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Abstract: From the inception of the proportional representation movement it has been an issue whether
larger parties are favored at the expense of smaller parties in one apportionment of seats as compared
to another apportionment. A number of methods have been proposed and are used in countries with
a proportional representation system. These apportionment methods exhibit a regularity of order, as
discussed in the present paper, that captures the preferential treatment of larger versus smaller parties.
This order, namely majorization, permits the comparison of seat allocation in two apportionments. For
divisor methods, we show that one method is majorized by another method if and only if their signpost
ratios are increasing. This criterion is satisfied for the divisor methods with power-mean rounding, and the
divisor methods with stationary rounding. Majorization places the five traditional apportionment methods
in the order as they are known to favor larger parties over smaller parties: Adams, Dean, Hill, Webster,
and Jefferson.

Zusammenfassung: In Verhältniswahlsystemen ist ein wesentlicher Gesichtspunkt der, ob zwei für die
Mandatsverrechnung zur Verfügung stehende Zuteilungsmethoden dahingehend vergleichbar sind, daß
größere Parteien auf Kosten kleinerer Parteien von der einen Methode mehr bevorzugt werden als von
der anderen. Wir schlagen vor, diesen Vergleich mittels einer als Majorisierung bekannten Halbordnung zu
operationalisieren. Majorisierung vergleicht die Summe der Sitze, die eine jede Gruppe größerer Parteien
von der einen Methode zugeteilt bekommt mit der entsprechenden Summe bei der anderen Methode. Für
Divisormethoden wird ein leicht nachprüfbares Majorisierungskriterium hergeleitet, das die Monotonie
der aus den zugehörigen Sprungstellen gebildeten Quotienten fordert. Für die Divisormethoden mit
gemittelten Sprungstellen und mit stationären Sprungstellen wird das Kriterium verifiziert. Die fünf
traditionellen Methoden werden durch Majorisierung so gereiht, wie sie bekanntlich größere Parteien auf
Kosten kleinerer Parteien begünstigen: Divisormethode mit Aufrundung (Adams), Divisormethode mit
harmonischer Rundung (Dean), Divisormethode mit geometrischer Rundung (Hill), Divisormethode mit
Standardrundung (Webster, Methode von Sainte-Laguë) und Divisormethode mit Abrundung (Jefferson,
Methode d’Hondt).
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1. Introduction

Payment in proportion to usage, or payment in proportion to services rendered is

a well-established and accepted principle. In the political context, the counterpart is

proportional representation. One instance is the apportionment of a number of seats to

each party proportionally to the number of votes received; another, the apportionment

of a number of seats to each state proportionally to the population counts. In the case

of monetary payments there appears to be little discourse on methodology methods. In

contrast, electoral apportionment has led to political controversy and bitter battles.

From its inception in the Constitutional Congress of 1787 in the United States, and

from the proportional representation movement in Europe that came into existence before

1900, alternative methods for electoral apportionment have been proposed. Why is there

a problem? For monetary payments money is considered a practically infinitely divisible

commodity, and we are able to allocate arbitrary fractions. This is not the case for electoral

apportionments. Each seat is a single entity, and the gain or loss of an individual seat is

usually considered of significant importance by the political antagonists.

From the very beginning there has been the issue whether, of two competing apportion-

ment methods, one favors larger parties at the expense of smaller parties more than the

other. The rival apportionment methods are associated with well-known names—Thomas

Jefferson, Alexander Hamilton, John Quincy Adams, Daniel Webster, to name but a few.

For an excellent introduction to the history and mathematical formulation of the subject,

we recommend the seminal monograph by Balinski/Young (2001).

In order to set the stage for the exposition that follows, we refer to the example exhibited

in Table 1. A perusal of this example shows a regularity in the ordering from apportionment

mA to apportionment mJ , capturing the preferential treatment of larger parties versus

smaller parties. Apportionment mA consistently favors smaller parties, in comparison with

apportionment mJ which favors larger parties; the other apportionments lie in-between.

What is clear from Table 1 is that there is a movement uphill from apportionment mA

to apportionment mJ . At each step there is a transfer of one seat. The question is how to

capture the structural implications of these transfers. Different descriptions of the move

from one column to the next could be conceived. The ordering proposed in the present

paper is calledmajorization. It has the advantage of providing a complete characterization,

and has its roots in studies of equality and inequality. For a review of its history and its

formal properties see Marshall/Olkin (1979); an earlier influential forerunner is the book

on inequalities by Hardy/Littlewood/Pólya (1934). In the electoral literature, Raschauer
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Table 1: An Example for Six Parties and 36 Seats (Balinski/Young 2001, page 96).

Adams Dean Hill Webster X Jefferson

Votes mA mD mH mW mX mJ

27 744 10 10 10 10 10 11

25 178 9 9 9 9 10 9

19 951 7 7 7 8 7 7

14 610 5 5 6 5 5 5

9 225 3 4 3 3 3 3

3 292 2 1 1 1 1 1

100 000 36 36 36 36 36 36

The apportionment in any column leads to the apportionment in the next column by the
transfer of one seat from a smaller party to a larger party, as is indicated by the arrows.

(1971), Pennisi (1998) and Grilli di Cortona/Manzi/Pennisi/Ricca/Simeone (1999) are

the only sources we know of that mention the notion of majorization.

The majorization ordering has been a helpful tool in many fields of science, including

mathematics, statistics, chemistry, physics, and others. It should be emphasized, though,

that the ordering has an independent and early origin in the social sciences. The political

science and economics approach dates to Dalton (1920, 1925) who was led to the majoriza-

tion ordering in his study of inequality of incomes.

Dalton’s starting point was the simple idea that if a portion of income is transferred

from a poor person to a rich person, then inequality is increased. Thus, in this ordering the

case where each person has the average is the most equal, and the case where one person

has all the wealth is the most unequal. Formally, if an initial vector m of incomes is altered

by a transfer from poor to rich to obtain a vector m′, then m′ represents higher income

inequality than does m. For example, when 3 units of a good must be shared by three

individuals, then the apportionment m = (1, 1, 1) is less unequal than the apportionment

m′ = (2, 1, 0) which, in turn, is less unequal than m′′ = (3, 0, 0). This type of comparison

generates the majorization ordering.

More specifically, majorization provides an ordering between two vectors m = (m1, . . . ,

mℓ) and m′ = (m′
1, . . . ,m

′
ℓ), with ordered elements m1 ≥ · · · ≥ mℓ and m′

1 ≥ · · · ≥ m′
ℓ,

and with an identical component sum m1 + · · ·+mℓ = m′
1 + · · ·+m′

ℓ = M . The ordering

states that all partial sums of the k largest components in m are dominated by the sum
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of the k largest components in m′, that is,

m1 ≤ m′
1,

m1 +m2 ≤ m′
1 +m′

2,

...

m1 + · · ·+mk ≤ m′
1 + · · ·+m′

k,

...

m1 + · · ·+mℓ−1 ≤ m′
1 + · · ·+m′

ℓ−1,

m1 + · · ·+mℓ = M = m′
1 + · · ·+m′

ℓ.

(1)

We denote this ordering by m ≺ m′, and say that m is majorized by m′, or equivalently,

that m′ majorizes m.

In Table 1, this ordering applies as one moves from the first apportionment column

step by step to the last apportionment column. Thus the subtotal of seats assigned to a

set of large parties is growing (or remains constant), and in this precise sense larger parties

are increasingly better off.

It seems worthwhile to emphasize the descriptive power of the majorization concept.

For instance, Nohlen (2000, page 106) compares two apportionments, similar to the Web-

ster apportionment mW and the Jefferson apportionment mJ in our Table 1. He makes a

point that a transition from mW to mJ may result in allocating an additional seat to any

one of the parties except the smallest. Conversely, the loss of a seat could occur to any

one of the parties except the largest. This sounds as if the transfer of a seat occurs in a

random fashion. This is not so, and there is the systematic structure of transferring a seat

from a smaller party to a larger party. Majorization provides the appropriate language to

capture the structural properties. The total number of seats of the k largest parties in the

apportionment mW is less than or equal to the corresponding total in apportionment mJ .

Equivalently, the total number of seats of the k smallest parties in apportionment mW is

larger than or equal to what those small parties total in apportionment mJ .

Although our focus is on the five traditional apportionment methods named in the

United States after John Quincy Adams, James Dean, Josef A. Hill, Daniel Webster, and

Thomas Jefferson, similar deliberations occurred in Europe (United Kingdom, Belgium,

France, Germany, and others). We briefly give some biographical details, and refer to

Kopfermann (1991) for additional information.

Baron Edward Hugh John Neal Dalton (*26 August 1887, †13 February 1962) was

born in Wales and educated in Cambridge (Marshall/Olkin 1997, page 522). He was
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on the faculty of the London School of Economics, and later served as Parliamentary

Undersecretary at the Foreign Office and as Chancellor of the Exchequer under Prime

Minister Clement Attlee.

Victor d’Hondt (*20 November 1841, †30 May 1901) was professor of tax law and

civil rights at the University of Ghent (Carlier 1901, Beatse 1913). Hondt, an activist in

the Association Réformiste Belge, published widely on the apportionment method that,

in Europe, was named after him and; see, for instance, Hondt (1885). In the USA, his

method is associated with the name of Thomas Jefferson.

Eduard Hagenbach-Bischoff (*20 February 1833, †23 December 1910) was a physics

professor at the University of Basel (Huber 1960). As a member of the Canton legislature

he became a proponent of the method d’Hondt, and simplified the calculations to obtain its

apportionments. Of his many publications on the subject we mention the booklet (1905).

André Sainte-Laguë (*20 April 1882, †18 January 1950) was a professor of applied

mathematics at the Conservatoire national des arts et métiers in Paris (Chastenet 1994).

Early in his career, while teaching at the Lycée in Douai, he published two papers (1910a,b)

analyzing the optimality properties of apportionment methods. Sainte-Laguë gave special

attention to the divisor method with standard rounding, which in Europe then was named

after him whereas in the USA it originated with Daniel Webster. Another apportionment

method that Sainte-Laguë considered is the divisor method with geometric rounding,

which is the method currently in use for the apportionment of seats in the US House

of Representatives (method of equal proportions, Hill method).

George Pólya (*13 December 1887, †7 September 1985) was one of the eminent mathe-

maticians of the last century (Olkin/Pukelsheim 2001). His Collected Papers comprise four

volumes of 2430 pages; the Pólya (1987) Picture Album is a fascinating document of the

scientific history of his century. Pólya authored five papers (1918, 1919a–d) scrutinizing

the various apportionment methods then in use in Switzerland.

Section 2 discusses another relation from the literature that is closely related to majori-

zation. Section 3 extends the notion of majorization from apportionment vectors to

apportionment methods. In Section 4 we describe divisor methods of apportionment,

and the signpost sequences that determine the methods. Section 5 contains our principal

results, providing necessary and sufficient conditions for majorization among divisor meth-

ods. Section 6 serves to explicate the results. An Appendix provides proofs of the three

propositions in Section 5.
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2. A relation akin to majorization

A key feature of majorization is that it is a partial ordering, that is, it is reflexive,

transitive, and antisymmetric (Marshall/Olkin 1979, page 13). Balinski/Young (2001, page

118) and Balinski/Rachev (1997, page 15) discuss the following relation. An apportionment

is said to give up to another apportionment if, in every pairwise comparison of a larger

party i with a smaller party j, party i gains seats or party j loses seats. That is, it cannot

happen that the larger party i loses seats and at the same time the smaller party j gains

seats.

This relation fails to be transitive, and hence does not qualify as a partial ordering. To

clarify the notion of transitivity in this context, consider three apportionments of 21 seats:

Party m m′ m′′

1 10 11 11

2 6 5 5

3 3 3 4

4 2 2 1

21 21 21

(2)

Moving from m to m′, party 2 gives up one seat to party 1. From m′ to m′′, party 4 gives

up one seat to party 3. But comparing m with m′′, party 2 loses a seat whereas party 3

gains a seat, whence the transitivity property does not generally hold.

The following lemma proves that the relation of one apportionment giving up to another

one implies majorization. The converse is not generally true, as evidenced in (2). Thus

majorization orders more apportionments, just enough so as to achieve transitivity.

Lemma. Consider two apportionments m1 ≥ m2 ≥ · · · ≥ mℓ and m′
1 ≥ m′

2 ≥ · · · ≥ m′
ℓ.

If, for all i < j, we have mi ≤ m′
i or mj ≥ m′

j then m is majorized by m′. The converse

is not generally true.

Proof. The proof is indirect. Suppose that m is not majorized by m′, then for some i

we have
m1 ≤ m′

i,

m1 +m2 ≤ m′
1 +m′

2,

...

m1 + · · ·+mi−1 ≤ m′
1 + · · ·+m′

i−1,

m1 + · · ·+mi−1 +mi > m′
1 + · · ·+m′

i−1 +m′
i.
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Consequently, we must have mi > m′
i. However, the total sums are equal, so that it must

be that mj < m′
j for some j > i. For the converse part, we refer to (2) where, although m

is majorized by m′′, we have m2 = 6 > 5 = m′′
2 and m3 = 3 < 4 = m′′

3 . The proof of the

Lemma is complete.

Balinski/Young (2001, page 118) prove that, for divisor methods, monotonicity of the

signpost ratios as demanded in Proposition 1 below is sufficient for their relation to apply.

Similarly, Saari (1994, page 307; 1995, page 271) finds that signpost ratio monotonicity

is sufficient so that “one method favors large states more than another method” without,

however, providing a formal definition for his relation. Here, we show that monotonicity

of the signpost ratios is a necessary and sufficient condition for two divisor methods to be

comparable in the majorization partial ordering.

Thus we hope that the present paper offers a technical as well as a conceptual contri-

bution. Technically, signpost ratio monotonicity transpires to be not only sufficient but

also necessary; this could have been formulated entirely relative to the giving up-relation.

Conceptually, we much prefer to proceed to the majorization partial ordering which has

proved extremely powerful in many other instances where the issue is to assess fairness of

competing allocations.

3. Majorization of two apportionment methods

In proportional representation electoral systems involving ℓ parties, an apportionment

is calculated from given vote counts v1, v2, . . . , vℓ, for a given district magnitude M . Of

course, the vote counts vi are whole numbers. However, there are other applications

where the proportional allocation of M items is based on nonnegative weights vi, see

Balinski/Young (2001, page 96). In general, then, we assume that we are given ℓ weights

vi ∈ [0,∞), and that these weights are ordered from largest to smallest, v1 ≥ v2 ≥ · · · ≥ vℓ.

A procedure that governs the apportionment calculations is called an apportionment

method. Let A be the apportionment method to be used. The apportionment result

then consists, practically almost always, of a single apportionment m = (m1,m2, . . . ,mℓ).

However, a general method must also accommodate tied situations, for instance when ℓ

parties with identical weights share ℓ + 1 seats. Balinski/Young (2001, page 96) discuss

such ties in detail. The set of all apportionments that A associates with a weight vector

v = (v1, v2, . . . , vℓ) is denoted by A(v).

For two specific apportionment vectors m and m′, the majorization relation (1) pre-

supposes vectors with decreasingly ordered elements. Therefore we restrict attention to



8 A Majorization Comparison of Divisor Methods

apportionment methods that guarantee this property. A method A is said to be weakly

weight monotone if

v1 > v2 > · · · > vℓ =⇒ m1 ≥ m2 ≥ · · · ≥ mℓ

for all (m1,m2, . . . ,mℓ) ∈ A(v), see Balinski/Young (2001, page 147). We can now extend

the notion of majorization from (1), to also apply to two apportionment methods.

Definition. Given two weakly weight monotone apportionment methods A and A′, we

say that A is majorized by A′, denoted by A ≺ A′, if either they are equal or, for every

number ℓ of participating parties and for all weights vi > v2 > · · · > vℓ ≥ 0 and for each

district magnitude M , every apportionment m ∈ A(v) is majorized by every apportionment

m′ ∈ A′(v).

In the set of all apportionment methods, this relation is a partial ordering. That is, it

is reflexive (A ≺ A), transitive (A ≺ A′ and A′ ≺ A′′ implies A ≺ A′′), and antisymmetric

(A ≺ A′ and A′ ≺ A implies A = A′). Naturally, there is no necessity that any two

arbitrary apportionment methods A and A′ be comparable in the majorization ordering.

The main result of the present paper is to establish a necessary and sufficient condition

for determining majorization, under the assumption that the two apportionment methods

are divisor methods.

A brief comment may be in order why the notion of weak weight monotonicity con-

centrates on strictly ordered weights v1 > v2 > · · · > vℓ, thereby neglecting any tie v1 = vj .

For example, consider the weight vector v = (45, 25, 25, 5), and choose M = 10. Due to

the tie v2 = v3 = 25, the divisor method with rounding down (Jefferson, Hondt) results in

two apportionment vectors,

m = (5, 3, 2, 0), m̃ = (5, 2, 3, 0),

of which only the first appears in decreasing order as needed in (1). Requiring only weakly

ordered weights v1 ≥ v2 ≥ · · · ≥ vℓ would thus exclude standard methods from further

consideration.
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4. Divisor methods and signpost sequences

A divisor method of apportionment is defined through numbers s(k) in the interval

[k, k+1] such that the sequence s(0), s(1), . . . is strictly increasing. Balinski/Young (2001,

page 64) picture an individual number s(k) as a “signpost” or “dividing point” splitting

the interval [k, k + 1] into a left part where numbers are rounded down to k, and a right

part where numbers are rounded up to k + 1. For s(k) itself, there is the option to round

down to k or to round up to k + 1, thus generating multiplicities.

The numbers rounded this way are the quotients of the weights and a divisor, v1/d, v2/d,

. . . , vℓ/d, for some choice of divisor d > 0 common to all weights. If party i gets mi seats,

then necessarily s(mi−1) ≤ vi/d ≤ s(mi). The divisor d is adjusted so that the sum of all

seats becomes equal to the district magnitude, m1 +m2 + · · · +mℓ = M . Clearly, every

divisor method is weakly weight monotone.

Alternatively, the apportionment m can be found by treating a divisor method as a

rank-index method (Balinski/Young 2001, page 142). That is, the M largest ratios vi/s(k)

for i = 1, . . . , ℓ and k = 0, 1, . . . are determined, and for each occurrence of party i it gets

one seat.

To illustrate these ideas, let A be a divisor method with initial signposts s(0) = 0.5

and s(1) = 1.4. If two parties have vote counts v1 = 75 and v2 = 25, then two seats are

apportioned according to m = (2, 0). With divisor d = 51, this is readily checked:

v1
d

=
75

51
= 1.47 > 1.4 = s(1) =⇒ m1 = 2,

v2
d

=
25

51
= 0.49 < 0.5 = s(0) =⇒ m2 = 0.

Suppose A′ is another divisor method with initial signposts s′(0) = 0.5 and s′(1) = 1.6.

With the same vote counts as before, the two seats are now apportioned according to

m′ = (1, 1). With divisor d = 49, we obtain

v1
d′

=
75

49
= 1.53 < 1.6 = s′(1) =⇒ m′

1 = 1,

v2
d′

=
25

49
= 0.51 > 0.5 = s′(0) =⇒ m′

2 = 1.

The growth of the signpost s(1) from 1.4 to 1.6 makes it increasingly difficult for the larger

party to secure as many seats as before.

Two common signpost sequences are the power-mean signposts

s1(k, p) =

(
kp

2
+

(k + 1)p

2

)1/p

, −∞ ≤ p ≤ ∞; (3)
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and the stationary signposts

s2(k, q) = k + q = (1− q)k + q(k + 1), 0 ≤ q ≤ 1. (4)

In (3), the three exceptional values p = −∞, 0,∞ need special mentioning. The case

p = −∞ has s1(k,−∞) = k, the other extreme is s1(k,∞) = k + 1. For p = 0 we obtain

the geometric mean, s1(k, 0) =
√

k(k + 1). We also note that p = 1 gives the arithmetic

mean, and p = −1 the harmonic mean.

The power-mean signpost sequences (3) with p = −∞,−1, 0, 1,∞ yield, in turn, the five

traditional apportionment methods: the Adams method (divisor method with rounding

up), the Dean method (divisor method with harmonic rounding), the Hill method (divisor

method with geometric rounding, method of equal proportions), the Webster method

(divisor method with standard rounding, method of Sainte-Laguë), and the Jefferson

method (divisor method with rounding down, method d’Hondt, method of Hagenbach-

Bischoff).

Both (3) and (4) represent averages of k and k + 1, with s1(k, p) being the mean of

power p, and s2(k, q) the arithmetic mean with weights 1 − q and q. These two families

have some member sequences in common. For example, p = −∞ and q = 0 yield the value

k; whereas p = 1 and q = 1/2 yield k+1/2; finally p = ∞ and q = 1 yield k+1. In general,

however, different values of the parameters p and q generate different signpost sequences.

For large values of k, the divisor methods with power-mean rounding reduce to three

methods only, the Adams method (p = −∞), the Webster method (p = 1), and the

Jefferson method (p = ∞). This is due to the limiting relationship

lim
k→∞

(
s1(k, p)− k

)
=


1 for p = ∞,

1/2 for −∞ < p < ∞,

0 for p = −∞.

The limit is obtained using l’Hospital’s rule, as x = 1/k tends to zero in s1(k, p) − k =

[{(1+(1+x)p)/2}1/p−1]/x. Thus, in the intervals [k, k+1] with k large, the signposts move

to the midpoints k+1/2 when p is finite, whereas they coincide with the left endpoints k or

the right endpoints k+1 when p is infinite. In contrast, the stationary signpost family (4)

maintains its richness also for large values of k.

The two signpost sequences (3) and (4) generate “compromises” between k and k + 1.

However, other such sequences can be constructed. For example, the signposts s3(k, q) =

k1−q(k+1)q, for 0 ≤ q ≤ 1, is a weighted geometric mean of k and k+1 (Dorfleitner/Klein
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1999, page 151). The associated family of divisor methods includes the Adams method

(q = 0), the Hill method (q = 1/2), and the Jefferson method (q = 1).

The three one-parameter signpost families s1, s2, s3 can be embedded in the single

two-parameter family

s0(k, p, q) =
(
(1− q)kp + q(k + 1)p

)1/p
, −∞ ≤ p ≤ ∞, 0 ≤ q ≤ 1.

As with (3), the exceptional values p = −∞, 0,∞ require separate definitions, namely

s0(k,−∞, q) = k, and s0(k, 0, q) = k1−q(k + 1)q, and s0(k,∞, q) = k + 1. This yields

s1(k, p) = s0(k, p, 1/2), and s2(k, q) = s0(k, 1, q), and s3(k, q) = s0(k, 0, q). Yet another

family is generated by s4(k, p) = log
(
(epk + ep(k+1))/2

)
1/p, for −∞ ≤ p ≤ ∞, beginning

with the Adams method (p = −∞), passing through the Webster method (p = 0), and

ending with the Jefferson method (p = ∞).

5. Principal results for divisor methods

We first show that majorization among two divisor methods requires a monotonicity

relationship involving the signpost sequences that define the two methods.

Proposition 1. Let A be a divisor method with signpost sequence s(0), s(1), s(2), . . .

and let A′ be another divisor method with a different signpost sequence s′(0), s′(1), s′(2), . . ..

Then method A is majorized by method A′ if and only if the signpost ratios s(k)/s′(k) are

strictly increasing in k.

The proof of Proposition 1 is deferred to the Appendix. It is always the case that,

as k tends to infinity, the signpost ratios s(k)/s′(k) can be estimated from below and

from above by k/(k + 1) ≤ s(k)/s′(k) ≤ (k + 1)/k. Hence the sequence of signpost ratios

converges to the limit one, as k tends to infinity. Therefore, under Proposition 1, the

sequence converges to one from below. This entails s(k) < s′(k) for all k, meaning that

a transition from method A to A′ moves all signposts to larger values. Only k = 0 is an

exception; when s′(0) = 0, we set s(0)/0 = 0 for s(0) = 0 and s(0)/0 = ∞ for s(0) > 0..

We now return to the specific divisor methods defined by the power-mean signposts (3),

and by the stationary signposts (4).

Proposition 2. The divisor method with power-mean rounding of order p is majorized

by the divisor method with power-mean rounding of order p′ if and only if p ≤ p′.

Proposition 3. The divisor method with stationary rounding of shift q is majorized

by the divisor method with stationary rounding of shift q′ if and only if q ≤ q′.
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We again defer the proofs to the Appendix. Proposition 2 puts the five traditional

divisor methods into the majorization ordering

Adams ≺ Dean ≺ Hill ≺ Webster ≺ Jefferson.

That the apportionment results of the traditional methods are ordered by majorization is

plainly visible in the congressional apportionments for the US censuses 1791–2000 provided

in Balinski/Young (2001, pages 158–176). Proposition 3 is already implicit in Theorem 2.8

of Balinski/Rachev (1997, page 15).

6. Some examples

Table 2 provides another example. The total number of votes is 100 000, as it is in

Table 1. Hence in both examples, the entries in the first column can be read as a count

of votes (42 919 etc.), or they can be interpreted as weights giving the proportion of votes

(0.42919 etc.). It is interesting to discuss how the examples in Tables 1 and 2 compare.

Table 1 presents the complete series of apportionments obtained from the power-

mean divisor methods, and from the stationary divisor methods; they happen to coincide.

Table 2 is an example where the two series differ. In both cases, the series starts with

the Adams apportionment, passes through the Webster apportionment, and terminates

with the Jefferson apportionment. Of course, there exist other apportionments than the

five traditional ones of Adams, Dean, Hill, Webster and Jefferson, such as X in Table 1.

In Table 1 all seat transfers occur over minimum distance, between pairs of contiguous

parties. Table 2 shows that this need not be so in general; in the top part from the Hill

apportionment to apportionment Xp a seat is transferred over maximum distance, from

the smallest party to the largest party.

In the present examples, the power-mean series and the stationary series happen to

comprise an equal number of apportionments (six in Table 1, and eight in Table 2). In

other examples, not quoted here, these numbers differ. Furthermore, in those instances

where the two series in Table 2 yield distinct results, the stationary apportionment happens

to be majorized by the power-mean apportionment (Xq ≺ Xp, and Yq ≺ Yp). It is a

consequence of Proposition 1 that this need not hold in general.

In order to verify that Tables 1 and 2 present the complete series of apportionments

obtainable from the power-mean divisor methods and from the stationary divisor methods,

we argue as follows.
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Table 2: An Example for Ten Parties and 100 seats (Balinski/Rachev 1997, page 14).

Votes Apportionments obtained from the power-mean divisor methods
42 919 41 42 43 43 43 44 44 45
13 048 13 13 13 13 13 13 13 13
10 879 11 11 11 11 11 11 11 11
10 581 10 10 10 11 11 11 11 11
9 547 10 9 9 9 10 9 10 10
5 708 6 6 6 6 6 6 6 5
2 502 3 3 3 3 2 2 2 2
1 898 2 2 2 2 2 2 1 1
1 461 2 2 2 1 1 1 1 1
1 457 2 2 1 1 1 1 1 1

Adams Hill
Dean Xp

Xq

Webster
Yp

Yq

Jefferson

Votes Apportionments obtained from the stationary divisor methods
42 919 41 42 42 43 43 44 44 45
13 048 13 13 13 13 13 13 13 13
10 879 11 11 11 11 11 11 11 11
10 581 10 10 11 11 11 11 11 11
9 547 10 9 9 9 10 9 10 10
5 708 6 6 6 6 6 6 5 5
2 502 3 3 3 3 2 2 2 2
1 898 2 2 2 2 2 2 2 1
1 461 2 2 2 1 1 1 1 1
1 457 2 2 1 1 1 1 1 1

The apportionment series from the power-mean divisor methods (top), and from the
stationary divisor methods (bottom) need not coincide, as in this example. However,
both apportionment series start with the Adams apportionment, proceed by trans-
ferring a seat from a smaller party to a larger party, and end in the Jefferson ap-
portionment. Within each series, every apportionment is majorized by its successor.
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Generally, let s(k) denote the signposts defining a divisor method, and let the vote

counts v1, v2, . . . , vℓ be given. Assume that party i is apportioned mi seats, and party j is

apportioned mj seats. A transfer of a seat from party j to party i changes the respective

allocations to mi + 1 and mj − 1 seats, and is possible only if there is a tie,

vi
d

= s(mi),
vj
d

= s(mj − 1). (5)

In a tied situation such as (5) there is the option for parties i and j to be allocated mi

and mj seats, or mi + 1 and mj − 1 seats, respectively. Elimination of the divisor d in

equations (5) yields a single equation,

s(mi)

s(mj − 1)
=

vi
vj

. (6)

In a parametric family of signposts, equation (6) turns into a formula that determines the

parameter value giving rise to a tie.

Specifically, we first consider the stationary signposts s2, and start with the Adams

apportionment mA. Inserting s2(m
A
i , q) and s2(m

A
j −1, q) from (4) into (6), we obtain the

formula for q:

qA(i, j) =
mA

i vj − (mA
j − 1)vi

vi − vj
. (7)

Because of Proposition 3 we know that a transfer from party j to party i is possible only

when i < j, that is, when party i is larger than party j. Thus, among ℓ parties, there

are ℓ(ℓ − 1)/2 pairs to be considered. For each pair i, j, formula (7) provides a solution

qA(i, j). Let qA be the smallest of these numbers. In other words, as q increases from zero

upwards, of all the ties that are possible the one at qA materializes first.

For the ℓ = 6 parties of Table 1 there are (6)(5)/2 = 15 pairings, and 15 comparisons

of formula (7) are required. The minimum qA is between parties 5 and 6, for which

qA = qA(5, 6) =
(3)(3292)− (1)(9225)

9225− 3292
=

651

5933
= 0.109 725.

At this value qA, the Adams apportionment mA is tied with the Dean apportionment mD.

Similarly, the value qD = qD(4, 5) = 2295/5385 = 0.426 184 is calculated where the Dean

apportionment is tied with the Hill apportionment, and so on. The rounding step of any

divisor method is rather sensitive to determining the correct value of q, so that a large

number of decimals is usually required.
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For the power-mean signposts s1 from (3), equation (6) takes the form

(
mp

i + (mi + 1)p

(mj − 1)p +mp
j

)1/p

=
vi
vj

,

which does not admit a closed form solution in p. However, because the left hand side

is monotone in p, the solution is readily obtained numerically. For instance, using the

computer program Maple for the data in Table 1, we obtain pA = pA(5, 6) = −3.363 395,

and pD = pD(4, 5) = −0.265 628.

Appendix: Proofs

Proof of Proposition 1. For the direct part, let A and A′ be two distinct divisor

methods satisfying A ≺ A′. We need to show that s(k)/s′(k) < s(k+1)/s′(k+1) for all k.

Our proof is indirect, assuming the contrary,

s(k + 1)

s′(k + 1)
≤ s(k)

s′(k)
for some integer k ≥ 0. (8)

The left hand side of (8) is bounded from below by (k + 1)/(k + 2) > 0, whence s(k) > 0.

Strict monotonicity of the signpost sequence entails a = s(k + 1)/s(k) > 1. Now the

interval

I =

[
s(k + 1)

s(k)
,
s′(k + 1)

s′(k)

]
(9)

is nonempty, by (8), and its left endpoint a satisfies 1 < a < ∞. If the interval is

nondegenerate we can choose two integers v1 and v2 such that v1/v2 lies in its interior.

Because of v1/v2 ≥ a > 1, we get v1 > v2. If the interval degenerates, I = {a}, we

can still define two weights v1 = a/(1 + a) > v2 = 1/(1 + a) > 0, with v1/v2 = a ∈ I.

This construction provides us with a situation of two parties, with respective weights

v1 > v2 > 0. We choose a district magnitude M = 2k + 2.

We claim that m = (k + 2, k) is an apportionment under method A. We establish our

claim by verifying the max-min inequality of Balinski/Young (2001, page 100), according

to which m is an apportionment under method A if and only if

max

{
v1

s(k + 2)
,
v2
s(k)

}
≤ min

{
v1

s(k + 1)
,

v2
s(k − 1)

}
. (10)
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That is, we need to check four inequalities,

v1
s(k + 2)

≤ v1
s(k + 1)

, (10a)

v1
s(k + 2)

≤ v2
s(k − 1)

, (10b)

v2
s(k)

≤ v1
s(k + 1)

, (10c)

v2
s(k)

≤ v2
s(k − 1)

. (10d)

But (10a) follows from s(k + 1) < s(k + 2), (10b) from v1/v2 ≤ s′(k + 1)/s′(k) ≤ s(k +

2)/s(k − 1), (10c) from s(k + 1)/s(k) ≤ v1/v2, and (10d) from s(k − 1) < s(k). If (8) is

fulfilled with k = 0 then the inequality in (10) has right hand side simply equal to v1/s(1),

whence (10b, d) become irrelevant.

We next claim that m′ = (k+1, k+1) is an apportionment under method A′. For this

to hold true the max-min inequality takes the form

max

{
v1

s′(k + 1)
,

v2
s′(k + 1)

}
≤ min

{
v1

s′(k)
,

v2
s′(k)

}
. (11)

Again we need to check four inequalities,

v1
s′(k + 1)

≤ v1
s′(k)

, (11a)

v1
s′(k + 1)

≤ v2
s′(k)

, (11b)

v2
s′(k + 1)

≤ v1
s′(k)

, (11c)

v2
s′(k + 1)

≤ v2
s′(k)

. (11d)

Now (11a) follows from s′(k) < s′(k + 1), (11b) from v1/v2 ≤ s′(k + 1)/s′(k), (11c) from

s′(k)/s′(k + 1) ≤ s(k + 1)/s(k) ≤ v1/v2, and (11d) from s′(k) < s′(k + 1).

In summary, the methods A and A′ produce the apportionments m = (k + 2, k) and

m′ = (k + 1, k + 1) where, evidently, m is not majorized by m′. This contradicts the

assumption A ≺ A′, thus invalidating (8).

For the converse part, we follow the lines of argument in Balinski/Young (2001, page

118), and Balinski/Rachev (1997, page 15). Let the signpost ratios be strictly increasing.

For some vote counts v1, v2, . . . vℓ and district magnitude M , let m be an apportionment

under method A and m′ an apportionment under A′. We prove, for all vi > vj , that
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mi ≤ m′
i or mj ≥ m′

j ; this forces m to be majorized by m′, see the Lemma in Section 2.

Otherwise, there exist two weights vi > vj satisfying

mi > m′
i and mj < m′

j . (12)

In view of the above mentioned max-min inequality there are divisors d for A and d′ for

A′ such that

vi
d

≥ s(mi − 1),
vj
d

≤ s(mj);
vi
d′

≤ s′(m′
i),

vj
d′

≥ s′(m′
j − 1).

This leads to the first and last inequalities in

vi
vj

≤ s′(m′
i)

s′(m′
j − 1)

≤ s′(mi − 1)

s′(mj)
<

s(mi − 1)

s(mj)
≤ vi

vj
. (13)

The second inequality follows from (12), whereas the strict inequality holds by assumption

on the monotonicity of the signpost ratios. But (13) is a contradiction, whence (12) cannot

hold true. The proof is complete.

Proof of Proposition 2. In (3), consider the power-mean signposts s1(k, p) and

s1(k, r) for p < r. We aim to establish monotonicity of the signpost ratios s1(k, p)/s1(k, r).

In case k = 0 and p ≤ 0, we have s1(0, p) = 0 and the convention 0/0 = 0 from Section 5

secures

s1(0, p)/s1(0, r) = 0 < s1(1, p)/s1(1, r).

In all other cases, that is when k > 0 or p > 0, we show that

g(r) =
s1(k + 1, r)

s1(k, r)
<

s1(k + 1, p)

s1(k, p)
= g(p),

namely, the function g(r) is strictly decreasing in r. Upon setting x1 = k + 2, x2 = k + 1

and y1 = k + 1, y2 = k, we may rewrite g(r) in the form

g(r) =

(
(k + 1)r + (k + 2)r

)1/r
(
kr + (k + 1)r

)1/r =

(∑2
i=1 x

r
i∑2

j=1 y
r
j

)1/r

when r ̸= 0. The continuous continuation to r = 0 is the ratio of the geometric means,

g(0) = (x1x2)
1
2 /(y1y2)

1
2 =

√
(k + 2)/k.

Because x1 > x2 > 0 and y1 > y2 ≥ 0 and y1/x1 > y2/x2, Proposition 5.B.3 in

Marshall/Olkin (1979, page 130) applies and states that g(r) is decreasing in r. Moreover,
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the function g is analytic, whence if it is constant on some open interval then it is constant

on the whole real line. This is not the case, as it decreases from g(−∞) = (k+1)/k down

to g(∞) = (k + 2)/(k + 1). Hence g is strictly decreasing, and the proof is complete.

Proof of Proposition 3. In (4), consider the stationary signposts s2(k, q) and

s2(k, r) for q < r. Straightforward calculation gives s2(k + 1, q)s2(k, r) − s2(k, q)s2(k +

1, r) = r− q > 0. Hence s2(k, q)/s2(k, r) is strictly increasing in k. The proof is complete.
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Pólya, G. (1919a): “Über Sitzverteilung bei Proportionalwahlverfahren.” Schweizerisches Zentralblatt für

Staats- und Gemeinde-Verwaltung 20, 1–5.
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