to current research activities in semigroup
theory, control theory, and the theory of dynamical systems. We will restrict our
attention to subsemigroups of Lie groups with their specific structure, but we will
try to keep topological and algebraic questions separate, whenever possible.

The first problem is basic for understanding any equivalence between semi-
groups and control systems:
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Problem 5.1 Given a connected Lie group G characterize the systems (25) that
generate the same semigroup S (or clS in G).

This seems to be a formidable problem and should be kept as a general goal.
In fact, a particular instance of it is the controllability property in GG, which is the
problem of deciding whether S = G. This problem has been dealt extensively in
the literature since the early seventies, and up to now has only partial solutions
(compare e.g. Kupka....

Turning to the semigroups themselves one could try to characterize them
through their transitivity and chain transitivity behavior. In order to discuss
this question we restrict ourselves to linear semigroups acting on flag manifolds.
This leads to the following problem.

Problem 5.2 Characterize the linear semigroups S which have the same transi-

tivity and/or chain transitivity behavior on the complete flagB = F (1,2,...,d —1).

As a motivation, recall that the flag manifold B contains the main geometric
information about the group Sl (d,R). Hence one may expect that the same kind
of information is encoded in this flag manifold at least for the semigroups S in
Sl (d,R) with nonempty interior. We know (c.f. ?7)

1. Let W be the permutation group in d letters (i.e., the Weyl group of
S1(d,R)). Then there is a map w — D,, that maps W onto the set of
control sets in the full flag B =F (1,2,...,d —1).

2. There is just one invariant control set C' which corresponds to the identity
permutation. Let
wW(S)={weWwW:D,=C}

Then W (S) is a subgroup of W and the number of control sets in B is
(WI/IW (9)].

3. The subgroup W (S) can be recovered from C. In fact, there are integers
1<r;<---<rs<dsuch that W (S) is the direct product

1, 7rq) x -+« x [rs + 1, 4]

where II[a, b] means the group of permutations of the numbers between a
and b. Put ' =F (ry,r1 + ro,...,71 +--- +15), and denote by 7 : B — F’
the canonical projection from the full flag. Then C is the inverse image
under 7 of the unique invariant control set for the induced system on F’.

18
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The subgroup W (S) is an invariant of the transitivity structure of S on the
flag manifold. Also note that the last statement above ensure that W (S) can
be recovered from the invariant control set in F. In particular, two semigroups
having the same invariant control set in IF have also the same structure of control
sets. This holds although the control sets themselves - and hence the transitivity
structure - may be different. Consider for example the compression semigroup:
Let C C F be the invariant control set of the semigroup .S and put

Com(C)={g€@qG, gCCcC}

Clearly S € Com(C) and the invariant control set of Com(C') is C. Hence there
are as many control sets of S in B as there are for Com(C), and any S-control
set is contained in exactly one Com(C')-control set. However, the control sets for
Com(C') may be bigger than those for S. This suggests the following problem.

Problem 5.3 Given the control sets of S in F(1,2,...,d—1), construct and
describe the mazimal semigroup S{D,,, w € W} which has the same control sets

as S.

These problems were stated with the assumption that S has nonempty interior
in SI(d,R). As the theory outlined above extends to semi-simple Lie groups, the
same questions should be posed for semigroups with interior points in a group G
in this class. Now, the Furstenberg boundaries of G play the role of the above
flag manifolds.

The same program needs to be carried out for the notion of chain control sets
for semigroups as developed in [2]. Note that contrary to control sets the concept
of chain control sets for a control system requires the evolution of time (compare
Section 3.), so that the jumps are allowed only after the system runs for some
time T" > Ty . In a similar way the notion of chain control sets for semigroups
requires the introduction of another object besides the semigroup. In [2] this
new object was taken to be a family of subsets of S. In order to explain this
construction we take the family

Foo = {5\ K, K is compact in G}

Given A € Fo and € > 0, an (A,¢e)-chain is a finite sequence of operations
consisting of applying an element of A and followed by a jump of length at most
€. From this a F.,-chain control set E is defined in the same way as for control
systems, by requiring that any two points in E are linked by an (A, ¢)-chain for
any A € Fo, and € > 0. Since the elements of F, are neighborhoods of oo, the
Foo-chain control sets describe the asymptotic behavior of the S-action.
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The Foo-chain control sets can be described by means of control sets. In fact,
the equality
E=()Dac
A e

holds, where D4, is a control set of the semigroup S4. generated by the e-
neighborhood of A in G. This description permits us to carry over the theory
outlined above for control sets in flag manifolds to F.o-chain control sets. In
particular, there is a subgroup of the Weyl group denoted by Wx_(S), which
gives the number of Fi-chain control sets in the flag manifold F(1,...d — 1).
Again, the invariant Foo-chain control set (the one, which contains the invariant
control set) contains all the information about Wx_(S), and we can make the
same comments and statements for the F,-chain control sets as well.

We expect that in a generic case the chain control sets on the full flag are just
the closures of the main control sets (as for the situation on the projective space
P4~1). Hence for this case the semigroup S{D,, : w € W} constructed above
should also be the maximal one that has ¢l D,,, w € W, as the chain control sets.

Once we have a characterization of a semigroup from its transitivity and chain
transitivity properties we can take into account the idea of bifurcation.

Problem 5.4 Study the bifurcation behavior of semigroups with respect to tran-
sitivity and chain transitivity.

The point here is to identify special classes of semigroups (bifurcation points)
by imbedding them in a parametrized family of semigroups. From the point of
view of dynamical systems or control systems these special semigroups should
have a ‘pathological’ behavior, as explained in Section 2.

The following two examples may clarify this problem: Let S = S° C G be a
maximal semigroup imbedded in a family S?, for a parameter p € R. If this is
an increasing family of semigroups then certainly S is a bifurcation point of the
family because of its maximality property.

On the other hand, let us consider the semigroups S” € Gl (d,R) coming from
the bilinear control systems (77), p > 0.

For SP acting on the projective space P! we know the following (compare
[4]) under the inner pair condition (I):

(i) If for a certain p there exists a main control set D” and a chain control set

Ef with D? C E? and E¥ # c1 D", then there is a second main control set
Dr # DP with DP C E”.
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(ii) There are at most d — 1 values of p where the situation in (i) can occur.
Let p > 0 be one of these exceptional values. Then W (SP) # W (5""/) for

p < p < p, and the map p — cl D? is not continuous at p (in the Hausdorff
topology over P~1). Hence p can be considered as a bifurcation point of
the transitivity behavior of the family S?, p > 0, on P,

In order to understand the behavior of semigroups on the full flag, one needs
to show similar results for control sets and chain control sets on F (1,...,d — 1).
We expect to get the following picture, under the assumption that S°, p > 0, has
nonempty interior in Sl (d, R).

1. Each chain control set E” contains a main control set. So that if W, (S”)
stands for the subgroup of W providing the chain control sets, then W (S”)
is a subgroup of W, (S”).

2. For fixed w € W, the map p — D, is left continuous.
3. For fixed w € W, the map p — Ep, is right continuous.
4. The discontinuity points of p — W (S?) are the continuity points of Dj,.

5. If p is a continuity point of Dy, () then Ef, = cl Dj,.

This picture is for the full flag in the maximal flag manifold. In another flag
manifold discontinuity points should be a subset of the discontinuity points in the
maximal flag. In particular, one has to check whether for some flag F/, there is a
continuity point p which is a discontinuity point for the full flag. This phenomena
would show that the theory constructed in a smaller flag, e.g. the known one on
P41 is not enough to get the full picture of the bifurcations of the control sets.

Apart from characterizing the discontinuity points of the (chain) control sets
we also want to understand the transition of the semigroups through a disconti-
nuity p. The natural question here is: Given S” for p < p, what are the possible
characteristics of S?, p > p? In its simplest form, this would mean: Given W (5?)
for p < p, can W (SP) for p > p be an arbitrary subgroup of W that contains
W (5°)?

Up to now we have restricted ourselves to linear semigroups acting in a flag
manifold. Equally important (for e.g. control systems and dynamical systems)
is the action of a semigroup in a fiber bundle. As mentioned in the last section,
this kind of semigroups shows up in the lifting of general nonlinear systems to
the tangent bundle or some bundle obtained from it like the projective bundle or
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some flag bundle. We expect that once the linear situation is clarified it can be
carried over to fiber bundles with the fiberwise techniques of [1].

As in Section 4. we stated the above problems for semigroups with nonempty
interior in Sl (d, R). However, one should envisage the same theory for semigroups
in a semi-simple Lie group G. Again, the boundaries of G play the role of the
classical flag manifolds and the Weyl group of G substitutes the permutation
group in d elements.

6 Asymptotic Behavior of Semigroups: The Radial
Component

The study of the dynamic behavior of semigroups has as its goal a classification
theory. Such a classification could be algebraic (which will neeed different tools
than the ones described here), based on transitivity and chain transitivity (com-
pare Section 5.), or dynamic, i.e. topological. For linear dynamical systems a
topological classification is available:

Two linear systems & = Az and § = By in R? are called topologically equiv-
alent, if there exists a homeomorphism A : R¢ — R¢ that maps orbits into orbits,
preserving the orientation. Hence equivalence is based on the flow of a system,
allowing for time parametrization. It is well known (see e.g. Irwin [13, p. 86]
or Robinson [17]) that two hyperbolic linear systems are topologically equiva-
lent iff they have stable subpaces of the same dimension. Thus there are d 4+ 1
classes of linear hyperbolic systems on R%. Note that this characterization requires
knowledge of the behavior of the compact component (dimension of the invariant
subspaces) and of the radial component (positivity or negativity of the Lyapunov
exponents which in this case are simply the real parts of the eigenvalues). The
Grobman-Hartman Theorem generalizes the linear situation to nonlinear systems,
locally around a singular point via linearization techniques.

A similar theory is available for random linear systems (see Cong [9]), which
we formulate here in the context of bilinear control systems of the type (17) and
their associated flows. Consider the function space U from (8) with shift © as
defined in (9). Let P be an ergodic invariant probability masure for the shift on
U. Let

&= Ao+ ui(t)Aizand § = Boy + > _ui(t) By (30)
=1 i=1

be two bilinear systems in R? with solutions (¢, z,u), 1(t,y,u) and associated
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flows
P RxUxR! U xR and U:RxU xR — U x R? (31)

respectively. A random homeomorphism is a measurable map
h:U xR =R (u,z) — h(u,z)

such that for all u € U the map h(u) = h(u,-) : R — R? is a homeomorphism.
The two flows ® and ¥ are called conjugate if there exists a random homeomor-
phism h and a O-invariant set U4’ of full P-measure such that for all u € U’ we
have

O(t,u,-) = h(Om) ' o U(t,u,-) o h(u) for allt € R

Hence, for the systems (30) the conjugacy h maps trajectories into trajectories P-
almost surely, but without time parametrization. (For hyperbolic random linear
systems conjugacy and equivalence lead to the same criteria, since these flows
admit no periodic points).

Cong’s result says that two random linear systems are conjugate iff they have
stable subspaces of the same dimension and they are both orientation preserving
or orientation reversing on their stable subspaces with respect to a measurable
choice of orientations. A similar theory for bilinear control systems, which would
involve continuous homeomorphisms on U x R%, is not yet available.

We note that in the control theory literature, see e.g. Crouch [12], ideas for
equivalence of control systems have been proposed based solely on equality of
positive orbits. Here two bilinear control systems as in (30) are called equivalent
if for all z € R? the corresponding orbits clO} (z) = cl O} (x) agree. This take
into account only one of the aspects considered here and does not reduce to the
dynamical systems concepts for control range p = 0.

For more general semigroups we hope that a meaningful type of equivalence
can be formulated when regarding their behavior on the compact component and
the associated radial cocycles. Several ideas concerning the transitivity behavior
on the compact component were described in the last section.

The study of the radial component presents new problems, because time is
not an explicit parameter for a given semigroup. Hence the definition of Lya-
punov exponents as in (20) has no obvious counterpart. Note, however, that
the description of the Lyapunov exponents as in (20) allows for a description of
the spectrum via ergodic theory as integrals of certain functions on the compact
component with respect to invariant measures of the system, compare, e.g., [8].
Hence an ergodic theory for semigroup actions may provide approaches for this
(and other problems). Finally, let us point out, that hyperbolicity for bilinear
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control systems can also be formulated in terms of controllability properties of
the system in R? (compare [7]), a condition that is easily generalized to general

semigroups.
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