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In proportional representation systems, an important issue is whether a given apportionment
method favors larger parties at the expense of smaller parties. For an arbitrary number of parties,
ordered from largest to smallest by their vote counts, we calculate (apparently for the first time)
the expected differences between the seat allocation and the ideal share of seats, separately for
each party, as a function of district magnitude, with a particular emphasis on three traditional
apportionment methods. These are (i) the quota method with residual fit by greatest remainders,
associated with the names of Hamilton and Hare, (ii) the divisor method with standard rounding
(Webster, Sainte-Laguë), and (iii) the divisor method with rounding down (Jefferson, Hondt). For
the first two methods the seat-bias of each party turns out to be practically zero, whence on average
no party is advantaged or disadvantaged. On the contrary, the third method exhibits noticeable
seat-biases in favor of larger parties. The theoretical findings are confirmed via empirical data from
the German State of Bavaria, the Swiss Canton Solothurn, and the US House of Representatives.
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1. Introduction

In proportional representation systems, the electoral votes must be translated into specific

seat allocations. A central issue is to investigate the consequences of any particular appor-

tionment method. The seat allocations are of course integer numbers, and the votes are

almost continuous quantities, by comparison. The translation of votes to seats nearly

always involves adjusting, in some manner, the fractional seats that would arise if a
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literal calculation were made. One of the pertinent problems is to measure the effect

of the adjustment process. Whereas previous studies have made inferences about the

proportionality of electoral formulas from empirical data, this paper derives the information

deductively.

We concentrate on the three most popular apportionment methods:

(H) the quota method with residual fit by greatest remainders, also known as the

Hamilton method, or Hare method,

(W) the divisor method with standard rounding (Webster, Sainte-Laguë),

(J) and the divisor method with rounding down (Jefferson, Hondt).

Assuming repeated applications of each method, we evaluate the seat-biases of the various

parties. These seat-biases are averages, over all possible electoral outcomes, of the differ-

ences between the (integer) seats actually apportioned, and the (fractional) ideal share of

seats that would have been awarded, had fractional seats been possible (Section 2).

For three parties, we provide exact seat-bias formulas, as a function of the district

magnitude, for each of the apportionment methods (Sections 3–5). These formulas allow

one to predict, for a given apportionment method, how much the seat allocation for the

largest (middle, smallest) party is expected to deviate from the ideal share of seats this

party could claim. Two three-party data sets, from the German State of Bavaria and the

Swiss Canton Solothurn, are investigated and seen to be in excellent agreement with our

theoretical findings (Section 6).

For four or more parties, we present seat-bias formulas only up to remainder terms that

vanish as the district magnitude becomes large (Section 7). These formulas are applied to

empirical data from the US House of Representatives (Section 8). In this application, seats

are apportioned to states rather than parties, but the numerical apportionment problem

is identical. Compared to the number of parties typically involved in an electoral context,

the number of US States is much larger, from 15 in 1792 to today’s 50. Nevertheless, our

theoretical formulas fit the empirical data quite well.

Combination of the theoretical and empirical results leads to our main conclusion

(Section 9) that the quota method with residual fit by greatest remainders (Hamilton,

Hare) has practically unbiased seat allocations for all parties, as has the divisor method

with standard rounding (Webster, Sainte-Laguë). By contrast, the divisor method with

rounding down (Jefferson, Hondt) is seat-biased, favoring larger parties at the expense of

smaller parties. This has been observed over many years on the basis of empirical data,
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but our formulas permit specific calculations about the numerical sizes of the seat-biases.

For example, the largest party in a system of three can expect five extra seats per twelve

elections in excess to their ideal share, that is, a rate of about one excess seat every other

election, under the Jefferson method.

In passing from the Jefferson method to other apportionment methods, many authors

jump to the opposite extreme, that a method favors smaller parties at the expense of

larger parties, as if this were the only alternative. The middle ground of unbiasedness

seems to be neglected. To quote but one source from many, Lijphart (1986, pp. 171–172),

calling upon six other expert witnesses who voice the same opinion, writes: The consensus

is that d’Hondt disproportionally favors the larger parties, and that the largest remainder

formula is more proportional and more favorable to the smaller parties. On the other

hand, Lijphart (1994, p. 157) states that Sainte-Laguë treats all parties in an even-handed

manner. From the point of view of seat-biases, we show that the largest remainder method

is as even-handed as the Sainte-Laguë method, rather than being more favorable to the

smaller parties.

We do not feel that there is a contradiction between our findings and the sort of

statements just quoted. Rather, electoral systems are complex structures and there are

plenty of ways of discussing any sort of “disproportionality”, or any other deviation from

an assumed ideal state. Therefore we would like to emphasize that the notion of “seat-bias”

is a very specific way of turning the general idea of “disproportionality” into a manageable

numerical quantity. There are many alternative measures, some of them aggregations over

all parties, see, for example, Gallagher (1991), Oyama/Ichimori (1995), Pennisi (1998),

Benoit (2000). The present paper, however, is confined to seat-biases, on a per-party

basis.

Moreover, the electoral literature uses the term “bias” often in a generic, nonquanti-

tative sense indicating some general deviation from the proportional representation ideal.

For instance, the index of Nohlen (2000, p. 457) lists under “bias” eight page references,

none of which using the term in the distinct statistical sense of the present paper. The

glossary (op. cit., p. 465) defines “bias” quite generally as favoring one party compared to

another.

Taagepera/Shugart (1989, Chapter 10) speak of deviation from proportional represen-

tation rather than “bias” and discuss a variety of numerical notions of disproportion-

ality used for distinguishing between methods. Monroe (1994) proposes an axiomatic

approach for classifying indices of disproportionality and malapportionment. These indices
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are peculiar to a given method, being summary aggregates over all parties, and serve to

distinguish between competing methods. Lijphart (1994, p. 64) advocates various one-

number aggregates along these lines. An example with specific design decisions based

on expected disproportionality is the 1951 French parliamentary election, as discussed

by Riker (1982, pp. 25–28). A study on the general implications of representative dis-

proportionality is put forward by Powell/Vanberg (2000). The sources quoted treat the

notion of electoral system bias in its entire complex generality, leaving no more than an

impressionistic scope for the numerical analysis.

Cox/Shugart (1991) emphasize the limited information inherent in a single number

when it comes to capturing the complex phenomenon of deviating from proportionality.

Rather, the political character of disproportionality leads to additional questions (op. cit.,

p. 350), is it the small parties that tend to be over-represented? the middle-sized ones? the

big ones? or is there no clear relationship between over-representation and party size? The

present paper proposes quantitative answers to these questions, focusing on the specific

notion of seat-biases, for which a formal analysis can be carried out in a surprisingly

rigorous fashion.

2. Seat-Bias Formulas

In Sections 2–6 we consider the outcome of an election with three parties, numbered 1,

2, 3, with respective vote counts v1, v2, v3. In a proportional representation system, the

number of seats allocated to a party ought to be proportional to the relative weight of their

vote counts. Hence, if V = v1+v2+v3 is the total number of votes cast, there is no loss of

generality to convert the vote counts into vote ratios, or weights, w1 = v1/V,w2 = v2/V

and w3 = v3/V . Assuming all possible weights to be equally likely, we calculate the

average behavior of the seat allocations. Technically, our assumption is that the three

weights w1, w2, w3 follow a uniform distribution over all their possibilities, that is, over the

set of any three non-negative numbers summing to one.

The total number of seats to be apportioned is denoted by M , and is called the district

magnitude. The numbers w1M,w2M,w3M are the ideal shares of seats of parties 1, 2, 3.

These would be the “fractional numbers of seats” to which, ideally, each party would be

entitled if that were possible. In real life, parties 1, 2, 3 are apportioned an integral number

of seats m1,m2,m3, using the apportionment method in the applicable electoral law.

A common approach for evaluating the goodness of an apportionment method is to

compare, for each party k, their actual seat allocation mk with their ideal share of seats
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wkM . We find it convenient to call the difference mk − wkM the seat-excess of party k.

In a single instance it is most unlikely that the ideal share of seats turns out to be an

integer, whence a seat-excess typically deviates from zero above or below. Thus some

parties are favored by enjoying seat-excesses that are positive, others are disadvantaged

with seat-excesses that are negative. The question is whether, apart from the variability

that is unavoidable, the seat-excess of a party additionally shows some systematic trend.

The main results of our paper are formulas for the expected value of the seat-excesses, for

each party k, under a given apportionment method.

It is well-known that the seat allocation for a party is contingent on its weight relative

to the weights of the others, see Balinski/Young (2001, p. 46). Hence we condition the

averaging process on the event that party 1 is largest, party 2 is middle, and party 3 is

smallest. With “largeness” referring to party weights, we thus assume w1 ≥ w2 ≥ w3.

Under this condition, we study the expected value of the seat-excess mk − wkM as a

function of the district magnitude M . The resulting quantity is denoted by

Bk(M) = E
[
mk − wkM

∣∣w1 ≥ w2 ≥ w3

]
,

and is called the seat-bias of the k-th largest party. This notion of “bias” is standard

statistical terminology, indicating the expected difference between all possible observable

values of a quantity and its ideal value. The “E” indicates the statistical average [expec-

tation] over all theoretically possible values of the seat-excess mk − wkM . Note that we

use the word “seat-bias” only in the specific, quantitative sense just defined.

The seat allocations m1,m2,m3 always sum to M , the total number of seats, as do the

ideal shares of seats w1M,w2M,w3M . Hence the seat-biases of all parties together must

sum to zero, B1(M) +B2(M) +B3(M) = 0.

3. The Quota Method with Residual Fit by Greatest Remainders

Our first set of seat-bias formulas is for the quota method with residual fit by greatest

remainders (Hamilton, Hare). The method is based on the fixed quota Q = V/M , the

quotient of the total number of votes and the total number of seats, and operates in two

stages. In the principal apportionment stage, party k with vk votes is allocated a number

of seats equal to the integer part in the quotient vk/Q. In the residual apportionment

stage, the remaining seats are allocated, one by one, to the parties for which the fractional

part in vk/Q is largest, second largest, and so on until all M seats are given away.
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Fig. 1: Theoretical seat-bias curves of a three-party system, when the district magnitude M increases
from 6 to 30, for the quota method with residual fit by greatest remainders (Hamilton, Hare). The seat-
bias of each party is practically zero, and the dependence on the district magnitude is virtually negligible.

We remark in passing that, although common in continental Europe, association of the

method with the name of Thomas Hare (1806–1891) is not quite appropriate. Hare did

introduce the quota Q = V/M , see Hart (1992, p. 27), but the system he proposed was

the Single Transferable Vote system.

Let the seat-bias BH
k (M) be the expected Hamilton seat-excess of the k-th largest party,

as the weights w1 ≥ w2 ≥ w3 attain all their possible values with equal probability. The

largest (k = 1), middle (k = 2), and smallest (k = 3) parties face a seat-bias of

BH
1 (M) =

1

6M
− 2

⌊
M+1

3

⌋
− M

3

3M2
,

BH
2 (M) =

1

6M
+ 4

⌊
M+1

3

⌋
− M

3

3M2
,

BH
3 (M) = − 2

6M
− 2

⌊
M+1

3

⌋
− M

3

3M2
.

As previously stated, the three seat-biases sum to zero. The notation
⌊
M+1

3

⌋
means that

the quotient M+1
3 is rounded down to its integer part. Thus, as the district magnitude

grows from one multiple of 3 to the next, M = 3n, 3n+ 1, 3n+ 2, 3(n+ 1), the numerator

⌊M+1
3 ⌋ − M

3 cycles through 0,−1/3, 1/3, 0, and, in particular, stays bounded.

In each of the three formulas, the first term is a multiple of 1/M , while the second

term is of the order 1/M2. Therefore, each of the three seat-biases converges to zero as the

district magnitude M becomes large. Even for small district magnitudes M the numerical

values of the seat-biases are quite small. Therefore we feel justified in calling the Hamilton

seat allocations “practically unbiased”.

Figure 1 presents a graphical display of the seat-biases, as a function of the district

magnitude M . The display starts from M = 6 (when there twice as many seats available
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as there are parties participating), and runs up to a chosen cut-off point M = 30. The

seat-bias curves for the largest party (solid curve) and for the middle party (dashed curve)

are overlaying and indistinguishable. They stay in the positive, while the (dotted) set-

bias curve of the smallest party lies in the negative. Of course, magnifying the vertical

scale would allow to distinguish between the three curves, see Pukelsheim (2000, p. 265).

However, the numerical values of the seat-biases are too small to warrant an extra figure.

All seat-biases stay below a twentieth of a seat, indicating a gain or a loss of at most

one seat in twenty elections. With growing district magnitude M all three seat-biases

become smaller yet, and eventually converge to zero. The graphical picture confirms our

assessment that the Hamilton seat-biases are practically zero, that is, that the Hamilton

seat allocations are practically unbiased.

4. The Divisor Method with Standard Rounding

The next set of results refers to the divisor method with standard rounding (Webster,

Sainte-Laguë). There are many equivalent ways of specifying the method, one of which is

as follows. The vote counts vk are divided by some divisor D, and the resulting quotients

vk/D are rounded in the standard way. That is, if the fractional part of the quotient vk/D

is less than one half then vk/D is rounded down, if the fractional part is greater than

one half then vk/D is rounded up. The divisor D is adjusted so that the resulting seat

allocations mW
k sum to the district magnitude M .

Let BW
k (M) denote the Webster seat-bias of the k-th largest party, that is, the expected

difference between the Webster seat allocations and the ideal share of seats. For k = 1, 2, 3,

we obtain

BW
1 (M) =

37

144M
− 8

⌊
M+1

3

⌋
− M

3

3(4M2 − 1)
+

37− 216
(⌊

M+1
2

⌋
− M

2

)
144M(4M2 − 1)

,

BW
2 (M) =

7

144M
+ 16

⌊
M+1

3

⌋
− M

3

3(4M2 − 1)
+

7 + 216
(⌊

M+1
2

⌋
− M

2

)
144M(4M2 − 1)

,

BW
3 (M) = − 44

144M
− 8

⌊
M+1

3

⌋
− M

3

3(4M2 − 1)
− 44

144M(4M2 − 1)
.

In each formula the three terms are of the order 1/M , 1/M2, and 1/M3, respectively.

Again the seat-biases disappear as the district magnitude M grows.
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Fig. 2: Theoretical seat-bias curves of a three-party system, when the district magnitude M increases
from 6 to 30, for the divisor method with standard rounding (Webster, Sainte-Laguë). The seat-bias
of each party is practically zero, and the dependence on the district magnitude is virtually negligible.

Figure 2 displays the three seat-bias curves, for district magnitudes M from 6 to 30.

Again the seat-bias effects are so small as to be of no relevance in reality. The Webster

seat allocations for the three parties are justifiably called practically unbiased.

5. The Divisor Method with Rounding Down

Under the divisor method with rounding down (Jefferson, Hondt), the vote counts vk are

divided by some common divisor D but, in order to obtain the seat allocations mJ
k, the

quotients vk/D are now rounded down to the integer part contained in them. The divisor

D is adjusted to make the resulting seat allocations summing to the district magnitude M .

For k = 1, 2, 3, let BJ
k(M) be the Jefferson seat-bias of the k-th largest party. All three

bias formulas start out with a term not depending on the district magnitude M , while the

subsequent three terms are of order 1/M, 1/M2, 1/M3 as with the previous method:

BJ
1(M) =

5

12
− 11

36M
+

1− 8
(⌊

M+1
3

⌋
− M

3

)
+ 18

(⌊
M+1

2

⌋
− M

2

)
12(M + 1)(M + 2)

+
11

18M(M + 1)(M + 2)
,

BJ
2(M) = − 1

12
− 5

36M
+

7 + 16
(⌊

M+1
3

⌋
− M

3

)
− 18

(⌊
M+1

2

⌋
− M

2

)
12(M + 1)(M + 2)

+
5

18M(M + 1)(M + 2)
,

BJ
3(M) = − 4

12
+

16

36M
−

8 + 8
(⌊

M+1
3

⌋
− M

3

)
12(M + 1)(M + 2)

− 16

18M(M + 1)(M + 2)
.
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Fig. 3: Theoretical seat-bias curves of a three-party system, when the district magnitude M increases
from 6 to 30, for the divisor method with rounding down (Jefferson, Hondt). The seat-biases of all parties
are visibly distinct from zero, the dependence on the district magnitude still being virtually negligible.

The first, constant term determines the behavior when the district magnitude is large, as

it is in practice.

Figure 3 illustrates that the seat-biases of the three parties are almost constant, that

is, the variation due to M is virtually negligible. However, the levels attained are visibly

distinct from zero. On average per twelve elections, the largest party enjoys an advantage

of five excess-seats, paid for by one seat from the middle party, and by four seats from the

smallest party.

6. Empirical Three-Party Examples: Bavaria and Solothurn

Two data sets for three-party allocations are analyzed, the state legislature elections [Land-

tagswahlen] in the German State of Bavaria from the period after World War II, and the

renewal elections [Erneuerungswahlen] in the Swiss Canton Solothurn from the last century.

In both instances the applicable electoral laws were subject only to minor changes during

the observational period, whence the voting attitude of the electorate can be considered

stable during that time. We compiled the data from official Bavarian and Solothurn

publications, and deposited them on the Internet at www.uni-augsburg.de/bazi/.

The Bavarian data arise from fourteen elections in 1948–1998. Whether a party takes

part in the seat apportionment process is decided on the state level, leaving seven elections

with seat apportionment between three parties. There are seven electoral districts, num-

bered I–VII, resulting in 49 apportionments for evaluation. We do not distinguish by

district magnitude, since M ranges from 19 to 65 where the seat-bias curves in Figures 1–3

stay fairly constant.
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Observed seat-excesses of the largest party, from 49 apportionments in Bavarian elections

I II III IV V VI VII

1966 −0.33 −0.08 0.33 0.13 0.02 −0.12 0.32
1970 −0.08 −0.19 0.01 0.22 −0.36 −0.24 0.41
1974 0.05 0.20 −0.33 −0.14 −0.01 −0.16 0.28
1978 −0.23 −0.21 −0.40 0.05 0.23 0.51 −0.06
1986 −0.03 −0.35 −0.17 0.59 −0.36 0.12 0.59
1994 −0.27 −0.14 −0.49 0.02 −0.39 0.19 −0.35
1998 0.03 −0.17 −0.58 0.16 −0.53 −0.12 0.36

Five-number statistics of observed seat-excesses (N = 49), Bavarian data (19 ≤ M ≤ 65)

Minimum First quartile Median Third quartile Maximum
Largest party −0.58 −0.26 −0.08 0.17 0.59
Middle party −0.48 −0.20 −0.03 0.29 0.63
Smallest party −0.51 −0.25 0.02 0.19 0.49

Five-number statistics of observed seat-excesses (N = 143), Solothurn data (7 ≤ M ≤ 29)

Minimum First quartile Median Third quartile Maximum
Largest party −0.56 −0.25 −0.04 0.22 0.59
Middle party −0.61 −0.19 0.10 0.31 0.52
Smallest party −0.63 −0.25 −0.05 0.26 0.51

Table 1. Observed seat-excesses in three-party systems, for the quota method with residual fit by
greatest remainders (Hamilton, Hare). Top: Largest party raw data, from 49 post-WWII Bavarian
apportionments. Middle: Five-number statistics of the largest, middle, and smallest parties, for the
Bavarian data. Bottom: Five-number statistics from 143 Twentieth Century’s Solothurn apportionments.

The observed Hamilton seat-excesses of the largest party are displayed in the top part

of Table 1. The average of the 49 values is −0.04 fractions of a seat (with a standard error

of 0.04); this is a viable estimator for the seat-bias of the largest party. A single average

cannot, however, mirror the variation that is visible in the data. We prefer to describe the

empirical seat-excess distribution in a more informative manner.

This is achieved by using five numbers. For the largest party, these are the minimum

value −0.58, the first quartile (delimiting the lower quarter of the data) −0.26, the median

(middle value) −0.08, the third quartile (delimiting the upper quarter) 0.17, and the

maximum value 0.59. The quoted numbers appear in the five-number seat-excess statistics

of the largest party, in the first line of the middle part of Table 1. It is followed by the

corresponding five-number statistics of the middle party, and of the smallest party.

These numbers give rise to the boxplots on the left side of Figure 4. In each boxplot,

the vertical lines extend from the minimum to the first quartile, and from the third quartile

to the maximum. The central portion of the data is represented by the rectangular box,

and the dashed line inside the box is the median. We add a dot at zero, as an indication

that the theoretical seat-biases are practically zero.
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Fig. 4: Observed seat-excess distributions in three-party systems, for the quota method with residual
fit by greatest remainders (Hamilton, Hare). The boxplots of the data are located around zero, varying
about half a seat above and below. Dots (•) indicate theoretical seat-biases, which are practically zero.
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Fig. 5: Observed seat-excess distributions in three-party systems, for the divisor method with standard
rounding (Webster, Sainte-Laguë). The boxplots of the empirical data are located around zero, varying
about half a seat above and below. Dots (•) indicate theoretical seat-biases, which are practically zero.
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Fig. 6: Observed seat-excess distributions in three-party systems, for the divisor method with rounding
down (Jefferson, Hondt). The empirical boxplots are evidently not centered at zero. For the largest party
it is located above the zero line, for the smallest party, below. Dots (•) indicate theoretical seat-biases.
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The Swiss Canton Solothurn introduced proportional representation in 1896, and since

then has held 27 elections. There are ten electoral districts, providing a total of 270 appor-

tionment instances. Of these, 143 involve exactly three parties, with district magnitude M

varying between 7 and 29. The distribution summary statistics for the seat-excesses that

are calculated from these date are listed in the bottom part of Table 1. In Figure 4, the

boxplots showing the Hamilton seat-excesses for Solothurn are placed on the right side, for

direct comparison with those from the Bavarian data.

Figure 5 exhibits a similar comparison for the Webster seat allocations, again with the

observed Bavarian seat-excesses on the left, and the observed Solothurn seat-excesses on the

right. Figures 4 and 5 look very similar, as predicted by our theoretical considerations. The

remaining differences are small, and are accounted for by the variation that is unavoidable

in two distinct empirical data sets.

Figures 4 and 5 send the same message. All boxplots show roughly the same amount of

seat-excess variability, from about half a seat above the median of the observed distribution,

to about half a seat below the median. Thus we focus on the locations of the boxes. Under

the quota method with residual fit by greatest remainders (Hamilton, Hare; Figure 4),

as well as under the divisor method with standard rounding (Webster, Sainte-Laguë;

Figure 5) the observed seat-excess distributions are centered around zero, for each of the

three parties. Hence the empirical evidence confirms the theoretical findings of Sections 3

and 4, that the seat allocations of each of the three parties are practically unbiased, for

the Hamilton and Webster methods.

Figure 6 contains the boxplots of the empirical seat-excesses under the divisor method

with rounding down (Jefferson, Hondt), and looks startlingly different. The observed seat-

excess distributions are seen to differ in location. The largest party has a distribution

concentrated above the zero line, the smallest party, below the zero line. The middle

party distribution is centrally placed. The Jefferson seat allocations are clearly biased, in

favoring the largest party at the expense of the smallest party.

7. Seat-Bias Formulas for Four or More Parties

We now turn to the general case, with an arbitrary number ℓ ≥ 4 of (lists of) parties

participating in the apportionment process. Unfortunately we do not possess proofs for

our seat-bias expressions as stringent as those for the three-party results in Sections 3–5.

Instead, we carried out extensive computer calculations to obtain the following formulas
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that include small, unspecified remainder terms. These terms appear to be small enough

to be irrelevant from a practical point of view.

For the quota method with fit by largest remainders (Hamilton, Hare), the seat-biases

BH
k (M) turn out to be identical and slightly positive, for parties k = 1, . . . , ℓ− 1 from the

largest down to the second-smallest:

BH
k (M) =

ℓ+ 1

24M
+O

(
1

M2

)
,

BH
ℓ (M) = −(ℓ− 1)

ℓ+ 1

24M
+O

(
1

M2

)
.

The ℓ-th, smallest party carries the deficit that balances the positive accumulation. How-

ever, all seat-biases turn out to be rather small numerically.

The notation O(1/M2) indicates that the remainder term is bounded of the order 1/M2.

In other words, the remainder term is in absolute value less than a constant divided by M2.

When a large number ℓ of parties participates in the apportionment process, then an even

greater number M of seats is needed for allocation whence the remainder term becomes

generally negligible. We can therefore safely neglect the remainder term O(1/M2) when

interpreting the formulas.

Thus all parties, except the smallest, expect seat-biases that are slightly positive. The

smallest party is the only party disadvantaged, and its negative seat-bias must make up

for the accumulated advantages of all larger parties. We explain this exceptional behavior

as follows. The worst case that can happen to the smallest party is to win no seat at all,

mℓ = 0. Of course, under this side condition the seat-bias becomes negative. It transpires

that the worst case dominates the calculations, and leads to an overall negative seat-bias

of the smallest party.

Even though the special role of the smallest party may appear disconcerting, its seat-

bias remains so small numerically as to be invisible in practise. These results confirm

our previous assessment that the quota method with fit by largest remainders (Hamilton,

Hare) is practically unbiased, for any number of parties.

For the divisor method with standard rounding (Webster, Sainte-Laguë), the seat-

biases of the largest ℓ− 1 parties k = 1, . . . , ℓ− 1 are captured by the first formula below,
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while the seat-bias of the ℓ-th, smallest party is given by the second:

BW
k (M) =

ℓ+ 2
ℓ

24M
+

ℓ+ 2

24M


ℓ−1∑

j=k

1

j

− 1

+O

(
1

M2

)
,

BW
ℓ (M) = −(ℓ− 1)

ℓ+ 2
ℓ

24M
+O

(
1

M2

)
.

When the terms in braces are summed over k = 1, . . . , ℓ − 1, one obtains zero. Hence

a certain amount of balancing goes on between the ℓ − 1 largest parties alone. The

accumulated contribution of the terms (ℓ+ 2
ℓ )/(24M) is evened out by the negative seat-

bias of the smallest party.

Two points are worth mentioning. First, the Webster seat-bias of the smallest party

extends almost as far into the negative as does the Hamilton seat-bias of the smallest party.

Second, from six parties onwards the second-smallest party faces a negative seat-bias, too.

However, all these theoretical effects are so small numerically that we do not consider

them practically relevant. That is, the Webster seat allocations are practically unbiased,

no matter how many parties participate in the apportionment process.

For the divisor method with rounding down (Jefferson, Hondt) the situation changes

dramatically. A leading term appears, not depending on the district magnitude M and

thus dominating the formulas. The seat-bias of the k-th largest party is found to be

BJ
k(M) =

1

2


 ℓ∑

j=k

1

j

− 1

+O

(
1

M

)
.

The remainder term, bounded of order 1/M , appears to be practically irrelevant.

The largest party enjoys a positive seat-bias and thus can expect seats in excess of their

ideal share. The seat-biases become successively smaller, as we pass from the largest party

(k = 1) to the smallest party (k = ℓ). About two thirds of the parties face a negative

seat-bias, but in each individual case the prospective deficit remains bounded by half a

seat on average. Indeed, since a small party does not win many seats anyway, any loss

they endure must remain bounded.

As the number of parties grows, the deficits of the smaller parties accumulate and

generate a growing surplus of seats for the larger parties. More precisely, the seat-bias

of the k-th largest party (k = 1, 2, . . . fixed) steadily increases and, in fact, grows beyond

limits. This growth is sublinear and hence rather slow, as outlined in Appendix A3.
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Fig. 7: Theoretical cumulative seat-biases of the top, median, and bottom thirds of parties, for number
of parties ℓ from 3 to 24, for the divisor method with rounding down (Jefferson, Hondt). The top third’s
surplus causes a minor seat deficit of the median third, and a major seat deficit of the bottom third.

In order to supplement these qualitative dependencies by some quantitative compari-

sons, we group the parties into a top third, a median third, and a bottom third, following

the lead of Balinski/Young (2001, p. 75). When the number of states is not divisible by

three, the authors enlarge the median group. This unbalanced procedure would generate

kinks in the graphical display, in our case. We prefer a smoother way of aggregation. If the

number of parties is a multiple of three, ℓ = 3n, then clearly the n largest parties form the

top third, and so the sum of their seat-biases is calculated. If ℓ = 3n+ 1, one third of the

seat-bias of the (n+1)-st party is added. If ℓ = 3n+2, two thirds are added. If ℓ = 3n+3

is again divisible by three, three thirds are added, that is, the top group comprises the

n+ 1 largest parties as it should. The other two groups are handled similarly.

Figure 7 shows the cumulative Jefferson seat-biases thus obtained, plotted against the

number of parties ℓ. The cumulative seat-biases are seen to depend almost linearly on the

number of parties. Roughly per six parties that join the race, the top third of parties gains

one extra seat. One quarter of the deficit is shouldered by the median third of parties,

three quarters by the bottom third. For instance, when there are 24 parties competing,

then the top eight parties together benefit by four seats beyond their cumulative ideal

shares, while the median eight parties lose one seat, and the bottom eight parties fall short

by three seats.

In summary, we can draw three conclusions on how seat-biases vary with district

magnitude M , and with the number of parties ℓ, under a specific apportionment method:
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(1) The seat-bias formulas in this section, and those for the larger family of stationary

apportionment methods in the Appendix, all confirm that the variation due to the district

magnitude M becomes irrelevant as soon as M ≥ 2ℓ. In particular, the Hamilton and

Webster methods generate practically unbiased seat allocations, for all parties.

(2) The district magnitude M may—possibly—generate a noticeable seat-bias effect

only when M < 2ℓ, that is, when it is too small to be able to proportionally mimic the

differences of party weights. Therefore district magnitudes of so small a size should not be

used for illustrating seat-bias behavior. They may display pathological artifacts that are

untypical for practical purposes.

(3) When seat-biases do occur, they persist independently of M . But they do respond

to the size of a party relative to the other parties. Under the divisor method with rounding

down (Jefferson, Hondt), large parties are favored at the expense of small parties, and the

more parties participate, the greater becomes the surplus that large parties gain in excess

to their ideal share. There is a trend not unfamiliar from other fields in life: a few large

enjoy an unbounded surplus, at the expense of the many small who have to make do with

less than their fair share.

8. Empirical Large-System Example: US House of Representatives

An empirical large-system example is provided by the apportionment of the 435 seats in the

US House of Representatives among the 50 States. This specific apportionment problem

is thoroughly dealt with by Balinski/Young (2001). While the authors address the bias

problem from various angles, they do not investigate the notion of seat-biases as proposed

in the present paper. It is therefore of particular interest to see how our theoretical formulas

fare with the empirical evidence from the US history. Moreover, bias issues formed a core

argument in the court challenges of the current apportionment method, as reported by

Ernst (1994).

Allocating House seats to States on the basis of their apportionment populations calls

for operational procedures identical to those for allocating parliamentary seats to parties on

the basis of their electoral vote returns, so our theoretical formulas should apply. The US

Constitution requires that each State receive at least one seat. Our formulas are derived

without such a requirement, and hence we disregard it in our subsequent calculations.

The currently used “Method of Equal Proportions” is the divisor method with geometric

rounding (Hill, Huntington). We defer a discussion of the method to Appendix A4.
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Prior to 1960, the number of US States was 48 or lower, and a comparison would

require an adjustment of some sort or other which we wanted to evade. We therefore chose

the five censuses 1960–2000 for evaluation, when in each case ℓ = 50 states competed

for M = 435 seats. The apportionment populations are listed in Balinski/Young (2001,

pp. 174–180) where, for each census, states are ordered from largest to smallest by their

apportionment populations. The data can also be retrieved from the Internet at www.uni-

augsburg.de/bazi/. For the difficulties of how to define the apportionment population

see Poston/Bouvier/Dan (1999).

For the quota method with residual fit by greatest remainders (Hamilton, Hare), we

first determine the apportionments for each of the five censuses. Just as in the three-

party examples of Section 6, we then calculate the five-number seat-excess statistics of the

largest state, of the second largest state, and so on up to that of the fiftieth largest—that

is, smallest—state. The boxplots that go along with these 50 five-number-statistics are

exhibited in Figure 8. Viewed across all states, the box-plots are centered around the zero,

deviating up to about half a seat above or below. The US data confirm our theoretical

finding that the Hamilton seat allocations are practically unbiased.

For the divisor method with standard rounding (Webster, Sainte-Laguë), a similar

analysis leads to Figure 9. The Webster seat allocations appear to be practically unbiased,

as theory predicts. Theoretically, the smallest state suffers a negative seat-bias of

BW
50 (435) = −

49×
(
50 + 2

50

)
24× 435

= −0.23

seat fractions (for the Hamilton method: −0.24). No such effect is visible in Figure 9 (nor

in Figure 8). As we have argued in Section 7, the effect originates with the least favorable

case when the smallest state is so small as to win no seat at all. In the five censuses under

consideration, all states receive at least one seat under the Webster method (and under

the Hamilton method), and the worst case never materializes.

For the divisor method with rounding down (Jefferson, Hondt) the picture changes, see

Figure 10. The seat-excesses decrease, from the largest state’s boxplot that is positioned

above 2, to the smallest state’s boxplot that is located near −1/2. The theoretical seat-

biases from Section 8 are indicated by dots. The empirical variabilities are of the same

magnitude as with the previous two methods, of at most about half a seat above or below

theoretical expectations.
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50 states, from largest (left) to smallest (right)

5 apportionments of 435 seats, US Censuses 1960–2000

Fig. 8: Observed seat-excess distributions in a 50-state system, for the quota method with residual fit
by greatest remainders (Hamilton, Hare). The boxplots of the empirical data arrange themselves around
the zero line, deviating up to half a seat above or below. Dots (•) indicate the theoretical seat-biases.
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50 states, from largest (left) to smallest (right)

5 apportionments of 435 seats, US Censuses 1960–2000

Fig. 9: Observed seat-excess distributions in a 50-state system, for the divisor method with standard
rounding (Webster, Sainte-Laguë). The boxplots of the empirical data arrange themselves around the
zero line, deviating up to about half a seat above or below. Dots (•) indicate the theoretical seat-biases.

Seat fractions

3

2

1

0

−1
50 states, from largest (left) to smallest (right)

5 apportionments of 435 seats, US Censuses 1960–2000

Fig. 10: Observed seat-excess distributions in a 50-state system, for the divisor method with rounding
down (Jefferson, Hondt). The empirical boxplots display a decreasing trend, from above two seats for the
largest state, to around half a seat for the smaller states. Dots (•) indicate the theoretical seat-biases.
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9. Discussion and Conclusions

The notion of seat-bias as used in the present paper captures an instrinsic property within

each apportionment method being investigated. It is a way of studying how balanced (or

unbalanced) the seat allocations are, on average, when the specified method is applied

repeatedly. Replications may be generated in three ways, (i) repeated applications over

time in just one electoral district, (ii) use of the method in multiple electoral districts at

a common point in time, or (iii) varying time and locality simultaneously. The results

thus obtained then form a basis for a comparison between methods, as is implicit in the

preceeding sections.

The present approach should be distinguished from comparing methods on the ground

of extrinsic numerical indicators, that is, numbers that make sense only across two (or

more) apportionment methods. This alternative access to the problem is chosen by

Balinski/Young (2001, p. 118) when defining that “one method favors small states relative

to a second method”, or by Marshall/Olkin/Pukelsheim (2002) when saying that “one

method is majorized by a second method”. Intrinsic and extrinsic analyses coexist, as an

amplification of the fact that the question of deviating from proportionality has so many

facets.

Averages over repeated applications of a method indicate “typical” properties of a

method, and hence are informative from a general viewpoint of electoral system theory.

When a specific seat allocation is challenged in court, however, it is a single case that is

contested, and the report of Ernst (1994) testifies to the difficulties of persuading a court to

view the case contested as a typical manifestation of other, conceivable cases not contested.

In order to calculate theoretical averages one has to make some kind of distributional

assumption. In our case we chose the proportions of votes of each party, that is, the weights

w1, . . . , wℓ, to be equally likely over all their possibilities. Any distributional assumption

is open to debate. Ours was challenged early on by Nybølle (1921), as a response to

Pólya (1919a) who used the assumption for the first time. Nybølle (op. cit., p. 158)

substantiates his objections with depicting a set of 1917 Danish electoral data. His display

shows an extremely high degree of symmetry, which we find much more suspicious as far

as conformity with reality is concerned than our distributional assumption.

The ultimate test of theoretical calculations is not whether some initial assumptions

are pleasing or not, but whether the final results sufficiently conform with empirical data.

As far as apportionment methods are concerned, all practical problems arise from the fact

that whatever ideal calculations are carried out, they lead to seat fractions which then must
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be rounded to a near-by integer. Thus the problem dictates a natural range of variability

of up to one seat. Indeed, the empirical data shown in Figures 4–6 and 8–10 uniformly

vary over a range of up to one seat.

Therefore we find that conformity of seat-bias calculations with empirical data is

sufficiently validated when the theory predicts the central locations of the empirical box-

plots in such a way that the empirical data vary around them up to about half a seat above

or below. Our theoretical formulas pass this test to an astounding extent. For example,

in Figure 10 our theoretical seat-biases pick up the apparent trend almost perfectly. Even

for the largest and smallest states, where the theoretical seat-biases come to lie outside

the boxplots, the empirical data stay within roughly half a seat of the predicted centers.

Two important variables of an electoral system are the district magnitude M , and the

number ℓ of participating parties (or states). Our theoretical results and their empirical

confirmations ascertain that the dependence on the district magnitude M becomes neg-

ligible whenever there are at least twice as many seats available for allocation as there

are parties. In the initial section, when M < 2ℓ, the seat-bias curves occasionally show

some wild oscillations. We have not taken the space to discuss this erratic initial behavior

because we think that it is practically of little interest. With only “a few” units to allocate,

nobody can manufacture a representation that is proportional. We find it surprising that

“a few”, in our context, excludes district magnitudes below 2ℓ only. Beyond this threshold,

the seat-bias curves appear stable enough to validate their predictive power.

As an aside we would add that we find it insufficient to illustrate an apportionment

method with numbers where the district magnitude M is smaller than the number of

parties ℓ. For instance, Riker (1982, p. 260) allocates ten seats among twelve parties. Such

numbers are inconclusive for demonstrating the intricacies of proportional representation.

On the other hand, the dependence on the number of parties ℓ is not negligible. If

an apportionment method has nonzero seat-biases, the distance between them tends to

become more pronounced the more parties participate. The divisor method with rounding

down (Jefferson, Hondt) is a prototype of an apportionment method that has nonzero

seat-biases favoring larger parties at the expense of smaller parties.

If all seat-biases are zero, then the balanced behavior appears to persist without regard

to how many parties are present. Our theoretical calculations did not end up with seat-

biases that were literally equal to zero. But the final results were numerically small enough

to be considered approximately equal to zero, for all practical purposes. In this sense, the

quota method with residual fit by greatest remainders (Hamilton, Hare), as well as the
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divisor method with standard rounding (Webster, Sainte-Laguë) give rise to seat allocations

that are practically unbiased.

APPENDIX: Derivation of Seat-Bias Formulas

The first to aim at numerical seat-bias results was the eminent mathematician George

Pólya; for a narrative of his life see Alexanderson (2000). Pólya (1918, p. 374) considered

his seat-bias calculations das wichtigste Resultat dieser Abhandlung [the most important

result of this treatise]. His approach is based on geometric arguments, as detailed in Pólya

(1919a,b). While Pólya did not provide closed-form seat-bias formulas of the type given

in the present paper, we found his geometric approach sufficiently powerful so that, with

some amendments, it led to the results reported here.

The two divisor methods from Sections 4 and 5 emerge from a unified argument, by

embedding these methods in the wider family of stationary divisor methods. Such a method

depends on an extra parameter q which lies in the interval between zero and one, 0 ≤ q ≤ 1.

In essence, q is the dividing point used to decide if a fractional remainder is small or large.

The vote count vk is divided by a common divisor D, and then the resulting quotient vk/D

is rounded down if its fractional part is less than q, and rounded up if greater than q. The

divisor D is adjusted so that the resulting seat allocations sum to M . The divisor method

with standard rounding (Webster, Saint-Laguë) has q = 1/2, while the divisor method

with rounding down (Jefferson, Hondt) has q = 1.

A1. Two-party systems

In two-party systems and under the stationary divisor method with parameter q, the seat-

bias of the larger of the two parties turns out to be

B
(q)
1 (M) =

1

2

(
q − 1

2

)
+

⌊
M+1

2

⌋
− M

2 − 2
(
q − 1

2

)2
2(M + 2q − 1)

.

The seat-bias of the smaller party is B
(q)
2 (M) = −B

(q)
1 (M), since the sum must be zero.

In a system with just two parties, the quota method with residual fit by greatest

remainder (Hamilton, Hare) coincides with the divisor method with standard rounding

(Webster, Sainte-Laguë; q = 1/2), whence

BH
1 (M) = BW

1 (M) =

⌊
M+1

2

⌋
− M

2

2M
=


1

4M
if M is odd,

0 if M is even.
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With these two methods the seat-bias is literally zero when the district magnitude is even,

and decreases with 1/(4M) when it is odd.

The divisor method with rounding down (Jefferson, Hondt; q = 1) has

BJ
1(M) =

1

4
−

M+1
2 −

⌊
M+1

2

⌋
2(M + 1)

=


1

4
if M is odd,

1

4
− 1

4(M + 1)
if M is even.

Thus the larger party can expect a surplus of one extra seat in four elections, under the

Jefferson method. The derivation of the results is a specialization of the following three-

party situation.

A2. Three-party systems

We do not base our derivations on one of the algorithms that may be used to implement an

apportionment method. Instead we appeal to the geometric approach pioneered by Pólya

(1919), and extended by Carter (1982), Balinski/Young (2001, pp. 118–128), Kopfermann

(1991, pp. 183–187). Viewed together, all ordered triples of party weights, w1 ≥ w2 ≥ w3,

make up a rectangular weight triangle T . The set of weights leading to a specific seat

allocation m1,m2,m3 is denoted by A(m1,m2,m3), and is called the domain of attraction

of m1,m2,m3. Since the weight triples w1, w2, w3 in T are equally likely, any specific seat

allocation m1,m2,m3 occurs with a probability proportional to the area of its domain of

attraction. In general, shape and area of such a domain depend on the seat allocation

m1,m2,m3 where it is anchored and, of course, on the selected apportionment method.

Under the stationary divisor method with parameter q, we decompose the problem into

seven subproblems, according to whether the seat proportions m1/M,m2/M,m3/M lie in

the interior of the weight triangle T , or on one of its three edges, or on one of its three

vertices. Within each of these classes, the domains of attraction A(m1,m2,m3) are found to

share the same area (though not the same shape). Counting the number of seat allocations

that occur in each of the seven classes, we may then determine the expected seat allocation

E[mk|w1 ≥ w2 ≥ w3]. Since the seat-bias is defined as the expected difference between mk

and wkM , it remains to calculate the expected ideal share E[wkM |w1 ≥ w2 ≥ w3]. The

latter is the product of the district magnitude M and the k-th component of the barycenter

11/18, 5/18, 2/18 of the weight triangle T .
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The resulting seat-biases take the following forms, for the largest (B1), middle (B2),

and smallest (B3) parties, depending on the stationarity parameter q, and expressed as a

function of the district magnitude M :

B
(q)
1 (M) =

5

6

(
q − 1

2

)

− (27q2 − 9q − 8)M2 + 2(3q − 1)(21q2 − 17q + 1)M + 5(3q − 1)(3q − 2)(2q − 1)2

12(M + 3q − 1)(M + 3q − 2)(M + 2q − 1)

+
3(2q − 1)M + 3(3q − 1)(3q − 2)− 3(2q − 1)2

2(M + 3q − 1)(M + 3q − 2)(M + 2q − 1)

⌊
M + 1

2

⌋

− 2

3(M + 3q − 1)(M + 3q − 2)

⌊
M + 1

3

⌋
,

B
(q)
2 (M) = −1

6

(
q − 1

2

)

− (9q2 − 27q + 16)M2 + 2(3q − 1)(3q2 − 11q + 7)M − (3q − 1)(3q − 2)(2q − 1)2

12(M + 3q − 1)(M + 3q − 2)(M + 2q − 1)

− 3(2q − 1)M + 3(3q − 1)(3q − 2)− 3(2q − 1)2

2(M + 3q − 1)(M + 3q − 2)(M + 2q − 1)

⌊
M + 1

2

⌋

+
4

3(M + 3q − 1)(M + 3q − 2)

⌊
M + 1

3

⌋
,

B
(q)
3 (M) = −4

6

(
q − 1

2

)

+
4(3q − 1)(3q − 2)M2 + 8(3q − 1)(3q − 2)(2q − 1)M + 4(3q − 1)(3q − 2)(2q − 1)2

12(M + 3q − 1)(M + 3q − 2)(M + 2q − 1)

− 2

3(M + 3q − 1)(M + 3q − 2)

⌊
M + 1

3

⌋
.

When q = 1/2, the first term vanishes and we retrieve the seat-bias formulas for

the divisor method with standard rounding (Webster, Sainte-Laguë) of Section 4. When

q ̸= 1/2, the first term creates non-zero seat-biases, while the other terms are of order 1/M

or lower, and so tend to zero as M increases. When q = 1, we obtain the divisor method
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with rounding down (Jefferson, Hondt), and the seat-biases of Section 5 appear. For the

quota method of Section 3 the arguments follow similar lines, differing only in detail.

A3. Multi-party systems

Under the stationary divisor method with parameter q, the seat-bias of the k-th largest

party among ℓ ≥ 4 parties amounts to

B
(q)
k (M) =

(
q − 1

2

)
 ℓ∑

j=k

1

j

− 1

+O

(
1

M

)
.

For the divisor method with rounding down (Jefferson, Hondt; q = 1) this specializes to

the formula for BJ
k(M) given in Section 7.

For the divisor method with standard rounding (Webster, Sainte-Laguë; q = 1/2)

the first term vanishes, leaving seat-biases BW
k (M) that are bounded of order 1/M . We

found that this is true also for the quota method with residual fit by greatest remainders

(Hamilton, Hare). In order to elucidate the fine structure of the two methods we carried

our approach further and isolated the terms of order 1/M from those of order 1/M2. This

gave rise to the other formulas of Section 7.

The seat-bias B
(q)
k (M) depends on the number of parties ℓ and on the party’s rank k

through the factor that is enclosed in braces. The sum
∑ℓ

j=k 1/j is a portion of the

harmonic series. When k is fixed and ℓ increases, the series—and hence the factor—grows

beyond limits. Therefore the largest party (k = 1) may look forward to an unlimited

positive seat-bias for stationary divisor methods with q > 1/2, and must fear an unlimited

negative seat-bias when q < 1/2.

In order to study how quickly the sum grows with increasing ℓ, we approximate it by

the integral of 1/x over the range from k − 1/2 to ℓ+ 1/2, leading to the approximation

ℓ∑
j=k

1

j
≈ log

(
ℓ+

1

2

)
− log

(
k − 1

2

)
= log

ℓ+ 1
2

k − 1
2

.

This shows that for fixed k the increase in ℓ is logarithmically slow (in other words,

sublinear), and that the same is true of the decrease in k for fixed ℓ. The direction of

the seat-bias is reversed when the sign of the factor in braces switches from positive to

negative. This happens when k(ℓ) = ℓ
e + e+1

2e , where e = 2.718 is the base of the natural
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ℓ ℓ! z(ℓ, 1) z(ℓ, 2) z(ℓ, 3) z(ℓ, 4) z(ℓ, 5) z(ℓ, 6) z(ℓ, 7) z(ℓ, 8) z(ℓ, 9)

2 2 1 −1
3 6 5 −1 −4
4 24 26 2 −10 −18
5 120 154 34 −26 −66 −96
6 720 1 044 324 −36 −276 −456 −600
7 5 040 8 028 2 988 468 −1 212 −2 472 −3 480 −4 320
8 40 320 69 264 28 944 8 784 −4 656 −14 736 −22 800 −29 520 −35 280
9 362 880 663 696 300 816 119 376 −1 584 −92 304 −164 880 −225 360 −277 200 −322 560

Table 2. Partial results of computer calculations on the way to determine the formula for B
(q)
k (M). Brief

contemplation reveals the recursive relation z(ℓ, k)− z(ℓ, k+ 1) = ℓ!/k, which is easily solved for z(ℓ, k).

logarithm. The factor is positive for the k largest party if and only if k < k(ℓ). As a

fraction of all parties when the number of parties is large, this amounts to 1/e = 36.8

percent, that is, a bit more than a third.

For the divisor method with rounding down (Jefferson, Hondt; q = 1), it is then

roughly the top third of parties for which the theoretical seat-biases are positive, while

for the median and bottom thirds the seat-biases turn negative. Splitting the set of all

parties into thirds is thus close to maximizing the seat-bias effects that are peculiar to the

method. Hence Figure 7 lets the effect stand out as prominently as is possible.

Preferences are reversed for the divisor method with rounding up (Adams; q = 0), since

the factor 1
2 switches to − 1

2 . Note that the trisection persists. The top third of parties are

now threatened with an unlimited negative seat-bias, whereas the two thirds of smaller

parties may look forward to an excess of up to half a seat, on average.

We conclude this section with a description of how we obtained our results. The

approach from Subsection A2, of investigating the different types of domains of attraction,

their volumes and their numbers of occurrences, carries over to the general case. While

we were unable to compactify the resulting expressions into formulas worthy of commu-

nication, our partial results were good enough to set up a computer program calculating

seat-biases for an arbitrary stationarity parameter q between zero and one, for district

magnitudes M into the thousands, but for no more than nine parties. Beyond these limits,

the task of running through all seat allocations and carrying out the necessary calculations

becomes too complex and time consuming.

A combination of theoretical deductions and practical calculations then led to the

results reported here. As a prototype, we describe the derivation of the formula for

B
(q)
k (M). We first plotted our computer results against q, for large M fixed. A zero

at q = 1/2 emerged, and a linear dependence on q. This identified the first factor, (q− 1
2 ).



26 Seat-Biases of Apportionment Methods for Proportional Representation

0
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−1

6 ∞9 12 15 18 21 24 27 30

Seat fractions

M

Dotted curve: Smallest party
Dashed curve: Middle party
Solid curve: Largest party

Fig. 11: Theoretical seat-bias curves of a three-party system, when the district magnitude M increases
from 6 to 30, for the divisor method with geometric rounding (Hill, Huntington; Equal Proportions). The
seat-bias of each party tends to zero rather slowly, the initial dependence on M being clearly noticeable.

On combinatorial grounds we then conjectured that the second factor is of the form

z(ℓ, k)/ℓ!, with a whole number z(ℓ, k) in the numerator. We used our program to

numerically calculate the quantities ℓ!B
(q)
k (M)/(q−1/2) which, for large M , should reveal

z(ℓ, k). The values in Table 2 were obtained where, for the purpose of orientation, we have

adjoined the factorial ℓ! in the second column.

Brief contemplation reveals the recursive relation z(ℓ, k) − z(ℓ, k + 1) = ℓ!/k. Hence

the numbers z(ℓ, k) for k > 1 can all be expressed in terms of the very first z(ℓ, 1), which

in turn is determined from the fact that each row sums to zero. One gets z(ℓ, k) =

ℓ!
{(∑ℓ

j=k
1
j

)
− 1

}
, and the end result emerges.

The other formulas in Section 7 were obtained in a similar way, though the initial

computer experiments were necessarily more elaborate. We are confident that the formulas

given in Section 7 are fairly reliable. The numerical evidence is overwhelming, even though

a stringent proof in the sense of a deductive derivation is still missing.

A4. The divisor method with geometric rounding

The apportionment of the US House of Representatives seats to the fifty States is carried

out using the divisor method with geometric rounding (Hill, Huntington; Equal Propor-

tions). That is, the apportionment populations vk are divided by a common divisor D.

When a quotient comes to lie in the interval between two neighboring integers n and n+1

and it is less than their geometric mean
√

n(n+ 1), then vk/D is rounded down to n.

Otherwise it is rounded up to n+1. The divisor D is adjusted so as to make the resulting

seat allocations mEP
k sum to the district magnitude M .

In the interval from zero to one, the decision point is
√
0× 1 = 0, whence quotients

that fall below one are always rounded up to one. Thereafter the decision point shifts
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Seat fractions

1

0

−1
50 states, from largest (left) to smallest (right)

5 apportionments of 435 seats, US Censuses 1960–2000

Fig. 12: Observed seat-excess distributions in a 50-state system, for the divisor method with geometric
rounding (Hill, Huntington; Equal Proportions). The boxplots are located around the zero line and
promiss unbiased seat allocations, similar to Figures 8 and 9. Theoretical seat-biases are not available.

into the interior of the interval. For instance, between one and two it is
√
1× 2 = 1.414.

Thus the chances of being rounded up to two are slightly larger than of being rounded

down to one. For large integers n the decision points slowly stabilize to become of the

form n + 1/2, see Happacher (1996, pp. 12–14). These are the same decision points that

are pertinent to the divisor method with standard rounding (Webster, Sainte-Laguë). It

follows that the Equal Proportions seat allocations are asymptotically unbiased, for large

district magnitudes M .

Caution is advised for not-so-large district magnitudes. Using our computer program

we calculated the theoretical Equal Proportions seat-biases in three-party systems, for

district magnitudes from six to thirty. The seat-biases, shown in Figure 11, are clearly not

negligible. The smallest party is advantaged, the middle party is slightly disadvantaged,

and the loser is the largest party. These calculations suggest that all three seat-biases are

bounded of the order (logM)/M , which accounts for the slow convergence to zero.

The US apportionment example has M = 435. The question is whether 435 is “large”

or “not-so-large”, for the seat-biases to be practically zero or not. Figure 12 shows the

boxplots of the Equal Proportions apportionments for the five censuses 1960–2000. The

appearance is similar to Figures 8 and 9, and we cannot recognize any marked bias effect.

Thus the graphical evidence suggests that the seat allocations for M = 435 and ℓ = 50 are

practically unbiased. In addition we ran our computer program to calculate the precise

seat biases for up to five parties. (Since for the Equal Proportions method the domains

of attraction have different volumes for different seat allocations, our program failed to

handle more parties.) The numbers, listed in Table 3, are rather close to zero. However,

extrapolation from five to fifty offers only a weak degree of persuasion.
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ℓ BEP
1 BEP

2 BEP
3 BEP

4 BEP
5

2 −0.004 0.004
3 −0.010 −0.002 0.012
4 −0.016 −0.006 −0.001 0.023
5 −0.022 −0.011 −0.004 0.002 0.035

Table 3. Computer calculations of the Equal Proportions seat-biases BEP
i when M = 435, for number

of parties ℓ from 2 to 5. For the current House size, the theoretical EP seat-biases are practically zero.
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