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Glossary

adjacent: Two vertices of a polyhedron are adjacent, if they are connected by an edge.
barrier function: A function tending to infinity at the boundary of the feasible region.
basic solution: A (feasible or infeasible) point where at least n restrictions are tight, whose
gradients are linear independent.
basis-exchange: The replacement of one element of a basis by a nonbasic element.
capacity: The righthand-side value of a restriction.
central path: A set of points in a polyhedron, where certain measures of distance to the
complete boundary are maximized. The measures depend on a parameter, the solutions for all
parameters form the central path.
complementary slackness: The relation between a primal variable and a dual restriction or
vice versa. In a weak version at least one of them is zero/tight, in a strong version exactly one
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of them is zero/tight.
computation time: The time required by an algorithm to produce a solution, often measured
in the number of arithmetical operations and of bits to be handled.
(convex) cone: A cone is a set of vectors such that each prolongated or reduced (positive)
version of that vector is also in this set.
convexity: A set of points is called convex, if with each pair of points in that set the connect-
ing line segment belongs to the set, too.
decision variable: One component of the vector describing the action which is to be carried
out.
degenerate: A vertex is called degenerate, if more restrictions than necessary are tight there.
diagonal matrix: A matrix having nonzero entries only in the diagonal.
distance to centrality : A measure describing a distance to a specific point on the central
path.
dual feasible: A basic solution is dual feasible, if it would be optimal in case that the violated
constraints could be ignored.
duality: A relation between pairs of Linear Programs such that both can be solved simulta-
neously and that the sets of objective values bound each other and intersect only in optimal
values.
edge: A boundary set of a polyhedron of dimension one.
ellipsoid: A set of points in IRn which is a generalized version of an ellipse from IR2.
extremal subset or face: A subset of a polyhedron such that exactly there a linear func-
tional becomes maximal.
facet: A face of a polyhedron of maximal dimension not coinciding with the polyhedron itself.
feasible set: The set of points in an LP satisfying all restrictions.
halfspace: A set of points satisfying a linear inequality of the type ”≤”.
hyperplane: A set of points satisfying a linear equation (the boundary of a halfspace).
infeasibility: The situation that the restrictions of an LP cannot be satisfied altogether, i.e.
that no point is feasible.
kernel: The solution set of a linear system Ax = 0 is called the kernel of the matrix A.
Newton Method : A numerical method for approximating the minimal points of functions
or the zero-points of a function.
Linear Program (LP): A mathematical task to find the maximal or minimal value of a linear
function at a point where certain restrictions in form of linear inequalities or linear equations
are satisfied.
objective function: The function that shall be optimized, resp. the criterion for quality.
parametric optimization: Determination of all optimal points for arbitrary mixtures of two
different objectives.
Phase I: A calculation procedure for determining a feasible point or a vertex of an LP.
Phase II: A calculation procedure for improving the objective until the optimal point is
reached.
pivot step: The arithmetical handling of a basis-exchange.
polyhedron: A set of points satisfying a finite system of linear inequalities.
polynomiality: An algorithm is called polynomial if its calculation time is bounded by a
polynomial in the encoding length of the problem-instance.
polytope: A bounded polyhedron.
predictor-corrector: An iterative algorithm which first extrapolates in order to improve the
objective, and - after that - tries to get back into the neighbourhood of the central path.
reduced cost coefficients: Values indicating whether increasing a variable is worth while.

2



Revised Simplex Method: A version of the Simplex Method, designed for saving compu-
tation time, in particular suited for very large problems.
restriction: An equation or inequality that has to be satisfied by all decision vectors which
may be considered.
rounding procedure: The determination of a close-by vertex from an approximating itera-
tion point.
search direction: Instead of searching better points in the whole space, one concentrates on a
certain line and determines the best point on that line. That line induces the search direction.
sensitivity analysis: A study how the optimal value and the optimal point change, if some
data of the problem vary.
Simplex Path: A sequence of successively adjacent vertices such that the objective values
improve.
sparse matrix: A matrix that has very few nonzero entries.
steepest descent: The direction where a function decreases the most.
strong polynomiality: An algorithm whose computation time is polynomial in the number
of entries of the matrix of the problem, is called strongly polynomial.
tight/loose restriction: A ≤ restriction is called tight at a point x, if also the corresponding
= is satisfied, else it is called loose at x.
transformation: A modification of the mathematical description.
transformation-equivalent: A property of a pair of Linear Programs whose difference re-
sults from the application of feasible modifications.
unboundedness: Appears in connection with the feasible region and in connection with the
objective. If the latter is unbounded, the problem does not contain an optimal point.
vertex: An extremal set of dimension 0 in a polyhedron.
vertex-exchange: The move from one vertex to another one in the process of the Simplex
Method.

Summary

This survey has the purpose of giving an impression over the various fields of applications of
Linear Programming in real-world decision making, of clarifying the essential mathematical
terms and principal theoretical ideas in that mathematical field, and of explaining the most
useful and efficient solution methods.
Linear Programming is a mathematical principle to simulate the well known real-world situa-
tion, that one achieves a certain goal, but has to consider certain constraints while searching
for the best possible decision. In Linear Programming one assumes that the decisions have
an impact on the objective and on the restrictions, that can be characterized by linear func-
tions of the variables characterizing the decisions. And then it is a task of mathematics to
calculate the optimal values of the decision variables. We present the mathematical theory of
linear inequalities, of polyhedra and of duality. And then we show how this can be exploited
to develop algorithms for solving such problems technically. The three methods in discussion
are the Simplex Method, the Ellipsoid Method and Interior Point Methods. Their description
finally leads to a comparison about their efficiency and complexity.
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1 Linear Programming Problems

1.1 Formulation of Linear Programming Problems

In real life most of our decisions how to act or how to behave can be interpreted as attempts
to optimize a certain goal or objective without violating certain restrictions, which may be
given by nature, men or our own will, to follow existing rules.
For mathematics this means a challenge to modelize and to formalize this attempt math-
ematically, and to provide calculation methods for the determination of the best possible
decision, if the objective and the restrictions are known. This mathematical field of developing
tools for that purpose is of enormous importance in economy, engineering, administration,
communication, and in all questions concerning technological development.

The mathematical approach for solving such problems is as follows:
Translate the possible decision set into a formal set of vectors of a finite number of decisions
variables. Then find out which of these decision–vectors are feasible under the given restric-
tions. After that optimize, i.e. select the best decision-vector among the feasible ones. The
criterion for good, better and best comes from a mathematical function describing the specific
quality of the decision in question.

So a formal characterization of the mathematical problem is:

maximize f(x), a function f : IRn → IR defined on x = (x1, . . . , xn)T

subject to g1(x) ≤ γ1, . . . , gm(x) ≤ γm, and h1(x) = κ1, . . . , hl(x) = κl.
(1)

Here f is the objective function and the gi(x) ≤ γi resp. hj(x) = κj are the (m+ l) restrictions.
The gi’s and the hj’s are called the restriction functions. The values γi and κj are called
capacities. The components of the vector x are called the decision variables.
The set of feasible vectors x will be denoted by X. So we can formalize our problem to

Find a specific vector x = (x1, . . . xn)
T ∈ X (2)

such that f(x) ≥ f(x) for all x ∈ X

with X = {x | g1(x) ≤ γ1, . . . , gm(x) ≤ γm and h1(x) = κ1, . . . , hl(x) = κl}.

Depending on the mathematical features of those functions, these problems are classified into
certain categories.
What we have mentioned in (??) is a typical general Nonlinear Programming Problem (see
Nonlinear Programming).
This survey is dedicated to a special form of that, namely to Linear Programming Problems
or Linear Programs (LP).
Their general formulation is:
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maximize cTx
subject to aT1 x ≤ b1, . . . , aTmx ≤ bm resp.Ax ≤ b,

and dT1 x = p1, . . . , dTk x ≤ pk resp.Dx = p,
where x, c, a1, . . . , am, d1, . . . , dk ∈ IRn, b ∈ IRm, p ∈ IRk.

(3)

Here the vectors ai
T are supposed to be the row vectors of the matrix A ∈ IR(m,n) and the

vectors di
T form the matrix D.

Instead of the general functions f(x), gi(x) and hj(x) we have now linear functions cTx, aTi x
and dTj x. c, ai, dj are here the gradients of f, gi, hj.

An important property of these problems lies in the fact that the variables may attain all
real values and that they may vary continuously. And the contribution of one variable to the
objective function or to the restriction functions is proportional to its value in this specific type.

This is different in another type, which will repeatedly be mentioned in this text as a closely
related, but discretely structured type, namely the Integer Linear Optimization Problem (see
Combinatorial Optimization and Integer Programming), which is

maximize cTx
subject to aT1 x ≤ b1, . . . , aTmx ≤ bm resp. Ax ≤ b,

and dT1 x = p1, . . . , dTk x ≤ pk resp. Dx = p,
and x ∈ Zn (all xi’s integer )

where x, c, a1, . . . , am, d1, . . . , dk ∈ IRn, b ∈ IRm, p ∈ IRk.

(4)

1.2 Examples

The variety of problems of that LP-type is overwhelming. Here we can only try to give a raw
impression on the different application fields, where linear optimization problems are to be
solved.

1. Ingredient–Mixing
Assume that a product is composable out of a collection of different ingredients I1, . . . , In,
that the costs of these ingredients are different, and that the quality can be controlled by
varying the weights of the n ingredients. Now a certain level of quality shall be assured.
This can be expressed in certain restrictions about the feasible mixtures. Then it is our
aim to minimize the costs by choosing that feasible mixture, which has cheapest costs.

2. Profit-Maximization in Investment
Assume that certain investment facilities are available for a given amount of money. How
shall we distribute our money in order to maximize our profit when the investments are
bounded, a certain level of risk shall not be exceeded and a certain diversification is
required.
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3. Maximizing the delivered amount
Assume that several pipelines or cables are available to send goods or liquids or messages
or data from a sender to a receiver continuously. Which pipelines or cables and to what
extent shall be used in order to maximize the amount that arrives at the receiver’s side
per time unit?

4. Production planning
Assume that the management of a company has to decide about the quantities in which
certain products shall be manufactured. Then it is desirable to maximize the resulting
profit without exceeding the capacity of available machine-time, personal labour force,
financial credit etc.

5. Transportation
Assume that m stores with certain stockpiles have to deliver goods to k shops, which
have specific demands. And suppose that a delivery from store i to shop j causes costs of
cij per unit. How shall the transport be organized, resp. how much of the goods shall be
delivered from store i to shop j in order to minimize the costs and to satisfy the demands
of all the shops.

These are typical linear optimization problems. But linear optimization techniques do not only
help for these pure applications of Linear Programming. They also serve as extremely helpful
tools as subroutines in the calculation of Integer Programming Problems as for example Staff
Scheduling in Airline-Flights, Flight or Travel Scheduling, Route-Planning, Packing Problems,
Location Problems etc. Here one uses Linear Programming repeatedly as a subroutine
on subproblems where the integrity-condition is ignored. A systematic exploitation of the
insights achieved in that way leads to the integer optimum (see Combionatorial Optimization
and Integer Programming, Scheduling Problems, Routing Problems, Graph and Network
Optimization).

Now we present a typical numerically specified problem-example.

maximize 3x2

subject to −1.03x1 + 0.12x2 + 0.06x3 ≤ 0.32
0.05x1 − 1.06x2 + 0.06x3 ≤ 0.52
0.011x1 + 0.03x2 − 1.09x3 ≤ 0.47
1.14x1 + 0.15x2 + 0.11x3 ≤ 0.722
0.2x1 + 1.14x2 + 0.075x3 ≤ 0.672
0.14x1 + 0.17x2 + 1.01x3 ≤ 0.532
−0.22x1 − 0.56x2 + 0.67x3 ≤ 0.25

1.1x1 − 0.3x2 − 1.31x3 ≤ 0.80
−1.1x1 + 0.9x2 + 0.9x3 ≤ 0.85

(5)

This problem can equivalently be written as

maximize cTx subject to Ax ≤ b, where (6)
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c =

 0
3
0

 and A=



−1.03 0.12 0.06
0.05 −1.06 0.06

0.011 0.03 −1.09
1.14 0.15 0.11
0.2 1.14 0.075

0.14 0.17 1.01
−0.22 −0.56 0.67

1.1 −0.3 −1.31
−1.1 0.9 0.90


and b =



0.32
0.52
0.47
0.722
0.672
0.532
0.25
0.80
0.85


.

Figure 1: Feasible Region

Figure 1 shows the feasible region for the example given above. The arrow shows the direction
of the the second component x2, our objective direction. The optimal point is the rightmost
vertex = (−0.258, 0.662,−0.416)T and the optimal value is 1.986.

Geometrically, such a Linear Optimization Problem can be seen as follows:
Find a point (x1, . . . , xn)T ∈ IRn, which maximizes the scalar product cTx on the feasible
region (polyhedron) X = {x |Ax ≤ b}. This means that among the isoclines of cTx that one
shall be selected, which touches X without intersecting its interior. And the ”touching point”
is the optimal point we have been searching for.

From this view it becomes clear that there are four qualitatively different outcomes of an LP:

1. The feasible region X is bounded and the linear (continuous) function cTx attains its
optimal value on X.

2. The feasible region X is unbounded, but the linear function cTx attains its optimal value
on X anyway.

3. The feasible region X is unbounded, and the linear function cTx has no optimal value
on X, because it is unbounded from above on X itself.

4. The constraints of Ax ≤ b are contradictory, which induces that X = ∅.

In algorithms this listing leads to the following general advice:
First, check whether X has feasible points. If not, then STOP because of INFEASIBILITY.
Else try to optimize. As soon as it is clear that the objective function is unbounded, then
STOP also, but this time because of UNBOUNDEDNESS.
Else proceed with the optimization process until an optimal point is found. Then STOP
because of OPTIMALITY.

1.3 Different Forms of Programs and Transformations

So far, we have presented only linear programs of the type

maximize cTx subject to Ax ≤ b.
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But all analytical and arithmetical insights about Linear Programs can easily be transfered to
the ”General Linear Programming Problem”:

maximize dTx + eTy + fT z
subject to Ax + By + Cz ≤ a

Dx + Fy + Gz = b
Hx + Iy + Jz ≥ c
x ≥ 0

z ≤ 0

(7)

From the essence of a real problem it does not matter in which structural way some restrictions
have been modelized. So we allow the following transformations and we regard their outcome
as equivalent:

1. aTx = β ⇐⇒ aTx ≤ β AND aTx ≥ β
an equation can be replaced by two inequalities.

2. aTx ≥ β ⇐⇒ −aTx ≤ −β
an inequality can be replaced by the reverse negative inequality.

3. aTx ≤ β ⇐⇒ aTx+ y = β, y ≥ 0
an inequality can be replaced by an equation with a nonnegative slack variable.

4. x = x+ − x− with xi+ = Max{xi, 0} and xi− = Max{−xi, 0}
a variable can be partitioned as a difference of two positive (minimal) parts.

5. A·ix
i with xi ≥ 0 and − A·izi with zi ≤ 0

the contribution of a column and a variable can be represented
by the negative column and the negative variable.

And, of course, it is allowed to replace a maximization problem by a minimization problem of
the negative objective function (if we keep in mind that our result is negative then).

For the treatment of the different programs it is very important to have the following reduction
opportunity: In every equivalence class according to the above mentioned transformations there
is a problem as:

maximize cTx s.t. Ax ≤ b in canonical form, (8)

and as:

minimize cTx s.t. Ax = b, x ≥ 0 in standard form. (9)

2 Primal and Dual Programs and Polyhedra

2.1 Duality

Often it is helpful to get the information that a given point is optimal or that it is not optimal
and how far it is away from optimality.
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Such auxiliary knowledge can be derived from the theory of dual Linear Programs.

We allow the transformations mentioned above. This permission defines equivalence classes
among linear programs. Then we define duality between two such classes, if in each class there
is a representative, such that these two stand in the following relation.

Definition 1
The following two programs are (directly) dual to each other.

max dTx + eTy + fT z
s. t. Ax + By + Cz ≤ a

Dx + Fy + Gz = b
Hx + Iy + Jz ≥ c
x ≥ 0

z ≤ 0

min aTu + bTv + cTw
s. t. ATu + DTv + HTw ≥ d

BTu + F Tv + ITw = e
CTu + GTv + JTw ≤ f

u ≥ 0
w ≤ 0

(10)

If P is a program which is transformation-eqivalent to the left form and D is a program which
is transformation-equivalent to the right form, then P and D are called dual to each other.

Here are two prominent dual pairs of programs.

P :=
max dTx
s.t. Ax ≤ a

x ≥ 0
and D :=

min aTu
s.t. ATu ≥ d

u ≥ 0
(11)

are dual to each other as well as

P :=

max eTy
s.t. By ≤ a

canonical form

and D :=

min aTu
s.t. BTu = c

u ≥ 0
standard form

(12)

Remark 1
A dual program to a dual program of P is transformation-equivalent to P.

The tremendous value of such dual pairs comes from the following facts.
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Theorem 1 (Weak Duality)
For all x satisfying Ax ≤ b and for all u satisfying ATu = c, u ≥ 0, we have cTx ≤ bTu.
Hence the objective values of a program P := max cTx s.t. Ax ≤ b cannot be higher than those
of its dual D:= min bTu s.t. ATu = c, u ≥ 0.

So any feasible point for D gives us an upper bound for all objective values in P.
And any feasible point for P gives us a lower bound for all objective values in D.

And this helps algorithmically. If we know a point x̄ for P and a point ū for D such that
dT x̄ = aT ū, then both points must be optimal. Else, the difference of the values overestimates
the distance to the respective optimal values. This will be formalized in the following theorem
(which is given here only in its special form for canonical and standard programs).

Theorem 2 (Strong Duality)
For P (in canonical form) and D (in standard form) only four configurations are possible.

1. P and D have feasible points. Then it is sure that both possess optimal points and that
the optimal values are equal.

2. P is infeasible, but D is feasible. Then D has no optimal point, its objective is unbounded
from below.

3. D is infeasible, but P is feasible. Then P has no optimal point, its objective is unbounded
from above.

4. P and D are both infeasible.

But we can profit even more, because duality will even help to identify the optimal points.
This comes from the two following theorems.

Theorem 3 (Weak Complementary Slackness)
With P and D as above, x̃ and ũ feasible for P resp. D, we know that the following statements
are equivalent.

a) x̃ is optimal for P and ũ is optimal for D.

b) ũT (b− Ax̃) = 0.

c) For all components ũi > 0 we know that ai
T x̃ = b.

d) For all rows ai
T of A with ai

T x̃ < bi we know that ũi = 0.

So far, we observe that every pair of optimal points for P and D fulfils such a condition of
complementary slackness as in b). But we know even more if we content ourselves with the
existence of one pair of optimal points in the

Theorem 4 (Strong Complementary Slackness)
If P and D both have feasible points, then there exist optimal points x̃ and ũ such that

ũi > 0⇐⇒ ai
T x̃ = bi and ai

T x̃ < bi ⇐⇒ ũi = 0.

10



We mention that these conditions enable us to conduct a kind of sensitivity analysis for the
solution of LPs for the case that critical capacities change slightly (see Sensitivity Analysis).

2.2 Linear Inequalities and Polyhedra

The main tool in the treatment of linear inequalities is the famous

Lemma 1 of Farkas
Either there is a vector x satisfying Ax = b
or there exists a vector z such that AT z ≤ 0, bT z > 0.

The consequence for the solution of LPs is given in

Theorem 5
Consider a point x̄, where ai

T x̄ = bi for all i ∈ I and aj
T x̄ < bj for all j /∈ I. Such an x̄ is

optimal if and only if there are nonnegative multipliers ρi ≥ 0 for all i ∈ I such that

c =
∑
i∈I

ρiai.

Now the task of algorithms is to identify points with that property, which can also serve as a
guarantee for optimality.

Definition 2
A set P ⊂ IRn is called a polyhedron, if there is a matrix A and a capacity-vector b such that
P = {x |Ax ≤ b}. It is called a polytope, if it is bounded.

So geometrically, the feasible set of our m restrictions a1
Tx ≤ b1, . . . am

Tx ≤ bm

defines a polyhedron.
We observe that such a polyhedron is just the intersection set of a finite number (m) of
halfspaces of the type {x | aiTx ≤ bi}, each of them bounded by the corresponding hyperplane
{x | aiTx = bi}.

A significant feature of such polyhedra is their convexity.

Definition 3
A set M ⊂ IRn is called convex, if x1 ∈ M , x2 ∈ M and λ ∈ [0, 1] implies that every convex
combination y = λx1 + (1− λ)x2 is an element of M.

And in such polyhedra our interest is mainly concentrated on the so-called extremal subsets.

Definition 4
A convex subset W of a polyhedron is extremal, if for all x ∈ W the following holds:
for each pair (y, z) ∈ M ×M and for each λ ∈ [0, 1], such that x = λy + (1− λ)z ∈ W , it is
sure that y ∈ W and z ∈ W .
These extremal subsets of a polyhedron P are called the faces of P .
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Remark 2
The faces of dimension 0 are called vertices, faces of dimension 1 are edges, in dimension 2
we have planes and in general faces of dimension (Dim(P )− 1) are called facets of P .

Each of these faces in an LP-polyhedron is completely characterizable as the intersection set
of P with all restriction hyperplanes bearing W completely.
In particular, each vertex is the intersection point of at least n restriction hyperplanes, each
edge results from intersecting at least n− 1 such hyperplanes.

Another property of such faces is the following:
If a linear function attains its maximal value on a polyhedron P , then the optimal set is
certainly one of the faces of P .
It is worthy to know that in any case, where P contains at least one vertex, then every face
contains a vertex. And then, if there are optimal points, resp. if there is an optimal face,
there is automatically an optimal vertex on that face.

This idea helps to reduce the linear optimizimation problem on polyhedra to a seemingly
simpler problem, namely finding the best vertex and deciding whether it is already optimal in
P or whether not (which would mean that there is no optimal point at all).
In particular this simplifies the handling of polytopes (bounded polyhedra), because there the
possibility of unboundedness resp. nonexistence of optima can be ignored. Here the optimal
vertex is directly the optimal point. The most famous and most efficient algorithm for solving
LPs, the Simplex Method, is based on that idea.

3 The Simplex Method

In this section we will present two versions of the Simplex Method, an algorithm for solving
LPs. Both versions have the following principles in common.

1. In a Phase I, a vertex of the feasible region X shall be calculated. This Phase has two
possible outcomes:

the infeasibility of X is proven and therefore we can STOP.

a vertex x0 of X is found, which is a basis for proceeding to Phase II.

2. In a Phase II, we start from the vertex x0 and construct a sequence of vertices x0, . . . , xs
such that successive vertices are adjacent (i.e. they are connected by an edge), and that
the objective function is improving from vertex to vertex. The construction ends at a
vertex xs if at this vertex

the unboundedness of the objective on X becomes obvious or if

xs is the optimal vertex for the objective on X.

Our first version is an algorithm which works on feasible regions as X = {x |Ax ≤ b}. This
version has the advantage of a very illustrative geometric explanation, since X can be regarded
as a fulldimensional polyhedron, and it is easy to imagine a Simplex Path on such a figure.
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The name of this version is ”Restriction-oriented Simplex Method”.

After that we shall talk about a second version, called the ”Variable-oriented Simplex
Method”. This is specifically adapted to solve problems with X = {x |Ax = b, x ≥ 0}.
Its advantage lies in the fact that its solving technique is a bit closer to the Numerical
Linear Algebra of solving systems of equations and therefore this version is more common in
commercial software packages (see Numerical Linear Algebra).

But it should be mentioned clearly, that both are essentially equivalent, in a certain sense they
are ”dual” to each other.

3.1 The Restriction-oriented Simplex Method

Here we deal with problems

maximize cTx s.t. Ax ≤ b, c, x ∈ IRn, A ∈ IR(m,n), b ∈ IRm, m ≥ n. (13)

Since both Phases of the method run in a similar way, it makes sense to concentrate first on
the more typical Phase II.
Suppose that we know a vertex x̄ of X, which had been determined in Phase II.
In x̄, we recognize that at least n of the restrictions ai

Tx ≤ bi are tight, i.e. these are satisfied
as equations (ai

T x̄ = bi). And the collection of those vectors ai must contain a basis of IRn.
Let I be the set of indices out of {1, . . . ,m} corresponding to the tight restrictions and let
∆ = {∆1, . . . ,∆n} be an n-element subset of I, such that {a∆1 , . . . , a∆n} forms a basis of IRn.
Then x̄ is the unique solution point of the system of equations

aT∆1x = b∆1

, . . . , aT∆nx = b∆n

. (14)

Let A∆, AI be the submatrices of A consisting of the respective rows. Then the following
geometric insights are essential.

Lemma 2

1. X is contained in the set described as x̄ + cone(A−1
∆ (−e1), . . . , A−1

∆ (−en)) = x̄ +
cone(z1, . . . , zn).
Here the ei are the unit vectors in IRn, and the zi = A−1

∆ (−ei) are the n unbounded edges
of {z |A∆z ≤ 0}, the so-called recession cone of X at x̄.

2. For each i ∈ {1, . . . , n} resp. for each zi, there is a value = 0 ≤ δi ≤ ∞, such that
exactly for 0 ≤ ρ ≤ δi the points x̄ + ρizi belong to X. And if I = ∆, then all values δi
are positive.
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Following these directions ei gives us a chance to get to an adjacent vertex, which may improve
the objective. This is formulated in the following

Lemma 3
If an interval [x̄, x̄+ δizi] coincides with an edge of X for a value δi <∞, then it holds that

1. x̃ := x̄+ δizi is a vertex of X.

2. There is a j̃ ∈ {1, . . . ,m} \∆ such that

aj̃
T (x̄+ δizi) = bj̃ and aj̃

T (zi) > 0.

3. Replacing i by j̃ produces a new basis (a∆1 , . . . , a∆i−1 , aj̃, a∆i+1 , . . . , a∆n).

On each edge originating from x there are three possible configurations for δi

1. δi = 0, i.e. x̄ = x̃

2. 0 < δi <∞ , i.e. [x̄, x̃] is a bounded edge of X.

3. δi =∞, i.e. x̄+ IR+zi induces an unbounded edge of X.

It depends on the objective cTx, whether it will pay to move along an edge in direction zi,
because of

cT zi = cT (A−1
∆ (ei)) = (−ei)T (A−1

∆ )T c = −ξi. (15)

Then we know that

1. If ξi > 0 then x̃ is worse than x̄.

2. If ξi < 0 then x̃ is better than x̄.

3. If ξi = 0 then x̃ is as good as x̄.

The sequence of vertex-exchanges comes to an end as soon as one of the following two cases
occurs:

1. −ξ = cT zi ≤ 0 for all i ∈ ∆, then x̄ is optimal.

2. There is a zi such that Azi ≤ 0 and −ξi = cT zi > 0,
then the objective is unbounded from above on X.

So, our considerations lead to the following algorithm:
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Algorithm 1
Initialization:
Let a vertex x∆ = x̄, the set ∆ and A−1

∆ be given.
Typical iteration:

1. Calculate ξ = A−1
∆

T
c.

If ξ ≥ 0 then STOP because of OPTIMALITY.
Else choose an index î such that ξ î < 0.

2. Calculate zî = A−1
∆ (−eî) and aTj zî for all j /∈ ∆.

If aTj zî ≤ 0 for all j /∈ ∆, then STOP because cTx is UNBOUNDED. Else proceed.

3. Determine a value δî and a restriction which becomes tight only in x̄ + δîzî and its cor-
responding index j̃ via the calculation

δî := δî
j̃ = Min

{
bj − aTj x̄
aTj zî

| j /∈ ∆, aTj zî > 0

}
. (16)

4. Replace x̄ by x̃ = x̄+ δîzî and ∆ by ∆∗ = ∆ \ {̂i} ∪ {j̃} and cT x̄ by cT x̃.

5. Calculate A−1
∆∗ i.e. update A−1

∆ .

6. Set ∆ := ∆∗ and go to 1.

Figure 2: Simplex Path

Figure 2 shows a Simplex-Path in thick lines leading from the leftmost start vertex to the
rightmost optimal vertex while improving the objective.

Remark 3
If I has more elements than ∆, then x̄ is called degenerate. The whole problem (resp. polyhe-
dron) is called nondegenerate, if all basic solutions (vertices) are nondegenerate.

Theorem 6
For nondegenerate problems the solution is achieved after at most

(
m
n

)
pivot steps.

Proof: Here we have δî > 0 in each step, i.e. cTx improves strictly. And there are not more
than

(
m
n

)
different basic solutions, resp. vertices. Each of them is visited at most once.

Remark 4
A normal Simplex Algorithm may have difficulties in degenerate vertices (i.e. ∆ 6= I). There
it may generate loops (a sequence of iterations returning to the same basis), while changing
the bases, but not the vertex.
This danger can be avoided by using the special variant of Bland:
Choose in stage 1. of the Algorithm and (if necessary ) in stage 3. each time the restriction
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with minimal original index.
Application of Bland’s Rule definitely prohibits loops and guarantees to finish the algorithm in
at most

(
m
n

)
iterations.

It remains to clarify how to start this algorithm.

Since we do not know a vertex X = {x |Ax ≤ b} in advance, our first problem will be to find
such a vertex. Therefore we begin with solving a modified problem, called PI:

maximize xn+1

PI : subject to Ax+ xn+11 ≤ b (17)

and xn+1 ≤ 0, where (1) := (1, . . . , 1)T .

For this kind of problem we do know a feasible point, namely

w =

(
0

| bmin |

)
with bmin = Min{0, b1, . . . , bm}.

This point is not necessarily a vertex, but if we introduce n+1 additional auxiliary constraints

x1 ≥ 0, . . . , xn ≥ 0, and aj
Tx+ xn+1 ≤ bj for the index where bj = bmin, (18)

then w is a vertex of the restricted PI-polyhedron.
Now we try to get onto a vertex of purely original restrictions and to get rid of the auxiliary
constraints. So we loosen these restrictions (one after the other). If the resulting edge is
bounded, then we conduct a basis exchange, and if not we try the same in the opposite
direction, which is allowed because of the provisional character of the auxiliary constraints.
After n+1 of these moves we finally are in a vertex, whose basis consists of original restrictions
only.
At that moment we have a true vertex of the PI-polyhedron and we run an optimization
process compatible with phase II, but this time for the PI-objective.

The outcome tells us whether X is feasible or not. If the optimal value of xn+1 turns out to be
0, then we have a feasible point of X, which can easily be transformed into a start vertex for
Phase II. But if the optimal value is negative, then we can STOP because of INFEASIBILITY.

3.2 The Variable-oriented Simplex Method

Now we want to present the second version, called the ”Variable-oriented Simplex Method”.
This form is the original Simplex Method that had been introduced by George Dantzig about
1947. It is specifically adapted to problems

min cTx s. t. Ax = b and x ≥ 0, A ∈ IR(m,n), c, x ∈ IRn, b ∈ IRm, m ≤ n. (19)
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In this section we shall write A·i resp. Ai for the i-th column of A. And we suppose that A
has rank m.
In this context, we call a point a basic solution of the system if it satisfies Ax = b and if at
least n−m of its components are 0, where the A-columns to the positive x-components are a
linearly independent system.

Imagine such a partition of the indices {1, . . . , n} into two disjoint sets B and N (B for basic
and N for nonbasic columns). In that way we also obtain a partition of the x-components
x = (xB, xN) for points solving the system Ax = b. Now we have in general

x = (xB, xN), b = ABxB + ANxN and xB = AB
−1b− AB−1ANxN , (20)

and since for basic solutions we shall have xN = 0, it is clear that there xB = AB
−1b.

In the same way the effect on the objective function can be described:

cTx = cB
TxB + cN

TxN implies that at the basic solution cTx = cTxB (21)

and in general cTx = cTBxB + cTNxN = cB
TAB

−1b+ (cN
T − cBTAB−1AN)xN . (22)

So we see that the so-called ”reduced cost-coefficient-vector” (cN
T − cBTAB−1AN) gives the

information whether it pays to increase a component xi, i ∈ N . This is the case, if

(ci − cBTAB−1Ai) < 0. (23)

Increasing exactly one such nonbasic variable, induces geometrically a move along an edge of
X = {x |Ax = b, x ≥ 0}.

Now the question arises as in the last section, how far that increment can be driven.
All we have to maintain is feasibility, i.e. x ≥ 0 and Ax = b. xN will stay at 0 (with the
exception of xi), so we have to concentrate on xB(xi) only. But this is

xB(xi) = AB
−1b− AB−1ANxN(xi) = AB

−1b− AB−1Aix
i. (24)

In order to keep that vector nonnegative, we should choose

xi = Min

{
(AB

−1b)j

(AB
−1Ai)j

| j ∈ B, AB−1A·i
j > 0

}
. (25)

If there is no such index j with positive entry, than we can run the complete ray, increase xi

without any limit and by the way decrease cTx below any limit. In this case we could STOP
because of unboundedness.
Else we find such a maximal value for xi and a corresponding (basic) variable xj. Now a
realization of that (maximal possible) move makes xi a basic and xj a nonbasic variable. Then
the new basis-nonbasis structure will be:
Bnew := Bold ∪ {i} \ {j} and Nnew := N old ∪ {j} \ {i}.
Algorithmically, this looks as follows:
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Algorithm 2
Initialization
Let a vertex x̄ , the index-partition (B,N), and AB

−1A be given.
Typical step

1. Check whether cN
T − cBTAB−1AN ≥ 0.

If YES, then STOP because of OPTIMALITY.
Else, select a nonbasic variable xi with negative reduced cost coefficient
(ci − cBTAB−1Ai) and use Ai as the pivot column for a basis-exchange.

2. Check AB
−1Ai. If this vector is completely nonpositive, then we STOP because of UN-

BOUNDEDNESS of the objective.

3. Conduct a quotient-comparison and determine the (resp. a) nonbasic variable xj̃ which
induces

(AB
−1b)j̃

(AB
−1Ai)j̃

= Min

{
(AB

−1b)j

(AB
−1Ai)j

| j ∈ B,AB−1A·i
j > 0

}
.

The column Aj̃ is bound to leave the basis.

4. Perform a pivot step such that
Bnew := Bold \ {j̃} ∪ {i} and Nnew := N old \ {i} ∪ {j̃}
cTxnew = cTxold + xi(ci − cBTAB−1Ai) < cTxold.

5. Update x̄ , (B,N), AB
−1A and go to 1.

So far, we have dealt with Phase II only. Analogously to above, one sees that in all
nondegenerate cases not more than

(
n
m

)
iterations are required to solve the problem.

In the degenerate case again, it is sufficient to apply Bland’s Rule in the following form:
In degenerate vertices one should choose i in stage 1 and j̃ in stage 3 least possible. This will
avoid loops and assures the upper bound

(
n
m

)
also under degeneracy.

It remains to find a starting vertex, i.e. we have to discuss Phase I.
Our first observation is that in Ax = b we can provide a nonnegative capacity vector b̄ by
premultiplication with (−1) of all rows of A, b, where bi < 0. The result will be a new system
Āx = b̄, which is equivalent to the old one.
Now for the new system we can introduce slack variables ui ≥ 0, u ∈ IRm and we can formulate
a Phase I-problem

minimize 0Tx+ 1Tu

subject to Āx+ u = b̄ (26)

x ≥ 0 u ≥ 0.
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For this problem we know the feasible point

(
x
u

)
=

(
0
b̄

)
. (27)

It is very convenient that this feasible point is even a vertex of the modified PI-polyhedron and
that this allows us to start immediately with the optimization process (compatible to Phase
II). As in the last section, our optimization result will tell us whether our problem is feasible
or not.

• If the optimal value for PI is positive, then the original problem is infeasible and X is
empty.

• If the optimal value for PI is 0, then a simple transformation of the optimal vertex leads
to a vertex of X, which is suitable for starting phase II.

3.3 Modifications of Methods and Problems

In a final section on solving LPs using the Simplex Method we try to present and to explain
some additional topics, which are standard in LP-theory.

1. The Revised Simplex Method
Since many LPs get extremely large, it is reasonable to save computation time wherever
this is possible. This aim is realized in the Revised Simplex Method by an efficient use of
Numerical Linear Algebra. We cannot describe details here, but we mention some saving
ideas as guidelines.
First, not all reduced cost coefficient components (resp. all impacts of edge-moves on
the objective) need to be known. It suffices to have one such item showing a chance for
improvement.
Another resource for saving comes from the fact that it is not recommended to calculate
the upcoming inverse matrices explicitly. Since the required information can be seen
as the result of solving a system of equations, a stepwise approach according to the
methods of Numerical Linear Algebra is more appropriate. For example: Factorization
in upper and lower triangle matrices, representation of the current matrix as a product of
the original matrix with a sequence of so-called ”Eta-matrices” (describing the effect of
basis-exchanges) and reinversions, i.e. new calculation of a correct current data set from
time to time, are strongly recommended. These tricks pay in particular, if the original
matrix is sparse (i.e. most of its entries are 0.)

2. Dual Simplex Algorithms
We have learned that the Restriction–oriented method is directly adapted to problems in
canonical form and that the Variable-oriented method is adapted to problems in standard
form. In both cases the algorithms produce a sequence of feasible points (vertices) while
improving the value of the objective function, until the optimal vertex is found. This is
the way a primal problem is solved.
But as we have noticed in our section on duality theory, such an algorithm also solves -
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in a certain sense - the dual problem. So imagine, that we use our two algorithms cross-
wise (i.e. Restriction–oriented for standard problems and Variable–oriented for canonical
problems). In both cases we may start at a basic solution, which in general is not a fea-
sible point, but which is ”dual feasible”. That means that at the basic solution, the
objective direction is in the respective cone of the gradients to those restrictions which
are tight at the current point. In other words: A basic solution x̄ is dually feasible if it
satisfies the following (somehow artificial) condition: If we drop all the violated restric-
tions at x̄, then x̄ will be optimal on the (now larger) feasible region X̄.
Then both algorithms move from such dual basic solutions to adjacent ones. The ob-
jective for the problem under consideration gets worse in each step. But eventually we
reach the primal feasible region or we recognize that X is empty. And (according to
the explanation above) in that moment that all restrictions are satisfied, we are in the
total primal optimum. This behaviour is also called ”outer” algorithm. The purpose of
achieving feasibility a posteriori can also be used in Post-Optimization, where certain
data of the LP have been changed.

3. Post-Optimization
For many purposes (also for the solution of integer or combinatorial problems) it is very
useful to consider the following configuration: Suppose that a problem has been solved,
and that an optimal vertex is available, but that afterwards some data of the original
problem change or turn out to be false.
For example the capacity vector may differ from the old one, or our objective may have
changed, or some entries of the matrix may be modified. Then it would be advantageous
to use the current optimum as a start for the correction algorithm. This would be
preferred against a complete re-solution of the problem.
The method for such a correction is called Post-Optimization. Mainly it makes use of
the techniques of primal or dual (internal or external) algorithms as described in the
section before.

4. Parametric Optimization
In practice often a similar, but not identical question arises. Suppose that a part of our
data set is considerable in two different versions (and at the moment we cannot decide
which one shall be used). Then it may be interesting to learn about all potential optimal
solutions not only for the two mentioned extremal versions, but also for all mixtures of
these two versions.
For example, let two objectives c1

Tx resp. c2
Tx be in discussion. Then it is interesting

to know all optima corresponding to the convex combinations of both objectives. That
means that we solve an optimization problem for each mixed objective
λc1

Tx+ (1− λc2)Tx with 0 ≤ λ ≤ 1.
Interestingly, the set of these resulting optimal vertices forms a Simplex Path. That
means, that if we start at the optimal vertex for c1(≡ λ = 1) , then a certain variant will
lead us over all optima for decreasing λ to the optimum for c2(≡ λ = 0). On this path
c2
Tx has been successively improved. This variant is called the parametric variant of the

Simplex Method. If we have this sequence of optima, we may and can make the decision
about the objective (which is to be realized) afterwards, i.e. in view of the calculated
optima.
This concept can be generalized to e.g. a finite number of objectives. Then we speak of
”Multiobjective Programming” (see Multicritera Decision Making).
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3.4 The Complexity of the Simplex Method

We have already learned that both in nondegenerate and in degenerate problems as well the
Simplex Method will (e.g. for the canonical form) require not more than

(
m
n

)
iterations, because

this is the maximal possible number of different bases in a system Ax ≤ b with A ∈ IR(m,n).
But the true effort for solving such problems may be significantly less. In this paragraph we
will briefly discuss some insights on that question.
In order to get a formally justified general measure for the complexity of algorithms, we consider
the encoding length of the data set for the problem that is to be solved. In case of an LP these
data are A, b, c and the encoding length (resp. the number of binary bits to store all numbers
of the data set) will be denoted by 〈 〉(see Complexity Theory).
So we observe that

〈LP 〉 = 〈(A, b, c)〉 = 〈A〉+ 〈b〉+ 〈c〉

After having classified all LPs according to their encoding length, and thus forming classes
Π(N) of problem-instances with equal encoding length N (which does depend on the dimen-
sions and on the digit-precision of the single numbers), it is possible to attribute a worst case
running time to each such class.
To formalize the term running time, we consider all the arithmetical operations which have to
be carried out until a problem is solved. In each operation two numbers are involved and we
sum up the two encoding lengths. So we have the number of bits for that calculation. Finally,
we sum this figure up over all such calculations and regard this sum as a formal computing
time.
Now we assume that all problems in the class of encoding length N are solved using an algo-
rithm Alg and we consider the highest running time which has occured in that class. Regarding
all these results for all N ∈ IN, we have a function talgorithm : IN→ IN defined as

talgorithm(N) := Sup{talgorithm(I) | I ∈ Π(N)}, where Π(N) = {I | 〈I〉 = N}. (28)

Such a ”worst-case behaviour function” can be judged according to its growth in N .

Definition 5
An algorithm Alg is said to have polynomial worst case complexity, if there is a polynomial P̃
such that talgorithm(N) ≤ P̃ (N) for all N ∈ IN.
Analoguosly one speaks of linear (≤ CN), quadratic (≤ CN2), cubic (≤ CN3) or of exponential
(≤ Cexp(N)) complexity resp. behaviour.

Now it is a simple consequence of Linear Algebra (see Linear Algebra) that every number
occurring in the Simplex Method during the solution process is between

2(−〈A〉+〈b〉+〈c〉)−2n and 2〈A〉+〈b〉+〈c〉−2n. (29)

Since not more than O(mn) numbers or tableau-entries have to be updated in each step (with
one addition and one multiplication per iteration), it is clear that the effort for one pivot step
is polynomial in L := 〈A〉+ 〈b〉+ 〈c〉 = 〈(A, b, c)〉.
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It remains to clarify, how many pivot steps are necessary until we can stop. Although the
practical experience with the computation time of the Simplex Method had been excellent,
there was a great disappointment, when Klee and Minty 1972 made the following observation
for one variant of the Simplex Method (the analogous results were achieved later for all usual
variants):

Theorem 7
There is a certain family of LPs with m = 2n restrictions in ≤-form and with n variables that
forces the given variant of the Simplex Method to visit all the available 2n vertices of X. This
means, that an exponential number of pivot steps has to be carried out.

The special form of these LPs is :

maximize en
Tx

subject to 0 ≤ x1 ≤ 1
εxi ≤ xi+1 ≤ 1− εxi for i = 1, . . . , n− 1

where ε ∈ (0, 1
2
).

(30)

Such Klee-Minty-polytopes resp. closely related objects show that all well-known variants of
the Simplex Method have an exponential worst-case behaviour (nonpolynomial). But until
now it could not be proven that there is no polynomial variant of the method.

Much better is the observation and the impression, when we care about the average-case
behaviour. (Among others) the author of this survey has (around 1980) clarified that for
a certain stochastic distribution of randomly generated LP-instances, namely the so-called
”Rotation-Symmetry-Model”, the expected number of required pivot steps is polynomial in
both dimensions m and n. This model generates problems of the type

maximize cTx s.t. aT1 x ≤ 1, . . . , aTmx ≤ 1, where x, c, a1, . . . , am ∈ IRn. (31)

And it assumes a distribution of the linear programming problems with the following properties:

The vectors a1, . . . , am, c are distributed on IRn\{0} independently,
identically and symmetrically under rotations.

(32)

Under these conditions it can be proved that

Theorem 8
For all distributions according to our rotation-symmetry-model (??) we have the following upper
bound for the expected number of pivot steps required for solving problems in n variables and
m restrictions:

Em,n(s) ≤ m
1

n−1 · n2 · Const. (33)

This gives a much more helpful statement about the quality of the Simplex Method in practical
applications. It shows that the impact of the very bad examples is rather small and that they
are quite artificial and seldom in reality.
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4 Polynomial Solution Methods for LPs

4.1 The Ellipsoid Method

In 1979, the Russian Mathematician Khachiyan developed and analyzed an algorithm for LPs
which turned out to be - in a certain sense - polynomial in the encoding length (in contrast to
what is known about the Simplex Method).
In principle, this had been a method for deciding whether an inequality-system has a solution
or not.
If L is the encoding length for the system (A, b), then the analysis is based on a certain
perturbation lemma.

Lemma 4

1. Ax ≤ b has a solution x if and only if there is also a solution for

2. 2LAx < 2Lb+ 1.

The volume of the solution set of 2. can be bounded from below.

Lemma 5
If 1. is solvable, then there is a solution point x̄ with ||x̄|| ≤ 2L− 2−L, such that a ball of radius
2−2L around x̄ belongs to the solution set of 2.

A further insight is that such a ball around x̄ of radius 2−2L cannot contain more than one
vertex, which would enable us to ”round” exactly, if we had to search only in that ball.

Khachiyan’s algorithm constructs a sequence of ellipsoids and combines that with a stopping
criterion.

Algorithm 3
Initialization
Let be given: x0 := 0, B0 := E22L, k := 0, Ell0 := {x | (x− xk)TBk

−1(x− xk) ≤ 1}.
(E is the unit matrix and a special ellipsoid Ell0 is implicitly defined by B0. This start ellipsoid
is a ball with radius 2L).
Typical Step

1. Check whether the point xk satisfies all the restrictions ai
Txk ≤ bi + 2−L.

If YES, then STOP because of FEASIBILITY. Else proceed.

2. Choose the gradient ai to one of the violated constraints and set a := ai.
(The hyperplane {x | aiTxk = aTx} divides Ellk in two half-ellipsoids. In one of these two
every point violates the i-th restriction. It remains to check the other (the interesting)
half-ellipsoid.)
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3. Now calculate a new point and a new matrix

xk+1 := xk −
1

n+ 1

Bka√
aTBka

and Bk+1 :=
n2

n2 − 1

[
Bk −

2

n+ 1

Bka(Bka)T

aTBka

]
.

(These figures help to construct Ellk+1, the smallest ellipsoid with center xk+1 that con-
tains the interesting half-ellipsoid of Ellk from 2.)

4. If k + 1 ≥ 6n(n+ 1)L then STOP because of INFEASIBILITY.
Else set k := k + 1 and go to 1.

Figure 3: Ellipsoid Method

Figure 3 shall illustrate how the Ellipsoid Method works. The polygon symbolizes the feasible
region. The first (horizontal) ellipsoid has an infeasible center (x). Therefore we construct
a second ellipsoid, containing the complete right half of the first one. The separating line is
parallel to the edge of the polygon standing for a violated constraint. The volume of the second
ellipsoid is slightly smaller and still the polygon is a subset. In our example, the center of the
second ellipsoid (o) is feasible. So we are ready.

The construction of the ellipsoids in that algorithm is done in such a way that their volumes
shrink from step to step by a factor of at least exp(− 1

2(n+1)
). On the other hand it provides

that the small feasible ball in the polyhedron – if there are feasible points at all – is contained
in each of the ellipsoids.
But after conducting 6Ln(n + 1) iterations, the volume of the ellipsoid Ellk has become so
small, that it is less than the volume of the mentioned small ball. And this would cause a
contradiction if the polyhedron would be feasible.
Now it becomes clear that the algorithm must have stopped with a feasible point xk in any
case, where there are feasible points at all, and this will happen before step 6Ln(n + 1). The
opposite event k > 6Ln(n+ 1) implicitly proves infeasibility.

So far, we have talked about solving a system of inequalities only. But this can be used to solve
LPs, too, e.g. with binary search. Here we define systems which (in addition to feasibility)
require that the objective gets better than a given lower bound. By checking a polynomial
number of such bounds we are able to find the optimal value and the optimal point.
Another, more direct way is to formulate an extended system which comprises the feasibility
restrictions of the primal and the dual problem and makes use of the fact of the Theorem of
Weak Duality, that the primal and dual objective values can coincide only in optimal points.
Such a system reads

cTx − bTy ≤ 0
Ax ≤ b

− ATy ≤ −c
−x ≤ 0

−y ≤ 0.

(34)

So the ellipsoid method is in fact polynomial in the encoding length L, but not purely in the
dimensions (m,n). To distinguish both concepts, the term ”strong polynomiality” has been
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introduced. So the Ellipsoid Method is polynomial but not strongly polynomial.
The fact that the encoding length does not only influence the necessary precision of the cal-
culations, but also the number of iterations, is a non-desired side-effect. But, in addition,
the Ellipsoid Method did in practice not stand the competition with the Simplex Method,
because the condition numbers of the matrices Bk became too small and the ellipsoids became
too degenerate (see Numerical Linear Algebra). So this success of polynomiality remained a
theoretical one.

4.2 Interior Point Methods

Since 1984 the so called interior point methods have been serious competitors for the Simplex
Method. This originated in a proposal of Narendra Karmarkar to produce a sequence of inner
points in a way that they converge to the optimal vertex (in this case the minimal vertex).
So far, such an idea had been present, but mostly it did not work for some of the following
reasons. Usually in Nonlinear Programming (see Nonlinear Programming) a better point is
searched in the following manner: first one determines a certain direction (from the current
point), which promises to lead to better points resp. lower values.

Figure 4: Difficulty of moving in the interior

In the example of figure 4 one tries to reach the uppermost vertex. But if our iteration point
is the left one, then a move strictly upward –along the steepest descent– will soon be stopped.
It is preferable to use a barrier function, which grows rapidly at the border. This leads to
a rotation of the gradient such that a move along the new steepest descent is much more
promising.

Then one tries to find the minimal objective value or the minimum feasible point on the ray
defined by the current point and the search direction. But this search is restricted to the
feasible segment of the ray. So although we may be successfull in finding this minimum, what
we do may turn out to be highly inefficient, if we hit the boundary of X in our move very
soon. This does - of course - depend strongly on the choice of the search direction. Taking
the steepest descent as the search determinator may be much slower than choosing a less
descending (but long feasible staying) direction.

4.2.1 Minimizing Potential Functions

Karmarkars principal idea (and the progress in comparison to the situation before) was to apply
an iteration specific projective transformation on the polyhedron depending on the current
iteration point, which moves the iteration point into the center and which deformates the
polyhedron in such a way that it becomes quite ”thick” and ”round”, such that the center is –
in any direction – far from the boundary. All these transformations can be inverted and so we
produce (as before) a sequence of original points in the original space, but with a measurable
and significant progress in the auxiliary space. A similar effect can be achieved by avoiding that
complicated projective transformation and by applying only a so-called scaled transformation.
This works by premultiplying all points of the original space with a diagonal matrix

Xk
−1 = Diag((x1

k)
−1
, . . . , (xnk)−1). (35)
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This transformation sends the iteration point xk into the image-point (1, . . . , 1)T , which is
equally distant from every bounding hyperplane of the positive orthant (and thus quite central).

The algorithmic tool for improving the objective is the method of

Scaled Steepest Descent
We try to minimize a function ϕ(x) subject to Ax = b and to x ≥ 0.
This algorithm transforms each xk into the point (1, . . . , 1)T .
Instead of ϕ(x) we now work with ϕ̄(y) := ϕ(Xky). To find the search direction h, we project
the (negative) gradient of ϕ̄(y) at y = 1 on the kernel of AXk.
Then we try to find the point of the form y∗ = 1 + λh, y∗ ≥ 0, which minimizes ϕ̄(y).
This point is then inverted into the original space, resp. in xk+1 = Xky

∗.

Now we should think about an appropriate function, which can play the role of ϕ if an LP
has to be solved. As mentioned before, a linear function would not work as desired.

Let us attack the LP

minimize cTx subject to Ax = 0, 1Tx = 1, x ≥ 0. (36)

Every LP in general form can with limited effort be represented or transformed in that way.

Now it turns out that this problem can be solved by considering (instead of cTx) the so-called
potential function

ϕ(x) = n log(cTx)−
n∑
i=1

log(xi). (37)

The term −
∑n

i=1 log xi is a barrier function on the bounded feasibility region (and on the
positive orthant). So it tends to ∞ at the boundary and it remains bounded from below on
X. This enables us to show that as soon as we achieve that the first term n log(cTx) gets less
than −nL , then cTx < exp(−L) < 2−L. (And this is just what we want).

Now back to our method of Scaled Steepest Descent. It can be proven that this algorithm does
in each iteration decrease the value of the above-mentioned potential function by at least 0.1.
Since ϕ has an initial value of less than 2nL, it suffices to carry out 30nL steps to achieve the
desired precision (see Steepest Descent, Barrier Functions, Nonlinear Programming).

So, an upper bound of 30nL iterations is proved and an analysis of the arithmetical effort per
iteration leads to the result that in total O(n3.5L) arithmetical operations are required. If we
conduct them with precision in L bits, this would mean an effort of O(n3.5L2). And so we have
a polynomial behaviour.

4.2.2 Following the Central Path

Another type of such interior point algorithms makes use of the fact that bounded polyhedra
contain a so-called Central Path in the polyhedron of P resp. in the pair of dual feasible sets
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to (P,D).

Suppose that we have to deal with the following dual pair of problems and assume that both
have feasible inner points

P :=

min cTx
s.t. Ax = b

x ≥ 0
standard form

and D :=

max bTy
s.t. ATy + z = c

z ≥ 0
canonical form

(38)

Then we would have a solution for both if we could solve the system

(Sµ) :=

Ax = b
ATy + z = c
x, z ≥ 0
Xz = µ1

(39)

with X = Diag(x1, . . . , xn) for the special value µ = 0.
But it could be helpful to observe the total set of such solutions and systems (for general
µ > 0). Perhaps this will lead us to the desired solution of S0.

This system has for each Sµ a unique solution

 x(µ)
y(µ)
z(µ)

.

And it turns out that the first section of this solution vector, namely x(µ), is just the minimal
point of the logarithmic barrier function

f(x, µ) =
(cTx)

µ
−

n∑
i=1

log xi. (40)

So we recognize a so-called central path for P and D.

Definition 6
The central path on (P) is the set {x(µ) |µ ≥ 0}.
And the central path on (D) is the corresponding set {y(µ) |µ ≥ 0}.

We make the following observations.

Lemma 6
For all values of µ > 0 we have

cTx(µ)− bTy(µ) = x(µ)T (c− ATy(µ)) = x(µ)T z(µ) = nµ. (41)

And for decreasing values of µ , cTx(µ) is decreasing and bTy(µ) is increasing.
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The main advantage of this central path will be that it serves as a reliable guide how to find
the points x(µ′) for µ′ < µ, if we are in or close to x(µ).
To understand this, one needs a measure for the distance to the central path.

Definition 7
The measure of x to centrality under the parameter µ to is defined as

δ(x, µ) := Min{|| 1
µ
Xz − 1|| | y, z such that ATy + z = c}. (42)

This measure results from the attempt to solve a quadratic optimization problem on
{(y, z) |ATy + z = c}. The unique solutions for that are pairs (y(x, µ), z(x, µ)).

Now one should try to get as close as possible to centrality. Thus we employ the Newton-
Method on {x |Ax = b} to minimize the mentioned function f(x, µ). And we can calculate
which move is done by the Newton method when x, µ are at hand (see Newton-Method).
If we denote the move (the difference between successive iteration points) of the Newton-
Method by a vector p(x, µ), then this vector turns out to be

p(x, µ) = XΠAX(1− 1

µ
Xc), (43)

where X = Diag(x1, . . . , xn) and ΠAX is the projection on the kernel of AX.

Then it is important to know that

δ(x, µ)2 = p(x, µ)TX−2p(x, µ). (44)

Being close to the central path will allow us to improve the value of µ significantly without
losing contact to the central path. This comes from two facts.

Lemma 7

1. If δ(x, µ) < 1 then the dual partner of x, namely y(x, µ), is a feasible point of D and we
know that

µ(n− δ
√
n) ≤ cTx− bTy ≤ µ(n+ δ

√
n) (45)

2. If δ(x, µ) < 1 then the point x∗ = x+ p(x, µ) is strictly feasible for P and

δ(x∗, µ) ≤ δ(x∗, µ)2. (46)

From this idea one can develop algorithms which try to reduce the value of µ while staying
close to the central path. The fundamental property is
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Lemma 8
Let δ(x, µ) ≤ 1

2
. If we then move from x to xnew := x + p(x, µ) and if we consider a value

µnew := µ(1− 1
6
√
n
) then the resulting combination will satisfy δ(xnew, µnew) ≤ 1

2
.

This property is exploited in an algorithm with ”short steps”, working as follows:

Algorithm 4
Initalization
Given a pair (x0, µ0) such that δ(x0, µ0) ≤ 1

2
, µ0 = O(2L). Set k := 0.

Typical Step

1. If nµ ≤ exp(−L) then STOP.

2. Set xk+1 = xk + p(x, µ) and µk+1 := (1− 1
6
√
n
)µk .

3. Set k = k + 1 and go to 1.

Using our knowledge from above, the following Theorem can be proven.

Theorem 9
The algorithm with short steps stops after at most 6

√
nL iterations with a precision that is

sharp enough to identify the best vertex uniquely.

Other concepts try to realize longer steps such that µ can be reduced faster. But than it cannot
be guaranteed that we stay in the neighbourhood of δ(x, µ) < 1

2
. However, it is possible to

make such a long step and – afterwards – reduce iteratively the value of δ(xnew, µnew) until we
are at least in a (δ = 1

2
)–neighbourhood. Then we reduce µ again. This type of algorithm is

called a ”predictor-corrector algorithm”. It can be implemented in a way such that again the
complexity is of order O(

√
nL).

The following insights are fundamental for the success of such a predictor-corrector-algorithm.

Lemma 9
Let δ(x, µ) ≥ 1

2
. If we then move from x to x+ 1

1+δ
p(x, µ), then

f(x+
1

1 + δ
p(x, µ), µ) ≤ f(x, µ)− 1

12
. (47)

And if δ(x, µ) ≤ 1
2
, then

f(x, µ)− f(x(µ), µ) ≤ 1

3
. (48)

Figure 5: Comparison of short and long step method

Figure 5 compares the method of short steps with that of long steps. In the left method with
short steps one iterates until the sufficient neighbourhood of the central path is reached. The
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following iterations reduce the distance to the optimum by short steps close to the central
path, which are all made very cautious such that one stays in that neighbourhood.
In the right picture with long steps one has again to reach the neighbourhood, but then we try
to reduce the parameter significantly. But this may lead us far away from the central path.
Before we proceed, we have to make correction steps in order to get back to the central path.

Then this algorithm works as follows.

Algorithm 5
Initalization
Given a pair (x0, µ0) such that δ(x0, µ0) ≤ 1

2
, µ0 = O(2L). Set k := 0.

Typical Step

1. If nµ ≤ exp(−L) then STOP.

2. If δ(xk, µk) ≤ 1
2

then go to 5.

3. xk := xk + 1
1+δ

p(xk, µk).

4. Go to 2.

5. Set xk+1 = xk and µk+1 := (1− 1√
n
)µk .

6. Set k = k + 1 and go to 1.

Here we have inner iterations (2.–4.) and outer iterations (1.–5.). And finally we arrive again
at a complexity of O(n3L), having in mind that we need O(n2.5) for the single step.

Again, we observe theoretical polynomiality, but not strong polynomiality.
But these algorithms are serious competitors for the Simplex Method. They can be imple-
mented in a numerically stable way and they turn out to be superior to the Simplex Method
in those configurations, where the matrix is very sparse and where the number of variables is
extremely high. In the remaining cases, still the Simplex Method seems to be the best choice,
in particular because of its clearness and because it delivers the optimal points directly without
a need to make final roundings.
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