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Abstract. High power electronic devices such as converter modules are frequently
used as electric drives for high power electromotors. The efficient and reliable
operating behaviour of such devices requires an optimal design with regard to a
minimization of power losses due to parasitic inductivities caused by eddy currents.
The mathematical modelling gives rise to a topology optimization problem where
the state variables are required to satisfy the quasistationary limit of Maxwell's
equations and the design variables are subject to both equality and inequality con­
straints. Based on appropriate finite element approximations involving domain de­
composition techniques, the discretized optimization problem is solved by a primal­
dual Newton interior-point method.

1 Introduction

The design of innovative high power electronic devices and systems based on
the pulse width modulation technique has become an industrially relevant
issue in recent years due to the wide range of applications. In particular,
pulsed DC-AC converter modules are used both for energy generation and/or
transmission and as electric drives for high power electromotors in public
transportation systems such as trams and, as the most spectacular example,
in high speed trains (cf. Fig. 1). Such converter modules consist of modern
fast switching semiconductor devices, e.g. IGBTs (Insulated Gate .:Bipolar
Transistors) or GTOs (Gate Turn-Off Thyristors) interconnected and linked
with the power source and load by copper made bus bars (see Fig. 2). Due
to the use of the IGBTs or GTOs, switching times of less than 100 ns and
switched currents of one up to five kA can be realized. However, as a side­
effect of the fast switching times and steep current ramps, eddy currents build
up inside the bus bars that lead to parasitic inductivities causing possible
overvoltages and significant power losses (cf. [9,11]). Therefore, one of the
prime objectives of the electrical engineers is to design the bus bars in such a
way that the total inductivity is minimized. It is known that the geometrical
shape and topology of the bus bars play a prominent role in so far as they
have a significant impact on the distribution and size of the generated eddy
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Fig. 1. Applications of high power converter modules: Energy generation (left),
public transportation (top right), high speed trains (bottom right)

currents. Consequently, the task is to distribute the material in an optimal
way. From a mathematical point of view, the problem can be stated as a
topology optimization problem with constraints on the state and design vari­
ables. Here, the state variables are the generated electromagnetic fields, or
associated potentials, and the design variable is chosen as the conductivity
of the material. In this paper, we will present a primal-dual Newton-type
interior-point method for the solution of the topology optimization problem
(Sect. 4). Since this algorithm requires the frequent solution of the underly­
ing field equations, we need advanced numerical solution methods for their
efficient computation. In particular, we will discuss in some detail multilevel
and domain decomposition techniques using adaptive curl-conforming edge
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element discretizations (Sect. 3). These are applied to potential equations for
the scalar electric potential and the magnetic vector potential which can be
derived from the quasi-stationary limit of Maxwell's equations as shown in
Sect. 2. Finally, in Sect. 5 we will document the results of numerical computa­
tions that can lead to a considerable reduction of the parasitic inductivities.

2 Parasitic Inductivities in Converter Modules

We consider a converter module consisting ofN bus bars Dv , 1 :S 1J :S N, and
M IGBTs (Insulated Gate J2.ipolar Transistors) connecting a power source
with the load (d. Fig. 2 (left)). Each bus bar contains Nv ports TvQ , 1 :S Q: :S
N v , where currents are either supplied or taken off the bar (cf. Fig. 2 (right);
the ports are marked by different colours). During operation of the module,
eddy currents are generated that can be described by the quasistationary
limit of Maxwell's equations

aBat + curlE = 0 , divB o , curlH J, (1)

B = j.LH , J = aE . (2)

Here, E and H denote the electric and the magnetic field, Band J stand for
the magnetic induction and the current density, j.L is the magnetic permeabil­
ity and a refers to the electric conductivity (d. [1] for a justification of the
quasistationary limit in the computation of eddy currents).
We use a potential formulation by introducing a scalar electric potential

rp and a magnetic vector potential A according to

aA
E = -grad rp - ­at

r . = = = = = = ~ ' II}-+c:::====:::1

B = curl A

Fig. 2. Converter Module (left); Geometry of a bus bar (right)
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(d., e.g., [6]). For the electromagnetic potentials <p and A, from (1),(2) we
obtain a coupled system of PDEs consisting of an elliptic boundary value
problem

div (0" grad <p) = 0 in n, (3)

d {
-Iy(At)

0" n . gra <p = 0

with LT Iya: = 0, and a parabolic PDE
vo<

on Tya:
else

(4)

8A {0" at + curl f..l-1 curl A =
- 0" grad <p

o
in n
in R3 \ n (5)

with appropriate initial and boundary conditions. Note that (5) has to be
considered in the interior and exterior domain.

The total inductivity is given by

(6)

with the generalized transient inductivity coefficients

Lya:,/-L{3(t) := 0"-1 JJya:(X)' S(t)J/-L{3(x) dx

Jlv

where Jya: denotes the current associated with the bar ny at the port TYa:
and SO is the solution operator associated with (5).

3 Numerical Solution of the Field Equations

Structural optimization algorithms with PDE constraints like the primal­
dual Newton interior-point method to be described in the subsequent section
require the frequent solution of the PDEs, i.e., in this context the solution
of the equations (3),(4) and (5) for the electric potential <p and the magnetic
vector potential A. Therefore, we have to provide efficient numerical tools
for their iterative solution. For that purpose we will use adaptive multilevel
and domain decomposition methods based on curl-conforming edge element
discretizations for the computation of the magnetic vector potential A and
on nonconforming PI approximations for the electric potential <p.
Discretizing the interior domain problem associated with (5) implicitly in

time by the backward Euler scheme, at each time step tm := tm -l +..1t we are
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faced with an elliptic boundary value problem for the double curl-operator
whose variational formulation takes the form:
Find jm EVe H(curlj Sl) := {q E L2 (Sl)31 curlq E L2(Sl)3} such that

where

a(jm,q) = i(q) qEV, (7)

a(j,q):= ![.1tJ,l- l CUrlj 'CUrlq + aj·q]dx

n

i(q):= ! a [jm-l . q - .1t gradcpm . q] dx

n

j,qEV,

qEV.

Edge elements, originally due to Whitney, have been systematically intro­
duced into the finite element methodology by Nedelec (cf. [18,19]) and have
become an appropriate tool in the computation of electromagnetic fields (see
e.g. [7,8,10]).
We consider the lowest order edge elements with respect to a simplicial

triangulation 'ft, of the computational domain Sl

KE'ft,

with the degrees of freedom given by the tangential components with respect
to the edges Ev of K

lEv(q) := ! tEv . qda

Ev

The global edge element space

is then a proper subspace ofH(curlj Sl) and we choose V h := Nd1(Sl; 'ft,)nv.
The problem with the solution of the finite dimensional analogue of (7)

(8)

is that the curl-operator has a nontrivial kernel which is the subspace of
irrotational vector fields. We take advantage of the fact that in the discrete
regime this very subspace can be identified with grad Vh for some Vh C

Sl(Slj'ft,), where Sl(Slj'ft,) is the finite element space associated with the
standard conforming PI approximation. To be more precise, we can set up
the following hybrid iterative scheme:
Given some iterate j ~ ' V E V h , v E No, we first perform some SOR

sweeps on (8) resulting in l ~ ' v and consider the defect correction problem on
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the subspace of irrotational vector fields

J(j grad Uh . grad Vh dx

n
(9)

Performing some SOR sweeps on (9) gives Uh, and we obtain j ~ , V + l :=

3;;'v + grad uh.
In a multilevel framework, having a hierarchy ('7k)1=o of simplicial tri­

angulations at our disposal, the above hybrid iteration is used both as a
smoother on all levels 1 :::; k :::; f and as an iterative solver on the coarsest
grid k = 0 whereas the intergrid transfers are handled in a canonical way (d.
[12] for a detailed analysis and [2] for various applications).
Mortar edge element methods (d. [4,13]) are appropriate for an FEM­

FEM coupling of the interior and exterior domain problems as well as for a
doamin decomposition approach to the interior domain problem with respect
to a nonoverlapping geometrically conforming decomposition

i=!=j

according to the geometrical structure of the bus bars. We refer to the union
of the interfaces between adjacent subdomains

S := Urij
if-}

as the skeleton of the decomposition.
We further consider individual simplicial triangulations of the subdomains

fli , 1 :::; i :::; n, allowing nonconforming nodal points on the interfaces rij C S
and discretize the subdomain problems by the lowest order curl-conforming
edge elements. In order to guarantee consistency of the overall approxima­
tion, we have to impose weak continuity constraints on the skeleton S which
can be realized by appropriately chosen Lagrangian multipliers. We denote
by Vh(fli ), 1 :::; i :::; n, the subdomain based edge element spaces and by
M h (rij ) , r ij C S, the local multiplier spaces. We define the product spaces

n

Vh(fl) := II Vh(fli )

i=1

Mh(S) := II Mh(rij )

rijeS

(10)

n

ah(Uh,Vh) := Lani(Uh,Vh)

i=1

(11)
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where ani := a Ini' and bh : V h(5l) x Mh(S) -+ R

bh(qh, ILh) := L j ILh· [n 1\ qh] !rij ds (12)
rijcs rij

for edge element discretizations where [n 1\ qh] Irij denote the jumps of the
tangential components of qh across the interfaces Tij C S.
The domain decomposition approaches give rise to the discrete saddle

point problems:
Find (Uh, Ah) E Vh(5l) X Mh(S) such that

ah(Uh, Vh) + bh(Vh, Ah) = £(Vh)

bh(Uh,J-Lh) 0

Vh E Vh(5l) ,

J-Lh E Mh(S) .

(13)

(14)

In order to guarantee the ellipticity of the bilinear form ah (., .) on Ker Bh

Vh E KerBh , a > 0 , (15)

where B h : Vh(5l) -+ (Mh(S))* is the operator associated with bh(·,·) as
well as the discrete inf-sup condition (LBB-condition)

the multiplier spaces M h (Tij ) , Tij C S, have to be chosen in an appropriate
way. This can be done by a suitable modification of the basis functions asso­
ciated with edges in the interior of Tij that have neighboring edges on {)Fij .

The modification consists in adding a convex cobination of the basis functions
corresponding to the neighbors on {)Tij . For details of the construction as well
as a verification of (15) and (16) we refer to [4,13].
The numerical solution of (13),(14) has again to take into account a defect

correction in subspaces of irrotational vector fields which now has to be
adapted to the domain decomposition setting. We refer to [14] for details
as well as to [3,14] for the realization of grid adaptation strategies based on
efficient and reliable residual type a posteriori error estimators.

4 Minimization of the Total Inductivity
by Topology Optimization

Significant power losses during operation of the converter module can be
avoided by a reduction of the parasitic inductivities that can be achieved by
an optimal distribution of the material in the bus bars. Such topology opti­
mization problems are well-known in structural mechanics (d., e.g., [5] and
the references therein), but have not yet been investigated in the framework
of an optimal design of high power electronic devices.
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We use the conductivity a as a material parameter and choose an SIMP­
methodology (S-imple Isotropic Material with E.enalization) where we con­
sider a scaled version of the potential equations and their discrete analoga,
respectively, with TJ(a) := ((a - amin)/(amax - amin))q and an appropriately
chosen q E N (e.g., q = 2) for a penalization of intermediate conductivities.
Here, amax stands for the conductivity of the basic material (copper) and
o< € =: qmin « 1 to avoid difficulties due to a loss in ellipticity.
The potential equations are discretized implicitly in time by the backward

Euler scheme and by Nedelec's lowest order curl-conforming edge elements
resp. the nonconforming PI approximation in space with respect to a sim­
plicial triangulation ~ as described in the previous section. Denoting the
discretized total inductivity by L h and comprising the discrete state variables
'Ph and A h in a single vector Uh := ('Ph, Ahf for the sake of notational
convenience, we are thus led to the following nonlinear minimization problem:
Find ah , uhsuch that

min Lh(ah, Uh)
O"h'Uh

(17)

subject to the equality constraints

g(ah) .- L meas(K)ah IK
KETh

and the inequality constraints

c

(18)

(19)

(20)

where eh := ( e h , i ) t ~ l ' eh,i = 1, 1 ~ i ~ dh := card Th. Note that the system
(18) represents the discretized potential equations in compact form.
For the numerical solution of (17)-(20) we use a primal-dual Newton

interior-point method where the inequality constraints (20) are taken care of
by logarithmic barrier functions. To be more precise, we consider a sequence
of minimization subproblems of the form

(21)

subject to the equality constraints (18), (19) where Bh(ah, Uh, Ph) is the
barrier function and Ph > 0 the barrier parameter.
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The equality constraints are coupled by Lagrangian multipliers giving rise
to the Lagrangian

The first-order Karush-Kuhn-'IUcker (KKT) conditions for the associated
saddle point problem are solved for decreasing values of the barrier param­
eter Ph by a Newton-type method with line-search. We choose a primary
merit function based on the logarithmic barrier function and an augmented
Lagrangian as well as a secondary merit function in terms of the f 2-norm of
the residual with respect to the KKT conditions combined with a watchdog
strategy for convergence monitoring (for details we refer to [16,17]).

5 Numerical Results

The application of the design algorithm typically results in a material distri­
bution which can be displayed by a grey-scale ranging from black (0" = O"max)

to white (0" = O"min)' Fig. 3 shows the results in a 2D situation where the
design objective is to minimize the total amount of dissipated electric energy.
The initial design was chosen as a uniform distribution. The performance of
the primal-dual Newton interior-point method as described in Sect. 4 depends
on the number of ports and individual contact currents (for details we refer
to [16,17]). For an individual bus bar with prescribed currents at the ports,
Fig. 4 displays the distribution of both the computed electric potential (left)
and the computed electric currents (right). We refer to [9,11] for a detailed
documentation.
Finally, Fig. 5 contains the visualization of the computed magnetic induc­

tion between two ports of the bus bar where the computation has been done
by the adaptive multilevel method described in Sect. 3. Again, more details
can be found, e.g., in [15].

Fig. 3. Material distribution: 3 contacts (left); 5 contacts (right)
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Fig. 4. Electric potential (left); Electric currents (right)

Fig. 5. Magnetic induction in converter module (zoom)

6 Conclusions

In a combined way, we have used modern mathematical methods from struc­
tural optimization and the numerical solution of PDEs in general and the
eddy current equations in particular to develop an efficient algorithmic tool
for the optimal design of high power electronic devices. The numerical compu­
tations reveal that the design can be improved by a margin ranging between
10% and 20%.
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