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Abstract 
For a general class of bilinear control sys- 

tems on vector bundles the exponential growth 
rates and corresponding decompositions into 
subbundles are described. 

1. Introduction* 

In this paper, we describe the exponential 
growth behavior, i.e., the Lyapunov exponents 
of bilinear control systems on vector bundles. 
Roughly, these are linear differential equations, 
where the coefficients are determined by a non- 
linear control system. Section 1 describes the 
main examples of these systems, in particular: 
linearized control systems, and introduces the 
relevant notions. Section 2 describes the Lya- 
punov spectrum under an inner pair condition 
and presents a result on local stable manifolds. 

2. Problem Formulation 

We consider the following class of bilinear 
control systems on vector bundles: 

*(t) = Xo(x( t ) )  + .i(t)Xi(.(t)) 
U € U =  { U :  W - - , I F P ,  u(t) E U ,  t E W} 

(1) 
where Xi : F -i TF, i = 0,1, ..., m, are c" 
vector fields and 7r : F + M is a vector bun- 
dle with base space MI which is a connected 
paracompact Riemannian C" manifold; the set 
U c R" is compact and convex. Denote by 
p(t,z, U )  the solutions of (1) corresponding to  
U E U with initial condition p(O,z, U )  = z E F .  
We assume existence and uniqueness of solu- 
tions for all t E W. We require that the fibers 
FYI y E M ,  of the vector bundle F are pre- 
served under p, i.e., 

xi E F&, implies ~ ( t ,  $1, U )  E F&p(t,zz,u) 

for all t E R,u E U, and that the solution map 
is linear on the fibers: 
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for all a,  t E R and z1 , z : ~  E F with 7rx1 = 7rx2. 
For ( U , % )  E U x F, x $! 2, the zero sec- 

tion in F ,  the exponential growth rate  or Lya- 
punov exponent of the corresponding trajec- 
tory is given by 

1 .  
X(U,  x) = lim sup - log I p(t, z, U )  I (2) 

t 4 c c  t 
and the Lyapunov spectrum Ehy of the system 
(1) is the set of all Lyapunov exponents 

ELY= {A(% x), ( U ,  .) E 7.4 x ( F  \ 2)).  (3) 

The aiin of this paper is t o  describe the Lya- 
punov spectrum and the pairs (u,z)  for which 
the Lyapunov exponents are attained. 

The control system on F induces a control 
system on M which can be described in the 
following form: 

m 

d t )  = Yo(Y(t))  + :C%(t)yZ(Y(t)). (4) 
El 

Here 
vector fields given by 

: M -+ TM, i = O , l ,  ..., m, are C" 

K(Y) = T4q7+(Y)), 

where TT : TF -+ TM is the linearization of 
7r. Locally, the bilinear control system (1) is 
described by 
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(5) 
Hence one has a coupled system of differential 
equations, where the nonlinear part of the con- 
trol system describing the motion y(t) on M 
drives the linear part ~ ( t )  via the coefficients 
A,(y(t)); the controls u.(t) may be applied to  
both parts. 

Next we discuss a, number of examples 
defining a bilinear control system on a vec- 
tor bundle. The simplest examples are bilinear 
control systems in Rd of the form 

1 z(t) ,  (6) 

                                                                                                                                               



where Ao, AI, ..., Am are (constant) d x d 
matrices. They fit into the general class of sys- 
tems (1) by defining F = E t d .  Here the nonlin- 
ear part is trivial. Note that for U = ( 0 )  , one 
obtains a time invariant linear differential equa- 
tion k( t )  = Aox(t),and the Lyapunov spec- 
trum reduces to the set of the real parts of the 
eigenvalues of the matrix Ao. 

The next class of examples arises, when 
the coefficients of a linear equation on JRd are 
determined by the solutions of a nonlinear sys- 
tem on some manifold M. More specifically, 
consider the  system 

m 

Y W  = Yo(?&>) + X 2 1 . 2 ( t ) y z ( Y ( t ) )  (7) 
2=1 

k ( t )  = Ao(y(t))z(t). 
We may interpret y as a background distur- 
bance, whose dynamics are modelled by a dif- 
ferential equation with unknown time varying 
parameters (u;(t)) with bounded amplitudes. 
These disturbances act on the differential equa- 
tion with state x(t) E EXd,  but are not influ- 
enced by ~ ( t ) .  This system fits into the gen- 
eral model (l), if we define the state space as 
F = Rd x M -+ M .  A simple example of this 
type on F = R2 x 9' -+ 9' is the linear oscil- 
lator, where the period of the restoring force is 
perturbed 

y = w + u ( t ) ,  i z++s iny=O 
u(t) E [-p,p] with p > 0. 

We may combine (6) and (7) t o  obtain systems 
where the U ;  also appear in the x-equation. 

Another generalization of the bilinear sys- 
tem (6) are control systems obtained by lin- 
earizing along trajectories: Consider a control 
system on a manifold M described by 

m 

Then linearization along the trajectories yields 
a bilinear control system on the tangent bundle 
F = TM + M described by 

m d 
dt  -Ty ( t )  = TYo(TY(t)) + Cui(t)TY,(TY(t))  

i=l 
(9) 

where for a vector field Y on M its linearization 
is denoted by TY = ( Y , D Y ) .  Locally, this 

d means: If y3 = C k = l a k j ( y ) & ,  denote the 
Jacobian of the coefficient functions by Y k  

Then TJ$(y,w) = (aj(y),Aj(y)w), and thesys- 
tem is described by a pair of coupled differential 
equations given by 

Q(t) = ao(y( t ) )  + EZI ui(t)ai(Y(t)) 
C ( t )  = AO(Y(W(t) + cc, ui(t)Ai(v(t))v(t) 

(10) 
Note that ( 6 )  occurs as a special case of this 
system, if yo E M is a common fixed point of 
the vector fields Yi, z = 0 ,..., m, and the sys- 
tem is linearized in yo (take A; := A;(yo), i = 
0, ..., m). 

Returning to  the general bilinear control 
system (1) on a vector bundle F over a manifold 
M we note that there is an associated control 
flow 

@t U X F - + U X F , ~ E J R  
@ t ( U , Z )  ++ ( 4 t +  .),cp(t,z,u)) 

Then Q? is a linear flow on the vector bundle 
T : U x F -+ U x M .  Hence the theory of linear 
flows on vector bundles, cp. [l] can be applied 
t o  bilinear control systems. 

3. Results 
We construct an  'outer approximation' of 

the Lyapunov spectrum ( 3 )  given by the Morse 
spectrum and an 'inner' approximation, the 
Floquet spectrum. Then the Lyapunov spec- 
trum is sandwiched in between. The Morse 
spectrum is associated to  the chain control sets 
in the projective bundle, the Floquet spectrum 
to  the control sets. An inner pair assumption 
will imply that the chain control sets coincide 
with the closures of the control sets. Then also 
the closure of the Floquet spectrum and the 
Morse spectrum, and hence the Lyapunov spec- 
trum all coincide. 

We start by defining the Floquet spec- 
trum, which is based on periodic coefficient 
functions for the linear part. In order t o  mo- 
tivate the construction, we go back to  the spe- 
cial case of constant coefficients. Roughly, the 
chain control sets generalize the sums of gener- 
alized eigenspaces corresponding t o  eigenvalues 
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with equal real part, while the control sets gen- 
eralize the eigenspaces. Consider a time invari- 
ant linear equation in Rd without the origin of 
the form 

k ( t )  = Aoz(t), ~ ( 0 )  = 20 # 0 (11) 

with A0 E Rdxd.  Project this equation down to 
the unit sphere Sd-’ by defining s(t)  = 
Then one obtains by the chain rule a differential 
equation for s(t) ,  

i ( t )  = ho(s(t)) with ho(s) := [A0 - sTAos]s. 

For an eigenvector z E Rd corresponding to  
a real eigenvalue the projection s of z on the 
unit sphere is an equilibrium point of this differ- 
ential equation. Conversely, every equilibrium 
point on the sphere corresponds to  an eigenvec- 
tor for a real eigenvalue A. 

Now consider the bilinear control system 
( 6 )  in Rd. The same procedure as above yields 
an induced control system on the unit sphere 
Sd-’ given by 

S(t) = h(u(t), s ( t ) ) ,  u E U 

with analogous notation. For the Lyapunov ex- 
ponents one obtains an integral expression of 
the form 

A(U,  Z) = lim Sup - q(U(T), S ( T ) )  d7 
t-m t ‘Jo” 

A typical effect of control actions in the system 
on the unit sphere can be seen in the system 

with A0 = [ ’  0 -1 ), Al = [ -1 0 ’ )  ’
and U = [ - p i p ] ,  p >‘0 small. Fbr constant 
U ,  the eigenspaces corresponding to  u E 0 
are rotated. Then the unstable eigendirections 
(i.e., the corresponding equilibria on the unit 
sphere) for U E U form invariant, closed con- 
trol sets, while the stable eigendirections form 
variant, open control sets. Note that by iden- 
tifying points on opposite sides of the sphere 
one obtains two control sets (now in projec- 
tive space P’) and one of them is invariant. 
In higher dimension, we consider periodic tra- 
jectories in the control sets; they will corre- 
spond to  eigenspaces of fundamental solutions 

corresponding to  periodlic controls. The cor- 
responding Floquet exponents, naturally, are 
Lyapunov exponents, and hence the Floquet 
spectrum will provide ari ‘inner’ approximation 
to  the Lyapunov spectrum. 

Returning to the general system (1) or the 
local version (5), we see that periodicity of the 
control functions is not enough to  obtain linear 
differential equations with periodic coefficients. 
We also need that the ccirresponding trajectory 
in the base space M is ]periodic. Furthermore, 
we have to  consider not just trajectories and 
control sets in projective space Pd-l, but in 
the projective bundle PE The bilinear control 
system (1) on the vector bundle F induces the 
following projective control system on the pro- 
jective bundle PT : PF --+ M : 

In 
d 
dt -Pz = IPX,(Pz) + >;ui(t)Pxi(Pz), (12) 

i:=l 

where PX is the projection of a vector field X 
on F onto PF, i.e., the :PXj read locally 

PXj(Y,S) = ( f j ( Y ) , h ( A j ( Y ) , 4 ) 1  
h(Aj (y) , S) = [Aj (y)’ - sTAj ( Y ) S  . Id]  S .  

Here denotes transposition and Id is the d x d 
identity matrix. Then (12) is locally described 
bY 

.zi(t) = f O ( Y ( t ) )  + cz, ui(t)fi(Y(t)) 
S ( t )  = ho(y ( t ) , s ( t>)  + ET, U i ( t ) h i ( Y ( t ) ,  s(t)). 

(13) 
The trajectories of (12) are denoted by 
P p ( t , P z , u ) ,  t E R. We formally define the 
Floquet spectrum of thle system (1) as follows. 

Definition 1 Let pD be a control set with no% 
void interior of the sys,tem (12) on the projec- 
tive bundle PF induced b y  the bilinear system 
(1) on the vector bund,le F. The Floquet spec- 
trum of the system (1) over pD is  defined as 

X(U,Z), (u,Pz) €U ~ Z n t p D  
u is piecewise constant and T- { periodic with Pp(7, Pz, u) = PZ 

The Floquet spectrum over a control set D in 
the base space M of the system (1) is 

Xpl(pD) = 

where the union is taken ouer all contol sets pD 
with nonvoid interior a.nd P.lr(pD) C D. 
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Obviously, one has for every control set 
pD c PF the inclusion 

where 

X( U ,  z), ( U ,  z) E U x F with 
cp(t,PIPs,u) E clpDforall t  E R  Ezy( PD) = 

In this sense, the Floquet spectrum furnishes 
an 'inner' approximation t o  the Lyapunov spec- 
trum. 

Next we construct an  'outer' approxima- 
tion of the Lyapunov spectrum given by the 
Morse spectrum. This concept is based on 
topological considerations, see [2]. One consid- 
ers chain control sets in the projective bundle 
PF' or, equivalently, the  chain recurrent com- 
ponents of the corresponding control flow P@ 
on U x IPF as an appropriate generalization of 
sums of generalized eigenspaces. 

For E ,  T > 0 an  (E,T)-chain 5 of 
I@@ is given by E N,  TO,...,^, 2 
T ,  and ( u 0 , p o )  ,..., (u,,p,) in U x PF with 

0, ..., n - 1. Define the finite time exponential 
growth rate of such a chain (or 'chain expo- 
nent ') by 

d(P~(~,ui,pi),(ui+l,pi+l)) < E for = 

where zi E P-l (pi). 
Definition 2 Let p L  c U x PF be a compact 
invariant set for  the inducedflow P@ onU xPF 
and assume that P@ I pL is chain transitive. 
Then the Morse spectrum over pc is 

MO (PL) 
X E R, there are E" -+ 0 

T" --+ w a n d  (E" ,  T")-chains 5" = {  in pC with X ( C k )  --+ X as IC --+ CO 

For a compact invariant set L: c U x M define 
the Morse spectrum over C as 

E M o ( C )  = U X M o ( & ) ,  

where the union is taken over all chain recur- 
rent components p f  ofP+ I (Pr)-lL. 

Of particular interest is the Morse spec- 
trum over a compact chain control set E C M .  
Then the lift E = {(u,~), p ( t , x , u )  E E f o r t  E 
El} of E is a compact invariant set in U x M 
and we write 

E M o ( E )  := C M O ( f ) .  

Define the Lyapunov spectrum over a control 
set D in the base space M as 

C L y ( D )  = {X(u,x), (U,$:> E U  x ( F \ Z ) ,  
xcp(t,.rrz,u) E D for all t L 0). 

There exists a chain control set E with D C E 
and provided E is compact the  following inclu- 
sions hold 

XFL(D)  c E L y ( D )  c X M o ( E ) .  

Hence the Lyapunov spectrum lies in between 
the Floquet and the Morse spectrum. We 
are mainly interested in the Lyapunov spec- 
trum, hence we present conditions which imply 
that the Floquet and the Morse spectrum, and 
hence the Lyapunov spectrum all coincide. 

We denote for U C E%" compact and con- 
vex with 0 E ant U and p 2 0 

UP = PU = {pu, U E U } .  

To complete the picture we also consider the 
case of unbounded perturbations. Let UO" = 

U,,, UP = R") and denote the corre- 
sponding control system by (1)O". All quan- 
tities defined above will be written with a su- 
perscript p t o  indicate their dependence on the 
control range UP for 0 5 p 5 CO. Note that 
for p = 0 we obtain just a single differential 
equation. 

Let Eo be a chain recurrent component for 
the uncontrolled system (4)' in the  base space 
M.  For p > 0 there are chain control sets of 
(4)P with Eo c EP. Under an inner pair as- 
sumption there are also control sets DP with 
Eo C mt DP. Similarly, consider the uncon- 
trolled projective system on PF 

and denote by pEP the corresponding chain re- 
current components in the projective bundle 
PF with Pr(pEp) c Eo,  where i is in some 
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index set I. Fix pi > 0. Under the following 
pinner pair condition in the projective bundle 
IPF there are also control sets around the PE,? 
growing with p: 

For all p', p E [0, p' )  with p' > p and all 
lifts pErof chain control sets each 

(U, x) E P E P  is an inner pair for ( 1 2 ) ~ '  

The following theorem, see [3], describes the 
control sets and chain control sets and the cor- 
responding spectra and characterizes the Lya- 
punov spectrum. 

Theorem 3 Fix 0 < p' 5 CXI and assume that 
f o r  all p E [O,p') the systems ( l 2 ) p  are locally 
accessible. Let Eo be a chain recurrent com- 
ponent f o r  the uncontrolled system ( 4 ) O  in the 
base space M ,  and for p E [ O , p * )  let EP de- 
note the unique chain control set of (4)p with 
Eo C EP. Assume that there is a compact set 
K C M such that EP c K and the set K is 
positively invariant under all controls U E UP' 
and that the p-inner pair condition (15) is sat- 
isfied. 
Then the following assertions hold: 
(i) For all p E [O,p') and for every chain re- 
current component ,E:, 1 < i < l(0) < d, of 
the equation (14) there are chain control sets 
pEf with PE: c pE; and P7r(pEf) = EP. 
There are no further chain control sets with 
P7r(pEr) n EP # 8, their number l(p) is  de- 
creasing an p and satisfies l < l ( ~ )  < d. 
(ii) For all p E ( 0 , ~ ' )  there are unique con- 
trol sets DP of (4)p with Eo c int DP and con- 
trol sets pDf of (12)p with PE: c int pDf and 
P r ( p D f )  = DP; f o r  all but at most countably 
many p-values and all 1 5 l(p) 5 d 

(15) 

cl DP = EP and dpDf = PE:. 

(iii) For all p E [O,p') and f o r  each i = 
1, ..., Z(p) the Morse spectrum has the form 

xMo(rE:) = [ n ' ( P q ) ,  4 P E f ) I  

with ~ ' ( p E f )  < K ' ( ~ E ; )  and &(PE:) < IE(~E; )  
i f  PE! # pEj" and i < j. 
(iv) For each i = 1, ..., 1 the sets of continu- 
i t y  points an (0, p') of the two set valued maps 
p H c l C ~ l ( p D : )  and p I-+ C M ~ ( & )  agree 
and p = 0 is  a continuity point of the latter 
map. There are at most countably many points 

of discontinuity and at each continuity point 
p the equality cl Z ~ l ( p D f )  = x ~ ~ ( p E f )  holds. 
I n  particular, af p is a continuity point for ail 
i = 1, ..., 1 ,  then 

1 

el Cpi(DP)  = U cl :Cpl(pDf)  = X:pLy(Dp) 
i=l 

1 

= U &4o(PE:) = XLo(Jw 
i= l  

This theorem give:3 - under the p-inner 
pair condition - a complete characterization of 
the Lyapunov spectrum and of the correspond- 
ing generalized 'eigenspatces' for bilinear control 
systems on vector bundles. 

If t h e  bilinear control system occurs as the 
linearization as in (9), a stable subbundle gives 
rise to  stable manifolds of the nonlinear system. 
These manifolds will depend on the cansidered 
point y and on the applied control U .  Suppose, 
for simplicity, that (8) describes a system in Etd. 
The associated control Row is denoted by : 
U x Rd + U x Rd. The control flow associated 
with the linearized systlem (9) is T@t(u ,y ,w)  :
U x Wd x Rd -+ U x Rd x Itd, t 6 R, hence 

T @ t ( % Y , v )  = (u(t +-),Tv(t,Y,U)v). 
We assume that a cont'rol set D c Rd of the 
nonlinear system (8) with compact closure and 
nonvoid interior is given and restrict the control 
flow @ to  the lift 2, of the control set D 

v = c z { ( u , y ) € U x ~ ~ ,  
' p ( t , y ,u )  E int D for all t E R}. 

Similarly, we restrict thle linearized control flow 
to the vector bundle 7r : VD := V x Rd -+ V 
with compact base D. For simplicity of nota- 
tion, we denote also these restrictions by @ and 
T@, respectively. 

We assume that a decomposition into ex- 
ponentially separated subbundles, one of them 
exponentially stable is :given: 

The linearized flow T@ on VD admits the 
following decomposition into invariant subbun- 
dles 

(16) V D  = V + @ V -  
such that there are constants 
with 

> 0 and EO > 0 

I T@.t('lL,Y,V+) I I COexp(--Eot) I T@t(U,Y,W-) I 
(17) 
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for all t L. 0, ( U ,  y,u+) E V+, (u,Y,v-) E V -  
with I u+ I = I u- 1 = 1, and the subbundle V+ 
is stable, 

I€+ := SUPX:LY(V+) < 0 (18) 

The condition (18) is equivalent t o  C,,(v+) C 
(-00,o). Note that we do not assume hyper- 
bolicity, that  is, we allow X:~~(V-)fl(-co,O) f: 

If we assume, additionally, that the closure 
of the control set D is a chain control set, then 
the decomposition (16), (17) implies that the 
subbundles V+ and V- are sums of subbun- 
dles Vi, which project down to lifted chain con- 
trol sets p& in the projective bundle PTd D M .  
This follows, since these U, yield the finest de- 
composition into exponentially separated sub- 
bundles. Hence, in order t o  obtain such a de- 
compmition, it suffices t o  check which chain 
control sets pEi over cl D have negative spec- 
trum. 

The following theorem describes the corre- 
sponding stable manifold. 

Theorem 4 For the control system (8) con- 
sider a control set D c Rd with nonvoid in- 
terior and compact closure and lij? 2,. Sup- 
pose that f o r  the linearized control system (9) 
the associated linearized control flow TQ on the 
vector bundle VD = 2, x Rd + 2, admits the 
decomposition ( IS ) ,  (I?'), and suppose that the 
stable bundle V+ C 2, x Rd satisfies (18). Then 
there are S > 0 and a homeomorphism 

0. 

s+ : {(u,y,z) E v+, I z I <  S} +VD = D x R d  

of the form 

S + ( U , Y , 4  = ( U , W + ( W , 4 )  

such that W+ := ImS+ called the local stable 
manifold corresponding to the stable subbundle 
V' has the following properties: 
(i) The set W+ is positively invariant under 
the control flow Q, i.e., for (U, y, y) E W+ one 
has 

(u(t+-),cp(t,y,u),cp(t,y,u)) E W+ for all t 2 o 
(ii) f o r  each (u,y,y) E W+ one has 

lim ePat [cp(t,$,u) - cp(t,y,u)] = o 
t+oo 

for every IY with a > .(V+). 

(iii) for each (u,y) E V the local stable mani- 
folds at (u,y) defined b y  

ure topological manifolds and their dimension 
equals the dimension of V+. 
(iv) The distance o f  the subbundle W' t o  V+ 
can be made arbitrarily small in a Lipschitz 
sense. 
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