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Abstract. Modern high power electronic devices such as converter modules
used as electric drives for high power electromotors are characterized byex-
tremely high switched currents and very fast switching times. The avoidance
of significant losses in the power transmission due to parasitic inductivities
requires a subtle layout of the devices. Using the electric conductivity as a
design parameter and electromagnetic potentials associated with the eddy cur-
rents equations as the state variables, the design issue gives rise to a topology
optimization with both equality and inequality constraints where the design
objective is to distribute the material in such a way that the electromagnetic
energy dissipation is minimized. Based on appropriate finite element approx-
imations of the eddy currents equations, for the numerical solution of the
discretized optimization problem we suggest a primal-dual Newton interior-
point method with a hierarchy of two merit functions and a watchdog strategy
for convergence monitoring.
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The problem that occurs is that due the fast switching times and steep current
ramps, eddy currents build up inside the bus bars causing parasitic inductivities
that lead to a considerable loss in the power transmission (cf. [12]). Therefore, the
primary goal is to design the bus bars in such a way that the energy dissipation is
minimized. It is known that the topology of the bus bars plays a prominent role in
so far as it has a significant impact on the distribution and size of the generated
eddy currents. Consequently, the task is to distribute the material in an optimal
way. From a mathematical point of view, the problem will be stated as a topology
optimization problem with constraints on the state and design variables.

The eddy currents are described by the quasistationary limit of Maxwell’s
equations

%-lté+curlE=O,diVB=0,CurlH:J, (1)

B=uH,6J=0E, (2)

where E, H denote the electric and the magnetic field, B is the magnetic induction,
J stands for the current density, and the material parameters p,o refer to the
magnetic permeability and the electric conductivity, respectively. Following [6],
we resort to a potential formulation by introducing a scalar electric potential ¢
and a magnetic vector potential A according to
0A

E:—gradtp——é—t , B = curllA. (3)
Considering a module €2 = U,Jj\’:lQ,, with N bars €,,1 < v < N, each bar con-
taining N, ports I',q, 1 < @ < N,, and denoting by I, the flux at the port I',q,
we are thus led to the following coupled system of PDEs

div(cgradp) = 0 in Q, 4)

. —Ia(t) on I'ug
on-grad ¢ = { 0 elsewhere ®

0A -1 . —ogradp in Q
e + curl g™ curl A = { 0 inR3\ 0 (6)
with appropriate initial and boundary conditions. The energy dissipation on [0, 7]
is then given by
T

L = //J~dedt. (7)
Q

0

Taking (1),(2) and (3) into account, we may view L as a functional depending on
the conductivity o which will serve as the design parameter and on the potentials
¢, A which are chosen as the state variables. Prescribing the total amount of
material in terms of the conductivity and allowing o to vary between a maximum
value 0., (conductivity of copper) and a minimum value 0 < Oy, := € < 1 which
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is chosen small but positive in order to keep the ellipticity of the problem, we are
faced with the topology optimization problem

inf L(o,p,A) (8)
o,p,A

subject to the equality constraints

¢ and A satisfy the state equations (4),(5),(6), 9)
/ odr = C (10)
Q

and the inequality constraints
Omin < o S Omax - (11)

In order to enforce the extreme values 0,,,, and oy, we use the SIMP-approach
(Simple Isotropic Material with Penalization) known from structural mechanics.
In the present context, it means that we "replace” the conductivity o by

(o) = ( )? (12)

with an appropriately chosen penalty parameter ¢ > 1.

0‘_0-min-|'6

Omax — Omin

3. The Primal-dual Newton Interior-point Method

In this section, we will present a primal-dual Newton interior-point method for
the numerical solution of the discretized optimization problem. Realizing the exte-
rior domain by an artificial exterior boundary and using simplicial triangulations
,];1(1), ’Z;l(E) of the interior and exterior domain, the discretization is performed by
applying the implicit Euler scheme in time and curl-conforming edge elements of
lowest order [26] in space to (6) whereas nonconforming Crouzeix-Raviart elements
are used for (4),(5). The conductivity is approximated by elementwise constants,
ie, &= (01,...,0m,)T, mp = card ’Z;L(I). The discretized state variables are de-
noted by @ = (¢1,.-.,¢n,)T and A = (Ay,..., Ay, )T where ny, ps are the dimen-
sions of the associated nonconforming resp. edge element spaces. For notational
convenience, we comprise them to a vector @ = (&, A) and refer to

A@)d = b (13)

as the discretized state equations with A(&) denoting the matrix of the associated
system of equations. The constraints (10) and (11) take the form

mp

9() = > |Kilos = C, (14)
=1

Jming S 6: S Umaxga (15)

WhereKieﬂ;l(I),lgigmh, and €:= (1,...,1)T.
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Denoting the discretized objective functional by Ly (i, ), the discrete opti-

mization problem reads as follows:
min Ly (4, o) (16)
u,0

subject to the constraints (13),(14), and (15).

We note that the discretization can be performed within a multilevel and/or
domain decomposition framework by means of multigrid iterative solvers based on
edge element discretizations of the implicitly in time discretized equation for the
magnetic vector potential (6) and nonconforming P1 approximations of the equa-
tion for the scalar electric potential (5) (cf., e.g., 2, 24]) or domain decomposition
methods on nonmatching grids with respect to a nonoverlapping geometrically
conforming partition of the computational domain dictated by the geometry of
the bus bars (cf., e.g., [4, 8, 19, 20, 29]). For adaptive grid refinement/coarsening
relying on efficient and reliable a posteriori error estimators we refer to [2, 3].

In contrast to traditional design strategies where the optimization loop con-
sists of the numerical solution of the field equations for the current design followed
by a Newton-type procedure for the computation of the increments for the design
parameters, we will use an integrated approach by means of a primal-dual Newton
interior-point method where the convergence is monitored by a hierarchy of merit
functions combined with an appropriate watchdog strategy. Such techniques have
been recently developed and tested for nonlinear programming problems (cf., e.g.,
[13, 14, 16]). Typically, the inequality constraints are taken care of by classical
logarithmic barrier functions with a barrier parameter resulting in a parametrized
family of minimization subproblems which is then solved by a simultaneous se-
quential quadratic programming technique.

The first step in the primal-dual interior-point approach is to introduce the
logarithmic barrier functions

B(u,d,p) := Lp(u,5) — p[log(d — omin€) + log(omax€ — 7)), (17)

where p > 0 is a suitably chosen barrier parameter. We consider the family of
minimization subproblems

min B(4, 7, p) (18)
u,0
subject to the equality constraints
A@a = b , g(@ = C. (19)

For an isolated local minimum (@*,&*) of (16) it can be shown that for a null
sequence (pn, )N of sufficiently small barrier parameters the minimization problems
(18) have solutions (i@, dy) converging to (4*,5*).
The second step is to invoke a simultaneous SQP approach for the solution of
(18). To be more specific, the equality constraints (19) are coupled by Lagrangian
multipliers leading to the saddle point problem
min max LP)(@,3,X,n) (20)
0,6 Xnp
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for the Lagrangian
LP(%,6,X,n) = B(@,p) + AT (A@)T - b) + n(g(@ - C). (21)
The Karush-Kuhn-Tucker conditions are given by
FO(,6,\,n) = 0, (22)

and Dy := diag(0; — Omin) and Dy := diag(omax — 0i)-

Since for p — 0 the expressions p D] 1&and pDy 1 & approximate the comple-
mentarity conditions associated with (16), it is standard to introduce 7 := pD; '€
and W := pDy 1€ as some kind of approximate complementarity. Then, Newton’s

method is applied to three sets of equations
e primal feasibility (o, 5),
o dual feasibility (A,n),
e perturbed complementarity (2, )

resulting in the linear algebraic system

0 Laz Lz O 0 0 Al Vz L
Lsz Lzz Lz Ley —1 1 Aq Vs L
‘CXa’ ﬁ;\'&. 0 0 0 0 A _ _ Vs L (23)
0 Ly O 0 0 0 An Vi, L
0 Z 0 0 D;y O AZ VzL
0 -W 0 0 0 Dy AW Va Ll

Note that the coefficient matrix is usually referred to as the primal-dual Hessian.
Obviously, it is not symmetric but can be easily symmetrized, since the matrices
Z and W are diagonal (cf., e.g., [15]). We do not adapt this approach here, but
instead perform a block elimination of the increments A Z’ and A w yielding the
condensed system

0 Lag Ly 0 Ad Val
Lzz Lzz Lz Lay A o _ _ | V&L , (24)
Lsz Lz 0 0 A Vs L

0 Ly O 0 An Vi, L

where

Ls5 = Ls3 + DT'Z + D;'W |, Vol = VoLl — D{'VzL + Dy VL.
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Following [25], we consider a null space decomposition of the condensed primal-
dual Hessian, i.e., we interchange the second and third rows and columns and
partition the resulting matrix according to

0 ‘CﬂX l Ega 0

S T = R
Lsz Lz | Lz Loy
0 0 | Ly O

We remark that the first diagonal block

_ 0 LaX
A_<£Xa 0)

is indefinite, but nonsingular with L5 being the stiffness matrix A(5') associated
with the discretized potential equations.

We choose A(5) as an appropriate approximation of A(&) realized, for in-
stance, by an SSOR iteration. Then, for

I 0 | —/}_1(&)£X3 0
_J-1RT 0 I | -AdLas O
KB = ( é AI B ) = | —— —— | - __ (26)
0 0 | I 0
0 0 | 0 I
and taking advantage of the regular splitting
KKR =
0 A@ | 0 0 0 0 | Laz—A@B)A()Laz O
A@ 0 | 0 0 0 0 | Lzz—A@A()Ls; O
_ — | — — — _ ‘ __________ _
Lsa Lz | S  Lay 0 0 | 0 0
0 0 | Ly O 0 0 | 0 0
=V.M1 Z:X/lz
where

S = Eaa — ﬁagzﬁi—l(&)ﬁxa - L
we perform the transforming iterations
AT = AP + KEMTY(d - KATY), (27)

where AU := (AT, AX, AG, An)T. The new iterate U®e¥) ;= (g(rew) Xnew) glnew)
n®™**))T is then obtained by a line search in the direction AY:

pE) g | (AT), , 1<i<d. (28)

(2
A standard convergence monitor in nonlinear programming is to choose the Eu-

clidean norm || F® (&, &, X, n)|| of the residual with respect to the KKT-conditions
(22) as a merit function. However, in the situation under consideration this is an
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inappropriate tool, since it does not allow to tell the difference between a local
minimizer and a stationary nonminimizing point. Indeed, the computations reveal
that using the residual as a merit function one often gets stuck with a saddle
point. A better approach is to rely on a hierarchy of two merit functions (cf.,
e.g., [16, 27]). In particular, the primary merit function is chosen as a modified
augmented Lagrangian incorporating the logarithmic barrier functions according
to

2

- - — — — = ]' — —f =
My(@,Gp,pa) = Lal@) — p Y logdi(d) + 97 8) + L pacle)” @) (29)
i=1
where Z := (@,8)T , 7:= AT, &&) = (c1(F), ()T, and
a(@) = A@)T - b , @) = g@) - C,
di(Z) == G — omin€ , do(f) = Omax€ — T .

Note that pa is a positive penalty parameter. For p4 sufficiently large it is always
possible to realize a decrease in M;.

The residual with respect to the KKT-conditions is chosen as the secondary
merit function .

My(Z, ) = || Fp(d,d,An) - (30)

In practice, the hierarchy of merit functions is used by means of the following
strategy: If the steplengths s;,1 < ¢ < 4, lead to a decrease in M, they are
accepted. If M; does not decrease, Ms is checked and the steplengths are accepted
in case it has decreased. However, if there is no reduction of M; after at most
N,q iterations, the penalty parameter p4 is chosen sufficiently large in order to
guarantee a decrease in M;. Note that in our computations N,4 = 4 turned out
to be a suitable choice.

4. Numerical Results

The simulation results obtained by the application of the primal-dual Newton
interior-point method can be displayed by a grey-scale representing the range of
the computed material distribution from dark (0 = Opax) to light (6 = Omin)-
Figures 3 and 4 show such a scale for a 2D computation where the bar contains 2
ports (Fig. 3) resp. 6 ports (Fig. 4) with a current inflow at the upper port(s) and
an equal amount of current outflow at the lower port, and the design objective
is to minimize the electric energy dissipation. In particular, Figure 3 displays the
influence of the penalty parameter q in (12) on the material distribution whereas
Figure 4 reflects the impact of the granularity of the triangulation. Table 1 contains
the convergence history of the optimization algorithm where N, stands for the
number of ports, N, resp. N, are the numbers of nodal points in x- resp. y-
direction, ”iter” is the number of required iterations with |].7~"I'j|| < 1070 | Al as
stopping criterion (.7-"1’,c denotes the k-th residual), ”p” is the last value of the barrier
parameter, "M; ” and || Fp||2 are the final values of the primary and secondary
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