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Abstract

During the past years, the modeling paradigm has become one of the predominant
trends in the field of software engineering and has been embraced by industry and
research alike. An important reason for this development is that models provide an
intuitive yet concise way of formalizing the concepts of an application domain along
with the relationships that exist between them. As a consequence, this technique
now serves as an integral part of popular and widely used software design and
development processes such as the Rational Unified Process (RUP) or the Model-
driven Architecture (MDA) in order to characterize static and behavioral aspects of
software systems. It also drives new approaches in other contexts, e.g. in testing
(Model-based Testing), for the implementation and execution of business processes
on the basis of high-level descriptions (Business Process Modeling) or through the
provisioning of tools aimed at domain experts (Domain-specific Languages).
However, the employment of abstraction (meta) layers to construct languages

dates back a lot further than the comparatively new notion of modeling: The syntax
of a programming language, usually given in the form of a context-free grammar,
forms the basis for parsing language expressions into their respective structural
representation. In many respects, the use of metamodels as means of defining the
abstract syntax of languages therefore parallels formalisms and techniques common
to the area of compiler construction.
As the application fields of modeling expand to new areas where automated pro-

cessing of the contained information becomes crucial to achieve the desired out-
come, the demand for methods enabling advanced analyses of the modeled content
increases. Since models themselves represent a layer of abstraction w.r.t. domain-
specific runtime (or "real world") semantics, their elements can be subjected to a
static analysis, i.e. an assessment of their static properties which are guaranteed to
hold for all instances.
Contemporary techniques for model analysis, such as the widely-used Object Con-

straint Language (OCL), suffer from many shortcomings with respect to their expres-
siveness. The conceptual similarities between the domains of modeling and compiler
construction gave rise to the idea of applying the powerful and well-understood meth-
ods for static validation and optimization of formal language expressions - namely
attribute grammars and data-flow analysis - to models. Hence, this thesis introduces
the notion of flow-based static model analysis to enable the demand-driven, context-
sensitive extraction and validation of a model’s static properties and evaluates the
applicability of this approach in the context of several case studies.

More specifically, the major contributions of this thesis are as follows:

∙ By aligning the abstraction layers and comparing the inherent structure of the

iii



respective language constructs, we investigate the conceptual similarities and
differences between the domains of modeling and compiler construction w.r.t.
to the implementation of an approach to static model analysis. Based on the
results, we develop syntax and semantics for an analysis specification language
that enables the definition of attribute-based flow analyses on metamodels.
These analyses can then be instantiated and computed for arbitrary models.

∙ Since the commonly employed fixed-point solving algorithms for data-flow
equation systems (e.g. the worklist algorithm) are not applicable in this do-
main, we develop and evaluate different approaches for this purpose, taking
into account the characteristic properties of the modeling area to provide opti-
mized and scalable methods for executing analyses defined using the presented
technique.

∙ In order to determine the validity of the overall concept as well as to evaluate
technical properties of the proposed algorithms we developed a reference archi-
tecture and a corresponding implementation, the Model Analysis Framework
(MAF). In addition to providing IDE support for the development, testing
and execution of flow-based model analyses, this framework enables the aug-
mentation of existing third-party tools with analysis capabilities.

∙ Finally, we present and evaluate several application scenarios in which the de-
vised methods have been successfully applied: The first case study introduces
an analysis framework for business process analysis and includes features such
as validation of structural integrity, the derivation of control-flow properties
and the examination of resource definition/usage relationships. Other case
studies apply the analysis technique to the fields of Enterprise Architecture
Management (EAM), semantically enhanced natural language processing and
the validation of AUTOSAR models.
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Zusammenfassung

Im Bereich des Software-Engineerings hat das Modellierungsparadigma als Tech-
nik zur formalen Beschreibung von Anwendungsdomänen in den letzten Jahren
zunehmend an Bedeutung gewonnen. Diese Entwicklung lässt sich mit der Tat-
sache erklären, dass Modellierungstechniken ein leicht zugängliches und dennoch
mächtiges Werkzeug darstellen, das es erlaubt die Eigenschaften beliebiger Domä-
nen einfach und präzise abzubilden. In der Folge entstanden Vorgehensmodelle
zur modellbasierten Softwareentwicklung - wie etwa der Rational Unified Process
(RUP) oder die Model-driven Architecture (MDA) - in denen dieser Ansatz eine
zentrale Rolle spielt. So werden beispielsweise Modellierungssprachen wie die UML
zur Beschreibung der strukturellen Eigenschaften und der verhaltensorientieren As-
pekte des zu entwickelnden Systems eingesetzt. Da der Aufbau der Modelle dabei im-
mer einem bekannten Muster folgt, das durch das jeweilige Metamodell vorgegeben
wird, können die kodierten Daten automatisiert weiterverarbeitet werden. So kann
zum Beispiel durch eine Modell-zu-Text Transformation (M2T) lauffähiger Pro-
grammcode erzeugt werden. Der Einsatz von Modellierungstechniken ist allerdings
keineswegs auf die Disziplin der Softwareentwicklung begrenzt. Weitere Anwen-
dungsfelder finden sich etwa in der Beschreibung und Generierung von Testfällen
(Modellbasiertes Testen) sowie dem Design und der Implementierung von Geschäft-
sprozessen auf Basis abstrakter Prozessmodelle (Business Process Modeling). Weit-
erhin kann in jüngster Zeit ein verstärkter Trend in Richtung domänenspezifischer
Sprachen beobachtet werden. Dabei werden generische Techniken wie die UML
von spezialisierten Modellierungssprachen abgelöst, die auf die Benutzung durch
Domänenexperten zugeschnitten sind.
Eine Konsequenz aus dem Einsatz modellbasierter Technologien ist der Bedarf an

geeigneten Analysemethoden, die es ermöglichen die strukturierten Informationen
auszuwerten. Einsatzbereiche für diese Methoden bestehen unter anderem in der
Validierung der Modelldaten sowie der Ableitung von allgemeingültigen Aussagen
in Bezug auf die Semantik der jeweiligen Zieldomäne. Statische Analyseverfahren
werten hierfür die syntaktischen Struktur aus, so dass garantiert werden kann, dass
die ermittelten Ergebnisse für alle Laufzeitinstanzen Gültigkeit besitzen. Aktuelle
Ansätze zur Analyse von Modellen wie etwa die Object Constraint Language (OCL)
sind allerdings nicht immer in der Lage diese Anforderungen zu erfüllen.
Ziel dieser Arbeit ist es, eine generische Analysemethodik bereitzustellen, die die

Beschränkungen existierender Techniken umgeht. Zu diesem Zweck wird untersucht,
wie Konzepte aus dem Übersetzerbau - einem wichtigen Bereich der praktischen
Informatik der als gut erforscht gilt - auf Modelle angewendet werden können. Er-
möglicht wird dieses Vorgehen durch konzeptuelle Ähnlichkeiten zwischen diesen
beiden Bereichen. So ist die Verwendung verschiedener Abstraktionsschichten zur
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Definition von Sprachen und Sprachinstanzen eine zentrale Eigenschaft des Model-
lierungsansatzes. In vergleichbarer Weise wird die Syntax einer Programmiersprache
mittels einer kontextfreien Grammatik spezifiziert, die damit die Basis für die Verar-
beitung von Sprachausdrücken (Parsen und Übersetzen von Programmcode) bildet.
In vielerlei Hinsicht ähnelt daher der Einsatz von Metamodellen als Mittel zur

Definition der abstrakten Syntax einer Sprache den Formalismen und Techniken die
im Bereich des Übersetzerbaus Anwendung finden. Daraus entstand die Idee, die
leistungsfähigen Methoden zur statischen Validierung und Optimierung formaler
Sprachausdrücke - namentlich Attributgrammatiken und Datenflußanalysen - auf
Modelle zu übertragen. Diese Arbeit führt hierfür das Konzept datenflußbasierter
Modellanalysen ein und evaluiert die Anwendbarkeit und Vielseitigkeit dieses An-
satzes im Rahmen mehrerer Fallstudien.

Der Inhalt lässt sich wie folgt zusammenfassen:

∙ In einem ersten Schritt werden Gemeinsamkeiten und Unterschiede der Quell-
und Zieldomäne herausgearbeitet. Dieser Vergleich beleuchtet dabei sowohl
die Beziehungen zwischen den Abstraktionshierarchien als auch die Struk-
tur der jeweiligen Sprachkonstrukte und -instanzen. Auf Basis dieser Ergeb-
nisse werden im Folgenden Anforderungen formuliert, die für eine erfolgreiche
Übertragung der Analysekonzepte auf die Modellierungsdomäne erfüllt werden
müssen. Gemäß diesen Anforderungen wird eine Spezifikationssprache ent-
worfen, mittels derer Datenflußanalysen für beliebige Modellierungssprachen
definiert und für entsprechende Modelle instanziiert werden können.

∙ Die Fixpunktalgorithmen (z.B. der Worklist Algorithmus) mit denen Daten-
flußgleichungssysteme typischerweise ausgewertet werden, können aufgrund
der Adaptionen des Datenflußkonzepts nicht direkt in der Modellierungsdomäne
eingesetzt werden. Aus diesem Grund müssen die klassischen Verfahren ent-
sprechend adaptiert werden.

∙ Um die technischen Eigenschaften der Spezifikationen und Algorithmen prak-
tischen evaluieren zu können wird eine Referenzarchitektur entwickelt und im-
plementiert. Das Model Analysis Framework (MAF) stellt eine IDE für die
Entwicklung, das Testen und die Ausführung von flußbasierten Modellanaly-
sen bereit. Weiterhin ist dieses Architekturkonzept darauf ausgerichtet, das
Einbetten von Analysefunktionen in existierende Drittanbieterprogramme zu
unterstützen.

∙ Zuletzt wird das beschriebene Verfahren im Kontext verschiedener Anwen-
dungsfälle und -szenarien eingesetzt und evaluiert: Die erste Fallstudie definiert
ein Analyseframework für Geschäftsprozesse. Dieses implementiert unter an-
derem Funktionen zur Validierung der strukturellen Integrität und zur Auswer-
tung der Definition/Usage-Beziehungen zwischen Prozessressourcen. Weit-
ere Fallstudien sind in den Bereichen des Enterprise Architecture Manage-
ments (EAM), der semantischen Sprachverarbeitung und der Validierung von
AUTOSAR-Modellen angesiedelt.
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1. Introduction

In recent years, modeling technologies have become a prominent instrument in the
field of computer science with a wide range of industrial applications. One reason for
the increasing popularity of Model-driven Engineering (MDE) is that this method
can be used to encode features of an application domain in a simple yet concise man-
ner. A domain’s concepts and the relationships between them are stored inside a
model graph. Because the structure of a model is governed by a metamodel, the cod-
ified information can be processed automatically. In this sense, modeling condenses
real world scenarios into representations suitable for algorithmic interpretation.
A well-established use case can be found in Model-driven Software Development

(MDSD) [SVC06] where modeling languages such as the UML are used to describe
the structural and behavioral properties of software systems. Here, models can be
regarded as documentation of a software’s internal design while at the same they sup-
port development processes through automated code generation. As [Bez05] notes,
this trend reflects a paradigm shift from the object-oriented principle of “everything
is an object” to the model-centric view that “everything is a model”. Well-known
examples for methodologies that heavily rely on MDE principles to enhance soft-
ware engineering methods include the Model-driven Architecture (MDA) [MDA] and
Model-based Testing (MBT) [AD97].
Because of its versatility, modeling has applications that reach far beyond the area

of traditional software development. At their core, MDE techniques are built around
a multi-tiered architecture of abstraction layers where the structural composition of
any model-based artifact is always governed by a metamodel residing on its parent
layer. This means that the concept of abstraction is firmly ingrained in the notion
of modeling. In a broader sense, this approach can therefore also be viewed as a
framework that facilitates the design of custom languages for arbitrary domains,
so-called domain-specific languages (DSLs). This is reflected by the employment of
the term modeling language that mirrors the usage of programming language.
In practice, the most commonly used modeling framework is the OMG’s Meta Ob-

ject Facility (MOF) which - along with derived languages such as the UML or the
Business Process Modeling Notation (BPMN) [BPMN] - has become the de-facto
standard in this area. It allows language engineers to build custom metamodels
for arbitrary target domains. Arguably the most popular implementation of MOF
can be found in the Eclipse Modeling Framework (EMF) and its vast ecosystem
of accompanying tools that support the development of domain-specific applica-
tions. For example, the Graphical Modeling Framework (GMF) can assign visual
representations to language artifacts and in turn employs code generation steps to
automatically generate corresponding graphical language editors.
It has already been suggested that analogies can be drawn to the area of compiler
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construction (CC) which aims to provide the theoretical background and technical
support for the realization of programming languages. On a fundamental level, both
MDE and CC rely on a stack of abstraction layers along with a set of complementary
techniques to standardize the process of language design in their respective domain.
In fact, due to the notable similarities, the alignment of both technological spaces
is a subject that has received increased attention in recent years [WK05]. This
realization has lead to developments such as the Xtext language workbench [XTEX]
that combine methods and practices from both areas.
There is however one important aspect to language engineering that has been

hitherto neglected: While the abstract syntax of a programming language is typically
given in the form of a context-free grammar, additional restrictions may have to
be enforced to guarantee that program code can be meaningfully interpreted. As
an example, statically typed languages require that any assignment of a value to
a variable is preceded by (and consistent to) a declaration of the variable’s type.
Typically, this constraint is checked statically during the compilation process (as
opposed to a runtime verification). This validation requires that each statement can
be examined in its respective context since its correctness depends on the instructions
that precede the statement in the program’s overall control-flow. Restrictions of this
type are called the static semantics or well-formedness rules of a language because
they cannot be encoded in the language’s syntax but can nevertheless be statically
verified by other means. An important characteristic of properties computed by a
static analysis is that they hold for all instances. In the presented example, the
result would indicate whether a variable access is correct for all possible executions
of the program. Static techniques must perform an approximation of a program’s
runtime behavior since the exhaustive computation of its dynamic properties is a
problem that is known to be undecidable (Rice’s theorem).
In the field of compiler construction, two prominent methods have emerged that

are commonly employed for this purpose: Attribute grammars (AGs) and data-flow
analysis (DFA) enable the validation of a program’s static semantics and the deriva-
tion of optimizations based on its control-flow. In both cases, the analyses themselves
are defined on the language (i.e. meta) layer and run on specific representations of
language expressions, namely abstract syntax trees (ASTs) and control-flow graphs.
The working principle of these approaches can be described as a form of information
propagation where data sets are generated locally at the graph’s nodes1 and then
forwarded along its edges. This effect is achieved by modeling the data dependen-
cies as an equation system: A node’s input parameters correspond to the output
of its immediate neighbors (which in turn receive their input from their respective
neighbors and so on). From a global perspective this equates to an overarching
information flow as locally computed results are propagated throughout the graph.
An additional advantage of the DFA method in particular is its usage of fixed-point
semantics to resolve cyclic equation systems caused by backward dependencies in
the control-flow. If a node has multiple predecessors, either the unification or the
intersection operator is applied to combine the input sets. For cyclic and alternative

1In control-flow graphs, the nodes usually represent program instructions while in syntax trees,
they reflect the composition of statements according to the language’s grammar.
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paths, it is thereby possible to distinguish between routes that may be traversed
and routes that must be traversed during the program’s execution.
While those two methods are firmly established in compiler construction, there

still exists a lack of comparable mechanisms that would enable a validation of mod-
eling languages. For a clarification of this assessment, we consider the example of
modeling languages that encode control-flow structures, such as UML Activity Dia-
grams. For this type of model it is commonly required that each node can be reached
from the start node. Corresponding to the variable analysis described above, the
reachability status of a node depends on its context and can be verified statically.
Nevertheless, the technological space of MDE currently does not provide a unified
method for specifying this restriction in an easy, non-obtrusive and consistent way.
Over time, several attempts have been made to use existing formal approaches for

models analysis, e.g. by translating (meta) models into logic-based representations
[MM06; SAB10]. A drawback of this approach is that, because of the involvement
of two different technological spaces, this introduces a gap that can be difficult to
manage on a technical level but may also lead to problems on a conceptual level as
model-specific semantics have to be mapped to the logic-based systems in which the
analyses are defined and executed.
A purely model-oriented solution to this problem exists in the form of OMG’s

Object Constraint Language (OCL). Somewhat similar to how attribute grammars
extend context-free grammars, OCL expressions are annotated at metamodel ele-
ments and can then be evaluated for derived models. However, limitations of the
expressiveness which complicate the implementation of some use cases, have been
the subject of discussion [MV99; Baa03]. More specifically, OCL relies on static nav-
igation statements to address model objects which makes it difficult or impossible to
implement certain types of analyses, including the computation of the reachability
property mentioned previously. Intuitively, this problem could be phrased as follows:
The start node is reachable. Other nodes are reachable if at least one of their di-
rect predecessors is reachable. Since the reachability of each node therefore depends
on the status of its immediate predecessors, any suitable solving strategy would
invariably need to be able to handle recursive (and potentially cyclic) dependencies.
It is easy to see that the problem statement can expressed in the form of flow

equations and thus be implemented as a data-flow analysis. The recursive nature
of the problem translates into the propagation of local results to succeeding nodes.
By making use of fixed-point semantics, it is furthermore possible to refine analyses
through static approximations. For example, to compute the dominators for Actions
in an Activity Diagram, each Action simply has to add its immediate predecessors to
the intersection of the predecessors’ result sets. This analysis yields the “guaranteed
predecessors”, i.e. the nodes that will always be traversed on the route to a specific
target Action independent of the chosen execution path.
Scenarios which require a context-sensitive evaluation of model objects are quite

common, with applications ranging from model validation to the computation of
metrics to the approximation of dynamic properties. While it would be possible
to implement a custom solution for each of these cases, it is obvious that a more
generalized approach would be beneficial. This observation gave rise to the idea
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of transferring the DFA method to the modeling domain. Because of the close
conceptual ties between compiler construction and MDE, it can be expected that a
careful adaption of this well-established technique would provide a powerful method
for model analysis while at the same time avoiding the inherent difficulties that often
result from the combination of disparate technological spaces.
In this thesis, we address this challenge by presenting a detailed description of

an approach that constitutes a generic, declarative method for the specification and
computation of static properties that can be derived from the structural layout of
a model. Its intended target audience are language engineers responsible for devel-
oping (model-based) domain-specific languages and tooling as opposed to users of
the implemented languages (who may also be developers in their respective domain).
Making use of the provided facilities, language engineers can augment their products
with advanced validation and information extraction capabilities through a toolset
similar to the one available to compiler designers.
In the notion of attribute grammars, we define the concept of data-flow attributes

which can be attached to elements in MOF-based metamodels. For derived models,
these attributes can then be instantiated and evaluated using a fixed-point com-
putation. Motivated by the goal of preventing gaps between technological spaces,
this methodology has been designed in a way that ensures a close integration with
common standards and technologies in the modeling domain. For this purpose,
the analysis specification language itself is based on a metamodel, thereby simpli-
fying conceptual and technical integration. The Model Analysis Framework (MAF)
comprises a tooling environment that serves as a proof-of-concept demonstrator
and fosters industrial usage by enabling the integration of analysis capabilities into
third-party applications. This toolset was also used to evaluate the applicability
and versatility of the approach in the context of several case studies from different
application domains.
The remainder of this chapter details the research questions which motivated this

research, presents the objectives and highlights the contributions. It is structured
as follows: In Section 1.1, we study the challenges that arise when applying static
analysis to modeling languages. The objectives derived from these challenges along
with the concrete approach to achieve the stated goals and the resulting contribu-
tions are described in Section 1.2. The author’s publications which contributed to
this thesis are listed in Section 1.3. Finally, Section 1.4 outlines the overall structure
and the contents of each chapter.

1.1. Problems and Challenges

In this section we examine the current situation and the practices in the area of
model-driven engineering w.r.t. the topic at hand, the specification and evaluation of
the static semantics of modeling languages. Since the notion of modeling permeates
a wide range of different application scenarios and use cases, we have clustered the
findings into several topics, each of which focuses on one particular aspect relating to
the application of analysis in the modeling domain. Starting with an assessment of
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the current state, we identify and describe the problems that exist in the respective
context in an effort to motivate the need for a unified method that is able to address
these issues. From these problems, we then derive specific challenges. These will
be taken into consideration in the next section to formulate concrete objectives and
outline an overall approach that implements a viable solution.

Early Detection of Errors in Model-driven Engineering

Currently, the most widely-used application of the notion of MDE can be found
in the area of model-driven software development where it is employed to support
the execution of traditional software engineering processes. This is usually achieved
through the usage of languages such as the UML which enable the description of
the internal design and behavior of software systems in a formalized, well-defined
fashion. On the other hand, MDE technology is also used to implement customized
solutions based on domain-specific languages that provide similar features for arbi-
trary application domains. In both cases, it is essential that models strictly adhere
to a predefined set of restrictions to ensure that they can be automatically inter-
preted, e.g. by code generators or by workflow engines that are able to execute
business process models.

Problems

∙ Whether models are used to describe the inner workings of software systems
or to encode information in other areas, it must be assumed that the process
of modeling itself - just like any other specification process - is inherently
error-prone and thus requires multiple iterations with subsequent verification
steps to achieve the desired outcome. Since modeling is usually carried out
in the early phases of a development process, it is vital that developers are
given immediate feedback on the correctness of their models. Otherwise, early
design errors might lead to larger problems later on that are costly and time-
consuming to rectify.

∙ An often neglected aspect of the modeling process is the quality assurance of
the developed artifacts. For program code, it is common practice to define and
(automatically) enforce a set of coding guidelines to improve software quality
and reduce the probability of errors. With the increasing importance of the role
of models in many development processes, the need for a suitable technique for
this purpose becomes evident. Unfortunately, modeling guidelines often exist
only as an informal, textual description that cannot be used for an automated
verification.
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Challenge 1: Test the Models - Not the System

To ensure that problems can be identified in the early stages of a development
process and to provide feedback to the developers about the quality of the
design artifacts, analysis has to be performed on the model level. In other
words, it should be possible to subject models to an evaluation of their static
properties comparable to the validation of program code by a compiler. In
a sense, this represents a “test” of the models themselves rather than of the
generated code during runtime.

Analysis of a Model’s Dynamic Properties

In the previous point, it has been mentioned that modeling is usually part of the
design phase. Instead of working on an instance of the running system, analysis
techniques therefore have to rely solely on the defined models. To generate valuable
feedback, any viable method would therefore have to be able to extract information
that is implicitly encoded in the design artifacts. This is complicated by the fact
that the meaning of the contained elements is highly domain-specific. For example,
the information encoded inside an UML Class Diagram has to be interpreted in a
different way than the elements found in an Activity Diagram.

Problems

∙ Static analyses are defined on the language level and executed for derived
expressions such as models or program code. Often, these expressions are
themselves abstract representations of a - possibly infinite - set of instances:
Each execution of a program can be unique in itself although it is based on the
same program code. The same is true for models. A business process model,
for example, describes a whole class of possible process instances. An analysis
of language expressions therefore must be able to factor in characteristics that
influence runtime behavior.

∙ Metamodels constitute the abstract syntax of modeling languages in the same
way context-free grammars define the syntactical structure of programming
languages. Both metamodels and CFGs are intuitive formalisms that enable
an efficient algorithmic processing of derived language expressions. The down-
side of this approach is that both static and dynamic semantics, i.e. well-
formedness rules and behavioral aspects, must be specified separately. Cur-
rent solutions to this problem suffer from several drawbacks such as relying on
complex theoretical abstractions, introducing technological gaps or being too
limited in their expressiveness.
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Challenge 2: Approximate Dynamic Behavior

During the design phase, the only available input for analysis consists of the
design artifacts themselves. Results must therefore be extractable based on an
interpretation of a model’s structural composition. Because the semantics of
model expressions depends on the respective application domain, this process
has to take into account domain-specific properties of the language’s elements.
For this purpose, a simple, intuitive mechanism is required for the definition
of a metamodel’s semantics. More specifically, this pertains to the class of
static properties that hold for all instances of a model and therefore enable an
approximation of its “runtime behavior”.

Applicability to Different Scenarios

As described earlier, the notion of modeling can be applied in a wide variety of
different scenarios. Common use cases include code generation, the encoding of the
structural composition of objects in a target domain, the definition of executable
control-flows, data storage and others. It has already been stated in Challenge 1
that the interpretation of model elements therefore depends on the specific runtime
semantics. However, a closer examination of the usage of modeling techniques reveals
that there are even more factors involved. For example, there is a distinction between
the roles of language engineers on one side and language users on the other side. Both
parties may put an emphasis on different aspects when it comes to the application of
analysis techniques. In addition, it is also possible to distinguish between different
goals that users might pursue such as the validation of models, an assessment of
their quality or information extraction.

Problems

∙ Modeling is a highly versatile technology that can be used to achieve differ-
ent goals. It is therefore not advisable to hard-code functionality for concrete
domains such as software development or for specific modeling languages like
UML. Nevertheless, some usage scenarios may be applicable in multiple set-
tings. As a consequence, it should be possible to adapt existing analyses to
work in similar domains with a comparatively minor effort.

∙ In the application of analysis functions, users might pursue different goals. Any
technique for this task would have to be flexible enough to handle scenarios
such as validation of structural integrity, an assessment of a model’s semantic
properties or an estimation of the model’s quality.

∙ Many applications of MDE implicitly assume the involvement of two parties:
The language developers and the language users. One therefore has to dis-
tinguish between two different viewpoints and their respective expectations
when it comes to the application of analysis techniques. On the one hand, a
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language developer is concerned with the design of the language itself and the
provisioning of supporting tooling environments while users have an interest
in being able to efficiently employ the provided methods and tools.

Challenge 3: Support Domain-independence and Reusability

To support the evaluation of dynamic properties across domains and with dif-
ferent goals, any viable approach has to be generically applicable. This means
that it must not make assumptions that presume the existence of features
found only in specific target domains. In addition, the method must also be
generic in the sense that it supports a range of application scenarios such as
the validation of structural integrity or the extraction of dynamic properties.
In this context, once defined analyses should also be adaptable to different
domains that share the same basic principles. Finally, the approach has to
distinguish between the roles of developers and users by providing language
engineers with facilities that enable a simple specification of reusable analyses
that are able to yield the information required by language users.

Consistent Integration with MDE Principles

Modeling frameworks such as MOF or KM3 [JBT06] define multi-layered archi-
tectures for the development and usage of model-based domain-specific languages.
These standards are accompanied by a large set of complementary, interwoven
techniques including, amongst others, model transformations, editor builders and
database persistence layers. As a whole, this toolset forms the basis for the versatile
application of MDE principles. Consequently, it is desirable that any new method
that seeks to extend the capabilities of the modeling ecosystem should integrate
with existing techniques.
Current methods that allow the definition and execution of analyses on models

take various approaches to accomplish this task. While the OCL, for example, relies
solely on modeling technology, other techniques translate problems into different
technological spaces such as formal logic.

Problems

∙ The direct reuse of existing formal methods for the purpose of model analysis
requires the transfer of modeling semantics to the respective target domain.
In addition to the resulting technological gap, a mapping between the seman-
tics of both domains is further complicated by concepts which are not directly
translatable [Ana+10]. While this is certainly a valid approach, it would intro-
duce problems that may hinder its successful application. In addition, users
would be required to familiarize themselves with the semantics of a domain
outside of their actual scope of expertise.

∙ Metamodels themselves are based on a meta metamodel - M3 in MOF ter-
minology - which can be regarded as a language for language development.
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One way to provide an integrated, model-based solution that allows for the
annotation of analysis specifications at metamodels would be to extend the M3
layer with additional constructs [MFJ05]. However, this would likely result in
an incompatibility with existing MDE methods and tools that depend on a
faithful implementation of the official standards.

∙ Users that are familiar with the modeling domain expect that the practices
in this field are respected. Constraints formalized in the Object Constraint
Language, for example, are defined in the context of metamodel elements and
follow the common modeling semantics of generalization and instantiation. To
gain user confidence, it is therefore vital that these notions are supported in a
simple and intuitive fashion.

Challenge 4: Integrate with Modeling Practices

It is often the case that a modeling technique builds upon existing methods
and at the same time offers new functionality that can be reused by other
techniques. The successful application of any method that seeks to extend
the current state in the MDE space therefore requires a close integration with
the standards and practices in this area. For this reason, rather than simply
translating (meta) models to a representation suitable for flow analysis, the
analysis specification process should itself follow modeling principles. To pre-
serve compatibility with existing techniques and implementations, this has to
be done in a way that is non-intrusive, i.e. does not require a modification of
established standards and tools.

1.2. Objectives, Approach and Contributions

In the previous section, we identified problems and challenges relating to the imple-
mentation of an analysis technique supporting the derivation of meaningful informa-
tion about a model’s dynamic properties from its structural composition. Now we
will take these aspects into consideration in an effort to develop concrete objectives
for the realization of this method and discuss in more detail how these goals can be
achieved. This will be complemented by a listing of the scientific contributions of
this thesis.

Objectives

The following list comprises the major objectives of this thesis and relate to the
challenges presented in Section 1.1.

Objective 1: Provide Method for Static Model Analysis

Challenge 1 emphasizes the importance of performing analysis on a model
level. This requires the implementation of a sound, practicable and efficient
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methodology that enables the extraction of dynamic properties. It is there-
fore necessary to provide the possibility to approximate a model’s runtime
semantics as noted in Challenge 2 .

For this purpose, we propose the application of data-flow analysis, a well-
known compiler construction technique, since this method fulfills the listed key
requirements: A flow analysis is a declarative specification that can be defined
for existing metamodels. Its constituents, the flow equations that compute
and propagate local results, are able to generate and process context-sensitive
information and can be phrased in a way which factors in the domain-specific
semantics of the respective modeling language.

Through the usage of fixed-point evaluation semantics, this technique derives
properties that are true for all interpretations of a model, thereby approxi-
mating dynamic behavior. Depending on the employed confluence operator,
analyses can distinguish between minimal and maximal cases, i.e. facts that
are guaranteed to hold for all instances or may hold for some instances respec-
tively.

The objective therefore is to start with the DFA method from the field of
compiler construction and adapt it for use in the modeling domain.

Objective 2: Ensure Generic Applicability

Challenge 3 stresses the importance of the applicability of the approach with
respect to different aspects: Developers and users might choose to employ
static analysis in arbitrary target domains for different purposes. The imple-
mentation of the flow analysis technique must therefore not rely on features of
specific types of models. For example, it would not be safe to automatically
route information along the control-flow edges of Activity Diagrams as both
the presence of these edges and their concrete semantics depend on the respec-
tive modeling language. Instead, a domain-independent way of specifying the
information flow in models is needed.

On a technical level, it is also important to consider the challenges that arise
when attempting to implement a method that consistently integrates with
the modeling domain. Challenge 4 emphasizes that this is an essential goal
for any viable modeling technique. Consequently, it must be guaranteed that
the methodology not only extends but also retains full compatibility with
existing standards. For this reason, the analysis specification process itself
has to be based on a modeling language that is both defined on the basis of
the Meta Object Facility and can extend MOF-derived metamodels in a non-
intrusive fashion. Simultaneously, DFA evaluation semantics must be adapted
to support a flexible definition of information propagation as stated above.

To remain independent of specific implementation technologies, it should also
be possible to specify the execution semantics of data-flow equations using
arbitrary languages.

An additional objective related to general applicability is the provisioning of a
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domain-independent standard library of analysis templates. This ensures that
similar problems appearing in different domains can be addressed effectively.

Objective 3: Provide Reference Implementation

Any practical application and evaluation of the conceived approach requires
the development of a proof-of-concept implementation. Since the technology is
intended to be employed by third parties, it is desirable that this component
fulfills the demands of an industry-grade application. As a prerequisite for
this implementation, it is therefore necessary to carefully devise a set of design
goals and draft a suitable architecture. Furthermore, it must be ensured that
support for widely used frameworks and modeling technologies is available.

In this context, it is also necessary to consider the different roles of language
engineers and languages users and their respective preferences as described in
Challenge 3 . For developers, an IDE must be provided that implements the
analysis DSL. The execution of the defined analyses is handled by a separate
DFA evaluator component that can be integrated into modeling applications,
thereby making analysis capabilities available to users.

Objective 4: Evaluate the Approach

To provide proof that the proposed method indeed fulfills the stated require-
ments, it must be subjected to an in-depth evaluation according to different
criteria. In order to assess the points listed in Challenge 1 , it must be demon-
strated that model analysis is a viable method for extracting useful information
from model artifacts in early development phases. Challenge 3 demands the
applicability for different domains and purposes. To evaluate this requirement,
it is necessary to study how this approach can be employed to solve problems
in multiple usage scenarios. Consequently, we have to identify case studies
which reflect the diverse nature of the use cases to enable the examination of
the proposed key features.

Approach and Contributions

To implement a solution that is able to address the points listed in the stated ob-
jectives, multiple steps have to be carried out. We will now outline these “work
packages” (which also represent the general structure of this thesis) and summa-
rize the contributions that have been developed for the presented challenges and
problems.

1. Comparison of Compiler Construction and Model-driven Engineering

As [Bra09] notes, “[t]here is a huge amount of compiler construction related research
from which the model-driven software engineering can learn”. In the context of this
thesis, this statement applies to the transfer of the concept of data-flow analysis to
the modeling space.
To accomplish this task, it is first necessary to provide a sound understanding of

the conceptual relationships between the techniques involved in this process. It is
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known that the technological spaces of compiler construction and modeling share
several characteristics. A close examination of both fields will therefore reveal their
conceptual similarities as well as subtle differences. This comparison is required
to identify which parts of the original method can be directly transferred to the
target domain and also to anticipate potential complications and to help devise
proper ways to address these problems. The concrete requirements for an effective
implementation of a flow-based model analysis concept can then be derived from
these considerations.
While the comparison between both technological spaces and the drawn conclu-

sions provide the underpinnings for the realization of the proposed approach, this
can also be understood as an independent study of the relationships between both
language frameworks and the implications for techniques that focus on non-invasive,
declarative annotations of modeling languages.

Contributions

∙ We examine the relationships between the language frameworks of compiler
construction and modeling. This includes a study of their respective appli-
cations areas, the methodologies of language development and usage and an
alignment of the abstraction layers of the multi-tier architectures that are the
corner stone of both domains. We also take a closer look at the role syntax
and (static) semantics play in the context of domain-specific languages realized
with either technique.

∙ From these observations, we derive and motivate a set of design goals and
intended properties relating to the implementation of the proposed flow-based
analysis technique. Subsequently, we concretize the resulting challenges in an
effort to examine how the notion of flow-sensitive analysis can be adapted to
the modeling domain in a pragmatic way while preserving its original seman-
tics.

2. Adapt DFA Semantics to the Modeling Domain

In order to provide a solid foundation for this method, it is necessary to give a sound
mathematical description of the proposed concepts. There are multiple aspects
that must be considered in this process. First, the concepts required for analysis
specification themselves have to be formalized based on a suitable representation of
the target domain. In a second step, these definitions can then be used to describe
semantics with respect to the evaluation of analyses. Finally, it must be shown that
this definition is in line with traditional DFA, i.e. that it actually represents a valid
transfer of this technique to the target domain.

Contributions

∙ We present a mathematical description of the core concepts of flow analyses.
For this purpose, we define the syntax and instantiation semantics of analysis
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specifications in the notion of attribute grammars. With this approach, we
are able to implement a declarative, non-intrusive technique that enables the
extension of existing modeling languages with declarations of their static se-
mantics. To ensure a proper integration with the target domain, we base this
specification on a formalized representation of modeling concepts.

∙ The comparison of the technological spaces of MDE and compiler construction
leads to the conclusion that traditional algorithms for solving DFA equation
systems cannot be directly applied to the modeling domain. To address this
challenge, we propose a set of properties that must be fulfilled by a viable
adaption of this method. The contribution made in the context of this topic
therefore consists of an approach that implements the required features. It rep-
resents a demand-driven, partially parallelizable algorithm for DFA fixed-point
computation that supports the dynamic discovery of data-flow dependencies.

3. Develop DSL for Flow-based Model Analysis

The previous step already ensures a sound theoretical understanding of how to
define and conduct flow analyses on models. However, for a practical application
of this approach, this information must be complemented by the artifacts required
to actually define and implement analyses for (meta) models. This means that a
suitable representation of the formal concepts has to be developed.
Keeping in line with the stated objectives, the analysis technique should not

only extend the current state of MDE but it should itself be firmly rooted in MDE
methodology. To this end, we have to provide a custom model-based domain-specific
language that realizes the proposed concepts, thereby supporting the specification
of analyses for existing modeling languages.

Contributions

∙ We define a metamodel that implements a domain-specific language for the
attribute-based specification of data-flow analyses. This approach ensures that
concepts of existing modeling languages can be annotated with analysis con-
structs in a non-intrusive fashion. As a consequence, neither the MOF frame-
work itself nor the target language have to be modified in any way. Because
of the declarative nature of the annotations, analyses can be partitioned into
libraries thereby streamlining the specification process. Also, this DSL only
presumes the existence of very few basic modeling concepts - namely classes,
associations and generalizations - and can therefore be considered to be a
generic solution for the modeling space.

∙ For practical usage, the abstract syntax defined by the metamodel has to be
complemented by a concrete representation. For this purpose, we present a
textual DSL. The structure of this language is given in the form of a Xtext
grammar since this variant of context-free grammars directly associates gram-
matical symbols with metamodel concepts. From this definition, the Xtext
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language workbench is able to automatically generate matching parsers and
serializers.

4. Develop Toolset for Model Analysis

A programmatic realization of the proposed approach is a necessary prerequisite for
a proper examination of its properties in practical usage scenarios.
The first step in this direction consists of an implementation of the central arti-

facts and concepts. More specifically, this comprises the specification language, the
instantiation process and the algorithms supporting fixed-point computation.
For a practical application of the developed methodology, the functional core must

be embedded in a framework that facilitates its usage in complex scenarios. To devise
a suitable architectural design for this purpose, we focus on the intended use cases:
The framework has to provide support for a variety of tasks such as validation
and information extraction and has to anticipate the respective demands of the
roles of language engineers and users. Additionally, the technologies that constitute
the MDE ecosystem have to be assessed to ensure a consistent integration of the
developed tools.

Contributions

∙ We provide a list of design goals that motivate and describe the desired features
of the analysis framework. These goals detail the requirements that have to be
met to ensure that the analysis tool represents a viable solution for all intended
purposes. We then present a concept that incorporates these considerations.
It consists of an overall architectural design and an description of its functional
components and their respective tasks and interactions with other parts of the
framework.

∙ We present our reference implementation - the Model Analysis Framework
(MAF). In this context, we demonstrate how the abstract concepts of the
proposed architecture can be realized to develop an integrated flow analysis
toolset. This includes an IDE that provides language engineers with the ability
to specify analyses and simplifies the integration of analysis capabilities into
third-party applications.

5. Demonstrate Practical Applicability

At this point, the theoretical framework has been fully developed and a practical
implementation exists in the form of the Model Analysis Framework. However, the
approach still must be subjected to a practical evaluation to demonstrate that it
fulfills the initially stated objectives.
For this purpose, multiple case studies have been carried out, each in the context

of a different application domain. Each case study is itself composed of a variety of
smaller use cases that address specific problems in the respective target domain and
serve as building blocks for the realization of more complex goals. The intention

15



Chapter 1. Introduction

here is to provide proof of the versatility of the proposed method with respect to
its applicability to a wide range of modeling languages as well as its flexibility in
handling versatile usage scenarios.

Contributions

∙ It has been stated that some problems that can be solved through flow analyses
- such as determining the reachability of flow-graph nodes - can be found in
different domains. To simplify the adaption of these recurring use cases, we
provide a standard library comprised of analysis templates that can be easily
adapted to work in target domains that share a set of basic properties.

∙ We present four larger case studies from different domains, each consisting of
multiple use cases. Some of the use cases are similar to common compiler
construction analyses while others represent innovative methods for deriving
useful information from model-based languages such as AUTOSAR. These
results constitute starting points for further research in the respective areas
and are therefore also of relevance outside of the specific scope of this thesis.

1.3. Publications

Parts of this thesis have been previously published in the following peer-reviewed
publications:

1. Christian Saad, Florian Lautenbacher, and BernhardBauer. “An Attribute-
based Approach to the Analysis of Model Characteristics”. In: Proceedings of
the 1st International Workshop on Future Trends of Model-Driven Develop-
ment in the context of the 11th International Conference on Enterprise Infor-
mation Systems (ICEIS). vol. 9. FTMDD’09. 2009

This position paper introduces and motivates the basic notion of applying
techniques from the field of compiler construction to the modeling domain.

2. Christian Saad and Bernhard Bauer. “Applying Data-flow Analysis to Mod-
els - A Novel Approach for Model Analysis”. In: Proceedings of the Spring
Simulation Multiconference. SpringSim’10. ACM, 2010, p. 241, best poster
presentation award

This contribution consists of a short paper with an accompanying poster pre-
sentation which further develops the initial proposals and describes basic anal-
ysis scenarios, some of which have been included in Chapter 9.

3. Christian Saad and Bernhard Bauer. “Data-flow Based Model Analysis”. In:
Proceedings of the 2nd NASA Formal Methods Symposium. Vol. NASA/CP-
2010-216215. NFM’10. NASA. 2010, pp. 227–231

The short paper summarizes and clarifies the ideas from the previous publi-
cations and discusses more complex usage scenarios which are reflected in the
incremental analyses in Section 10.1.
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4. Christian Saad and Bernhard Bauer. “Analyzing Dynamic Models using a
Data-flow based Approach”. In: Proceedings of the 1st Doctoral Symposium
in the context of the 3rd International Conference on Software Language En-
gineering. SLE’10. 2010, p. 37

A short contribution to a PhD symposium which summarizes the motivations
and the research questions which are addressed in this thesis.

5. Christian Saad and Bernhard Bauer. “The Model Analysis Framework - An
IDE for Static Model Analysis”. In: Proceedings of the Industry Track of Soft-
ware Language Engineering in the context of the 4th International Conference
on Software Language Engineering (SLE). ITSLE’11. 2011

This tooling paper discusses the Model Analysis Framework which is described
in greater detail in Chapter 8 while the general considerations behind the
architectural design are explained in Chapter 7.

6. Christian Saad and Bernhard Bauer. “Data-flow based Model Analysis and
its Applications”. In: Proceedings of the 16th International Conference on
Model Driven Engineering Languages and Systems. MoDELS’13. Springer-
Verlag, 2013, pp. 707–723

In this publication, we gave a more detailed overview of the developed method-
ology and its artifacts, providing the starting point for the descriptions in
Chapter 6. This includes the abstract and concrete syntax of the analysis spec-
ification language as well as the dependency chain algorithm. Additionally, the
paper illustrates the definition/usage analysis scenario (cf. Section 10.1.3).

7. Melanie Langermeier, Christian Saad, and Bernhard Bauer. “A unified
Framework for Enterprise Architecture Analysis”. In: Proceedings of the En-
terprise Model Analysis Workshop in the context of the 18th Enterprise Com-
puting Conference. EDOC’14. 2014

This paper develops a unified framework for the analysis of models in the EAM
domain. The generic representational format for (meta) model data as well as
the metrics use case of the case study presented in Section 10.2 are derived
from this paper.

8. Melanie Langermeier, Christian Saad, and Bernhard Bauer. “Context-
sensitive Impact Analysis for Enterprise Architecture Management”. In: Pro-
ceedings of the 4th International Symposium on Business Modeling and Soft-
ware Design. BMSD’14. 2014

This paper contributes the second use case for the analysis of EAM models,
namely the computation of change impacts.

Publications 1-6 consist of research work that has been carried out by the author
of this thesis while the contributions to publications 7 and 8 are limited to the
ananlysis-specific aspects of the respective approaches.
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Chapter 1. Introduction

The Model Analysis Framework constitutes an implementation of the proposed
methodology. It is available from:

http://code.google.com/a/eclipselabs.org/p/model-analysis-framework/

1.4. Outline

The general structure of this thesis is illustrated in Figure 1.1. To ensure a com-
prehensive understanding of the described methodology, it is suggested that the
chapters are read in the proposed order as indicated by the arrows.
To enable a quick orientation, the thesis has been divided into four major sections.

The first part motivates the proposed method, presents theoretical foundations and
gives an overview of related work. Readers that are already familiar with the fields of
compiler construction and/or MDE may skip the respective sections of Chapter 2.
The data-flow oriented approach to model analysis is described in Part II which
should therefore be read before proceeding to the remaining chapters. Part III
details the architecture and the usage of the reference implementation - the Model
Analysis Framework - while Part IV presents multiple case studies that demonstrate
the application of the analysis method. These parts can be read in any order.

The following summary gives a short overview of the contents of each chapter:

Part I - Static Analysis of Formal Languages

Chapter 1 - Introduction
This chapter presents the contextual framework for the subject matter of this
thesis by stating the problem description and motivating the method that has
been chosen to approach these issues. It further details the challenges that
have to be addressed and derives the concrete objectives. Finally, it highlights
the scientific contributions and lists the author’s publications.

Chapter 2 - Basics
The contributions of this thesis are built on different techniques. More specifi-
cally, this comprises the field of compiler construction and its canonical meth-
ods for static analysis, attribute grammars and data-flow analysis. The second
area of relevance is the technological space of modeling representing the target
domain to which the aforementioned methods are applied. This chapter de-
scribes the technical background of these fields and details specific standards
and practices which are relevant to the development of the analysis approach.

Chapter 3 - Related Work
Since the study of formal languages is a very active field in computer science,
different methods and solutions have been proposed to address the problem of
semantic analysis. Here, we describe notable examples of these efforts along
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1.4. Outline

Figure 1.1.: The structure of this thesis.

with their respective advantages and disadvantages in the context of model
analysis and assess their relationship with the topic of this thesis.

Part II - Data-flow based Model Analysis

Chapter 4 - Adapting Flow Analysis to the Modeling Domain
The first section of Part II concretizes the notion of a technological space as
a field of related standards and practices to motivate the transfer of analysis
techniques from the area of compiler construction to the modeling domain.
Based on this description, we develop an alignment between these two spaces
to deepen the understanding of the basic principles behind these language
frameworks. From this examination we derive a list of design goals for the
transfer of the flow analysis concept along with a set of challenges that lie on
this path. This is followed by an outline of the concrete steps that have to be
taken and the required artifacts that must be developed in order to realize the
proposed method.

Chapter 5 - Formal Semantics of Flow-based Model Analyses
In this section, a theoretical framework for a flow-based model analysis is
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developed. It consists of mathematical descriptions of the involved methods
and algorithms.

Chapter 6 - Model-based Integration of Data-flow Analysis
The theoretical concepts that have been formulated in the last section are ap-
plied to the MDE domain using modeling technologies. This involves the pro-
visioning of a suitable modeling language for the development of flow-analyses
- comprised of a metamodel and a textual syntax - and its integration with the
MOF standard. In addition, methods for building and computing the equation
systems for the fixed-point calculation are presented.

Part III - The Model Analysis Framework

Chapter 7 - Architecture and Technology
The practical implementation of the DFA approach requires the combination
of many model-based technologies. These are introduced in the first part of
this chapter. Subsequently, different usage scenarios for the analysis tooling
are motivated and described. More specifically, this includes the employment
as a research-oriented framework for evaluating the proposed approach as well
as an IDE for analysis development and its usage as a library that can be
integrated into existing applications. From these applications, requirements
are derived in the form of design goals and a suitable architectural design is
proposed.

Chapter 8 - Implementing Flow-based Model Analysis
Based on the observations from Chapter 7, this section describes how different
aspects of MAF’s architecture are implemented. This comprises the central
DFA evaluator component as well as an IDE intended to be used by language
engineers for analysis specification. It is also discussed how analyses can be
configured and integrated into third-party applications.

Part IV - Applications and Evaluation

Chapter 9 - Application Scenarios and Analysis Templates
It can be observed that - independent of the concrete application domain
- many problems that can be solved using data-flow analyses bear a close
resemblance to each other. This section establishes a standard library for
DFA problems by providing reusable reference implementations that address
recurring challenges, for example the task of analyzing control-flow structures.

Chapter 10 - Case Studies and Applications
The applicability of the proposed method is evaluated in the context of four
case studies from different application domains. Each case study consists
of several smaller use cases that address different usage scenarios ranging
from validation to the extraction of implicitly contained static information.
Through the combination of these use cases, it is demonstrated how solu-
tions to more complex problems can be built incrementally. The presented
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case studies contain an evaluation of the employed analyses and a description
of their practical implementation demonstrating how this technology can be
integrated into different target environments.

Chapter 11 - Conclusions and Outlook
The last section summarizes the contributions of this thesis and discusses the
implications for the field of model-driven engineering. It concludes with an
outlook on future work by providing starting points for the further extension
and improvement of the analysis method presented in this thesis.
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2. Basics

The approach that is detailed in this thesis relies on techniques from two distinct
fields, the areas of compiler construction and modeling. Both domains provide tools
for the definition of languages as well as methods and algorithms for the processing of
derived language expressions. In this chapter, we will showcase the guiding principles
and the formal underpinnings of both fields with respect to the requirements of the
specification of a flow-based analysis approach. In the context of this thesis, these
descriptions will serve as the basis for the examination of the properties shared by
compiler construction and modeling (Section 4.1), from which we will then derive
the basic design (Section 4.2) as well as the technical specification (Chapter 6) of
our approach.
Section 2.1 provides an overview of the field of compiler construction, including a

selection of contemporary practices and standards commonly employed for language
definition and the representation of language expressions. Furthermore, this section
investigates the subject of program analysis.
In the area of compiler construction, there exist two techniques which are com-

monly used to validate and analyze language expressions. These methods are known
as attribute grammars and data-flow analysis. Attribute grammars, which are de-
scribed in Section 2.2, support the annotation of language definitions with declar-
ative analysis specifications which can then be instantiated and evaluated for arbi-
trary language expressions. Using data-flow analysis, it is possible to approximate
the runtime behavior of programs through a fixed-point computation of cyclic equa-
tion systems. Data-flow equation systems, which are derived from the program’s
control-flow graph, implement the propagation of information from each program
statement to its respective successors, enabling the examination of each instruction
in its overall context. This concept is explained in Section 2.3.
In the field of modeling, language expressions are referred to as models, with

metamodels replacing formal grammars as primary tool for specifying the syntax
of a language. The principles, definitions and methods of the modeling domain are
described in Section 2.4 with an emphasis on the de-facto standard in industry and
research, the Meta Object Facility (MOF).

2.1. Program Translation and Analysis

This section outlines the basics of compiler design and the working principles of
compilers. In Sections 2.1.1 and 2.1.2, we shortly introduce the basic notions of the
compiler construction domain and formal languages respectively. Subsequently, in
Section 2.1.3, we explore the properties of syntax trees and control-flow graphs, two
methods commonly used by compilers for the internal representation of programs.
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These formats provide the context for the application of attribute grammars (cf.
Section 2.2) and data-flow analysis (cf. Section 2.3). Finally, in Section 2.1.4, we
describe a canonical classification system for program analysis techniques.

2.1.1. Compiler Construction

In computer science, the field of compiler construction targets the problem of trans-
lating “a program in one language - the source language - [. . . ] into an equivalent
program in another language - the target language” [Aho+06]. Many of its concepts
are based on the theories of formal languages and automatas. In a sense, compiler
construction can therefore be considered to be a practical application of theoretical
computer science. In contrast to the area of computer linguistics which deals with
the algorithmic processing of natural languages, the artificial languages encountered
in the field of compiler construction are constrained by a set of restrictions which
aim to make language expressions easily parsable by computers.
The most common use case for compilers is the translation of human-readable

source code written in a programming language into machine code that can be
executed by computer processors. Because programming languages and computer
architectures often differ significantly in their design and the objective of realizing a
efficient and robust implementation of the desired functionality is very complex, the
task of writing a compiler tends to be a challenging and error-prone process. For
this reason, a set of techniques and best-practices have been developed in the last
decades that help in achieving this goal.
The frameworks found in the compiler construction domain include methods for

the specification, representation and validation of formal languages. In addition,
since the efficient usage of the available resources is an important requirement in
computing, several techniques for the optimization of program code have been de-
vised to eliminate redundancy, reduce memory consumption and make use of mul-
ticore machines for parallelized execution while preserving the execution semantics
of the original program.
Because of the importance of these issues, there is much ongoing research in this

area. This includes improved methods for optimization, especially with regard to
the increasing availability of multicore systems [DM98; Bas+09] as well as the inte-
gration of different programming paradigms, for example the combination of object
oriented and functional languages [Ode+04] and the trend towards domain-specific
languages [Slo08]. However, as mentioned above, the foundations of compiler design
are well-researched and the corresponding techniques are described in the canonical
literature, e.g. [Aho+06; WM95; Gru+00; Mor98]. Based on these sources, we will
now present some of the basic principles which will play a important role in the
specification of our own approach.
Figure 2.1 outlines several methods for the execution of programs encoded in a

high-level language. Independent from the respective approach - from the view point
of the user - a program behaves as seen in Figure 2.1(a), i.e. it produces a specific
output for a given input. Programs that are written in compiled languages such as
C have to be translated into instructions for a specific target environment as shown
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(a) Running a program (b) A compiler (c) An interpreter

(d) A hybrid compiler

Figure 2.1.: Compiler classification [Aho+06].

in Figure 2.1(b). This makes the execution of the compiled programs generally very
fast, especially when compared to interpreted languages (depicted in Figure 2.1(c)).
In this case, an interpreter has to translate each statement to machine code before
it can be executed. Languages such as Java employ a two-step compilation process
as shown in Figure 2.1(d). Here, the source code is first translated into a machine
independent representation which is then converted into the target representation
by a virtual machine. A benefit of this approach is that it can apply optimizations
during the execution of a program.
The design of a compiler is usually based on a pipelined architecture as shown in

Figure 2.2(a), resembling the pipes and filters pattern commonly known in software
design [Bus+96]. In this layout, the compilation process is split into different phases,
incrementally transforming the source representation into (optimized) machine code.
By using specific intermediate representations, each component can be replaced by
a different implementation1. According to their position in the pipeline, these steps
can be grouped into a language specific compiler front end and a (machine specific)
back end2.
A concrete example of the processing of a language expression can be seen in

Figure 2.2(b). In the first phase of the compiler front end, a lexical analyzer (or
scanner) breaks down the source code into a stream of tokens that represent the
basic constructs of the programming language, i.e. keywords and identifiers. The
syntax analyzer (or parser) then assembles a syntax tree from these tokens and si-
multaneously validates the syntactical correctness of the expression. The syntax tree
reflects the language structure defined via a context-free grammar. However, even
if the syntax of the source code is correct, it may still contain erroneous statements.

1The compiler architectures of the GNU Compiler Collection [GS04] and LLVM (http://llvm.
org) make use of this method to support a variety of languages and target platforms.

2Information that is shared across multiple phases is usually managed in a symbol table.
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(a) Phases of a compiler (b) Translation of an assignment statement

(c) Compiler front end and back end

Figure 2.2.: The structure of a compiler [Aho+06].

For this reason, a semantic analyzer performs an additional static validation. This
step is often realized using so-called attribute grammars which are extensions of
the language’s original context-free grammar. Afterwards, the syntax tree is trans-
formed into a machine-independent representation, e.g. Three-Address Code (TAC)
or the Static Single-Assignment (SSA) form. In the final step of the frontend, opti-
mization routines - usually implemented as data-flow analyses - are applied to the
generated set of instructions.
Once the intermediate representation has been fully processed, it can be converted

into instructions for the target system architecture by the compiler back end. Again,
an optimization step may be carried out, this time taking into account the specific
properties of the system for which the code is being generated.
The relevant phases in the context of this thesis comprise the semantic analysis

of the syntax tree and the machine-independent code optimization phase as they
implement concepts and methods for static program analysis and thus provide the
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foundation for a flow-based model analysis.

2.1.2. Formal Languages

In the context of compiler construction, context-free languages play an important
role in the definition of programming languages. This class of formal languages3

originates from Chomsky’s effort to devise a rigorous framework for the specification
and categorization of text-based languages according to their properties [Cho56].
The reason for the widespread use of context-free grammars can be found in the fact
that they provide the essential facilities required for the definition of programming
languages while, at the same time, expressions can be analyzed very efficiently. The
analysis of the structural composition of a language expression is called parsing and
the resulting data structure is referred to as a parse or syntax tree.

A context-free grammar is usually defined in the following way:

Definition 2.1.1

A context-free grammar 𝒢 = (𝒩 , 𝒯 ,𝒫 , 𝑆) is a 4-tuple. It consists of finite sets of
nonterminals 𝒩 and terminals 𝒯 , productions 𝒫 and a start symbol 𝑆 ∈ 𝒩 .

∙ Nonterminals or variables with 𝒩 ∩𝒯 = ∅ are sub-languages of the language
defined by 𝒢. They form the basis for the application of production rules.

∙ The start symbol 𝑆 ∈ 𝒩 is the nonterminal representing the language of 𝒢.

∙ Terminals represent the language’s alphabet (i.e. the actual input strings).

∙ Productions 𝑋0 → 𝑋1...𝑋𝑛 with 𝑋0 ∈ 𝒩 und 𝑋𝑖 ∈ 𝒩 ∪ 𝒯 , 1 ≤ 𝑖 ≤ 𝑛 are
rules that are (recursively) applied until all nonterminals have been replaced
by terminals.

A grammar can be expressed using the Extended Backus-Naur Form (EBNF)
which was introduced by Wirth [Wir77] as a meta syntax for the formalization of
the syntax of the Pascal programming language [JW91]. The official EBNF standard
[ISO96] proposes a representation that consists of the following statements4:

3Exhaustive descriptions of all classes of formal languages, their properties and the relationships
to automata and computational complexity theory can be found in [HMU79; Sal87; Lin11;
HU69]

4In practice, the concatenation operator is often omitted. The introduction of additional helper
statements often allows to significantly simplify the definition of a grammar.
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Basic statements Helper statements

Definition = Alternate Separator |
Concatenation , Group ( )
Terminal Quotes " " Repetition Group { }
Rule Terminator ; Optional Group [ ]

Repetition Symbol *

An important property of the EBNF is its ability to reflectively describe its own
syntax [Wir63]:

syntax = { statement } ;
statement = i d e n t i f i e r "=" expr e s s i on " ; " ;
exp r e s s i on = term {" |" term } ;
term = f a c t o r { f a c t o r } ;
f a c t o r = i d e n t i f i e r | s t r i n g | "(" exp r e s s i on ")" |

" [ " exp r e s s i on " ]" | "{" exp r e s s i on "}" ;

Definition 2.1.2

A language ℒ(𝒢) generated by a grammar 𝒢 is a subset of the possible con-
catenations of elements of the underlying alphabet: ℒ ⊆ 𝒯 *. A language ℒ is
context-free if and only if there exists a context-free grammar 𝒢 with ℒ = ℒ(𝒢).

Valid expressions (or words) 𝑤 ∈ ℒ can be generated by (repeatedly) applying
production rules to the start symbol 𝑆 until only terminal symbols are left. Corre-
spondingly, parsers are able to construct derivation trees for given expressions.

2.1.3. Program Representations

We will now shortly discuss two fundamental data structures used by compilers,
syntax trees and control-flow graphs. Syntax trees conform to the output of the
syntactic phase and the input of the semantic phase while the control-flow graph
representation is mainly employed during the optimization step.

2.1.3.1. The Syntax Tree

Based on a context-free grammar 𝒢, a parser can be constructed5 that accepts words
(or expressions) 𝑤 ∈ ℒ(𝒢). A parser operates on the token stream generated by
the lexical analyzer which consists of terminal symbols and constructs a derivation
tree that reflects the application of production rules. The resulting data structure
therefore contains a hierarchical ordering of the derivations which have to be applied
to the start symbol 𝑆 to yield 𝑤. The inner nodes of this tree, commonly called a
concrete syntax tree or parse tree, conform to the nonterminals on the left hand side
of applied production rules while their children represent the (non)terminals on the
right hand side.

5For example using parser generators such as Yacc [Joh75] or ANTLR [Par07].
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Definition 2.1.3 ([Aho+06])

A parse tree for a context-free grammar 𝒢 = (𝒩 , 𝒯 ,𝒫 , 𝑆) is defined as follows:

∙ The root is labeled by the start symbol S.

∙ Each leaf is labeled by a terminal 𝑋 ∈ 𝒯 or by the empty word 𝜖.

∙ Each interior node is labeled by a nonterminal 𝑋 ∈ 𝒩 .

∙ If 𝑋0 is the nonterminal labeling some interior node and 𝑋1, . . . , 𝑋𝑛 are the
labels of the children of that node from left to right, then there must be a
production 𝑋0 → 𝑋1, 𝑋2, ..., 𝑋𝑛. Here, 𝑋1, . . . , 𝑋𝑛 each stand for a symbol
that is either a terminal or a nonterminal.

As a special case, if 𝑋 → 𝜖 is a production, then a node labeled 𝑋 may have
a single child labeled 𝜖.

Since the parse tree directly reflects the syntactic structure of the language expres-
sion, it is generally very verbose. For this reason, in practice, this representation is
stripped of irrelevant information such as derivation subtrees that are only required
for a correct recognition of the structural composition. The result of this simplifi-
cation process is termed (abstract) syntax tree. In this format, inner nodes conform
to the semantically relevant constructs of the programming language.

(a) Parse tree (b) Syntax tree

Figure 2.3.: Parse and syntax trees for the expression 9− 5 + 2 [Aho+06].

The distinction between the concrete and the abstract syntax can be clarified using
the following example which encodes a simple language for arithmetic expressions
[Aho+06]:

l i s t = l i s t "+" d i g i t | l i s t "−" d i g i t | d i g i t
d i g i t = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Figure 2.3(a) shows the constructed parse tree for the term 9 − 5 + 2. Its nodes
represent the hierarchical application of the production rules. The original input
can be obtained by reading the terminal strings at the leaves from left to right.
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Removing derivation subtrees for terminal symbols and labeling the inner nodes with
their respective tokens leads to the abstract syntax tree depicted in Figure 2.3(b).
The process of creating correct and efficient parsers for language expressions based

on a given grammar is a challenging yet well-researched task. However, because
this is not in the focus of this thesis, we refer to the canonical literature for more
information on this topic.

2.1.3.2. The Control-flow Graph

Control-flow graphs are an alternative representation of the structural composition
of language expressions. As such, they are a crucial tool for the application of static
optimization techniques. In this section, we outline the basic properties of this data
structure and present the graph theoretic properties that are of relevance in the
context of data-flow analysis.
As [Aho+06] states, “the execution of a program can be viewed as a series of

transformations of the program state, which consists of the values of all the variables
in the program. Each execution of an intermediate-code statement transforms an
input state to a new output state. The input state is associated with the program
point before the statement and the output state is associated with the program point
after the statement.”
The behavioral properties of a program are therefore given by the set of all of its

execution paths, i.e. the valid sequences in which its statements can be executed.
Static analysis of program instructions must therefore consider all possible execution
paths in which a specific statement may be invoked. A control-flow graph is a simple
and concise representation from which these paths can be derived.

In the literature, the data structures used to encode the control-flow often differ
in certain details. However, their essential properties can be summed up as follows:

Definition 2.1.4

A control-flow graph of a program is a directed graph 𝐶𝐹𝐺 = (𝒱 , ℰ , 𝑛𝑖𝑛, 𝑛𝑜𝑢𝑡)
with a set of vertices (or nodes) 𝑣 ∈ 𝒱 , a set of directed edges 𝑒 = (𝒱 × 𝒱) ∈ ℰ
with labellings that denote conditional properties and designated entry and exit
nodes 𝑛𝑖𝑛, 𝑛𝑜𝑢𝑡 ∈ 𝒱 . Nodes usually represent basic blocksa. while the predeces-
sor/successor relationships defined by the edges indicate the flow of control, i.e.
the execution orderb.

aBasic blocks can be derived from the intermediate representation by identifying maximal in-
struction sequences with a unique entry and exit point (cf. [All70]).

bAn example of this can be found in Appendix A.1.

The technique of data-flow analysis relies on the computation of information at
the control-flow graph’s nodes and the propagation of these values along the graph’s
edges. In the absence of cycles - assuming a correct visiting order - the final result
can therefore be calculated in a single pass. However, loops in the control-flow
lead to an infinite amount of possible paths which in turn can be of infinite length.
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DFA handles this case by applying fixed-point evaluation semantics, i.e. an iterative
computation of the result that starts with a defined initialization value.
Since loops are a very common element and often have a substantial impact on

the speed of fixed-point convergence, much effort has gone into the study of the
properties of cyclic structures. Relevant topics in this context include dominators,
depth-first representation, graph reducibility and natural loops.

(a) Original control-flow graph (b) Dominator tree (c) Depth-first representation

Figure 2.4.: Different representations of a control-flow graph [Aho+06].

Dominators The concept of dominators6 has been introduced by [Pro59]. It is
useful in the description of control-flow structures since it reflects properties of the
predecessor relationships in execution paths and can therefore be used to derive
information about dependencies between nodes.

Definition 2.1.5 ([LT79])

Let 𝐶𝐹𝐺 = (𝒱 , ℰ , 𝑟) be a flow graph with start vertex 𝑟.

A vertex 𝑣 dominates another vertex 𝑤 ̸= 𝑣 in 𝐶𝐹𝐺 if every path from 𝑟 to 𝑤
contains 𝑣. Vertex 𝑣 is the immediate dominator of 𝑤, denoted 𝑣 = 𝑖𝑑𝑜𝑚(𝑤), if 𝑣
dominates 𝑤 and every other dominator of 𝑤 dominates 𝑣.

Every vertex of a flow graph 𝐺 = (𝒱 , ℰ , 𝑟) except 𝑟 has a unique immediate
dominator. The edges {(𝑖𝑑𝑜𝑚(𝑤), 𝑤)|𝑤 ∈ 𝒱 − {𝑟}} form a directed tree rooted
at 𝑟, called the dominator tree of 𝐶𝐹𝐺, such that 𝑣 dominates 𝑤 if and only if 𝑣
is a proper ancestor of 𝑤 in the dominator tree.

The dominator tree for the graph shown in Figure 2.4(a) is depicted in Fig-
ure 2.4(b). In this example, the immediate dominator of node 7 is node 4 , but not
nodes 5 and 6 since they are “optional” in the sense that they don’t lie on every
path that starts at the entry node.
6The computation of dominators can itself be implemented as a data-flow analysis [CHK01].
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Depth-first Spanning Tree The depth-first spanning tree (DFST) is another rep-
resentation of the inherent structural properties of control-flow graphs [HU72]. A
spanning tree reflects the order in which nodes are visited when executing a depth-
first search on the graph. Back edges resulting from cyclic paths are often omitted.
Because the order in which child nodes are visited is arbitrary, it is possible for
one control-flow graph to possess multiple depth-first spanning trees. One possible
spanning tree for the graph in Figure 2.4(a) is depicted in Figure 2.4(c) with the
back edges visualized as dashed lines.

Edges and Reducibility Constructing a depth-first spanning tree yields three dif-
ferent categories of edges:

∙ advancing edges go from a node to one of its successors

∙ cross edges are edges between nodes that do not have an ancestor relationship.

∙ retreating edges go from a node to one of its predecessors (or the node itself)

(a) Canonical nonre-
ducible flow graph

(b) Two loops
with single header

Figure 2.5.: Special cases of cyclic paths [Aho+06].

In most cases, retreating edges in the depth-first spanning tree denote back edges
in the control-flow graph. An edge is termed back edge if its head dominates its tail.
If all retreating edges in a graph are also back edges, it is called reducible, otherwise
it is nonreducible. The latter case implies that the graph will still be cyclic even
after the removal of all back edges. The canonical example shown in Figure 2.5(a)
has two different DFST representations with 2→ 3 and 3→ 2 being retreating but
not back edges.

Natural Loops Programs often spend a lot of their execution time running loops.
It is therefore desirable to study their properties. So-called natural loops - loops
with only one entry point - are easier to handle since flow analysis can determine
certain properties that hold for each run. Therefore it is important to be able
to distinguish this class of loops from others which do not possess this property.
Natural loops are characterized by a loop header, the single entry node, and a back
edge to the header. The natural loop of a back edge consists of the header node itself

31



Chapter 2. Basics

and all nodes which can reach the source of the back edge without going through
the header. As an example, for the graph shown in Figure 2.4(a), the loop of the
back edge 10 → 7 is {7, 8, 10}. The loop for 4 → 3 is {3, 4, 5, 6, 7, 8, 10} since the
“succeeding” loops can return to 4 without going through 3. The loop for 10→ 7 is
nested in the 4→ 3 loop.
If a graph is reducible, i.e. every retreating edge is a back edge, a natural loop can

be assigned to each retreating edge. An important property of natural loops is that
they are either disjoint or nested in each other, imposing a hierarchical structure.
There is however an exception: If, like in the case depicted in Figure 2.5(b), two loops
share the same header, they must be merged into a single loop. In this example,
the natural loops of the back edges 3 → 1 : {1, 2, 3} and 4 → 1 : {1, 2, 4} would be
combined to {1, 2, 3, 4}.

2.1.4. Program Analysis

As [NNH99] notes, “[p]rogram analysis offers static compile-time techniques for pre-
dicting safe and computable approximations to the set of values or behaviours arising
dynamically at run-time when executing a program” with the goal of transforming
“the program (at the source level or at some intermediate level) inside a compiler
so as to obtain better performance”. Additional use cases listed in [KSK09] include
determining the validity of a program and facilitating its execution, e.g. through
dynamic type inferencing.
The approximation of program behavior is required since “mathematically, the

problem of generating an optimal target program for a given source program is un-
decidable” [Aho+06]. As a consequence, [NNH99] states that “[o]ne common theme
behind all approaches to program analysis is that in order to remain computable
one can only provide approximate answers”. Therefore, the possibilities for static
optimization are inherently limited by the fact that a conservative approach will
typically lead to an over approximation of the actual behavioral properties.
Over time, many techniques have been developed for the purpose of program

analysis. In addition to data-flow analysis, [KSK09] lists inference and constraint
resolution systems, model checking and abstract interpretation as examples. While
each of these methods employs its own theoretical abstractions and has its unique
application scenarios, they all share some common characteristics with respect to
the topic of program analysis. To categorize the scope and inherent properties of the
DFA approach along these lines, we include a short summary of the classification
system proposed by [KSK09]:

Time of Performing Analysis Analysis performed on the information that is avail-
able at design time is termed static analysis while an analysis that depends on
information which only becomes available after execution is named dynamic
analysis.

Scope of Analysis Since programs are usually structured hierarchically, the scope
of the analysis can be anything from a single statement to the whole pro-
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gram. Usually, the analysis of a structure requires the preceding analysis of
its substructures.

Flow Sensitivity of Analysis If the result calculated for a specific program point
depends on the paths leading from/to this point, the analysis is flow sensitive,
otherwise it is flow insensitive.

Context Sensitivity of Analysis If an analysis takes different calling contexts into
account then it is context sensitive, if the information is calculated in a way
that holds for all calling contexts it is context insensitive.

Granularity of Performing Analysis While incremental analysis is able to incor-
porate changes into the results of a previous analysis run, an exhaustive anal-
ysis always starts from scratch.

Program Representations Used for Analysis Typical representations used for anal-
ysis are sequences of instructions, trees or graphs.

Representations of Information Information is usually represented in the form of
(finite) sets of valid model states, facts or program entities.

2.2. Attribute Grammars

The abstract syntax of a programming language is commonly given in the form
of a context-free grammar. However, due to the nature of this formalism, some
restrictions on the structure of valid language expressions cannot be encoded in the
grammars themselves (cf. Section 2.1.1). This includes, for example, validations of
operators in mathematical expressions to ensure that their datatypes are compatible
with respect to the applied operation.
These types of validations are carried out in the semantic analysis phase of the

compilation process. The most important technique that is employed for this pur-
pose are attribute grammars, an extension of a programming language’s defining
grammar with semantic attributes. These attributes are assigned to symbols in
the grammatical productions. Their results are computed by semantic rules that
derive the value of a specific attribute from values of other attributes in the same
production. Attributes, as well as semantic rules, can be instantiated for parsed lan-
guage expressions. This results in an information flow that transports values either
in a top-down or a bottom-up direction in the syntax tree, thereby providing each
subexpression with contextual information computed at its respective predecessors
or successors. Since an attribute grammar defines only the structural properties of
an analysis but not the evaluation logic, it constitutes a declarative specification.
While this approach bears some resemblance to the data-flow analysis technique,

it possesses several distinctive features: For one, attribute grammars allow a very ef-
ficient evaluation that can be carried out in a single pass and even be integrated with
the syntax analysis phase. As such, this method does not provide support for fixed-
point evaluation semantics. Secondly, by their very nature, attribute grammars are
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tightly integrated with the definition of the target language, i.e. the analysis speci-
fication and evaluation methodology makes heavy use of the structural composition
of the language expressions.
The approach that is the subject of this thesis is partly inspired by this technique

as it employs a comparable attribution-based method for annotating flow analysis
specifications at metamodels. For this reason, we will now provide a short descrip-
tion of the basic notions and the most important properties of attribute grammars:
Section 2.2.1 presents the attribute grammar formalism and some of its associated
concepts while Section 2.2.2 describes how attribute-based analyses can be instan-
tiated and evaluated for arbitrary language expressions.

2.2.1. Specification of Attribute Grammars

The attribute grammar approach, first proposed by [Knu68], is a topic that is widely
discussed in the canonical compiler construction literature. It can be observed that
the properties of this formalism as well as the presented use cases often differ with
respect to some details. The descriptions in this section aim to provide a unified
understanding of this concept by incorporating information from different sources
such as [Aho+06; WM95; WG98; Kas90; Thi09].

2.2.1.1. The Attribute Grammar Formalism

An attribute grammar 𝐴𝐺 represents an extension of a traditional context-free gram-
mar 𝒢 = (𝒩 , 𝒯 ,𝒫 , 𝑆), consisting of nonterminals 𝒩 , terminals 𝒯 , production rules
𝒫 and a start symbol 𝑆 (cf. Section 2.1.2).
The specification of an attribute grammar associates semantic attributes, which

are either of the type synthesized or inherited, with the (non)terminals of the un-
derlying grammar. The assignment of an attribute 𝐴 to a grammatical symbol
𝑋 = 𝒩 ∪𝒯 implies the presence of occurrences of 𝐴 at each occurrence of 𝑋 inside
one of the grammar’s production rules 𝑃 ∈ 𝒫 . In this sense, the specification of a
semantic attribute, often consisting of a name and a datatype, conforms to a global
type definition that is shared by all of its occurrences. For each production rule
containing attributes, one or more semantic rules have to be specified that describe
how the attributes can be evaluated. Depending on the attribute type, an attribute
occurrence may either constitute an input parameter of a semantic rule or repre-
sent the target to which the result value is assigned. Synthesized attributes transfer
values from the right hand side of the production to the left hand side while the
information flow for inherited attributes follows the opposite direction.
The parsing of a language expression yields a syntax tree (cf. Section 2.1.3). This

data structure describes the transformations that have to be applied to the gram-
mar’s start symbol to arrive at the target expression. Each selection of neighboring
nodes in the syntax tree therefore represents the application of a specific produc-
tion rule. Consequently, attribute occurrences located at the (non)terminals inside
a production rule can be instantiated for all applications of the respective produc-
tion rule in the syntax tree. Based on the definition of inherited and synthesized
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attributes, this results in an information flow that transports values either in a top-
down or a bottom-up direction. The instantiation and computation of instantiated
attributions is further discussed in Section 2.2.2.

We now present a definition of attribute grammars that includes the central prop-
erties of this approach:

Definition 2.2.1

An attribute grammar is a 3-tuple 𝐴𝐺 = (𝒢,𝒜,ℛ) consisting of

∙ a context-free grammar 𝒢 = (𝒩 , 𝒯 ,𝒫 , 𝑆).

∙ a finite set of attributes 𝒜 where 𝐴(𝑋) ⊆ 𝒜 denotes attributes associated
with a grammatical symbol 𝑋 ∈ 𝒩 ∪ 𝒯 .

∙ a finite set of semantic rules ℛ. A semantic rule 𝑅(𝑃 ) = {𝑋𝑖.𝑎 ←
𝑓(𝑋𝑗.𝑏, . . . , 𝑋𝑘.𝑐)} computes the result for the attribute 𝑎 ∈ 𝐴(𝑋𝑖) based
on the values of 𝑏 ∈ 𝐴(𝑋𝑗), 𝑐 ∈ 𝐴(𝑋𝑘), . . . for attributes located at
(non)terminals 𝑋𝑖, 𝑋𝑗, 𝑋𝑘, . . . ∈ 𝑃 using a function 𝑓 .

2.2.1.2. Synthesized and Inherited Attributes

𝐴(𝑋) can be subdivided into two disjunct sets 𝑖𝑛ℎ(𝑋) and 𝑠𝑦𝑛(𝑋), containing
inherited and synthesized attributes respectively: 𝐴(𝑋) = 𝑖𝑛ℎ(𝑋) ∪ 𝑠𝑦𝑛(𝑋) and
𝑖𝑛ℎ(𝑋) ∩ 𝑠𝑦𝑛(𝑋) = ∅. The sets of all inherited and synthesized attributes can
therefore be defined as 𝑖𝑛ℎ =

⋃︀
𝑋∈𝒩∪𝒯 𝑖𝑛ℎ(𝑋) and 𝑠𝑦𝑛 =

⋃︀
𝑋∈𝒩∪𝒯 𝑠𝑦𝑛(𝑋).

Synthesized attributes propagate results in an upwards direction in the syntax
tree. This is required when results for composite expressions depend on the results
of their partial expressions. An example use case would be the evaluation of an
arithmetic expression which has to be preceded by an evaluation of its partial ex-
pressions. Inherited attributes, on the other hand, transport values from the top to
the bottom of the syntax tree. This can be useful if contextual information, such as
the set of currently defined variables, has to be made available to subexpressions.

[Aho+06] provides the following definitions for the two attribute types:

Synthesized Attributes

A synthesized attribute for a nonterminal A at a parse-tree node N is defined by
a semantic rule associated with the production at N. Note that the production
must have A as its head. A synthesized attribute at node N is defined only in
terms of attribute values at the children of N and at N itself.

Inherited Attributes

An inherited attribute for a nonterminal B at a parse-tree node N is defined by
a semantic rule associated with the production at the parent of N. Note that
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the production must have B as a symbol in its body. An inherited attribute
at node N is defined only in terms of attribute values at N’s parent, N itself,
and N’s siblings.

2.2.1.3. Notation

To enable a concise definition and to support an automatic evaluation of attribute
grammars, a specification language, i.e. a concrete syntax, is required. However,
in the field of compiler construction, there is no general consensus on this topic
and thus no universal syntax exits. Consequently, tools such as ANTLR [Par07]
and Yacc [Joh75] often define a proprietary format. Nevertheless, since all attribute
grammar frameworks share the same properties, it is possible to list the features
that an appropriate specification language has to implement. Generally speaking,
an attribution language must support the definition of attributes and semantic rules
and additionally support the association of these constructs with their respective
counterparts (symbols and productions) in the underlying grammar.
Depending on the respective framework, attributes can be assigned a value do-

main, i.e. a datatype. Additionally, they must be classified as either inherited or
synthesized. Finally, each attribute requires the specification of a set of grammati-
cal symbols which should be annotated with occurrences of the attribute. Semantic
rules can be written as equations that are defined in the context of a specific pro-
duction rule. The attributes which have occurrences in the respective production
are often addressed as 𝑋.𝑎 where 𝑋 is an occurrence of a grammatical symbol and
𝑎 ∈ 𝐴(𝑋) is an occurrence of an attribute which has been assigned to this symbol.
If a (non)terminal 𝑋 has multiple occurrences in the same production 𝑃 , an index
must be used to denote the correct element.
It should be noted that, in order to ensure their well-formedness, attribute gram-

mars must themselves be subjected to a semantic analysis. For example, each at-
tribute has to belong to either 𝑖𝑛ℎ or 𝑠𝑦𝑛. Also, all attribute occurrences required
as input by a semantic rule must in fact be present in the respective production:
∀𝑅 ∈ ℛ : 𝑋.𝑎 ∈ 𝑅(𝑃 )→ 𝑋 ∈ 𝑃 ∧ 𝑎 ∈ 𝐴(𝑋).
Since attribute grammars represent an extension of traditional context-free gram-

mars, a possible way to specify the syntax of an attribution language consists of
an extension of the meta language EBNF. [WM95] proposes a notation that com-
bines the representation of a context-free grammar with the definition of semantic
attributes (see below).

2.2.1.4. Example

We will now illustrate the presented principles in the context of an attribute grammar
called Bin_to_Dec (cf. [WM95]). The attribute grammar which is depicted in
Figure 2.6 converts binary numbers in the form 𝑛.𝑚 with 𝑛,𝑚 ∈ N to a decimal
representation. The employed notation indexes the occurrences of the nonterminal
BIN with their position in the grammatical production rule.
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Figure 2.6.: Attribute grammar Bin_to_Dec [WM95].

This process employs the following attributes:

v (𝑣𝑎𝑙𝑢𝑒, 𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑧𝑒𝑑)

Computes the decimal value of the binary digits depending on their rank 𝑟
and synthesizes the composite value.

l (𝑙𝑒𝑛𝑔𝑡ℎ, 𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑧𝑒𝑑)

Computes the amount of digits after the decimal point (required for 𝑟).

r (𝑟𝑎𝑛𝑘, 𝑖𝑛ℎ𝑒𝑟𝑖𝑡𝑒𝑑)

Computes the rank of each binary digit. Elements on the left hand side of the
decimal point possess ascending ranks 0, 1, 2, . . . while elements on the right
hand side have descending ranks −1,−2,−3, . . .

This example illustrates the combination of synthesized and inherited attributes:
First, the length of the binary number after the decimal point is determined and
the rank of the single digits is set. The rank of all other binary digits is computed
by inheriting and incrementing the rank of the respective predecessor. Finally, the
decimal value can be computed for each digit. The results are synthesized to yield
the final value at the root of the syntax tree.
The information flow that results from the attributes and the semantic rules is

depicted in Figure 2.7. As a convention, inherited attributes are always placed on the
left hand side of grammatical symbols while synthesized attributes are annotated
on the right hand side. If an attribute occurrence 𝑎 depends on the value of an
occurrence 𝑏, this relationships is visualized by an arrow pointing from 𝑏 to 𝑎.

2.2.2. Instantiation and Evaluation of Attribute Grammars

Once an attribution has been defined for a grammar, it can be instantiated and
evaluated for arbitrary language expressions. The first step of this process consists
of the construction of an attributed syntax tree which associates the tree’s nodes with
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Figure 2.7.: Information flow between attribute occurrences for Bin_to_Dec
[WM95]

attribute instances. Since attributions are declarative specifications, a dependency
analysis must subsequently be carried out to determine a correct evaluation order
for the instances. Finally, the result can be computed by executing the semantic
rules in the derived order.

2.2.2.1. Attributed Syntax Trees

An attribute grammar is fully defined by the context-free grammar, the semantic
attributes, their associations with grammatical symbols and the set of semantic rules.
Based on this definition, attribute instances can be created for a parsed language
expression, i.e. a syntax tree. Since the tree’s nodes represent the (non)terminals of
the underlying grammar, the set of attribute instances located at each node conforms
to the attributes assigned to the respective symbol. Attribute results can then be
stored in the instances’ data fields. For performance reasons, the instantiation step
is often carried out by the parser during the processing of the language expression.

(a) Attribute occur-
rences

(b) Attribute instances in the
syntax tree

Figure 2.8.: Attribute occurrences and attribute instances [WM95].

Figure 2.8 illustrates the difference between an attribute occurrence and an at-
tribute instance. In this case, we assume the existence of a production 𝑋 → 𝑋𝑌
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with 𝑋, 𝑌 ∈ 𝒩 , an attribute 𝑎 ∈ 𝑖𝑛ℎ(𝑋) and a semantic rule 𝑋1.𝑎 = 𝑓(𝑋0.𝑎) which
propagates the value of 𝑎 downwards.
Figure 2.8(a) shows the dependency graph for the production. The symbol 𝑋,

which occurs twice in the production rule, possesses an occurrence of 𝑎. The semantic
rule encodes an information flow from the occurrence on the left hand side of the
production rule, designated 𝑎0, to the right hand side occurrence 𝑎1.
We now assume that a syntax tree has been generated by a parser that includes

an application of the production rule 𝑋 → 𝑋𝑌 . The remainder of the tree is repre-
sented by 𝑡. In Figure 2.8(b), it can be seen that the nodes of the 𝑛-th application
of the production possess instances of the occurrences named 𝑎𝑛 and 𝑎𝑛1.

2.2.2.2. Dependency Analysis

Once an attributed syntax tree has been created, the attribute instances attached to
the nodes in the tree have to be evaluated. The dependency relationships between
the instances play an important role in this process since the input dependencies
of each rule must be satisfied before it can be executed. Regarding the evaluation
order, it can be stated that, if a semantic rule that computes a result for an attribute
instance 𝑎 depends on the value of the instance 𝑏, the rule which yields the result for 𝑏
has to be invoked first. However, since an attribute grammar is a purely declarative
specification, it does not provide any specific evaluation logic in and of itself. A
dependency analysis step is therefore required to derive a valid execution order that
ensures that input values are always made available before they are needed. This
can be carried out dynamically by constructing a global dependency graph from the
local production dependency graphs (cf. Figure 2.7 and Figure 2.9). Alternatively,
special types of attribute grammars can be used which guarantee that dependency
relationships always follow an established pattern.
As is the case with data-flow analysis, the sum of all semantic rules applied to the

language instance forms an equation system. However, unlike the DFA approach,
the case of cyclic dependencies is usually regarded as undefined. To ensure that a
unique solution exists for any instantiation of an attribute grammar, its specification
has to be well-defined : “An attribute grammar is well-defined if, for each structure
tree corresponding to a sentence of ℒ(𝒢), all attributes are effectively computable”
[WG98]. This property can be guaranteed if the grammar adheres to a specific set
of restrictions.

2.2.2.3. Evaluation

The evaluation of an attributed syntax tree involves the invocation of the semantic
rules and the assignment of result values to the attribute instances located at the
tree’s nodes. As stated above, it is important that the execution order of the rules
respects the dependency relationships between the instances.

According to [WM95], the overall evaluation process can be divided into two main
phases:

Strategy phase
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A valid evaluation order is derived based on the results of the dependency
analysis step.

Evaluation phase

Results for attribute instances are computed by executing rules in the specified
order.

It is also possible to carry out an evaluation dynamically. In this case, the de-
pendency relationships are evaluated before/after each semantic rule is executed.
Generally, there are two different strategies that follow this pattern:

Demand-driven approach

Starting with a set of instances for which results should be computed, the
input dependencies are recursively included in the calculation.

Data-driven approach

Starting with a set of existing results, instances are iteratively computed once
all of their input dependencies are available.

Depending on the combination of the methods employed to analyze dependen-
cies and to derive valid evaluation orders, approaches to solve attribute grammar
equation systems can be grouped into two categories:

Dynamic approaches

Dynamic approaches don’t require any previous knowledge about the structure
of the attribution and the resulting equation system. The evaluation order is
computed individually for each attributed syntax tree.

Static approaches

Static approaches employ preexisting knowledge about the structure of depen-
dency relationships. This can be used to construct efficient static evaluators
for arbitrary syntax trees.

Examples for fully dynamic methods include the demand and data-driven ap-
proaches mentioned above. These basically constitute elimination methods which
continuously search for attribute instances that can be safely evaluated at any given
point in time. However, unsurprisingly, these algorithms are usually not very effi-
cient. In practice, static approaches are therefore preferred. Special categories of
attribute grammars - such as L- or S-attributed grammars - exist that impose re-
strictions on the structure of attributions but at the same time can anticipate the
nature of the resulting dependency relationships [Aho+06]. An additional advantage
of this approach is that the instantiation of the attributes as well the computation
of the results can be carried out during the syntactical analysis of the language
expression.
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Figure 2.9.: Dependency graph for Bin_to_Dec and the expression “10.01” [WM95].

2.2.2.4. Example

The example shown in Figure 2.9 is based on the grammar Bin_to_Dec (cf. Fig-
ure 2.6). It shows the syntax tree for the expression “10.01” along with the instan-
tiated attributes and their dependency relationships. Based on this information, it
is now possible to derive a valid execution order for the semantic rules.

2.3. Data-Flow Analysis

The data-flow analysis approach is commonly employed for the purpose of optimizing
programs during the compilation process by associating “with every program point a
data-flow value that represents an abstraction of the set of all possible program states
that can be observed for that point” [Aho+06]. Information that can be computed
this way includes, for example, the liveness state of variable assignments inside basic
blocks. To preserve the semantics of the original program, results computed for each
program point have to hold for all possible executions of the respective program.
The evaluation of each statement therefore has to take into account all of its ex-
ecution paths. Since runtime properties are assessed based on statically available
information, this approach is a typical example of a static analysis technique.

The method developed in this thesis leverages the traditional data-flow analysis
concept to enable the analysis of models. For this reason, we will now provide
an overview of the relevant aspects of conventional flow analysis techniques: In
Section 2.3.1, we present a survey of the motivation, history and the basic principles
behind this method followed by a formal definition in Section 2.3.2. Canonical
algorithms for the solving of data-flow equation systems, namely the round-robin
and worklist methods, are described in Section 2.3.3.
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2.3.1. History and Conceptual Overview

The technique of data-flow analysis is commonly employed to derive information
from a program’s control-flow, usually for optimization purposes. [KSK09] states
that data-flow analysis “is a classical static analysis technique that has been used
to discover useful properties of programs being analyzed” with “applications ranging
from compiler optimizations to software engineering to software verification [. . . ] to
prove the soundness of programs with respect to properties of interest”.

In the history of compiler construction, code optimization techniques in general,
and the DFA approach in particular, have been used from very early on to improve
the quality of the generated programs. At the time, no consensus existed with re-
spect to what constitutes a good compiler architecture and reasonable optimization
techniques. Therefore, compiler designers were often forced to improvise in order
to ensure that programs made best use of the limited capabilities that the available
hardware offered. As a result, it can be observed that “the practice of data flow
analysis precedes the theory” [KSK09]. According to [Hec77], the idea of using DFA
dates back as far as 1966 in which an unpublished technical report [VW63] gave a
first description of the iterative algorithm used for solving DFA equation systems.
The authors of [Aho+06] name Allen [All70] and Cocke [Coc70] as possible candi-
dates for the first scientific exploration of this concept. This view is shared by the
authors of [KSK09] who also include Kennedy [Ken71] in this list. Kildall [Kil73],
Kam and Ullman [KU76; KU77] are credited with the introduction of theoretical
abstractions such as lattice-theory.

The “dragon book” [Aho+06], which is often cited as the standard work in the
field of compiler construction, describes data-flow analysis as “a body of techniques
that derive information about the flow of data along program execution paths”. This
is implemented by a schema that “defines a value at each point in the program.
Statements of the program have associated transfer functions that relate the value
before the statement to the value after. Statements with more than one predecessor
must have their value defined by combining the values at the predecessors, using a
meet (or confluence) operator”. The results can be interpreted in a way that “for each
instruction in the program, they specify some property that must hold every time that
instruction is executed”. In other words, flow analysis yields a static approximation
of a program’s dynamic properties. An example for this is the variable liveness
analysis, a common optimization technique that “determines, for each point in the
program, whether the value held by a particular variable at that point is sure to be
overwritten before it is read”.

As has been stated, the evaluation of a DFA equation system yields an approxi-
mation of a program’s dynamic properties. This is a necessary compromise since, in
most cases, programs define an infinite number of execution paths. In the general
case, determining exact results is therefore an undecidable problem (cf. the halting
problem and Rice’s theorem [Ric53]). Since the properties computed by a flow anal-
ysis are guaranteed to hold for all possible execution paths, results are considered to
be a conservative (or safe) approximation. Due to the static nature of the analysis,
imprecisions therefore cannot be avoided if the original execution semantics are to
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be preserved. If, for example, a variable definition is overwritten on one alternative
path but not on the other, it must be assumed that it will reach subsequent instruc-
tions even if this case will never happen during the actual execution of the program.
While this premise may lead to “missed opportunities”, it also guarantees that the
transformed program exhibits the same behavior as its unoptimized counterpart.

At this point, we include a classification of the data-flow analysis technique along
the lines of the framework presented in Section 2.1.4. The following description is a
short summary of the categorization provided by [KSK09]:

Time of Performing Analysis

DFA is usually employed for static analysis. Exceptions include methods such
as dynamic program slicing which requires information about execution traces
[KL88].

Scope of Analysis

Flow analysis can be used across different levels of scope, e.g. within a basic
block, confined to a function (intraprocedural) and across multiple functions
(interprocedural).

Flow Sensitivity of Analysis

Since information is propagated along a program’s control-flow graph, most
use cases are inherently flow-sensitive.

Context Sensitivity of Analysis

Some interprocedural flow analyses take different calling contexts into account.
Because of the complexity of this approach and due to the performance impact,
this is however only done to a limited degree.

Granularity of Performing Analysis

Both exhaustive and incremental analysis is possible although incremental
versions are more difficult to implement [Ryd83].

Program Representations Used for Analysis

Usually, data-flow analysis relies on control-flow graphs, although in some
cases, other representations such as abstract syntax trees or the Static Single-
Assignment form may also be used.

Representations of Information

The most common result representations are sets of program entities such as
variables or expressions satisfying the given property. To improve performance,
information is often encoded in bitvectors.
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2.3.2. Global Intraprocedural Data-flow Frameworks

It has been discovered that many problems that can be solved through flow analyses
share a set of common properties. Any specific problem therefore can be considered
to be a member of a larger class of similar problems. In the following, we will present
the theoretical foundations of a canonical model for data-flow frameworks (based on
the definitions from [Aho+06; KSK09]) that supports the specification of global,
intraprocedural flow analyses.

2.3.2.1. Transfer Functions

A data-flow analysis typically operates on a program’s control-flow graph which
can be derived from its machine-independent intermediate representation (cf. Sec-
tion 2.1.3). Information is propagated from node to node either along the program’s
control-flow (forward analysis) or in the opposite direction (backward analysis). At
each node, the incoming information is first aggregated and then manipulated to
reflect the effects of the local node’s instructions. The computation of the data-flow
result at a particular node therefore consists of two steps:

Global Data-flow Analysis

First, the program state before the execution of the respective basic block
has to be assessed. For this purpose, state information retrieved from all
preceeding (or succeeding) nodes must be combined using a meet operator.

Local Data-flow Analysis

The result of the first step is then modified to reflect the effects of the basic
block. As consecutive instructions may affect the entities, e.g. by accessing
the same variables, the block’s statements have to be processed one by one.

These steps can be implemented in the form of standardized transfer functions
which operate on algebraically specified value domains (meet semilattices) to ensure
a concise, correct and efficient execution. For local data-flow analysis, the static
approximation of the state before the execution of a statement 𝑠 is referred to as
IN(𝑠) while the state after the execution of 𝑠 is given by OUT(𝑠). The relationship
between IN(𝑠) and OUT(𝑠) can therefore be modeled as

OUT[𝑠] = 𝑓𝑠(IN[𝑠])

where the transfer function 𝑓𝑠 transforms the input into the corresponding output
state. Backward analyses which propagate information in the opposite direction, i.e.
compute information that is upwards exposed, can be calculated using the reversed
definition:

IN[𝑠] = 𝑓𝑠(OUT[𝑠])

Since, by definition, the control-flow inside basic blocks is always sequential, the
overall result for a block can be computed by chaining the block’s transfer functions:

IN[𝑠𝑖+1] = OUT[𝑠𝑖]
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As transfer functions are responsible for the propagation of information from
one point to another, their implementation usually follows a common pattern. In
practice, it can be assumed that the effects of a single instruction (and consequently
the effect of whole basic blocks) consist of

1. the removal of information which will not be available thereafter and

2. the adding of information that will be visible (downwards or upwards exposed)
in subsequent parts of the control-flow.

The removal of information is carried out by a function named 𝑘𝑖𝑙𝑙𝑠 which returns
a set of elements which are “destroyed” by the respective statement 𝑠. Similarly, 𝑔𝑒𝑛𝑠

denotes newly generated information. As an example, we can consider a variable
assignment statement that destroys the previous assignment to the target variable
but at the same time results in a new assignment to an expression or a concrete
value. Each transfer function applied to a value 𝑥 is therefore expected to remove a
set of elements while adding others. Generally, transfer functions can be written as:

𝑓𝑠(𝑥) = 𝑔𝑒𝑛𝑠 ∪ (𝑥− 𝑘𝑖𝑙𝑙𝑠)

Transfer functions applied to the statements 𝑠1, 𝑠2, ...𝑠𝑛 inside block 𝐵 thus im-
plement the local flow analysis. The same principle however also applies to global
analysis, i.e. the propagation of information between basic blocks. In this context,
the “borders” of a block 𝐵, i.e. its first and the last statement (𝑠1 and 𝑠𝑛), represent
the connection points between the local and the global analysis:

IN[𝐵] = IN[𝑠1]
OUT[𝐵] = OUT[𝑠𝑛]

The transfer function 𝑓𝐵 for a block 𝐵 can therefore be defined as the composition
of the statement transfer functions:

𝑓𝐵 = 𝑓𝑠𝑛 ∘ ... ∘ 𝑓𝑠2 ∘ 𝑓𝑠1

The major difference between the local and the global analysis can be found in the
fact that the control-flow inside a block is always sequential while the global control-
flow usually includes branches which denote different execution paths. As a program
point may therefore be reached in a number of different ways, the computation of
a conservative approximation requires a problem-specific meet operator ∧ ∈ {∪,∩}
which combines the results from preceeding/succeeding blocks.
Consequently, IN and OUT values for basic blocks are specified as follows7:

IN[𝐵] =
⋀︁

𝑃∈𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠(𝐵)

OUT[𝑃 ]

OUT[𝐵] = 𝑓𝐵(IN[𝐵])

7Again, the functions can be reversed to perform a backward analysis.
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In the case of detecting unused variables, the set union ∪ needs to be chosen as
meet operator ∧, since it must be assumed that the execution of a block is preceded
by the execution of any of its predecessors. A safe approximation therefore has to
compute the union of the variables that reach a block on any incoming path and
discard these elements from the set of unused variables. [KSK09] states that “the all-
path variant of data flow information is also called must information. Analogously,
the any-path variant of data flow information is called may information”.

2.3.2.2. Value Domains

The process of solving a DFA equation system requires the computation of the
IN and OUT values. To ensure that the analysis terminates in a unique fixed-point
solution, it is necessary to impose some restrictions on the value domains. Typically,
the properties of data-flow result sets as well as their behavior with respect to the
application of the meet operator are defined using algebraic specifications.
The (meet) semilattice8 lends itself as an appropriate structure since it not only

imposes an order on the value domain but also defines a top element. This property
ensures the algorithm terminates after a finite number of function applications.

Definition 2.3.1 ([Aho+06])

A meet semilattice (𝒱 ,∧) consists of a set of values 𝒱 and a binary meet operator
∧ such that for all 𝑥, 𝑦, 𝑧 ∈ 𝒱 :

1. 𝑥 ∧ 𝑥 = 𝑥 (meet is idempotent).

2. 𝑥 ∧ 𝑥 = 𝑦 ∧ 𝑥 (meet is commutative).

3. 𝑥 ∧ (𝑦 ∧ 𝑧) = (𝑥 ∧ 𝑦) ∧ 𝑧 (meet is associative).

A semilattice has a top element, denoted ⊤, such that

∀𝑥 ∈ 𝒱 , ⊤ ∧ 𝑥 = 𝑥

Effectively, ⊤ therefore acts as a neutral element with respect to the ∧ operator.
Optionally, a semilattice may have a bottom element, denoted ⊥, such that

∀ ∈ 𝒱 , ⊥ ∧ 𝑥 = ⊥

The meet operator has to define a partial order ≤ on elements 𝑣 ∈ 𝒱 . “In the
context of data flow analysis, the relation ≤ can be interpreted as a conservative
(safe) approximation [. . . ]: If x ≤ y, then, in any context, the data flow value x
can be used in place of y for optimization without affecting the correctness of the
optimized program” [KSK09].

8In contrast to a lattice, the meet semilattice does not define an additional join operator ∨.
According to [Aho+06], the canonical data-flow literature focuses on meet semilattices although
it would be possible to use semilattices with a join operator instead.
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Definition 2.3.2 ([Aho+06])

A relation ≤ is a partial order on a set 𝒱 if for all 𝑥, 𝑦, 𝑧 ∈ 𝒱 :

1. 𝑥 ≤ 𝑥 (the partial order is reflexive).
2. If 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑥, then 𝑥 = 𝑦 (the partial order is antisymmetric).

3. If 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑧, then 𝑥 ≤ 𝑧 (the partial order is transitive).

The pair (𝒱 ,≤) is called a poset, or partially ordered set.
It is also often convenient to have a < relation for a poset, defined as

𝑥 < 𝑦 if and only if (𝑥 ≤ 𝑦) and (𝑥 ̸= 𝑦).

Now, it is possible to define a partial order ≤ for a semilattice (𝒱 ,∧) as follows:

Definition 2.3.3 ([Aho+06])

For all 𝑥, 𝑦 ∈ 𝒱 , we define

𝑥 ≤ 𝑦 if and only if 𝑥 ∧ 𝑦 = 𝑥.

Because the meet operator ∧ is idempotent, commutative, and associative, the
≤ order is reflexive, antisymmetric and transitive.

A common property in the context of semilattices is the greatest lower bound:

Definition 2.3.4 ([Aho+06])

Given a semilattice (𝒱 ,∧), a greatest lower bound (or 𝑔𝑙𝑏) of domain elements
𝑥, 𝑦 is an element 𝑔 such that

1. 𝑔 ≤ 𝑥,

2. 𝑔 ≤ 𝑦,

3. If 𝑧 is any element such that 𝑧 ≤ 𝑥 and 𝑧 ≤ 𝑦, then 𝑧 ≤ 𝑔.

Common meet operators for set types are the union (∪) and intersection (∩)
operations where the value domain 𝒱 consists of the power set of the elements
of the problem domain 𝒰 (universal set). For example, in a reaching definitions
analysis, 𝒰 would be the set of all variable definitions.
Both ∪ and ∩ fulfill the requirement of being idempotent, commutative, and

associative. The resulting semilattices can be characterized the following way:
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Set union ∪ Set intersection ∩
Top Element ⊤ ∅ 𝒰 (universal set)
Bottom Element ⊥ 𝒰 (universal set) ∅
Partial Order ≤ ⊇ (set inclusion) ⊆ (set containment)

An intuitive representation of a value domain 𝒱 is a lattice (or Hasse) diagram.
The nodes represent the values 𝑣 ∈ 𝒱 and are connected according to the ≤ relation,
starting with the top element. Edges denoting transitive relationships are omitted
for reasons of clarity.

Figure 2.10.: Lattice diagram for ∧ = ∪ and 𝒰 = {𝑑1, 𝑑2, 𝑑3} [Aho+06].

The example shown in Figure 2.10 demonstrates this principle. In this case, the
set of valid elements 𝒰 contains 𝑑1, 𝑑2 and 𝑑3. Because the meet operator is the set
union, the top element ⊤ equals the empty set (since 𝑥∪{} = 𝑥). The diagram can
be used to derive the meet (or 𝑔𝑙𝑏) of two sets. This value corresponds to the highest
node which is reachable on downward paths from both nodes. In the example above,
the 𝑔𝑙𝑏 of {𝑑1} and {𝑑2} would be {𝑑1, 𝑑2}.
The height of the semilattice plays an important role in how fast, if at all, a data-

flow algorithm converges. This property is defined as the amount of edges in the
longest ascending chain, i.e. one less than the amount of elements in that chain. In
the presented example, the height would therefore be 3. While a finite number of
values always results in a finite height, it is important to note that even semilattices
with an infinite number of values may have a finite height.

2.3.2.3. Generalized Data-flow Frameworks

Based on the concepts presented above, it is now possible to specify a general-
ized version of data-flow frameworks which, according to [Aho+06], are “algebraic
structures used to encode and solve data flow problems” involving “a flow graph, a
semilattice of values, and a set of functions from the semilattice to itself ”. It is stated
that properties of these components (e.g. reducibility of the flow graph, descending
chain conditions on the semilattice and monotonicity of the function space) affect
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the existence of an exact or approximate solution, the applicability of methods for
arriving at that solution and the complexity of the method.

Definition 2.3.5 ([Aho+06])

A data-flow analysis framework 𝐷𝐹 = (𝒟,ℱ ,𝒱 ,∧) consists of

1. A direction of the data flow 𝒟, which is either FORWARD or BACKWARD.

2. A family ℱ of transfer functions including functions suitable for the bound-
ary conditions of the nodes ENTRY and EXIT.

3. A semilattice consisting of a value domain 𝒱 and a meet operator ∧.

According to the properties of the functions, a framework can be classified as
being monotonic or distributive.
Using this representation, it is possible to build a generic architecture for the spec-

ification and solving of arbitrary data-flow problems. As [KSK09] notes, “the first
benefit is that which results from any generalization. When a data flow problem is
shown to be an instance of the framework, it also suggests a solution method whose
properties are apparent” eliminating the need to “separately prove the correctness or
estimate the complexity of the solution method”. Secondly, “generalization leads to
the design of data flow analyzer generators, much in the way that lexer generators
and parser generators have emerged from the study of formal languages” by employ-
ing a “general solution method that is parametrized with respect to the specific details
of any analysis”.

2.3.2.4. Canonical Data-flow Frameworks

A number of data-flow frameworks have been developed that can be applied to prob-
lems that are encountered in many different programming languages. To demon-
strate the practical implications of the presented definitions, we will shortly describe
two canonical instances, reaching definitions and live variables9.
Table 2.1 shows the specifications of both analyses. A variable definition is a state-

ment that assigns a value to a variable. Reaching definitions provide information
about which definitions of a specific variable are relevant at different points in the
control-flow. In [Aho+06], this property is specified as follows: “We say a definition
d reaches a point p if there is a path from the point immediately following d to p,
such that d is not "killed" along that path. We kill a definition of a variable x if there
is any other definition of x anywhere along the path”. Consequently, the function
𝑔𝑒𝑛𝐵 denotes the definitions resulting from the assignments in block 𝐵 while 𝑘𝑖𝑙𝑙𝐵
contains all other definitions of 𝐵’s variables in the program. Reaching definitions
is an example of a forward analysis, since information about the definition points of
variables is propagated to subsequent parts of the program.

9Additional examples are listed in Appendix A.2.
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Reaching Definitions Live variables

Domain (𝒰) Sets of definitions Sets of variables

Direction (𝒟) FORWARD BACKWARD
Meet (∧) ∪ ∪
Equations (IN/OUT) OUT[𝐵] = 𝑓𝐵(IN[𝐵]) IN[𝐵] = 𝑓𝐵(OUT[𝐵])

IN[𝐵] =
⋀︀

𝑃,𝑝𝑟𝑒𝑑(𝐵) OUT[𝑃 ] OUT[𝐵] =
⋀︀

𝑆,𝑠𝑢𝑐𝑐(𝐵) OUT[𝑆]
Transfer Function (𝑓) 𝑓(𝑥) = (𝑥− 𝑘𝑖𝑙𝑙) ∪ 𝑔𝑒𝑛 𝑓(𝑥) = (𝑥− 𝑑𝑒𝑓) ∪ 𝑢𝑠𝑒

Initialization (⊤) OUT[B]=∅ IN[B]=∅
Boundary OUT[ENTRY]=∅ IN[EXIT]=∅

Table 2.1.: Two examples of common global data-flow analysis frameworks.

“In live-variable analysis we wish to know for variable x and point p whether the
value of x at p could be used along some path in the flow graph starting at p. If
so, we say x is live at p; otherwise, x is dead at p” [Aho+06]. In this sense, a
live variable is a variable whose value is still relevant since it may potentially be
read at a future point in time. The analysis of live variables is commonly used for
the allocation of processor registers. The basic concepts of this analysis have been
introduced by [Ken71]. If a variable is used inside a basic block (𝑢𝑠𝑒𝐵), it has to
be live at the block’s entry point while defined variables (𝑑𝑒𝑓𝐵) are dead on entry.
Since we have to be concerned with variables that may reach a block on any given
path, the set union is employed as meet operator. Because each program point must
be “informed” about variable accesses that occur afterwards, live-variable analysis
is an example of a method that relies on backward propagation of information.

2.3.3. Iterative Solving of Data-flow Equation Systems

2.3.3.1. Precision and Convergence

The total set of transfer functions forms an equation system that propagates infor-
mation along the edges of the underlying control-flow graph in either the forward
or the backward direction. The task of solving a DFA equation system therefore
requires to compute results for the IN and OUT values of each block.
This process is complicated by the fact that, “unlike linear arithmetic equations,

the data-flow equations usually do not have a unique solution”. Instead, the “goal is
to find the most "precise" solution that satisfies the two sets of constraints: control-
flow and transfer constraints” to determine “a solution that encourages valid code
improvements, but does not justify unsafe transformations” [Aho+06]. From the set
of valid solutions, the greatest solution with respect to the partial order ≤ is the
most precise one.
Since loops in a program’s control-flow result in a cyclic equation system, fixed-

point semantics must be employed to arrive at the desired result. The best solution
with respect to the problem definition is the maximum fixed-point (MFP) of the
data-flow equations. A “maximum fixed-point is a solution with the property that in
any other solution, the values of IN[B] and OUT[B] are ≤ the corresponding values
of the MFP” [Aho+06].
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For this purpose, the data-flow values are first initialized with ⊤. Then, the
functions have to be repeatedly evaluated until a stable result is reached.

We will now present the round-robin and the worklist approach, two canonical
methods for evaluating DFA equation systems. In general, an algorithm for solving
fixed-point equation systems requires the following input:

∙ A control-flow graph 𝐶𝐹𝐺 with designated ENTRY and EXIT nodes.

∙ A data-flow framework (𝒟,ℱ ,𝒱 ,∧) consisting of a direction 𝒟, a set of transfer
functions ℱ , a value domain 𝒱 and a meet operator ∧.

∙ Constant boundary values 𝑣ENTRY, 𝑣EXIT ∈ 𝒱 for the forward and backward anal-
ysis respectively.

2.3.3.2. Round-robin Algorithm

The round-robin algorithm listed in Algorithm 1 is an example of a canonical method
for solving DFA equation systems in a way that guarantees that the best solution
is found. This version of the algorithm is adapted for the forward analysis case. To
perform a backward analysis, it has to be modified accordingly.

Algorithm 1 Iterative round-robin algorithm

1: for all (B : BLOCKS) do
2: if (B == ENTRY) then
3: OUT[B] = 𝑣ENTRY;
4: else
5: OUT[B] = ⊤;
6: repeat
7: stable = true;
8: for all (B : BLOCKS) do
9: if (B == ENTRY) then
10: continue;

11: oldvalue = OUT[B];
12: IN[B] = ∧𝑃∈𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠(𝐵)OUT[𝑃 ];
13: OUT[B] = 𝑓𝐵(IN[𝐵]);
14: if (not OUT[B] == oldvalue) then
15: stable = false;

16: until (stable)

The general idea behind this algorithm is to initialize all results with the most
imprecise approximation and to repeatedly evaluate the functions to yield the final
result. For this purpose, lines [1-5] assign the value 𝑣ENTRY to the initial node and
⊤ to all other nodes. In the case of a backward analysis, 𝑣EXIT would have to be
assigned to the final node in the control-flow.
The algorithm then loops over the whole equation system in lines [6-16], repeatedly

executing the functions, until all values have converged. Since the ENTRY (or EXIT)
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node has no predecessor (or successor), its value has to be computed only once. It
is therefore omitted from the recomputation [9-10].
Before a new OUT value is computed for the current block, the old value is stored

[11]. Then, the new input for the basic block is computed by applying the meet
operator ∧ to the output of its predecessors [12]. Afterwards, the new OUT value is
calculated [13]. If the computed result for OUT is different from the stored value, the
current iteration is marked as unstable, triggering the execution of a new fixed-point
iteration [14-15].

[Aho+06] discusses why this algorithm is guaranteed to terminate:

Intuitively, [the algorithm] propagates definitions as far as they will go
without being killed, thus simulating all possible executions of the pro-
gram. [The algorithm] will eventually halt, because for every B, OUT[B]
never shrinks; once a definition is added, it stays there forever. Since
the set of all definitions is finite, eventually there must be a pass of the
[repeat]-loop during which nothing is added to any OUT, and the al-
gorithm then terminates. We are safe terminating then because if the
OUT’s have not changed, the IN’s will not change on the next pass.
And, if the IN’s do not change, the OUT’s cannot, so on all subsequent
passes there can be no changes.

With respect to the algorithm’s performance, it is noted that “[t]he number of
nodes in the flow graph is an upper bound on the number of times around the [repeat]-
loop” since “[e]ach time around the while-loop, each definition progresses by at least
one node along the path in question, and it often progresses by more than one node,
depending on the order in which the nodes are visited”.

In addition, the authors mention the following properties:

1. If the algorithm converges, the result is a solution to the data-flow equations.

2. If the framework is monotone, then the solution found is the maximum fixed-
point of the data-flow equations.

3. If the semilattice of the framework is monotone and of finite height, then the
algorithm is guaranteed to converge.

2.3.3.3. Worklist Algorithm

The worklist algorithm represents an improvement over the round-robin method.
The round-robin algorithm follows a naive approach, executing functions in an arbi-
trary order, not taking into account the dependencies between data-flow functions.
Consequently, it has to trigger a new iteration each time a single value changes.
However, the order in which the equations are evaluated can have a significant im-
pact on the number of necessary recomputations and thus the overall performance
of the algorithm. In general, it can be observed that, if the result computed for a
specific data-flow value changes, only the values that directly depend on this value
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have to be recomputed as well. This process must then be repeated until the value
of the last processed equation hasn’t changed.
The worklist algorithm is a direct implementation of this approach:

Algorithm 2 Iterative worklist algorithm

1: for all (B : BLOCKS) do
2: if (B == ENTRY) then
3: OUT[B] = 𝑣ENTRY;
4: else
5: OUT[B] = ⊤;
6: worklist = BLOCKS;
7: while (not worklist == ∅) do
8: B = worklist.pop();
9: oldvalue = OUT[B];
10: IN[B] = ∧𝑃∈𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠(𝐵)OUT[𝑃 ];
11: OUT[B] = 𝑓𝐵(IN[𝐵]);
12: if (not OUT[B] == oldvalue) then
13: worklist += successors(B);

Algorithm 2 describes one of multiple possible implementations of this principle.
Again, this case is adapted for the forward propagation of results. Just like in the
round-robin method, the equation system is first initialized [1-5]. Then, line [6] adds
all nodes to the worklist since each node has to be recomputed at least once.
The main loop in lines [7-13] processes the worklist until it is empty, at which

point the most precise solution, the MFP, has been found. First, a block is retrieved
from the worklist [8]. After storing its old value and computing its new result, a
check is performed to determine if the value has changed. If this is the case, the
successors of the current block have to be recomputed as well. This is ensured in
line [13] which appends the successors of 𝐵 to the worklist.

2.4. Modeling

The field of modeling represents the target domain to which the analysis method
that is detailed in this thesis is applied. In this chapter, we will therefore present
the basic concepts and techniques of this technological space.
We start by introducing the general concepts behind the notion of modeling in

Section 2.4.1. In Section 2.4.2, we present the different layers of abstraction that
are of relevance in this area. Just like is the case for context-free languages, models
only comprise the syntax of a language and thus another technique is required to
specify its static semantics. The canonical method for this purpose is the Object
Constraint Language (OCL) which will be discussed in the context of related work
in Section 3.1.
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2.4.1. Concepts of Modeling

Modeling languages have become a prominent instrument in the field of computer
science as they enable the formalization of an application domain’s concepts, their
properties and the relationships between them. An abstract syntax given in the
form of a metamodel validates and enforces structural constraints and fosters au-
tomated processing of the formalized information, e.g. through code generation or
model transformations and the provisioning of tooling support, e.g. by building
matching textual or graphical editors. In addition, the rise of modeling techniques
has led to new approaches to software engineering such as the Model-driven Ar-
chitecture [MDA] and Model-based Testing [AD97]. Modeling therefore represents
a mechanism that can be employed in many scenarios that demand a structured
representation of domain-specific data.
An important factor for the popularity of modeling techniques is that they are

often perceived to provide an intuitive way for practitioners to formalize application
domains. [AK03] interprets this development as the continuation of a trend that
has originally been put forward by object-oriented languages: “Instead of requiring
developers to spell out every detail of a system’s implementation using a program-
ming language, it lets them model what functionality is needed and what overall
architecture the system should have”. A unified modeling methodology provides the
tools necessary to (semi)automatically derive suitable editors and additional func-
tions such as database persistence layers from a metamodel. The resulting tooling
can then be handed to language users - the domain experts - who can employ this
technology to solve tasks in the target domain.
Both on a conceptual level and with respect to its versatility, this concept can,

for example, be compared to the widely used XML format which also organizes in-
formation according to predefined schematics, albeit with a different focus10: While
information stored in XML is often difficult to read, models combine structured data
with an intuitive (graphical) representation and are therefore capable to serve as a
mediating format in the communication between humans and computers.
Arguably the most widely known modeling standard is the Unified Modeling Lan-

guage (UML), “a visual language for specifying, constructing, and documenting the
artifacts of systems. It is a general-purpose modeling language that can be used with
all major object and component methods, and that can be applied to all application
domains (e.g., health, finance, telecom, aerospace) and implementation platforms”
[UML]. In fact, many modeling languages proposed by the OMG11, including the
UML and the Business Process Modeling Notation (BPMN), have become the de-
facto standards in industry and research alike12.
One motivation that drives the application of modeling technologies is the aspect

of integration. Modeling frameworks usually define a common core, a meta meta-
model, that forms the basis for the specification of modeling languages. In a sense,
modeling techniques can therefore be regarded as frameworks for language develop-

10We discuss this in further detail in Section 4.1.1.
11Object Management Group (OMG) specification documents can be obtained from http://www.

omg.org/spec
12An example for an alternative modeling framework can be found in KM3 [JBT06].
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ment. [Bez05] compares this approach to the practices in the compiler construction
domain: “The metametamodel conforms to itself. This is very similar to the or-
ganization of programming languages. A self-representation of the EBNF notation
takes some lines. This notation allows defining infinity of well-formed grammars.
A given grammar, for example the grammar of the Pascal language, allows defining
the infinity of syntactically correct Pascal programs”. A notable difference between
formal grammars and models is the fact that the former include the concrete syntax
in the language definition while the graphical representation of model elements has
to be specified separately. The similarities and differences between both fields are
further explored in Section 4.1.

2.4.2. Abstraction Layers in Modeling

At the core of modeling lies the notion of different layers of abstraction which, by
definition, always come in pairs: The top abstraction layer represents the metamodel
while the one on the bottom conforms to an instance of this specification. A meta-
model contains the declarations of concepts - commonly referred to as classes and
associations - along with their properties and their relationships to other concepts.
Models on the bottom layer consist of an arbitrary number of instances, each of
which represents a separate entity that possesses all properties of its defining meta-
model concept. In this sense, “[a] metamodel is a model used to model modeling
itself ” [MOF] and “[t]he typical role of a metamodel is to define the semantics for
how model elements in a model get instantiated” [UMLi].
As an example, we assume that a metamodel specifies the two classes Person and

Address, assigns a property name to the Person class and declares a relationship
livesAt which connects both concepts. Now, on the model layer, multiple instances
of these classes can be created with each instance of the Person class containing a
different value in its respective name field and instances of the livesAt association
indicating where each person lives.

Figure 2.11.: Relationships between abstraction layers [UMLi].

It is important to realize that the distinction between the meta and the model
layer always depends on the chosen viewpoint, i.e. the notion of what constitutes
a concept and what represents an instance in the current context. In the example
described above, the meta layer containing the definitions of Person and Address
could very well be considered to be an instance of another, overlaying meta layer
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which specifies the properties of the Class and Association concepts themselves. From
this point of view, both Person and Address would be instances of Class.
The UML infrastructure specification illustrates this principle using the exam-

ple shown in Figure 2.11. In this depiction, the metamodel defines the concepts
Class and Association. The model contains two instances of Class named Person and
Car and one instance of Association connecting both elements. The relationships
between the model and the metamodel objects are indicated by «instanceof» links
that consequently span both layers of abstraction.
The involvement of more than two abstraction layers in the definition of a mod-

eling language requires to reconsider the naming conventions with respect to the
different viewpoints. Coming back to our example, we use the meta layer of Fig-
ure 2.11 to define class types for Person, Address and livesAt. One option would be
to split the resulting hierarchy of three abstraction layers into two pairs. In this
case, both the top and the middle layer as well as the middle and the bottom layer
could be considered to be a metamodel-model pair respectively. Alternatively, we
can address each layer of the three-tiered architecture from an overall viewpoint. In
this case, the top level is a meta metamodel, i.e. it represents the meta layer of the
metamodel, with the subjacent layers being referred to as metamodel and model
respectively.
It is easy to see that, in practice, the notion of abstraction layers may lead to prob-

lems as this principle “can be applied recursively many times so that we get a possibly
infinite number of meta-layers” [UMLi]. To avoid this complication, modeling frame-
works usually specify a fixed number of layers, with the top layer supporting the
recursive definition of its own concepts: “A specific characteristic about metamodel-
ing is the ability to define languages as being reflective, i.e., languages that can be
used to define themselves”.
The OMG architecture defines four levels of abstraction, commonly referred to as

M3 -M0 with M3 - the Meta Object Facility (MOF) - being the topmost layer. The
UML, which resides on the metamodel layer M2, provides the following description:

UML is a language specification (metamodel) from which users can de-
fine their own models. Similarly, MOF is also a language specification
(metamodel) from which users can define their own models. From the
perspective of MOF, however, UML is viewed as a user (i.e., the mem-
bers of the OMG that have developed the language) specification that
is based on MOF as a language specification. In the four-layer meta-
model hierarchy, MOF is commonly referred to as a meta metamodel,
even though strictly speaking it is a metamodel.

The choice of this architecture is motivated by the fact that “many applications
use proprietary models of metadata” which presents problems as “differences between
metadata models impede data exchange across application boundaries”. This neces-
sitates the existence of a common basis for the development of modeling languages.
A four-tiered framework realizes this requirement by extending the two-layered ar-
chitecture with a meta metamodel layer M3 that provides “a metadata management
framework, and a set of metadata services to enable the development and interoper-
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ability of model and metadata driven systems” and a bottom layer M0 representing
the real-world objects [MOF].

To provide a better understanding of the meaning of each abstraction layer, we
include a shortened version of the definitions from [UMLi]:

M3 The meta metamodeling layer forms the foundation of the metamodeling hi-
erarchy. The primary responsibility of this layer is to define the language for
specifying a metamodel. The layer is often referred to as M3, and MOF is an
example of a meta metamodel.

M2 A metamodel is an instance of a meta metamodel, meaning that every ele-
ment of the metamodel is an instance of an element in the meta metamodel.
The primary responsibility of the metamodel layer is to define a language for
specifying models.

M1 A model is an instance of a metamodel. The primary responsibility of the
model layer is to define languages that describe semantic domains, i.e., to
allow users to model a wide variety of different problem domains, such as
software, business processes, and requirements. The things that are being
modeled reside outside the metamodel hierarchy.

M0 The metamodel hierarchy bottoms out at M0, which contains the runtime in-
stances of model elements defined in a model. The snapshots that are modeled
at M1 are constrained versions of the M0 runtime instances.

It is further noted, that “[w]hen dealing with more than three meta-layers, it is
usually the case that the ones above M2 gradually get smaller and more compact
the higher up they are in the hierarchy. In the case of MOF, which is at M3,
it consequently only shares some of the metaclasses that are defined in UML”. This
property is shared by almost all modeling frameworks, as higher levels of abstraction
define very generic concepts that can be used in many different scenarios while lower
abstraction layers encode detailed domain-specific information.
A simplified version of the MOF that depicts only the most important concepts

is shown in Figure 2.12. The central element in this case is the Class object. A Class
may contain features which are either fields that are able to hold specific values
(such as the name of Person) or act as endpoints for Associations which establish
links between different model elements. Additionally, Operations may be defined,
representing functions that can be invoked on objects of the respective class type.
An important principle which has not yet been discussed is the notion of Gener-

alization. A connection of this type implies an inheritance relationship between two
different Classes. Similiar to the inheritance concept found in object-oriented pro-
gramming languages, a specialized Class inherits all of the properties of its parent.
This reduces the complexity of metamodels by avoiding a redundant specification
of properties that are shared by many classes. Additionally, Generalizations carry
semantic information as each specialized type implicitly possesses the type of its
parent. This information can be used in scenarios such as model transformations
where the class type of a model element influences the way it is processed.
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Figure 2.12.: Simplified version of the MOF [Wik08].

A concrete example spanning all four abstraction layers of the MOF framework
can be seen in Figure 2.13. The right hand side of the diagram shows the artifact
types that are involved in the modeling process. Based on MOF’s meta metamodel
on M3, a family of modeling languages is specified on M2. These comprise the
Unified Modeling Language as well as user-defined languages which are referred to
as domain-specific models (DSMs). Instances of these modeling languages reside on
M1 while the M0 layer contains the data instances, i.e. the runtime (or real-world)
objects in the respective target domain.

58



2.4. Modeling

Figure 2.13.: The abstraction layers of the MOF modeling framework [ET12].
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In this chapter, we will investigate contemporary analysis techniques and evaluate
their relationships to our own approach. Because there exist a large number of such
methods, we limit our selection to techniques which are applicable in the technolog-
ical space of modeling and which address issues similar to those which have been
listed in Chapter 1. More specifically, we are interested in approaches which sup-
port the annotation of analysis specifications on the metamodel layer and enable a
subsequent instantiation and evaluation of these statements for arbitrary language
expressions.
This chapter is structured as follows: In Section 3.1, we examine the application of

constraint languages for the purpose of specifying static semantics. In this context,
we discuss the features of the Object Constraint Language (OCL) and the Epsilon
Validation Language (EVL) with relation to the problems and challenges that have
been stated in Section 1.1. The methods of attribute grammars and data-flow analy-
sis which originate from the field of compiler construction and form the basis for the
implementation of our own approach have already been covered in Section 2.2 and
Section 2.3. However, since they were originally conceived, multiple proposals have
been made that are aimed at combining both techniques by extending the attribute
grammar formalism with support for a fixed-point evaluation of cyclic dependency
paths. Furthermore, research has been carried out with the goal of establishing po-
tential connection points between grammatical specifications and modeling artifacts.
Section 3.2 provides an overview of these methods. In recent years, a wide range
of existing formalisms from different technological spaces have been employed for
the purpose of model analysis. Section 3.3 investigates this subject by providing an
overview of relevant research work. In Section 3.4, we conclude our review of related
work with a short summary and a discussion of how the presented techniques relate
to the approach developed in this thesis.

3.1. Model Constraint Languages

An implicit advantage of model-based descriptions is their ability to automatically
enforce certain structural constraints. This is comparable to the way a program-
ming language’s grammar specifies the valid structure of language expressions. For
models, the available constructs and their structural composition are described by
a metamodel (cf. Section 2.4). Unfortunately, not all constraints can be encoded
in the abstract syntax of a language. This is true for context-free grammars as well
as for metamodels. As a consequence, it is often the case that modeling languages
require the specification of a set of well-formedness rules that represent the static
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semantics of the language. In the compiler construction domain, the most com-
mon method for this purpose are attribute grammars (cf. Section 2.2). In the field
of modeling, the Object Constraint Language (OCL) - which formalizes structural
restrictions - has a similar role.
The OMG’s specification document [OCL] notes that OCL is “a formal language

used to describe expressions on UML models” which “typically specify invariant con-
ditions that must hold for the system being modeled”. It is not a programming
language but “a pure specification language; therefore, an OCL expression is guar-
anteed to be without side effects”. Possible applications include the specification of
invariants, pre- and postconditions, guards and constraints on operations.
Although the specification of OCL itself relies on modeling technology, constraints

are written in a textual notation. Each constraint is usually evaluated in the context
of a specific model element which is bound to the self variable in OCL’s evaluation
environment. For this purpose, the constraint is annotated at a class type in the
metamodel and is consequently evaluated for all instances of the respective class.

Figure 3.1.: A metamodel with two OCL constraints [OCL].

Figure 3.1 shows a simple metamodel with two OCL constraints defined in the
context of the classes Person and Company. The first constraint states that the
name of each person has to be unique. This is accomplished by iterating over all
model elements which are of the class type Person and enforcing different values of
the name property for each pair. The second constraint uses the keyword self to
validate whether the number of employees at each instance of Company is larger
than 50. During the evaluation of the constraint for objects of the Company type,
the variable self is consequently substituted with the respective object for which
the query is currently executed.
Several attempts have been made to convert UML models with annotated OCL

constraints to other technical spaces, for example by translating constraints into
satisfiability problems [CCR08; Soe+10]. With the availability of powerful OCL in-
terpreters, these methods are not strictly required for constraint evaluation, however
in some cases they provide additional features, e.g. snapshot generation [GBR03],
to validate whether the semantics of the modeling language are preserved.
Recently, the Object Constraint Language has been extended with the ability

to compute transitive closures of relationships1, thereby addressing a fundamental
shortcoming which has existed for a long time. For example, the UML infrastructure

1http://www.omg.org/issues/issue13944.txt
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(a) Part of the UML metamodel, package Core

(b) Computing the transitive closure of parents

Figure 3.2.: Ensuring acyclic generalization hierarchies in UML [Baa03].

specification [UMLi] demands that a class must not be its own parent: “General-
ization hierarchies must be directed and acyclical. A classifier cannot be both a
transitively general and transitively specific classifier of the same classifier”. For
this purpose, the following OCL constraint is given:

not self.allParents()->includes(self)

The relevant excerpt of the UML metamodel and the statements which compute the
generalization hierarchy of a class are depicted in Figure 3.2(a) and Figure 3.2(b)
respectively. The authors of [Baa03] state that, “[i]nformally speaking, self.parents
denotes the set of all direct supertypes and self.allParents denotes the transitive
closure of direct supertypes”. However, as [VJ00] notes, “this operation may go into
an infinite loop if there is a circularity in the parent hierarchy, in which case it
is undefined”. Making use of the closure operator, [OCL] proposes the following
solution:

aClassifier.generalization()->closure(general.generalization).general()
->including(aClassifier)

It is explained that this constraint “computes the set comprising aClassifier and all
its generalizations. The closure recurses over the Generalizations to compute the
transitive set of all Generalizations. The generalized classifier is collected from each
of these before including the originating aClassifier in the result”.
Alternatives to OCL exist, for example, in the form of the Epsilon Validation

Language (EVL) [KPP09]. This technique has been defined on top of the Epsilon
Object Language (EOL), a model management framework, which in turn “builds on
OCL” and “can be used both as a standalone generic model management language
or as infrastructure on which task-specific languages can be built” [KPP06].
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Figure 3.3.: Requirements for model management languages [KPP06].

Model management tasks include the transformation of models as well as consis-
tency checking. To provide a unified foundation for these scenarios (cf. Figure 3.3)
the authors of [KPP06] have devised a number of characteristics which must be sup-
ported by the language core such as support for navigation, modification and cross-
model operations. This endeavor is motivated by several shortcomings of OCL, for
example the lack of support for statement sequencing, inter-model operations and
unnecessary diversity in navigation expressions. [KPP09] lists additional problems
such as the lack of support for user feedback and the fact that “[e]ach OCL invariant
is a self-contained unit that does not depend on other invariants”.
A similar approach is taken by [JB05] which implements a language for consistency

checks on top of the ATLAS modeling framework [Jou+06].

3.2. Circular Reference attributed Grammars

In Section 2.2 we described the method of attribute grammars, a technique which
is commonly employed in the field of compiler construction for the validation of the
static semantics of programming languages. For this purpose, semantic attributes
are annotated at grammatical symbols and can therefore be subsequently instanti-
ated for parsed language expressions. Based on the type of the attribute - which is
either classified as inherited or synthesized - this results in a top-down or bottom-up
information flow along the edges of the respective syntax tree. Since these edges
represent the application of grammatical derivation rules, information is routed be-
tween parent and child expressions, thereby evaluating each subexpression in its
full syntactical context. The relevance of the AG approach with respect to the
objectives of this thesis can be characterized as follows: Attribute-based analysis
specifications enable the enrichment of language definitions with declarative anal-
yses which rely on the syntactical structure of language expressions to propagate
flow-sensitive information.
In their traditional form, as proposed by [Knu68], attribute grammars however do

not provide evaluation semantics for cyclic equation systems resulting from circular
dependencies. Consequently, as stated, for example, in [Sag+89], “until recently,
circular AGs (CAGs) were considered ill formed and meaningless”. This limitation
can be explained by the origins of the attribute grammar formalism. The validation
of static semantics usually requires the computation of a unique solution which
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determines whether the respective expression is either correct or invalid. In contrast
to this requirement, cyclic attribute grammars may yield an arbitrary number of
solutions. In general, this behavior is more closely associated with approaches for
program optimization - such as data-flow analysis - which are specifically designed to
compute (conservative) approximations of runtime behavior. It can also be argued
that, since the information flow in attributed syntax trees follows the derivation
hierarchy of language expressions rather than the control-flow of the program, it is
more difficult to specify meaningful analyses which require an iterative fixed-point
computation. Finally, many variants of the attribute grammar formalism put an
emphasis on a performant execution. A wide variety of optimizations exist that are
aimed at facilitating this property ranging from special classes of attribute grammars
which can be computed during the syntax analysis phase of the compile process to
methods which enable the static creation of optimal attribute evaluators for arbitrary
language expressions. Iterative computations, which are required for deriving the
fixed-point of a cyclic equation system, would complicate the application of these
methods since it is more difficult to statically determine the order in which the
semantic attributes have to be evaluated and multiple passes may be necessary until
the final result is available.

Nevertheless, multiple proposals have been made to extend the attribute gram-
mars formalism with the required constructs, semantics and evaluation strategies to
specify and compute results for circular AGs. This has been explored, for exam-
ple, by [Rod86] where it is argued that the definition of circular dependencies may
indeed result in valid and meaningful specifications: While “in the traditional for-
mulation of attribute grammars (AGs) circularities are not allowed [. . . ] elsewhere
in mathematics and computing, though, circular (or recursive) definitions are com-
monplace, and even essential”. It is argued that support for circular dependencies
(using fixed-point semantics for the evaluation of circular dependencies in attributed
syntax trees) can actually be very useful under certain circumstances. The author
emphasizes the importance of the AG mechanism by asserting that “one of the ma-
jor strengths of AGs is that they are non-precedural specifications” and concludes
that this also applies to the case of circular definitions: Although they do not nec-
essarily possess a unique solution, a “recursive definition of attributes is even more
of a specification” as “it describes conditions that the attributes must satisfy”. This
claim is motivated by the assertion that traditional problems such as live variable
analysis can be defined and executed using circular attribute grammars. For this
purpose, the author introduces the classes of recursive and finitely recursive AGs
along with an algorithm which is able to derive a static evaluator for these cases.
With respect to the evaluation process, it is stated that “the author of a recursive
AG should not have to supply algorithms for constructing the least fixed-point” but
rather only “have to supply enough information to determine that such fixed-points
do exist and can be computed”. With this assertion, the author emphasizes that
circular attribute grammars are able to provide a methodology which addresses a
greater range of problems while assigning the responsibility for ensuring that the
computed results will represent a meaningful solution to the developer.

[Sag+89] emphasizes the importance of providing support for the specification
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and evaluation of circular attribute grammars. In this paper, the authors claim that
common data-flow analysis problems can in fact be encoded using the AG formalism
and that an evaluation mechanism which supports fixed-point computations would
therefore enable an attribute-based implementation of these algorithms: “[I]f the
semantic equations employ monotonic operators [. . . ], they define a unique greatest
(least) fixed point which may be interpreted as the meaning of the equations” and that
“this kind of circularity arises naturally in many data flow analysis (DFA) problems”.
Since, “for structured languages, various DFA problems [. . . ] have been specified us-
ing CAGs”, their method focuses on automating “the translation for most of the data
flow analysis problems considered since most of them could be easily specified using
uniform modification CAGs”. In contrast, [Ros90] explores the aspect of abstract
interpretation using circular attribute grammars and in this context mentions that
“the use of attribute grammars for the specification of abstract interpretation can be
seen as an alternative notation to denotational semantics”.
Another extension of the AG formalism can be found in reference attributed gram-

mars (RAG) [Hed00]. While traditionally, values are only exchanged between neigh-
boring elements in the parsed language expression, the reference mechanism “permits
attributes to be explicit references denoting nodes arbitrarily far away in the syntax
tree”. Consequently, an information flow between arbitrary nodes can be estab-
lished as a “reference value denoting a node in the syntax tree may be dereferenced
to access the attributes of that node”. As a result, “information can be propagated
directly from the referred node to the referring node, without having to involve any
of the other nodes in the syntax tree”. In this case, the dependency graph between
attribute instances superimposes the structure of the syntax tree by allowing the
specification of additional cross-edges. As noted in [MH03], the method of RAGs
can be further enhanced by combining the declaration of reference attributes with
a demand-driven evaluation semantics for circular dependencies. This approach al-
lows not only to compute fixed-point results for circular attribute grammars but also
enables the specification of arbitrary data-flow paths through the use of attributes
which are able to address values located at remote nodes. The resulting formalism -
which is referred to as circular reference attributed grammars (CRAG) - allows “the
recursive definitions to be specified directly in the grammar, and the fixed point to be
computed by an automatically generated evaluator”.
The authors of [Bur+11] note that CRAGs provide an opportunity to “alleviate

the lack of support for formal semantics specification in metamodelling” by applying
this technique for the purpose of model analysis. The resulting approach - called
“semantics-integrated metamodelling” - therefore implements a methodology similar
to the flow-based analysis technique detailed in this thesis. More specifically, the
authors identified similarities and differences between the technological spaces of
modelware and grammarware with the goal of transferring compiler construction
techniques to the modeling domain. By employing the CRAG formalism as under-
lying specification method, remote and circular attributes can be used to define and
evaluate cyclic information flows.

For this purpose, the paper investigates how the syntax and semantics of meta-
modeling languages can be mapped to the CRAG formalism. In the first step, an
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Figure 3.4.: Integrating Ecore and JastAdd [Bur+11].

existing MOF-based metamodel has to be translated to a context-free grammar.
This can be accomplished by mapping the classes of the metamodel, their attributes
and their containment hierarchy to grammatical productions. Since cross-references,
i.e. links which are not containment relationships, cannot be represented by a CFG,
the authors classify these elements as semantic properties of the target language and
generate appropriate semantic attributes which can be annotated at the respective
symbols. Figure 3.4 shows the derived relationships between metamodel and gram-
mar concepts. The elements are divided into two groups: While concepts in the set
𝐸𝑠𝑦𝑛 are deemed to be syntactical properties as they can be directly translated into
corresponding grammatical representations, the semantic properties in 𝐸𝑠𝑒𝑚 contain
types which have to be implemented as semantic attributes. The resulting spec-
ification represents the target metamodel in the form of a semantically enhanced
grammar. Based on this grammar, models can be represented as syntax trees with
a superimposed reference graph that encodes the elements of 𝐸𝑠𝑒𝑚. It is now possi-
ble to extend the derived CRAG with custom analysis specifications in the form of
semantic attributes.

Figure 3.5.: Transformations in metamodeling [Bur+11].

Figure 3.5 illustrates the process of constructing the respective CC artifacts based
on their modeling counterparts. In the first step, an abstract syntax tree is derived
from the classes, attributes and containment references. Next, the non-containment
references are translated into reference attributes resulting in a reference-attributed
model. In the final step, the grammar specification is enriched with derived attributes
and class operations as defined in the metamodel.
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Figure 3.6.: JastEMF’s Generation Process [Bur+11].

An implementation of this approach is available in the form of the JastEMF
framework. This tool uses EMF (cf. Section 7.1.2) as a basis for the implementation
of model-related functionality and the JastAdd metacompiler system [EH07] - which
provides an implementation of the CRAG formalism - as execution platform for
the derived analyses. The overall process is depicted in Figure 3.6. Based on an
EMF metamodel, an implementation is generated 1 along with an JastAdd AST
specification 2 . This artifact is combined with additional semantic specifications
from which the JastAdd compiler 3 creates a corresponding attribute evaluator.
The remaining steps integrate the resulting artifacts on a technical level.

3.3. Other Related Work

It should be mentioned, that attribute grammars and data-flow analysis are not the
only techniques which can be used to analyze programs. In the following, we will
provide a short summary of several common analysis paradigms as listed in [KSK09]:

Inference Systems

These systems infer properties through a repeated application of inference
rules. For this purpose, a set of axioms and inductive rules is provided while
the task of choosing the appropriate rules is up to the user.

Constraint Resolution Systems

Here, constraints are written as inequalities and the evaluation requires the
identification of a solution which satifies these statements.
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Model Checking

If a program is represented as a formal model, the properties can be expressed
as boolean formulae which are then computed by a model checker.

Abstract Interpretation

Based on mappings between concrete and abstract semantics, soundness of the
abstraction functions is validated using abstract interpretation theory.

While none of these techniques was originally conceived with the goal of an appli-
cation in the modeling domain, various research work has emerged which makes use
of these methods for the purpose of model analysis. One example is the Alloy frame-
work [Jac02] which has been employed in multiple use cases. According to [MGB04],
“Alloy is a formal modeling language based on first-order logic, allowing specification
of - primarily structural - properties in a declarative fashion”. It is further stated
that “models in Alloy are described at a high level of abstraction” and that “one can
apply object modeling in a similar fashion to UML class diagrams” while “allowing
automatic analysis”. An Alloy model consists primarily of signatures corresponding
to complex types and logical formulae which describe restrictions over instances of
these types. As mentioned in [JSS00], “Alloy is not a decidable language” and it
is therefore not possible to “provide a sound and complete analysis”. Instead, the
basic premise of this approach is to “search within a finite scope chosen by the user
that bounds the number of elements in each primitive type”. For this reason, Alloy is
usually classified as a model finder. [VJ00] discusses the relationships with the OCL,
arguing, for example, that Alloy provides a simpler notation. For the computation
of the transitive closure of class hierarchies, the following definition is given:

all e: GeneralizableElement | e.allParents = e.+parent

with an additional constraint that checks for circularity without going into an infinite
loop:

all e: GeneralizableElement | e !in e.allParents

According to [VJ00], additional advantages include self-contained expressions which
do not rely on external (meta)models and purely constraint-based specifications
which do not allow for operational statements.
Multiple papers have been published which deal with the application of Alloy for

the analysis of UML models, amongst others [Ana+07; Ana+10; SAB10; MGB04].
For this purpose, [Ana+07] describes how a subset of UML/OCL can be mapped
to Alloy’s specification language to identify inconsistencies in the definition of the
target models. The authors list a number of challenges which complicate the trans-
formation process. For example, while Alloy supports generalization, it does not
enable redefinition at subclasses. It is also stated that, due to the lack of a concept
such as self in OCL, it is “difficult to reference the instance of the signature on
which the Alloy predicate is applied”. [Ana+10] further notes that “model transfor-
mation from UML to Alloy has proved to be very challenging” as “UML and Alloy
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have fundamental differences, which are deeply rooted in their underlying design
decisions”.

The authors of [SAB10] describe how analysis results, i.e. model instances which
represent counter-examples to the stated constraints, can be related back to the
original modeling language. The paper presents a method for automatically gener-
ating transformation rules that are able to convert these instances into UML Object
Diagrams. It is mentioned that “[defining] a transformation from Alloy to UML to
carry the outcome of analysis conducted by Alloy to an object diagram has proved
to be challenging” since the translation from UML to Alloy involves the M2 layer
while the results correspond to M1 models. Because the translation is not an 1-to-1
mapping, “[i]nstances in Alloy are not naturally instances of the originating UML
model - some information is ’lost in transformation”’. As a solution to this problem,
execution traces of the UML2Alloy2 transformation are used to dynamically gener-
ate suitable translation instructions. Case studies for the application of Alloy in
the modeling domain include the identification of inconsistencies in models through
automatic snapshot generation [MGB04] and the representation and validation of
model transformations [ABK07].

A similar approach is taken by the USE tool [GBR07]. [Gog07] states that “like
Alloy [USE] is more a model finder than a model checker, i.e., it helps develop-
ers in finding models with desired properties”. According to the authors, their tool
can be applied to validate the consistency of model and constraint specifications by
constructing respective instances. Additional scenarios include checking for the in-
dependence of invariants and testing whether undesired properties may assert them-
selves in instantiations. [GBR03] describes how this method enables the generation
of complex system snapshots based on OCL descriptions.

In addition to generic techniques which support the specification of different kinds
of model analyses, there are also many publications which employ methods that are
tailored to solving a very specific problem. For example, the approach detailed in
[GBL05] converts UML Sequence Diagrams to Concurrent Control Flow Graphs
(CCFG). A subsequent flow analysis on this model-based representation is used to
derive Concurrent Control Flow Paths (CCFP). It is suggested that these results
can be used in sequence-based testing approaches. A related application scenario
for data-flow analysis is addressed by [BLL10]. The authors describe how control-
flow information can be derived from UML State Machines to drive the selection
of cost-effective test cases. The usefulness of flow-sensitive information in the area
of software testing is also explored in [RW82]. In [WIM08], the authors employ
the action semantics of Executable UML (xUML) models for the specification of
software systems. Subsequent usage of data-flow analysis enables an evaluation of
the abstract semantics of the executable specifications with the goal of “[finding]
def-use associations among the actions written in an action language”.

2http://www.cs.bham.ac.uk/~bxb/UML2Alloy/
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3.4. Summary and Discussion of Related Work

In this chapter, we introduced different techniques which support the specification
and execution of model analyses. We will now conclude our review of related work
with a discussion on how the presented methods relate to our own approach on a
conceptual as well as on a technical level.
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Specification
Formal specification X × X X X
Model-based specification X X × × X
Inter-language links X X × × X
Reuse of definitions ∘ ∘ × × X
Redefinition at subclasses ∘ ∘ ∘ × X

Capabilities
Transitive closure X X X X X
Information propagation × × X × X
Fixed-point semantics × × X × X
User feedback × X ∘ × ∘
Snapshot generation × × × X ×

Syntax
Textual syntax X X X X X
Graphical syntax ∘ × × × ×

Other
Tool support X X X X X

Table 3.1.: Comparison of different static analysis methods.

In the following, we will compare the described approaches, focussing on several
characteristic properties to determine how these techniques relate to the method
proposed in this thesis. For this purpose, we perform a side-by-side comparison on
a set of aspects which mirror the goals listed in Section 1.2. It should be noted that
this evaluation is not an exhaustive review of the full feature set of the included
approaches but rather focuses on aspects which are relevant to the realization of
the intended application scenarios. The results of this assessment are shown in
Table 3.1. Support for properties is rated in three stages: Checkmarks and crosses
denote whether the respective requirements are met while a circle indicates partial
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support.

The characteristic properties are grouped into four categories. The first category
addresses issues which relate to the underlying principles of the respective method.
This includes the formal basis of the approach itself as well as the methodology for
analysis specification.

Formal/Model-based specification

The first two items state whether the syntactic concepts and the evaluation
semantics are supported by a formal and/or a model-based specification. The
former property requires that the technique has a sound mathematical founda-
tion while the latter indicates whether model-based descriptions are available
for the relevant analysis concepts. An example would be a metamodel which
encodes an analysis DSL. Formal definitions are a prerequisite for a clear and
unambiguous understanding of the methodology while model-based specifica-
tions facilitate the integration of analysis functions with standards and tools
of the MDE domain on a conceptual as well as on a technical level.

Inter-language links

This property denotes whether analysis concepts can be directly associated
with modeling artifacts. If this is not the case, this results in a gap between
the modeling and the analysis space. Bridging this gap usually requires a vari-
ety of (interconnected) transformation steps. Since these must be specifically
adapted to each target modeling language, this can substantially increase the
complexity of the respective approach. Differences in the semantics of the
modeling and the analysis space may further complicate this process. Not
only may this lead to a loss of semantic information, but diverging notions on
how certain concepts are to be interpreted in each space prevent a consistent
and intuitive application of the respective methodology.

Reuse of definitions

Reuse is an important aspect as it affects development and maintenance efforts.
This is especially true if a method is applied more than once under similar
circumstances. This principle can refer to the reuse of complete analyses,
adaptable templates or smaller fragments of complex specifications. Advanced
support can be provided through a sophisticated library concept which enables
the organization of existing analyses in functional packages.

Redefinition at subclasses

The notion of generalization is very common in the modeling domain. Typ-
ically, it is assumed that properties and features of a class are inherited by
all subtypes. Modeling frameworks such as MOF additionally support the re-
definition of inherited concepts to enable specialized elements to implement a
different behavior than their parents. This can be compared to the overwriting
of inherited methods in object-oriented languages. This feature can be very
useful for the specification of model analyses since the evaluation semantics
for subclasses may differ from the interpretation of their parents.
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The next category describes capabilities which affect the expressiveness of the
analysis methodologies.

Transitive closure

Computing the transitive closure over a relationship is a feature which is useful
in many application scenarios. In general, this function can be regarded as a
special case of information propagation (see below) which is often supported
through dedicated operators. In practice, deriving meaningful closures may
require more complex specifications which include multiple relationship types
or take conditional statements into account.

Information propagation

The propagation of information inside the target models enables analyses to
abstract from the layout of the underlying modeling language. This is impor-
tant if an analysis cannot presume a specific structure on the metamodel or
model layer and therefore cannot employ fixed navigation expressions to ad-
dress distant elements. A simple example would be the exchange of information
between nodes in a control-flow graph which may be separated by an arbitrary
number of steps. In contrast to the computation of transitive closures, this
principle provides the means to implement varying propagation semantics for
different metatypes and can therefore be very useful in the modeling domain.

Fixed-point semantics

Support for fixed-point evaluation semantics is an important prerequisite for
the static approximation of dynamic behavior based on the structural com-
position of language expressions. This feature usually coincides with the use
of information propagation as the presence of cyclic propagation paths neces-
sitates a dedicated handling to arrive at a meaningful solution. For obvious
reasons, it is advantageous if the respective solver can detect cyclic dependen-
cies and automatically apply fixed-point semantics if required.

User feedback

Once an analysis has been successfully executed, the final verdicts must be
reported to the user in a suitable fashion. Since the raw results are often
difficult to interpret, they must be refined in a postprocessing step. Alter-
natively, analysis methodologies may provide inbuilt functions for generating
meaningful outputs. This requires that the results indicate both the nature
and the location of violated constraints. Advanced feedback mechanisms may
additionally enable the specification of automatic fixes for identified problems.

Snapshot generation

Approaches which support the generation of instance snapshots can be used to
validate the correctness of the modeling language itself or to create prototypic
models for application scenarios such as model-based testing. For this purpose,
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metamodels are typically enriched with specifications of (un)desired properties.
A model finding algorithm then tries to generate instance candidates which
fulfill or contradict these restrictions.

The final two categories state whether analyses can be specified in a textual and/or
graphical notation and whether an approach is supported by tooling. In the following
paragraphs, we will discuss the classification of the different methods in more detail.

OCL/EVL

Because of their origin as constraint languages for the MDE domain, it is not surpris-
ing that both the OCL and the EVL are firmly rooted in modeling principles. Since
the abstract syntax is defined in the form of a metamodel, the constraints conform
to model-based abstract syntax trees which, by design, are directly connected to
the target model artifacts. This integrative approach also prevents semantical gaps
between the analysis space and the modeling domain. Nevertheless, redefinition of
constraints is only partially supported as a “subclass may strengthen the invariant
but cannot weaken it” [WK03]. While there exist several formalizations of OCL’s
semantics (e.g. [CK04a]) the version included in the official specification document
[OCL] is outdated as it is based on an older version of the standard. While the
OCL does not provide native support for the management of constraints, it is pos-
sible to realize a rudimentary library concept by separating modeling artifacts and
analysis specifications. Since both OCL and EVL were conceived as traditional con-
straint languages, they do not support information propagation or the computation
of fixed-point results. Nevertheless, they include dedicated operators for computing
the transitive closure of relationships as this has been discovered to be a very use-
ful feature. In contrast to OCL, EVL provides sophisticated methods for encoding
feedback messages and even fixes for erroneous models in the analysis specification.

CRAG/JastEMF

The JastEMF tooling is based on the CRAG formalism which extends attribute
grammars with support for circular dependencies and fixed-point semantics. It
therefore builds on a well-founded theoretical framework. However, rather than
enhancing this method with native support for the MDE domain, the approach re-
lies on multiple transformation and mapping steps to adapt modeling artifacts to the
requirements of the analysis space. Because of the necessary transformation steps
and missing inter-model links, this can present a challenge to tooling providers. The
authors of [Bur+11] do not mention whether redefinition of attributes at subclasses
is supported but it can be assumed that this feature can be realized by associating
subtypes with different semantic attributes. The underlying CRAG formalism na-
tively supports the principles of information propagation and fixed-point semantics
and can compute the transitive closure of a relationship. However, the conceptual
differences between formal languages and models complicate the analysis specifica-
tion process as the user is exposed to technical details such as the distinction between
inherited, synthesized and circular attributes. Since the specifications are realized
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as aspect-oriented attributions, it is generally possible to build functional libraries
to facilitate the reuse of existing analyses. Although the results of the validation
are implicitly visualized as properties of the respective model elements, JastEMF
does not seem to include a dedicated methodology for the generation of meaningful
feedback messages.

Alloy

The Alloy framework relies heavily on mathematical formalisms such as set theory
and first-order relational logic. Just like in the JastEMF approach, the conceptual
gap between the analysis space and the target domain must be bridged using a vari-
ety of transformation steps. As noted, for example, in [Ana+07] and [Ana+10], this
process is further complicated by differences in the underlying semantic concepts.
[Ana+10] states that, amongst other divergences, “Alloy does not directly support the
notion of redefinition. More specifically signatures that belong to the same hierarchy
may not define fields with the same name”. It can be argued that, although the
principles of information propagation and fixed-point evaluation are not supported,
these features would only play a minor role in the intended application scenarios as
this analysis framework primarily functions as a model finder. In a general sense,
the textual notations of analysis specifications offer the possibility to organize func-
tions in libraries. However, the fact that this representation integrates modeling and
analysis artifacts may complicate this process in practical applications. Due to the
absence of a native support for model-based specifications, it is difficult to correctly
represent the generated model snapshots as valid instances of the original modeling
language [SAB10]. While the listed publications propose partial mappings for the
UML, this process has to be repeated for every target DSL.

Conclusions

From the previous discussion, we can conclude that neither of the existing methods
is able to fulfill all of the initially requested requirements and design goals. While
each approach has its specific application scenarios and (dis)advantages, none of
them implements an integrated, model-based analysis methodology which is well-
suited for the intended purposes.
Both the OCL and the EVL focus on the (side-effect free) validation of structural

constraints. They are however not well-suited for the derivation and approximation
of context-sensitive information - a limitation removed by the combination of the
information propagation principle and the fixed-point evaluation semantics of the
data-flow method. The CRAG formalism and its adaption to the modeling domain,
the JastEMF toolset, heavily rely on formalisms traditionally employed in the field
of compiler construction. As a result, the processes of analysis specification and ex-
ecution are driven by the requirements of the underlying attribute evaluator rather
than the properties of the modeling domain. In conclusion, both JastEMF and the
data-flow analysis inspired methodology are based on similar motivations and usage
scenarios but approach the problem from different starting points. While JastEMF
transforms modeling artifacts for an application of traditional compiler construction
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techniques, we adapt the techniques themselves to provide native support for the
characteristics of the modeling domain. Alloy differs from the other approaches in
the sense that it functions as a model finder which searches for M1 candidates that
violate stated restrictions. Nevertheless, this methodology supports the implementa-
tion of a range of validation scenarios. However, due to the semantic gap between the
analysis and the modeling space and the requirement to develop custom mappings
for each DSL, the practical applicability of this technique for the purpose of model
analysis is limited. The described methods also include approaches which implement
a flow analysis inspired evaluation of modeled artifacts. These publications address
specific problems and do neither provide nor rely on a generic analysis methodology
that supports the specification of arbitrary analyses. In fact, it would be possible to
realize analyses such as [GBL05] using our generic approach. This is, for example,
demonstrated in Section 10.1.4 which describes DFA-based reimplementations of the
analyses developed by [Got+09; Gar08].
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Modeling Domain

While the description and validation of the static semantics of formal languages is
a well-researched field, the same cannot be said about the domain of modeling. A
testament to this shortcoming can be found in many OMG specifications. Although
several of the techniques proposed by the OMG have become the de facto standard
in the modeling domain, they still rely to a great deal on informal descriptions of
semantic constraints.

UML’s superstructure specification [UMLs] tries to alleviate this problem by for-
malizing semantic constraints using the Object Constraint Language. For example,
the restriction “A constraint cannot be applied to itself ” is given as
not constrainedElement->includes(self). However, it is also often stated that
a specific constraint “cannot be expressed in OCL” in which case only an informal
textual description is given. The lack of a powerful method for encoding semantic
properties not only results in obvious problems when dealing with the task of vali-
dating UML models, it also affects designers of domain-specific modeling languages
who attempt to formalize the semantics for the purpose of validating language ex-
pressions or evaluating their static properties.

The proposed solution to this shortcoming is a model-centric analysis methodology
based on the traditional approaches of data-flow analysis and attribute grammars
which are heavily used in the discipline of compiler construction. Models and formal
languages (cf. Section 2.1.2 and Section 2.4 respectively) both support the specifica-
tion of an abstract syntax, albeit with differences in their conceptual approaches and
application scenarios. Therefore, transferring these methods from one domain to the
other requires a careful consideration of the involved principles and formalisms. For
this purpose, we will juxtapose both areas, highlighting differences and similarities
and discuss how the findings relate to the objective of this thesis.

The task of the conception and implementation of an approach to static model
analysis has to begin with a careful evaluation of the explicit and inherent properties
of the domains of modeling and formal languages. This is the subject of Section 4.1.
Based on the results of this comparison, Section 4.2 details the requirements for
the adaption of the existing and well-tested semantic validation techniques. From
these design goals and the identified relationships between the areas of modeling and
compiler construction, we then derive a list of specific challenges and objectives for
the transfer of the DFA method to the modeling domain. This discussion serves as a
basis for the formal and technical specifications presented in the following chapters.
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4.1. Relations between Formal Languages and

Models

A detailed description of the adaption of the compiler construction techniques of
data-flow analysis and attribute grammars to the modeling domain will be given
in Chapter 5 and Chapter 6. To provide a sound basis for these definitions, it is
necessary to discuss the conceptual alignment of these two fields in advance. This
comparison has to be carried out carefully since “[b]esides the fact that a metamodel
is usually graph-based and a grammar tree-based, there are several differences in
application between these notions” and because “[s]ome metamodels may be similar
to grammars, but generally they are more versatile” [Bez05]. It is therefore vital to
identify and categorize the properties which affect the alignment of both techniques
and to discuss the respective similarities and differences.

For this purpose, this section examines the relationships between both areas:

Formal languages have been introduced in Section 2.1. More specifically, the de-
scription focused on the subclass of context-free languages which play a key
role in the context of compiler construction. As will become evident, this class
of formal languages has strong conceptual ties to the modeling area.

Modeling techniques have been presented in Section 2.4. They form the basis of
model-driven engineering and represent the technological space to which the
methods for static program analysis should be applied.

Section 4.1.1 introduces the notion of technological spaces to motivate the align-
ment of both domains. In Section 4.1.2, we examine both fields in the context of
their respective application domains, i.e. compiler construction and software/do-
main engineering. This includes a discussion of the recent trend towards language
engineering vs. the traditional use of predefined languages and how this development
facilitates the development of techniques that transcend both areas.
Expressions that have been constructed according to a context-free grammar fol-

low the structural restrictions defined by grammatical rules, just as models comply
with the abstract syntax given by a metamodel. The involved abstraction layers as
well as their alignment and a subsequent comparison are the subject of Section 4.1.3.
Since languages are usually designed for use by humans, their textual and/or

graphical representation plays an important role in the specification process. The
same applies of course to any analysis language which operates on a target language’s
constructs1 and is therefore not only connected to the language on a definition
but also on a representational (or visual) layer. In Section 4.1.4 we identify the
conventions that exist in this context and explore the consequences relevant to the
advancement of our approach.
In addition to the syntactical definitions of a grammar or a metamodel, the static

and dynamic semantics of a language are equally important aspects that have to be
considered when specifying a language. This is the subject of Section 4.1.5.
1In this case, the constructs of the target language are the constituents of a either a metamodel
or a grammar.
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4.1.1. Technological spaces

The authors of [KBA02] propose a classification along the line of so-called techno-
logical spaces (TSs)2, stating that a technological space is a “working context with a
set of associated concepts, body of knowledge, tools required skills, and possibilities”
which “is often associated to a given user community with shared know-how, educa-
tional support, common literature and even workshop and conference meetings”.

In this thesis we will use the refined definition given in the follow-up paper [B+05]:

Definition 4.1.1

A technical space is a model management framework accompanied by a set of
tools that operate on the models definable within the framework.

The relevance of these considerations stems from the fact that “a problem inside
one particular technology, [. . . ] corresponds to similar problems within other tech-
nologies” although “the way to solve this problem is not always the same”. Examples
given include programming languages, database systems (DBMS), frameworks for
markup languages (XML, SGML) and knowledge representation techniques such as
ontologies as well as modeling frameworks and languages.

Relationships between Technological Spaces

The authors of [B+05] motivate the study of technological spaces with following two
observations:

∙ [D]espite the different purposes of technologies they expose some common
characteristics. Studying these commonalities and capturing them in a general
concept can help the understanding of a new technical space and can provide
a framework for comparison among technical spaces.

∙ [O]ften various technical spaces offer complimentary features. A problem at
hand may be solved in an easier way by using collaboration between different
techniques. Therefore, software engineers should be aware of the strong and
weak points of every technology and should be able to make conscious choices
among them.

These are not isolated areas but rather can be connected through bridges as
visualized in Figure 4.1(a). It is essential to note that these bridges are facilitated
by a common property of the technological spaces: “[M]any technical spaces organize
its artifacts across a layered architecture based on the notions of model, metamodel,
and metametamodel (so called three-level conjecture). This observation is used to
give a semi-formal definition of the concept Technical Space”.
Effectively, this means that each space utilizes multiple abstraction layers - often

identified as meta and instance layers - to provide formalized language frameworks

2The terms technical space and technological space will be used interchangeably.
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(a) Bridging technological spaces (b) Properties of technological spaces

Figure 4.1.: Examples of technological spaces, their relations and properties
[KBA02]

comprising standards, methodologies and tools. These frameworks do not necessar-
ily correspond to the notion of formal languages as it is understood in theoretical
computer science but rather are methods that enable the definition of constructs
in a either a specific domain or using a specific technology. By using formalized
descriptions, the derived language expressions can be subjected to different kinds of
automated processing for purposes such as static validation or transformation. This
principle is demonstrated in Figure 4.1(b) which compares properties of several tech-
nologies to determine how well the respective framework performs in different areas.
The multiple levels of abstraction relate each technological space to each other on
a conceptual level and thus form the basis for the implementation of technology
bridges3. The alignment of abstraction layers is further explored in Section 4.1.3.
The relevance of the MDA (or model-driven engineering in general) in particular

is stressed by [SB05]: The authors not only categorize MDA as a technological space
but also as a technology that facilitates the implementation of bridges between these
spaces because “Model Driven Development and Engineering with transformation
approaches and tools can automate the generation of the corresponding target Space
instances and domains”.

Software Language Engineering

Interestingly, in recent years, increasing research effort has been directed at studying
the relationship between precisely the two spaces which are of relevance in the

3In the context of model-driven engineering model transformations (M2M or M2T) can act as
technology bridges.
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context of this thesis, model-driven technologies and formal languages4. These areas
are often referred to as modelware and grammarware by their respective community.
In [Bra09], the close ties between both areas are ascribed to a common goal, “raising
the level of abstraction in software development”. It is further noted that “the lessons
learned by [the generic language] community, can be beneficial for the model-driven
engineering community”. The field that bridges the gap between modelware and
grammarware is known as software language engineering (SLE) [Kle09]

On the official website of the SLE conference5, the following definition of this term
is given:

Definition 4.1.2

“Software language engineering is the application of systematic, disciplined, and
quantifiable approaches to the development (design, implementation, testing, de-
ployment), use, and maintenance (evolution, recovery, and retirement) of these
languages. Of special interest are (1) formal descriptions of languages that are
used to design or generate language-based tools and (2) methods and tools for
managing such descriptions, including modularization, refactoring, refinement,
composition, versioning, co-evolution, recovery, and analysis.”

Figure 4.2.: Language features [LJJ07].

The similarities between both spaces are visualized in the feature diagram in Fig-
ure 4.2. It demonstrates that certain characteristics that constitute a language are
actually interchangeable. A language definition in model- as well as in grammar-
ware has to describe the available constructs (the alphabet) and how they can be
arranged to form valid words or sentences in an abstract syntax. This can be accom-
plished using a variety of different techniques such as grammars and metamodels.
The definition of the structural composition of a language has to be complemented
by a specification of one or more visual representations for each language construct

4(Semi) automatic bridges between those areas have been proposed in [AP04; Kun08].
5In 2008, an annual scientific conference named Software Language Engineering (http://

planet-sl.org) has been established with the stated goal of exploring and strengthening the
ties between modelware and grammarware.
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(concrete syntax )6. Not shown in this diagram are the static semantics - constraints
that cannot be expressed using the abstract syntax - as well as the dynamic seman-
tics which state how language expressions are to be interpreted. Nevertheless, they
constitute important parts of any language specification.

Conclusions

The premise for the adaption of the DFA technique to the field of modeling lies in the
conceptual similarities between the spaces of modelware and grammarware. These
similarities relate to the fundamental properties of both areas as well as to how
the respective methods are used in practice. The following sections will therefore
examine these categories by juxtaposing the technological spaces to provide a sound
basis for the subsequent conclusions in Section 4.2. These, in turn, are a prerequisite
for the actual implementation of a MDE-driven DFA approach for models. From
Definition 4.1.2 we can conclude that this approach is firmly rooted in the field of
software language engineering.

4.1.2. Application Domains

We now explore the conceptual similarities between modelware and grammarware
by examining their usage in traditional as well as in newly emerging application
scenarios. This study will help to identify relevant properties in both areas and
assist in understanding how compiler construction techniques can be adapted to the
target domain. Additionally, knowledge about the usage patterns is also beneficial
for the task of facilitating a technical integration of the two language engineering
approaches.

Modeling

While in the beginning, models have often been used for documentation purposes
only, the discipline of modeling has quickly evolved into a powerful technology that
is widely applied in different areas of software engineering. As [Bez05] states, “[o]ne
important difference between the old modeling practices and modern MDE is that
the new vision is not to use models only as simple documentation but as formal
input/output for computer-based tools implementing precise operations”. Starting
with the automated generation of code skeletons, more sophisticated methods soon
became available such as the description of dynamic behavior (and subsequently
the automated generation of fully functional programs). The application of MDE
techniques forms the core of model-driven software development processes such as
the Rational Unified Process (RUP) or the Model-driven Architecture.
A more recent development however, is the shift away from using predefined mod-

eling languages to the specification of customized languages - called domain-specific
languages - for specific purposes. These are “custom- and purpose-built languages

6The context-free grammars used to specify programming languages combine the definition of the
language’s abstract and concrete syntax.
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that target a specific domain”, “often smaller than general-purpose languages (GPLs),
providing fewer and more focused language constructs and, ideally, a simpler and
more rigorous semantics” with the intent to “provide a concise, tailored language
that is easier for engineers and domain experts to learn, understand and apply for
a specific class of problem” [Zsc+10].
This trend started with the realization that general purpose languages such as

the Unified Modeling Language are overloaded with seldom required constructs and
functionality which hinders their efficient usage by introducing a high level of com-
plexity. At the same time, facilities that enable customization, such as UML pro-
files, are often limited in their expressiveness while at the same time being difficult
to use. With the introduction of the MOF and accompanying tool support, it be-
came possible for software engineers to build their own modeling languages with
comparatively little effort, a practice that is now sometimes called domain-specific
modeling (DSM). In this context, the authors of [Bez05] observe that current tools
“operate on top of a model and metamodel repository” where the “UML metamodel,
which was previously at the center of these workbenches, is now only one metamodel
among others”. They predict that “The MDA landscape is going to be populated by
a high number of metamodels, like the programming language technical space which
is populated by a high number of language grammars or the XML document space
populated by DTDs and XML schemas”.
With the rise of DSM came the expansion into new application areas. While the

typical use case for UML is the specification of structural and behavioral aspects of
software systems, custom modeling languages are able to target arbitrary domains.
Once a language has been devised, MDE techniques can then be used to (semi)
automatically supply the corresponding development tools.
The Java Workflow Tooling project (which is the basis of the case study in Sec-

tion 10.1) is an example for the inherent advantages of the domain-driven approach.
JWT supported the model-based definition of executable business processes several
years before the OMG provided a well-founded specification of the BPMN7. For this
purpose, JWT defines a DSM in the form of a precise metamodel which is strictly
limited to a set of essential constructs. These elements enable the specification
of executable business processes in a MDA-inspired notion by including platform
independent (PIM) and platform specific (PSM) properties. A graphical business
process editor provides multiple views on the modeled artifacts which resemble UML
Activity Diagrams, BPMN processes or event-process chains (EPC) and can also be
customized for different user roles such as business or technical experts8. Since all
of these functions operate on the same data structures and underlying technical
principles as defined and implemented by the language’s metamodel, all changes
are automatically synchronized independently of the chosen representation. JWT’s
IDE, which consists of graphical and textual editors as well as transformations to
languages such as the BPEL (Business Process Execution Language) or XPDL (XML

7It can be argued, that the BPMN is inherently too complex to be used efficiently by business
experts in the same way that the UML is for software engineers.

8In business process modeling (BPM), processes are usually defined by business experts (PIM)
and then refined for execution on a specific process engine by technical experts (PSM).
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Process Definition Language), has been implemented with comparatively little effort
using MDE technologies.

Compiler Construction

As stated earlier, the usage of formal languages in software engineering can be traced
back to the 1950s [Bac+57]. The field of compiler construction encompasses tech-
niques that employ the theory of formal languages to parse expressions written in
a source language and transform them to semantically equivalent terms in a tar-
get language. Since then, many improvements have been made in the development
of compiler front-ends, e.g. regarding parser efficiency and fault tolerance. In the
context of this thesis however, one the most notable extensions has been the in-
troduction of attribute grammars to validate static semantics. Nevertheless, the
underlying principles in this area have largely remained the same. This is evident
from the fact that context-free grammars continue to form the basis for modern
languages such as ECMAScript [Ass11] from which the popular JavaScript language
is derived.
A more striking change on a practical rather than on a fundamental level can be

found in the advent of the trend towards (textual) domain-specific languages that
has intensified in the last years. In academia and industry alike, DSLs more and
more replace general-purpose languages (GPL) as they provide non-technical users
with simpler, yet at the same time more expressive, tools for completing tasks in
their respective domain.

A canonical definition of DSLs can be found in [DKV00]:

Definition 4.1.3

A domain-specific language (DSL) is a programming language or executable spec-
ification language that offers, through appropriate notations and abstractions,
expressive power focused on, and usually restricted to, a particular problem do-
main.

The authors further attribute the following characteristics to domain-specific lan-
guages which hold true in many - though not all - cases:

Limited size Usually, the set of language constructs is limited to the essential ele-
ments of a very specific domain.

Declarative specification Rather than for actual programming, DSLs are often
used for more high-level specifications.

Engineering Domain-specific Languages

The trend towards domain-specific languages drastically changes the priorities of
many aspects in established compiler construction techniques. In the past, devel-
opers relied on a given set of languages designed and provided by experts who are
heavily entrenched in the details of formal language theory and compiler construction
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technology. Today, language engineering itself has become a field that is accessible
to a growing target audience of developers. Thereby, a new challenge arises: To
allow a wider array of people with different backgrounds to participate in this field,
it is necessary to provide suitable techniques that support common requirements of
the IT industry such as standardized development methodologies, interoperability
and mature tooling support. At the same time, the emphasis traditionally put on as-
pects such as performance is more and more neglected in favor of the aforementioned
goals.

(a) Xtext context-free grammar (b) Generated language toolkit

Figure 4.3.: Xtext as an example of the fusion of language engineering approaches
stemming from both compiler construction and modeling.

As “MDE is more and more related to DSL engineering”, the authors of [Kur+06]
suggest that “MDE principles and tools may be considered as a convenient support
technique for building DSL frameworks that may solve existing and newly emerging
complex problems”. A perfect example for this new development is the Xtext frame-
work (cf. Section 7.1.4), a language engineering workbench for the Eclipse platform.
Xtext not only bridges MDE and compiler construction by associating grammati-
cal symbols with metamodel classes (cf. Figure 4.3(a)) but itself also heavily relies
on model-driven engineering principles such as Model to Text (M2T) code genera-
tion9. Xtext can therefore be classified as a practical application of the principles of
software language engineering.
Although the IDEs generated by the Xtext language workbench (cf. Figure 4.3(b))

are considerably slower than a speed-optimized parser, it nevertheless proves to be
a highly valuable and increasingly popular technology. Many features such as auto-
completion or syntax-highlighting are supported out-of-the-box and can be adapted
easily to project-specific needs. Also, the creation of DSL parsers and editors by
means of code generation results in fast development cycles and prevents errors
that often occur in manual implementations. This way, even developers with little
expertise in language engineering are able to quickly achieve high quality results.

9This is also evident from the fact that Xtext has been used to bootstrap its own textual grammar
editor. On a conceptual level, this can be compared to the self-hosting property of compilers
that is often considered to be an important step in a compiler’s development.
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In [MH05], the authors of the OMG’s Human-Usable Textual Notation (HUTN)
state that this technique provides the ability to “[build] models which conform to
given metamodels, in a textual way [. . . ] by specifying DSLs under the shape of
metamodels [. . . ] to generate basic textual tools to work with these DSLs”. Since
HUTN acts as a bridge between metamodels and parsers, it is therefore another
example for the convergence of the trend towards domain-specific languages in the
areas of modeling and compiler construction. In the paper, its benefits are summa-
rized as follows:

∙ It is a generic specification that can provide a concrete HUTN language for
any MOF model

∙ The HUTN languages can be fully automated for both production and parsing

∙ The HUTN languages are designed to conform to human-usability criteria

Conclusions

(a) UML-driven software engineering (b) Language engineering and usage

Figure 4.4.: Illustration of language use vs. language engineering exemplified by the
application scenarios of UML and JWT respectively.

In summary, it can be concluded that there has been a major shift in recent years
in the areas of modeling as well as in compiler construction. Interestingly, in both
domains, the focus increasingly turns towards the development of domain-specific
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languages (DSLs and DSMs respectively) and the provisioning of corresponding
IDEs. In contrast to existing general purpose languages such as programming lan-
guages or the UML, which are mainly used for software engineering purposes, the
technologies available in both areas are often employed to target specific domains.
This can be explained by a reduction of complexity that results in a more streamlined
development process. Additionally, solutions that are tailored to a single domain or
task tend to be easier to use and are therefore more accessible to business experts
who are now able to formally specify development artifacts using familiar vocabu-
lary. The ability to create languages which are specifically designed for clear cut
tasks also means that developers don’t have to rely on predefined standards which
may not suit the requirements of the respective project.
The field of SLE establishes links between the areas of modelware and grammar-

ware and thereby increased the popularity of the respective techniques by facilitating
their usage outside their traditional areas of application. Xtext/HUTN and JWT
were presented as examples with Xtext having a stronger focus on textual languages
and JWT more aimed at the paradigm of graphical modeling.
The difference between the “traditional” application of the respective techniques

and their usage in the notion of language engineering is illustrated in Figure 4.4.
Figure 4.4(a) depicts how software engineers (architects, designers, programmers,
. . . ) use predefined languages such as UML to specify the features of computer pro-
grams. MDE-based methods such as code generation then aid in the actual imple-
mentation of these systems. In contrast, Figure 4.4(b) focuses on the domain-driven
approach employed, for example, by the Java Workflow Tooling (JWT) framework:
Language engineers can resort to the rich ecosystem of existing (MOF-based) stan-
dards and tools to implement a model-driven tooling environment which is centered
on a common metamodel. Since the resulting IDE is tailored to the properties of
the respective domain, functionality is accessible by non-technical experts. In the
case of JWT, usage comprises the design and implementation of executable business
processes.

To distinguish between the different roles in the context of SLE, we introduce the
following definition:

Definition 4.1.4

Language definition (or language engineering/specification) is the task of em-
ploying SLE-enabled standards and tools to design and implement domain-
specific language environments for language users.

Language usage refers to the process of using (generated) DSL environments
provided by language engineers to a achieve a specific goal in the target
domain.

As the emerging field of software language engineering blurs the line between CC
and MDE, the need for more advanced methods for validating modeling artifacts
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becomes apparent. Suitable techniques, such as attribute grammars and data-flow
analysis already exist in the context of compiler construction. It can therefore
be deduced that an adaption of these techniques to the modeling domain would
clearly benefit the notion of SLE. To achieve this goal, any suitable methodology
for model analysis has to be derived from an alignment of the concepts of model-
and grammarware. Considering the two roles presented in Definition 4.1.4, any
such method has to take into account the steps of language engineering as well as
language use. More specifically, on the language definition layer, it is necessary to
extend the existing modeling standards used in the target domain with artifacts for
analysis specification. On the level of language usage, facilities must be provided
that allow users to execute the analyses and interpret the results.

4.1.3. Alignment of Abstraction Layers

The concept of languages carries with it the inherent property of multiple layers of
abstraction (or meta layers). By definition, two layers of abstraction are involved
in the development and the usage of a language: One represents the language’s
specification and the other the set of language expressions (or language instances)
conforming to this definition.
However, the classification of definition and an instance layers - or metamodel

and model layers respectively - depends on the respective point of view. In com-
puter science, there has always been a strong feeling that a language which has been
constructed for the purpose of formalizing expressions should itself be based on a
formalized description to provide a consistent and reliable framework10. It is there-
fore required that each language definition is guarded by another layer of abstraction
on top of it. The problem of an endless stack of layers is typically resolved by the
top-most (meta language) being reflective, i.e. supporting its own definition. As a
consequence, depending on the current viewpoint, each layer is an instance of the
layer above it (or in the case of the top layer, of itself). At the same time, each layer
provides a language definition that supports the expressions on the adjacent level
below (with the exception of the bottom layer) according to the respective instan-
tiation semantics. This is an essential point as language developers and language
users typically have different notions of what is considered to be the definition and
what represents the instance layer which may easily lead to confusion.
The most common architecture of a language framework consists of four layers

with the bottom-most level representing “real-world” objects. However, the con-
stituents of this instance layer are highly dependent on the application domain and
the employed technology. For example, in the diagrams shown in Figure 4.4, in-
stances would correspond to executions of the developed application and running
business processes respectively. Because this layer itself is a result rather than an ar-
tifact of the language development process, it is often omitted from representations
of the relevant abstraction layers.
Because the structural layout of language constructs is not concerned with the

10This is evidenced by the ongoing efforts to complement the MOF, UML, OCL and others with
rigorous specifications for both syntax and semantics, e.g. [RG98; CK04b; SZ08].
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dynamic semantics11, we can restrict our study of the alignment of abstraction layers
to the abstract and concrete syntax (cf. Section 4.1.4) as well as the static semantics
(cf. Section 4.1.5). In addition, we will examine how languages can be annotated
with analysis specifications and how these extensions relate to language definitions
on a conceptual level.
Because of the widespread use of MOF-based languages in the modeling domain

and EBNF in the field of compiler construction and because of their relevance to
the contents of the following chapters, we will base our following comparison of sim-
ilarities and differences in the technological spaces of modelware and grammarware
on these two techniques.

Four-layered architecture

Figure 4.5.: Alignment of abstraction layers [KBA02].

Many researchers in the field of software language engineering stress the impor-
tance of interoperability between the technological spaces of modelware and gram-
marware [KBA02; WK05; AP04; Bra09]. This demand is not surprising as both
areas play an important role in software development, albeit with very different
fields of application. To achieve this goal, the authors propose technological bridges
that are able to create mappings between language constructs. For this purpose, it
is necessary to derive alignments for the respective abstraction layers.
The consensus in the research community regarding the relationships between

the different layers is illustrated in Figure 4.5. This diagram depicts the abstrac-
tion layers commonly associated with the technological spaces of modelware and
grammarware, using MOF and EBNF as concrete examples for technologies in the
respective area. As is evident from the arrangement, each layer has a unique coun-
terpart in the other technological space. A placement on the same tier implies
similarity both on a conceptual level as well as concerning the role it plays in the

11The reason for this is that restrictions imposed by dynamic semantics can only be validated
during runtime.
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use cases of language definition vs. language use12.

(a) Generic form of the four abstraction layers (b) Instances of the language stack for
class diagrams and C programs.

Figure 4.6.: Alignment of abstraction layers in modeling (MOF) and compiler con-
struction (context-free languages) with instanceof relationships.

We will now examine the areas of modeling and compiler construction in more
detail. The architecture depicted in Figure 4.6(a) juxtaposes the language frame-
works which use MOF and EBNF as their respective meta language. For further
clarification, Figure 4.6(b) provides concrete examples for language (expressions) on
each of the abstraction layers.
This arrangement of abstraction layers is “the corner stone for building the model

management functionality in a given space. It is mainly based on the fixed metameta-
model at M3 and the meaning of the conformsTo relation between levels” [B+05].
Although the M3 -M0 terminology stems from the modeling domain, we will there-
fore also apply it to the area of compiler construction.

Based on these observations, we extend Definition 4.1.4 with respect to the archi-
tecture shown in Figure 4.6(a):

Corollary 4.1.5

In the context of a four-layered language framework, we state that

Language definition is the process of employing the M3 (meta language) layer
to define M2 languages.

Language use refers to the usage of M2 layer languages to create language ex-
pressions which reside on M1.

We will now address each layer individually, discussing its properties with respect
to the process of language definition:

12The four tier architecture applies to other language frameworks as well, e.g. the KM3 [JBT06]
which shares many properties with MOF. Another example would be the XML where a XML
schema for schemas, XML schemas and documents correspond to M3-M1 accordingly.

90



4.1. Relations between Formal Languages and Models

M3 The top layer of a language framework is responsible for providing the generic
facilities for language development. To be applicable in many different contexts, M3
meta languages must possess a large amount of flexibility and expressiveness. There-
fore, their constituents - including, amongst other elements, classes and nonterminals
- are specific only to the respective technological space but not to any concrete appli-
cation domain. For this reason, M3 specifies only a small number of highly versatile
constructs and concepts (such as generalization, references, derivation rules, . . . ).
For this reason, both the MOF and EBNF often appear very compact in relation to
some M2 languages which may be of a much higher complexity. This is especially
true if compared to general-purpose languages such as the UML or programming
languages.
A common property of the top tier of a language framework is its ability for

reflective description. Both the MOF’s M3 and the Extended Backus-Naur Form
provide all constructs which are necessary for a specification of their own syntax.

M2 The language definition layer, usually referred to as M2, is located below the
meta language. Languages on M2 can be categorized along the lines of general-
purpose and domain-specific languages, the most prominent example of a general
purpose language in the modeling domain being the Unified Modeling Language.
The respective counterpart in the area of formal languages would be a generically
applicable programming language such as C or Java. BPMN or SQL, on the other
hand, are domain-specific as they define a limited set of language constructs for con-
crete applications scenarios - the design of business processes and the specification
of data-base queries. The SQL database query language is also an example of a
textual DSL.
However, in a sense, the M2 layer can always be considered to be domain-specific

as M2 languages, in contrast to M3, fulfill the requirements of a specific application
scenario.

M1 Models and syntax trees, which represent the M1 layer, are language expres-
sions which are structured in accordance to their defining metamodel or grammar.
In the case of UML, this could, for example, be a Class or an Activity Diagram
while, for a textual language, it might be a program that has been processed by a
corresponding parser13. M1 therefore is the level on which language users operate
by applying the language’s elements with respect to the defined semantics. As men-
tioned before, in the hierarchy of abstraction layers, M1 is also usually the last one
of interest in the context of a language framework.

M0 As has been stated, the “real-world” instances on M0 are usually not part of
the processes of language definition or use. Overall, the whole engineering process
is directed at facilitating the realization of the M0 layer by providing suitable def-
initions and tools. Because the elements on M0 are highly dependent on the used

13One could argue that, from a user’s perspective, the relevant artifacts ofM1 would be the textual
or the graphical representations rather than the parsed syntax trees or models. However, this
distinction only concerns the mode of presentation, i.e the chosen concrete syntax.
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technology, e.g. they way how objects are stored in memory or data bases, it does
not fit in with the generic, technology-independent paradigm of the language-driven
approach. In this context, M0 therefore represents the results of the application of
the language’s facilities rather than being part of the modeling process itself. This
view is supported by [B+05], in which the author considers “M0 as being outside of
the OMG TS”.

Mappings between Models and Grammars

After identifying the corresponding pairs of abstraction layers, it is essential to
evaluate how their contents relate to each other. These mappings will provide a
valuable insight into the challenges that arise when transferring the DFA-related
concepts from one technological spaces to another.

An initial realization concerns the expressiveness of EBNF vs. MOF: As noted
by [AP04], “describing a mapping from metamodels to EBNF grammars is in many
ways more demanding than the opposite” because “metamodels inherently contain
more information than EBNF grammars”. Therefore, arbitrary metamodels cannot
be automatically converted to grammars while fully preserving their original expres-
siveness and semantics. On the other hand, mappings from EBNF to MOF exist,
as described, for example, in [WK05]. As a result, the author of [AP04] comes to
the conclusion that “there is no direct isomorphism between any metaclass in an
arbitrary metamodel and a token in a grammar”.

Conclusions

We have presented an alignment between the abstraction layers in the fields of mod-
elware and grammarware. Although the respective constructs cannot be mapped
directly between both spaces, there are many conceptual similarities. Most impor-
tantly, this pertains to the notion of abstraction layers which govern the instantiation
of language constructs and their application in the tasks of language definition and
language use.

Due to unique properties of each technological space, for example a model pos-
sessing an inherent graph structure as opposed to a syntax tree, it is clear that these
issues must be identified and addressed by any technology bridging these two spaces.
This will be investigated in more detail in the next sections.

As a consequence of the alignment of abstraction layers, we can also conclude
that any approach intended to extend modeling languages with compiler construc-
tion techniques such as data-flow analysis has to take into consideration all of the
relevant layers in both fields, that isM3 -M1, and their relationships with each other.
Essentially, this is required because an analysis performed on objects contained in
M1 has to be defined on the M2 level alongside the metamodel’s elements. For
this purpose, it should preferably employ the same basic constructs on which the
metamodel itself is built, i.e. elements of the Meta Object Facility.
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4.1.4. Comparison of Syntactical Concepts

Languages codify a set of instructions or descriptions that carry a specific meaning in
a given domain. Thereby, they provide a standardized interface through which mul-
tiple parties can communicate information in a certain domain (DSL) or through
a certain technology (GPL). For formalized languages, this interface exists either
between computers or between computers and humans. For inter-machine commu-
nication, software systems are typically built to operate directly on the structure
given by the abstract syntax as it is made accessible through a technological inter-
face. For example, programs can easily operate on serialized XML data or model
graphs without the need for a human-readable representation. Interactions between
computers and humans, on the other hand, normally require a more descriptive rep-
resentation of the structured information. This usually involves both filtering and
enhancing the language expressions to include domain-specific aspects in order to
make the syntax more accessible to human readers. For example, the visualization
of a UML Class aggregates information about a subgraph of the underlying model
consisting of the class itself as well as associated attributes and operations. This
differentiation between the structural composition and its representation is a pre-
requisite for complementing a language’s abstract syntax with one or more concrete
syntaxes.
This concept will also play an important role in the definition of a data-flow anal-

ysis technique that can be applied to models. Not only is it necessary to provide
a method for annotating a modeling language with flow analysis specifications, but
the DFA’s elements itself must be linked to a concrete representation that facilitates
the specification language’s usage. In this section, we will investigate how the ab-
stract and concrete syntaxes of the technological spaces in question relate to each
other. From this, we will draw conclusions about the properties of a domain-specific
language which enables the definition of data-flow analyses.

Concepts of Abstract and Concrete Syntax

Arguably the most obvious difference between modelware and grammarware is that
the former is commonly associated with graphs while in the latter case textual
representations are used. This perception can however be somewhat misleading,
since the abstract representation of a context-free language expression, a syntax tree,
is in fact also a graph, albeit with certain restrictions on its structural composition.
More specifically, as can be deduced from their name, syntax trees always possess
the form of a tree. The nodes represent grammatical symbols while edges denote
the application of derivation rules. However, although the distinction between both
representations is getting more and more blurred by the advancing field of SLE - e.g.
in the form of Xtext (cf. Section 4.1.2) which assigns a textual syntax to modeling
languages - it still holds true for many applications.
Table 4.1 lists the abstract and concrete representations for the compiler construc-

tion language stack. The EBNF specification contains both the expressions required
to formalize a grammar as well as a reflective definition of the EBNF using its own
syntax. While the concrete representation is always in a textual format, the internal
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Layer Artifact Abstract Syntax Concrete Syntax

M3 EBNF AST of EBNF grammar Textual repr. of EBNF grammar

M2 Grammar AST of grammar Textual repr. of a grammar

M1 Program AST of program Textual repr. of a program

Table 4.1.: Abstract and concrete syntax representations of the CFL framework as
used in compiler construction.

structure is that of a syntax tree.

Figure 4.7.: Relationships between abstract and concrete syntax in CC.

This relationship is further detailed in Figure 4.7. In this diagram, it can be seen
that the concrete syntax is only an additional feature through which one attempts
to improve the readability for human users while the actual syntactical structure
is encoded in the syntax tree. Based on the properties of context-free languages,
algorithms can be constructed from the language’s definition that parse the concrete
representation and reconstruct its structure according to the abstract syntax. It is
important to note that the M3 and the M2 layer conform to exactly the same speci-
fication with respect to both their abstract and their concrete representations. This
means that the textual representation of EBNF and that of a grammar defined using
EBNF employ the same syntactical elements to describe terminals, non-terminals
and derivation rules. Therefore, a parser programmed to interpret EBNF constructs
can also read grammars. In contrast, parsing programs based on user-defined gram-
mars requires a separate logic that is able to interpret the constructs defined on M2.
Since EBNF grammars already encode the concrete syntax in their terminal rules,
the generation of language parsers can be automated. However, because the sym-
bols and their structural arrangement on M2 encode domain-specific information,
the contents of M1 syntax trees are domain-specific as well. Therefore, further pro-
cessing of a program’s AST, e.g. by subjugating it to static analysis or transforming
it into machine code, has to be implemented manually for each defined language.
Table 4.2 focuses on the abstract and concrete representations found in the model-

ing domain. From an examination of their properties, it is evident that the relation-
ships between them are in fact very similar to the technological space of compiler
construction: Again, both the M3 and M2 layers share the same properties regard-
ing their syntactical elements and structural composition. Any viewer or editor that
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Layer Artifact Abstract Syntax Concrete Syntax

M3 MOF Model of the MOF Class diagram of the MOF

M2 Metamodel Model of the metamodel Class diagram of the metamodel

M1 Model Model Domain-specific representation

Table 4.2.: Abstract and concrete syntax representations of the MOF.

is able to interpret MOF-based metamodels or operates on their abstract syntax will
also be able to process MOF models (i.e. metamodels).
In contrast to the EBNF, the MOF language however does not provide any means

to assign concrete representations to their abstract counterparts. Therefore, to seri-
alize, parse and visualize models, additional techniques are required. A wide variety
of methods exist to fill this gap, ranging from XML-based serialization (XMI) to tex-
tual representations (Xtext) and diagram editors (GMF). Because the constructs
defined on M2 are domain-specific, it is difficult to automate the process of supply-
ing visualizations for model elements. For example, diagram-based representations
of models typically distinguish between nodes and edges. In this case, the informa-
tion which abstract concept should be visualized as a node and which conforms to
an edge cannot be automatically derived from the metamodel and thus has to be
supplied by the language engineer.

We will now list the most significant differences between the two abstract repre-
sentations with respect to our use case:

Graph vs Tree Structure
Parsed expressions based on an EBNF grammar form a syntax tree where each
node conforms to a (non)terminal and each edge to a grammatical derivation.
In contrast, while the containment hierarchy of (meta) models forms the struc-
tural backbone (which is, for example, used by the XMI serialization), non-
containment references result in cross-reference edges which have no equivalent
in syntax trees. Therefore models form (directed) graphs.

Edge semantics
In syntax trees, edges always denote the application of a derivation rule. In
model graphs, edges are instances of references (generalization, containment,
cross-reference) which in turn are characterized by certain properties (role
names, navigability, multiplicity) which possess defined semantics that affect
instantiation and interpretation on the model layer. However, modeling lan-
guages may also specify additional, domain-specific references between ele-
ments by defining classes that function as edges.

Element ordering
The ordering of elements enforced by grammars is not found in (meta) models.
This aspect is required by the parsing algorithms to uniquely identify the
correct derivations for the syntactical expressions.
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Assignment of Concrete Syntax

EBNF languages implicitly assign concrete representation to the abstract syntax.
This method not only automates the process of parsing textual representations
of language expressions, a parsed expression’s concrete syntax can also be recon-
structed by traversing the syntax tree in depth-first order and printing the strings
at the leaves (terminal symbols)14. Generally, graphical syntaxes are not well suited
for representing syntax trees as their limited expressiveness does not warrant the
inherently more complex depiction in a graphical representation.
Models, on the other hand, both allow and require a greater level of freedom

when devising suitable visualizations. This makes the task of assigning a concrete
syntax to language constructs more complex when compared to CFLs. A domain-
specific visualization of a model graph may, for example, require the aggregation of
multiple elements into a single representation (e.g. classes with their attributes and
operations) and the visual style of nodes and edges may vary depending on their
type. As a consequence, it is difficult to automatically derive a graphical syntax from
a metamodel. The basic structure of textual mappings (e.g. based on Xtext), on the
other hand, can often be generated using the containment hierarchy as guidance for
element nesting. Nevertheless, these mappings often have to be refined manually.

In general, we can isolate several characteristic properties that govern the defini-
tion of a concrete syntax and its assignment to abstract concepts in modelware and
grammarware:

Representation
For both models and formal languages, there exists a dominant form of repre-
sentation for the language constructs on all levels of abstraction. For program-
ming languages, this is a textual format while for models (directed) graphs
with customized representations for nodes and edges are usually employed.
This choice is influenced by both the structural properties of the underlying
formalization technique as well as by the requirements of the application sce-
narios in the respective technological space. However, in recent years textual
DSLs have made a more prominent appearance in the modeling domain.

Binding/Assignment
The method employed to define mappings between language elements and their
concrete representations is a crucial aspect of the specification process. This
may happen implicitly as is the case with EBNF which uses terminal rules to
encode the actual expressions of the concrete syntax as well as their structural
composition. As a consequence, editors and parsers can be generated auto-
matically. To a lesser extent, this also applies to textual representations of
models, albeit there are some limitations such as unnamed references which
complicate this procedure. If, however, a graphical syntax is required, map-
pings have to be defined manually. Because the interpretation of the contents

14Because white space is normally omitted in the abstract representation, this is usually comple-
mented by pretty-printing or auto-formatting.
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of a model is highly domain-specific, the method for specifying these mapping
depends on the chosen visualization technique.

Construction
It can be observed that model editors tend to synchronize the displayed di-
agrams with internal representations of the model’s abstract syntax. This is
in stark contrast to textual programming languages, where the syntax tree
is constructed retrospectively. In other words, the concrete syntax of a pro-
gramming language is regarded as the preferred method to encode language
expressions while model diagrams are often treated as “syntactical sugar” that
merely enhances the abstract representation. An important reason for the di-
vergent approaches is that models usually cannot be reconstructed from their
visual representation.

Extending the Meta Object Facility

Assigning a concrete representation to model elements is a complex task that usually
requires manual engagement by the language engineer. The definition of a concrete
syntax is however not the only instance in which mappings to model elements play an
important role. It has already been mentioned, that a method for executing data-
flow analyses on models not only requires the development of a suitable analysis
specification language, but one also has to think about how these specifications can
be linked to the underlying models and how these links can be represented.
As a constraint language for the modeling domain, the Object Constraint Lan-

guage naturally has to deal with the same challenges: The typical use case consists
of the annotation of constraints at metamodel elements. To support this procedure,
links between expressions and target elements have to be encoded in the abstract
syntax while the concrete syntax must define a corresponding representation.
Effectively, this approach involves layers M3 to M1 of the MDE language stack.

The language specification of OCL basically acts as an extension of the meta lan-
guage MOF. The actual OCL queries are language expressions conforming to the
M3 specification. They are defined on M2 and connected to metamodel elements
residing on the same abstraction layer. On M1, these expressions are instantiated
alongside the modeling language’s constructs and can then be evaluated by an OCL
interpreter.
The extension of the M3 layer with OCL’s language definition is shown in Fig-

ure 4.8. It can be seen that these constructs define links to the respective MOF
classes (depicted as transparent blocks). Since both metamodels and OCL con-
straints are M2 artifacts, the creation of links between these elements is supported
by the MDE paradigm.
It is worth mentioning that the language definition itself is designed in a way that

facilitates mappings between OCL constructs and grammatical derivation rules and
thereby supports a straightforward implementation of a textual syntax. Neverthe-
less, in practice, the visualization of constraints also involves a graphical component.
While the constraints themselves are written using a textual syntax, they can be
included in a graphical representation of the target metamodel. In this case, the

97



Chapter 4. Adapting Flow Analysis to the Modeling Domain

Figure 4.8.: Extending MOF: The OCL expressions package [OCL].

annotation relationship between a constraint and its context class is denoted by
an edge that connects both elements. However, this requires that the respective
metamodel tooling implements the OCL extensions on the M3 layer to make the
corresponding features available for the development of M2 metamodels.

(a) Abstract syntax (b) Concrete syntax

Figure 4.9.: Definition of abstract and concrete syntax for If expressions [OCL].

OCL connects the abstract syntax to a concrete representation using attribute
grammars. As depicted in Figure 4.9, this method comprises:

∙ A grammar for parsing expressions (IfExpCS)

∙ An abstract syntax mapping that connects the model of an expression to a
semantic attribute ast in the grammar that computes the abstract syntax tree

∙ An additional attribute env that determines variable visibility in the context
of each (sub) expression
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The Object Constraint Language therefore combines multiple aspects from the
domains of modelware and grammarware to implement a constraint language for
models by extending the MOF framework on layers M3 -M1.

Conclusions

In this section, we studied the characteristics of context-free languages and modeling
languages with respect to their abstract and concrete representations. Each domain
has a preferred method of visualization that is used consistently throughout the
abstraction layers of the respective language framework. Since both M3 and M2
are expressions of the same meta language, a common property of both areas is that
these artifacts can be processed using the same tooling, e.g. an editor or a parser.
The same is however not true for M2 languages since their constructs are defined by
the developer who subsequently has to specify how M1 instances of these elements
should be represented and interpreted.
For grammars written in EBNF, the concrete syntax is already encoded in the

language’s definition. This information can be used to automatically derive parsers
capable of transforming the concrete textual representation into a syntax tree. To a
lesser extent, this approach can also be applied to metamodels through techniques
such as Xtext or HUTN. However, because of the more complex structure allowed by
the modeling standards, this is not always possible. The provisioning of a graphical
syntax, on the other hand, almost always has to be implemented manually by the
language engineer. Based on an excerpt from the OCL’s specification, we described
how this technique manages to provide a textual constraint language that is never-
theless tightly integrated with the modeling domain. More specifically, we examined
how an extension of the Meta Object Facility framework enables the definition of
constraints and their annotation at metamodel elements on M2.

Since the Object Constraint Language can enrich the abstract syntax of modeling
languages with automatically verifiable implementations of well-formedness rules, it
is clear that this method has conceptual ties to the flow-based technique for model
analysis that is the subject of this thesis. It is therefore possible to derive conclusions
that are relevant to the definition of a syntax for model-based data-flow analysis from
the presented techniques and approaches:

∙ To provide a consistent integration with the modeling domain, the abstract
syntax of the analysis specification language should itself be governed by a
metamodel.

∙ It should be possible to annotate analysis constructs at their respective coun-
terparts in the target metamodel in a non-intrusive way.

∙ The different abstraction layers involved in the definition and usage of analysis
expressions have to be aligned with the M3 -M1 layers of the MDE domain.

∙ Although the analysis operates on models, it should be representable in a
textual format which can be processed by a parser.
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4.1.5. Static Semantics in the Context of Language
Engineering

In this section, we will examine how static semantics are used in the domains of mod-
elware and grammarware. Based on these descriptions, we will derive requirements
that must be implemented by the flow-based approach to model analysis.

Static Semantics the CC and MDE Language Frameworks

The technique of context-free languages provides a convenient way for defining both
the abstract and the concrete syntax of a text-based language and enables the ef-
ficient parsing and interpretation of expressions. However, when relying solely on
grammatical rules to specify the syntax, the ability to impose restrictions on what
constitutes a valid language expression is very limited. As is apparent from the
term “context-free”, each partial expression is examined locally, neglecting the over-
all context in which it appears, i.e. the transitive closure of its parent and child
expressions. This presents a problem in the design of programming languages be-
cause the usage of some language features may only be valid if certain preconditions
are met. For example, in many cases, assigning a value to a variable requires that
the variable has been explicitly declared before it is accessed and that the value
that is assigned to the variable is of the correct type. While the information about
which variables are available in the context of a given expression can be extracted
from the syntax tree, context-free grammars do not provide the necessary facilities
to encode and enforce this restriction. To compensate for this shortcoming, the
abstract syntax must be complemented with additional specifications that are able
to derive contextual information by taking into account the position in which each
language element appears. The most commonly used technique for this purpose in
the field of compiler construction are attribute grammars which operate directly on
the abstract syntax tree (cf. Section 2.2). It can be argued that data-flow analysis
also belongs to this category, since the program’s control-flow graph is also an ab-
stract representation of a program’s syntactical structure, albeit further processed
and refined.
In compiler construction, the term static semantics usually refers to the subset

of restrictions that cannot be expressed using the abstract syntax but nevertheless
can be validated statically. Compliance with these constraints can therefore be
checked on an abstract representation of the program such as a syntax tree or a
control-flow graph. [Ode93] states that “traditionally, the term encompasses all
aspects of language definition that fall between context-free syntax and semantics,
and are thus concerned with neither sentence structure nor the meaning of programs”.
Correspondingly, methods such as attribute grammars constitute a static analysis.
This classification is challenged by some in the formal language community (e.g.
[SK95]) who argue that these requirements should instead be classified as syntactical
rather than as semantical properties. Nevertheless, since static semantics is a well-
established term in the field of compiler construction, we will subsequently adhere
to this traditional interpretation.
In Section 4.1.3 and Section 4.1.4, we presented an alignment of the abstraction
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layers that are an integral part of the technological spaces of CC and MDE and
compared their respective facilities for syntax specification. From this study, we
can deduce that, because of the similarities between both language frameworks, the
modeling methodology suffers from the same shortcomings as formal languages with
respect to the formalization of their well-formedness rules and other static analyses.
Indeed, the importance of complementing the UML specification with formalizations
of its static semantics has been recognized at a very early stage of its development
[EK99]. Generally, a model is considered to be syntactically valid if it adheres to
the structural composition that is defined by its metamodel. However, just as is the
case with context-free grammars, metamodels lack the ability to include constraints
that take the overall context of model elements into consideration.
In [SB13], we noted that “[o]ver time, existing formal approaches have been pro-

posed for the purpose of model analysis”, e.g. to implement dynamic model checking
[SCH02]. “However, this usually involves a translation of (meta) models into logic-
based representations [MM06; SAB10] resulting in a gap between the two domains
that can be difficult to manage on a technical level but may also lead to problems on
a conceptual level as model-specific semantics have to be mapped to the logic-based
systems on which the analyses are defined and executed”.
The issue of providing a method for the static analysis of models has been ad-

dressed by the OMG’s Object Constraint Language. It enables the annotation of
constraints at metamodel elements and their evaluation on the instance layer. The
authors of [B+05] classify OCL as a navigation language for the technological space
of modeling which is “associated to the basic representation system imposed by the
metametamodel” because “a basic need when working with a model is to access model
elements in a fine-grained manner”. In addition to providing the means to address a
certain subset of model elements through navigational expressions, OCL “also serves
as an assertion language and may be even used as a side-effect free programming lan-
guage for making requests on models and meta-models”.
With respect to the OCL, in [SB13], we stated that “limitations of its expressive-

ness due to its static navigational expressions are the subject of ongoing discussion
[MV99; Baa03]”. One recent attempt at enhancing the expressiveness of OCL is
the newly introduced closure() operator15 which “only applies to Set types and is
limited to calculating the transitive closure of a relationship”. We also noted that “it
has been argued that OCL itself lacks a proper formalization [BDW06] and multiple
proposals have been made to address this problem [CK01; MB06; BW02]”.
When examining the capabilities of contemporary static analysis techniques, it

becomes clear that the area of modeling falls short when compared to the field
of compiler construction with its well-established methods of attribute grammars
and data-flow analysis. Both of these methods are inherently flow-sensitive, i.e.
the computations carried out at a specific node in the syntax tree or the control-
flow graph depend on the results at neighboring nodes which in turn are based on
results calculated at adjacent elements. Apart from the newly introduced closure()
operator with its limited applicability, OCL does not provide support for the analysis

15A typical use case can be found in the enforcement of non-cyclic generalization hierarchies for
Classifiers: self->closure(superClass)->excludes(self) [SB13].
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of elements based on their relative position in the model.

Static Analysis of Model and Context-Free Languages

As a prerequisite for the implementation of our approach, we will now motivate
and describe the necessary requirements that must be met. To derive these require-
ments, we examine a conceptual alignment of techniques for static analysis in the
technological spaces of compiler construction and MDE. For this study, we focus on
how attribute grammar extensions relate to the artifacts of context-free languages
in the scenarios of language definition and use. We then juxtapose these findings
with the abstraction layers of the modeling domain and develop the requirements
for the implementation of an equivalent, attribute-based static analysis technique
for models.

Figure 4.10.: Alignment of static analysis in CC and modeling.

Figure 4.10 depicts the relationships between the language and the analysis arti-
facts on the different layers of abstraction in both language frameworks. In general,
by extending the meta language on M3 with attribution concepts, it becomes pos-
sible to specify analyses on the M2 layer which can then be instantiated for M1.
In the case of context-free languages (left hand side), the attribute grammar

extension annotates (semantic) attributes at occurrences of grammatical symbols
inside the production rules. On M1, these attributes can then be instantiated at
the applications of production rules in the syntax tree. The concrete layout of
the syntax tree determines the dependency relationships between the instances and
thereby influences the information flow computed for this language expression.
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An important property of this approach is that the definition and usage of analysis
specifications can be separated from the artifacts of the target language on all layers.
Thereby, the language framework can be enhanced with analysis capabilities without
requiring changes to any existing definition. Furthermore, the syntax of the analysis
specification language is formally specified using the techniques provided by the
technological space. As a consequence, the language framework is extended with
the ability to define and execute analyses in a consistent and non-intrusive way.
Consequently, the right hand side of Figure 4.10 hints at the implementation of an
equivalent technique for the modeling domain.

Conclusions

In this section, we compared the conceptual principles behind methods commonly
employed for the static analysis of languages. The validation of static semantics
extends the restrictions defined by the abstract syntax. These constraints can be
checked statically but their evaluation requires the examination of elements in the
context of their environment. In the technological space of modeling, the Object
Constraint Language is often employed to enrich metamodels with semantic con-
straints. However, in contrast to attribute grammars and DFA, which are powerful
methods for the analysis of syntax trees and control-flow graphs, OCL does not
provide the ability to implement declarative, flow-sensitive analyses. Our objec-
tive therefore lies in the transfer of the capabilities already available in the field of
compiler construction to the modeling domain.
In Section 4.1.3, we investigated the conceptual similarities between the spaces of

modelware and grammarware. Based on these findings, we argue that the applica-
tion of compiler construction methods to the modeling domain represents a feasible
solution for the presented problems. Because of the similarities in the syntactical
structure of context-free languages and models (cf. Section 4.1.4), attribute gram-
mars in particular can be viewed as a sound basis for the specification of model
analyses. The comparison of the syntactical properties of static analysis techniques
shown in Figure 4.10 provides further clues about the relevant aspects that must be
considered in this undertaking.
By enhancing metamodels with semantic attributes whose values are then com-

puted using DFA fixed-point evaluation semantics, we can implement a generic,
declarative method for computing static properties that can be derived from a
model’s syntactical structure. A major advantage of this approach is that it sup-
ports an implementation of transitive specifications with little effort. This is often
required for the calculation of context-dependent properties. For example, the tran-
sitive closure of a node’s parents can be specified as allParents = directParent
∪ directParent.allParents. This way, we can refine analyses through static ap-
proximations of dynamic behavior, e.g. by computing which nodes will be visited
on all possible paths leading to an action in an UML Activity Diagram.
In summary, from a conceptual view point, the analysis of language constructs

(models and syntax trees) requires analysis specification on the language level which
has to be supported by appropriate constructs on the M3/language definition layer.
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Semantic attributes in the notion of attribute grammars are assigned to language
elements on M2 using the concrete syntax of the attribution language. Based on
the structure of M1 language expressions, these attributes can then instantiated
and evaluated according to defined semantics. This design is in accordance to the
conclusions derived from the general alignment of abstraction layers in Section 4.1.3.

We conclude our discussion with a summary of the requirements that must be
met by a suitable approach for flow-sensitive model analysis:

∙ The approach should extend the expressiveness of OCL with the ability to
formalize the data-flow between language elements based on local, declarative
specifications.

∙ The definition of analyses on M2 should be supported by a model-based lan-
guage specification that extends M3.

∙ To preserve compatibility with existing standards and tools, the process of
analysis specification should be non-intrusive, i.e. it should not necessitate
modifications of existing language artifacts.

∙ Corresponding instantiation and evaluation semantics must be provided to
instantiate specified analyses for models and compute the results using fixed-
point semantics.

4.2. Towards an Application of DFA to Models

In this section, we will describe the concrete requirements and the principal charac-
teristics of our approach. These points will represent the foundation for the formal
and technical specifications in Chapter 5 and Chapter 6.
In Section 4.1, we investigated the properties of the technological spaces of model-

driven engineering and compiler construction and their relations in the context of
software language engineering. Based on these results, Section 4.2.1 describes a set
of design goals for the application of data-flow analysis to modeling languages and
subsequently outlines the resulting challenges.
The specific properties of the MDE domain have implications on the listed goals

and challenges. These are addressed in Section 4.2.2. Furthermore, we outline the
basic principles of our approach and introduce the artifacts that are required to
provide a consistent framework for analysis specification and execution. Finally, we
describe the steps that have to be taken to implement these artifacts, taking into
account the presented design goals and challenges.

4.2.1. Design Goals and Challenges

The discipline of software language engineering bridges the gap between the spaces
of MDE and compiler construction on a conceptual as well as on a technical level.
Any technique that follows the principles of SLE should therefore consider the im-
plications of the specific properties of both domains. This not only pertains to the
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theoretical aspects of the underlying concepts of formal languages and metamodel-
ing but also to the requirements of language usage. For this purpose, it is necessary
to present the non-functional requirements that are relevant to the practical appli-
cation of the technique. Additionally, the influence of these requirements on the
actual implementation of the proposed technique must be examined.
Consequently, the first part of this section details the non-functional design goals

while the second part deals with the technical challenges that arise from the imple-
mentation of these goals.

Design Goals

We will now motivate and describe the high-level, non-functional design goals that
pertain to the formal and technical specifications of the analysis technique:

1. Staying in the Modeling Domain
Performing an analysis on a model does not necessarily imply that the analy-
sis itself has to be model-based. For example, the model’s elements and their
relations could be extracted and transferred into a formalism such as Alloy
(cf. Section 3.3). However, employing the capabilities of the underlying lan-
guage framework as a basis for analysis specification has the added benefit of
a seamless integration both on a conceptual and on a technical level. More
specifically, an integrated representation of modeling languages and associated
analyses prevents a syntactical and semantical gap as definition, instantiation
and interpretation of analyses follow the same principles that also apply to
models. It also means that existing MDE facilities can be used to support
the development process. Useful techniques in this context range from model
transformations and code generation to tools such as Xtext that support the
creation of IDEs for the engineering tasks of analysis specification and execu-
tion. Additionally, a model-based methodology makes it possible to include
support for well-established standards like OCL and QVT which can then be
used to formalize data-flow equations.

Generally, this requirement reflects the approach of attribute grammars which,
while being an extension of context-free grammars, are themselves imple-
mented using the facilities of the compiler construction domain (cf. Sec-
tion 4.1.5).

2. Evolution instead of Revolution
In an area with many well-established standards and tools, it is usually prefer-
able to extend rather than to reinvent. This means that any contribution
to this field should be made in a way so that it complies with existing tech-
nologies and does not change any of the established notions or practices. It
also means that any extension should be driven by minimalism, making use of
available technologies where possible and introducing new concepts only when
necessary. The obvious advantage of a minimalist approach is a reduction of
the effort (and thereby also of the amount of error sources) that has to be put
into the specification and the implementation of the technique. With respect
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to the practical application, building upon existing standards also simplifies
the usage by those already familiar with tools and standards in this field and
simplifies a seamless integration with existing methodologies such as develop-
ment processes. As a consequence, language engineers and tool builders only
need to familiarize themselves with constructs that expand upon concepts that
they are already well-acquainted with while language users are presented with
ready-to-use solutions specifically tailored to their domain.

3. Compatibility
The requirement of compatibility augments the previous goal, evolution instead
of revolution. It specifically refers to the problems arising when introducing
a new technique into an existing technological ecosystem. To provide a prag-
matic solution, the analysis technique should be able to function purely as
an extension that does not disrupt any established work-flows and can be ei-
ther used or ignored according to the requirements of the current situation.
Developers, as well as existing tool chains, should not be concerned with the
technical implications of the application of a technology if their responsibili-
ties in the development process do not require it. A strong focus therefore has
to be put on preserving conceptual and technical compatibility with relevant
standards, which - in the field of SLE - include the Meta Object Facility and
the Object Constraint Language. This design goal is also relevant because
standards and tools may change over time. Any proprietary modification of
standards or tools increases future efforts as one would be forced to update
the custom adaptions and depending implementations.

4. Ease of Use
To be of practical use, any analysis methodology has to be easily accessible
by users and software tools alike. DFA is arguably a more advanced method
with which many software experts may not be as familiar as, for example, with
the UML. However, it is reasonable to assume that an experienced software
engineer who is already proficient in model validation techniques such as OCL
will be able to develop an intuitive understanding for a flow-based approach
to model analysis.

To support the process of familiarization with this technique, an emphasis
should therefore be put on making its usage as intuitive as possible. This can
be achieved by providing facilities that enable users to focus on the actual task
- encoding information flows between model elements - rather than having to
deal with the technical details of the specification process or the subsequent
evaluation phase. To accomplish this, modifications can be made to the DFA
technique in the transition to the modeling space that simplify the definition
of analyses by automating the handling of data dependencies. Furthermore,
automated user-assistance functions should be provided in the form of a ded-
icated analysis specification DSL and accompanying tool support.

5. Versatility
The versatility aspect refers to both the range of different application scenarios

106



4.2. Towards an Application of DFA to Models

to which the analysis method can be applied as well as to the versatility on a
technical level.

Concerning the application scenarios of static analysis, two different use cases
can be identified: On the one hand, static model analysis is often employed
to validate language instances by computing a verdict that indicates whether
a model adheres to the defined static semantics. In a broader sense, these
constraints may also include a set of codified modeling guidelines or metrics
that give an indication of the model’s quality. On the other hand, static
analysis can also be used to extract implicitly contained information that is
required in subsequent phases of a development process16. In a sense, these
two scenarios are very similar in nature because the validation process equates
to a computation of static properties albeit with a specific interpretation of
the results. This is explored in the context of different application domains in
Part IV of this thesis.

From a technical view point, versatility refers to the ability to support different
techniques for the implementation of the desired functionality. While the
structural part of a DFA specification is platform independent, the data-flow
rules themselves have to be specified in an executable or interpretable language.
Each language has its own benefits and drawbacks: OCL, for example, provides
convenient methods for processing models but suffers from a limited functional
range while Java is much more powerful but also tends to lead to more verbose
specifications. An equivalent requirement can be formulated for the support
of modeling standards. While MOF is the most commonly used modeling
framework, competing techniques may already be in use. Therefore, the choice
of the modeling standard as well as the implementation language should be up
to the user. However, many underlying properties such as the notion of classes,
associations or generalizations as basic constituents are shared by almost all
modeling standards (e.g. KM3 [JBT06]). Defining the analysis methodology
with respect to these properties therefore allows a simple adaption to other
modeling frameworks.

6. Performance and Scalability
An important requirement for the practical applicability of any analysis tech-
nique is that it performs reasonably well for typical day-to-day applications.
In this context, reasonably well means that the performance - i.e. the time and
memory requirements - have to match the usage patterns in the common ap-
plication scenarios. A live validation of user input has other time and memory
constraints than an exhaustive analysis that can be executed over night as a
batch job. In the ideal case, the technique should be scalable, depending only
on the size of the input models. As an example for a concrete performance
requirement, it could be determined that models in a certain domain typically
contain less than a hundred elements in which case the live analysis should be

16The two application scenarios can be mapped to the typical application of attribute grammars
and data-flow analysis in compiler construction: AGs are mostly used for validating static
semantics while DFA extracts information that can be used to optimize the generated code.
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completed in under a second. A practical evaluation of these properties in the
context of different usage scenarios can be found in Chapter 10.

Challenges

The abstract goals must be aligned with the challenges that result from the differ-
ences between the technological spaces of compiler construction and modeling:

1. Graph Structure of Models
As discussed in Section 4.1.4, models and context-free languages use different
underlying structures for the internal (abstract) and external (concrete) rep-
resentation of their language definitions and expressions. Programs written
in a programming language, once processed by a parser, conform to syntax
trees in which the edges denote the application of derivation rules. Models,
on the other hand, possess the internal (and often also the external) structure
of a graph with varying semantics concerning the interpretation of edges and
nodes. This complicates mappings between both technological spaces as el-
ements have to be processed based on their type. Additionally - in contrast
to syntax trees and control-flow graphs - model graphs do not provide unique
paths along which information can be routed throughout the model.

2. Non-intrusive Design
Section 4.1.4 discussed how the OCL relates to the MOF language framework.
The concepts that guide the extension of MOF with analysis language artifacts
are also relevant for the description of a technique for the specification of flow
analyses for existing modeling languages: Just like attribute grammars, OCL
uses the existing MOF facilities for the definition of its own syntax and, at the
same time, extends the language framework with a method that enables the
annotation of derived languages with static constraints.

This approach has multiple advantages: On the one hand, existing MDE fa-
cilities can be used as a basis for the specification process, e.g. to define a
metamodel for OCL expressions. On the other hand, the tight integration
with the target domain ensures a high level of compatibility during the appli-
cation of the technique. The same principles should therefore form the basis
for the definition of the DFA method. However, it is also important that
compatibility with existing standards is preserved. Therefore, an OCL-like
model-based extension mechanism should be employed that requires neither a
modification of the MOF itself nor of any derived standard or tool.

3. Fixed-point Semantics for the Modeling Domain
Traditional methods for computing fixed-point analyses of control-flow graphs
are optimized for the requirements of the compiler construction domain. Con-
sequently, as a prerequisite for the adaption to the modeling environment, the
aspects that are specific to this area must be identified and addressed accord-
ingly. At the same time, new requirements that arise from the transfer to the
modeling domain must also be taken into account.
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This pertains to several inherent properties of the flow analysis approach:

∙ The calculation of flow analysis results for models cannot rely on an
automated propagation of (intermediate) results along predefined control-
flow paths because of the aforementioned graph structure of models.

∙ Fixed-point computation traditionally imposes a set of constraints on
value domains. Usually, it is required that the DFA results represent
a finite, partial order of elements. This property guarantees that the
calculation process always terminates in a unique fixed-point. As will be
seen in the case studies in Chapter 10, not all analysis specifications which
yield valuable results in the modeling domain are able to satisfy these
prerequisites. For example, it may not always be possible to conveniently
define a neutral element for confluence operators. Analyses may also
employ complex datatypes for which it is difficult to devise a partial
ordering. Nevertheless, through carefully constructed specifications and
by incorporating the ability to handle these cases, it is possible to broaden
the application areas of flow-based model analysis.

∙ For performance reasons, in traditional data-flow analysis, values are of-
ten represented as bitvectors. Support for complex datatypes which can-
not be encoded in this way also affects the performance of the fixed-point
computation. It is therefore necessary to provide efficient methods for
calculating the DFA equation systems and to evaluate their performance
in the context of realistic use cases.

4. Flexibility on a Technological Level
While a data-flow analysis itself is a declarative specification, the data-flow
equations have to be written in an executable language. To allow for maximal
flexibility, it should be possible to employ different languages for this task.
This requires to define an interface that connects the definition of an analysis
with the implementations of the data-flow rules:

∙ On the one hand, this requirement influences the design of the analy-
sis specification language which has to separate the declarative analysis
definitions from the executable code. To provide support for alternative
modeling frameworks besides MOF, this design should be based on a
minimal set of core concepts shared by all modeling standards.

∙ The interface must also enable the fixed-point evaluation algorithm to
locate and invoke the rules and to process the respective results in a
generalized, i.e. technology independent, way.

∙ Finally, a methodology must be devised that allows data-flow rules -
which may be written in an arbitrary language - to communicate with
the DFA solver in a standardized fashion.

Although these points are mainly relevant to the actual implementation of the
DFA approach in a software tool, they also have implications on the basic
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design of the approach with respect to the analysis specification language and
the evaluation algorithm.

4.2.2. Conceptual Design and Language Artifacts

Based on the goals and challenges described in the last section, we are now able
to describe the principal design of the approach both on a conceptual and on a
technical level.

Attributed Models

In Section 4.1.4 and Section 4.1.5, we studied the extension of context-free grammars
with semantic attributes. Through instantiation of the declarative specifications,
context-sensitive information can be derived from syntax trees on M1. From the
study of the conceptual similarities between modeling and formal languages, we
can draw the conclusion that the method employed for annotating a grammar’s
constituents with analysis specifications is also a viable approach for use in the
modeling space. The alignment of attribute grammars with the MOF modeling
language framework therefore represents the basis for both the motivation and the
actual implementation of this approach.
In Figure 4.10, we aligned attribute grammars with a - at the time - hypotheti-

cal method that supports the specification of flow analysis through the attribution
of modeling languages. This concept comprises an extension of the M3 language
definition layer to support the annotation of language elements on M2. By using
these constructs, (semantic) data-flow attributes can be assigned to classes in the
target metamodel. The instantiation of these analysis specifications for M1 models
then results in attributed models in which attribute instances are attached to the
respective model elements. The attributed model forms the input for a fixed-point
evaluation that finally yields the DFA result values.
To realize the goal of staying in the modeling domain and to address the challenge

of implementing fixed-point semantics for the modeling domain, we have to consider
the characteristic properties of the target domain. For attributed models, this con-
cerns - amongst other things - the generalization relationships between classes in
a metamodel. Inheritance semantics demand that class attributes and operations
defined in the context of a class are also made available at subclasses. To respect
the practices in the modeling domain, this notion has to apply likewise to DFA
concepts. In a sense, the notion of annotating semantic attributes at metamodel
classes has a lot in common with MOF/UML class attributes. Therefore, we adapt
the semantics of traditional class attributes for data-flow attributes: If a data-flow
attribute is defined at a superclass, it is automatically inherited to specializations of
this class. Additionally, just like class attributes can be redefined at subclasses, DFA
attributes at a subclass override declarations of the same attribute at a superclass.
The issue of instantiation semantics for attributes will be discussed subsequently in
more detail.

From these observations, we can draw the conclusion that the attribution tech-
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nique is a viable approach for the specification of flow analyses. This decision will
now be further substantiated through a discussion of the benefits of this method:

Declarative Specification
The data-flow analysis method relies on the derivation of equation systems
from language expressions which are subsequently subjected to fixed-point
computations. Since the actual evaluation strategy is encoded in the fixed-
point algorithm, the specifications themselves can be given in a declarative
fashion which provides all necessary prerequisites for executing a flow analysis
while at the same time eliminating the need for encoding specific evaluation
semantics. As a consequence, the attribution concept is a good choice for
the realization of a DFA methodology, since it inherently provides support for
declarative specifications and is also well-suited for the usage in multi-layered
language frameworks. Because of the declarative nature of attributions, the
processes of analysis definition, instantiation and computation are also inde-
pendent of the implementation languages used to encode the semantic rules.
This fulfils the requirement of versatility since arbitrary (programming) lan-
guages such as Java or OCL can be used to specify the execution semantics of
these rules.

The attribution method also provides support for different usage scenarios: An
analysis defined by an attribution can be used to extract information from a
model as well as for validating the syntactical structure of language expressions
which also highlights the versatility of this approach.

The process of attributing metamodels can be simplified by providing a com-
pact and concise analysis specification language, thereby supporting ease of
use. To achieve the goal of staying in the modeling domain, we can employ
the MOF framework to define this language in a similar way the syntax of
attribute grammars is defined using EBNF. With respect to the definition of
model analyses, existing MDE facilities such as editor generators can be used
to complement this method with a matching tool chain.

Non-intrusive Design
A major advantage of employing a technique in the notion of attribute gram-
mars for the definition of flow analyses is the fact that this approach allows a
non-intrusive extension of existing languages with one or more analysis speci-
fications. The annotation of semantic attributes requires only a unidirectional
link connecting their specifications to elements in the target metamodel. Anal-
ysis artifacts can therefore be easily separated from the target language itself.
As a result, the definition of an attribution specification language integrated
with MOF’s M3 layer does not require any changes to the language frame-
work. Consequently, this also applies to the artifacts on M2. In summary,
to support the definition and assignment of attributes, no changes have to be
made to existing standards and tools. This approach is therefore in line with
the goal of providing compatibility.
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Model-based Specification
As has been stated, the application of the attribution technique to the model-
ing domain is motivated by the conceptual ties between the two technological
spaces. We described OCL as an example for a technique that both extends
the capabilities of the modeling domain and at the same time makes use of the
existing facilities to define its own syntax. By applying the same principles
to a model-based attribution technology, we can achieve the goal of staying
in the modeling domain. Because the specifications themselves are based on
MDE techniques and standards, the analyses can be defined using exactly the
same modeling facilities on which the target modeling language is based and
thus no mapping has to be provided between different formalisms.

On a conceptual level, the integration with the modeling space requires to
provide support for the relevant features found in this domain. As has already
been mentioned, in the context of declarative specifications that extend classes
in the metamodel, this means that the defined generalization hierarchy must
also be respected by the attribute extensions. For data-flow attributes, we can
implement this behavior through the adoption of MOF generalization seman-
tics. Using the attribution formalism as a basis for flow analysis specification
also has another advantage: Just like classes can contain multiple class at-
tributes, it is possible to assign more than one DFA attribute to a class. This
is an important feature for incrementally building more complex analyses by
reusing the results of one or more DFA attributes in the computation of the
result of other attributes.

Generality
The declarative nature of attributions also abstracts from the model’s inherent
graph structure. The data-flow paths used for the propagation of information
from one model element to another17 are not part of the attribution specifi-
cation (see below). Therefore, the definition of an attribution solely relies on
two metamodel concepts, classes and generalizations. The classes represent
the context for the annotation of semantic attributes while generalization re-
lationships influence the availability of attributes at subclasses. This satisfies
the versatility requirement with respect to the applicability to different mod-
eling paradigms because the approach can be implemented for all modeling
frameworks that include support for these two concepts.

Based on this observation, the process of computing DFA results can be di-
vided into two phases: First, data-flow attributes are instantiated for a given
model taking into account the generalization hierarchy in the metamodel. In
the second phase, the instantiated attribution, i.e. the attributed model, is
subjected to a fixed-point evaluation that yields the result values for the at-
tribute instances.

17More specifically, information is propagated from an attribute instance annotated at a model
element to another attribute instance.

112



4.2. Towards an Application of DFA to Models

Language Artifacts

One step in the process of implementing the attribution approach consists of the
construction of a suitable specification language. This language has to enable the
annotation of semantic attributes at classes in a target metamodel. These attributes
can then be instantiated for arbitrary models.
We concluded that this language should itself be based upon MDE principles, i.e.

its specification has to adhere to the practices of the MOF language framework.
Consequently, we have to define an abstract syntax in the form of a metamodel.
To allow the assignment of semantic attributes to classes, the metamodel of the
analysis specification language has to establish a connection between attribution
concepts and MOF’s M3 layer. The abstract language definition can subsequently
be complemented with a concrete, human-readable syntax.
In the previous paragraphs, we motived our choice of using the attribute grammar

formalism for the specification of data-flow analyses. We will now derive the nec-
essary components that comprise a declarative specification of semantic attributes
from the structural composition of attribute grammars. The adaption of these con-
structs for our use case has to follow the notion of assigning attributes to context-free
grammars: Starting with a set of attributes, occurrences of these attributes can be
attached to metamodel classes. An attribute occurrence therefore connects a specific
attribute and a data-flow rule used to compute a result value to a target class.
This structure maps the abstract syntax of an attribution to a textual representa-

tion and vice versa. Since the interface between an attribution and the target meta-
model consists only of the annotation relationships between occurrences and their
target classes, we can represent attributions in a similar way to OCL constraints:
Attribution specifications can be written in a textual format that references the
target metamodel (just like OCL constraints define a context class). Alternatively,
attribute occurrences could be represented as objects that are connected to classes
inside the metamodel’s diagram.

In the following, we list the concepts that constitute the abstract syntax of the
analysis specification language. These elements realize an adaption of the attribute
grammar formalism to the requirements of the modeling domain.

Datatype
Traditionally, results of data-flow analyses are sets containing elements from a
specific value domain. As mentioned in the challenge of providing fixed-point
semantics for the modeling domain, it can be beneficial to lift this limitation
to allow for user-defined result types. This is achieved through the Datatype
concept that defines custom types for the contents of attribute results. While
the Datatype itself can be arbitrary, its use however has to be consistent across
all occurrences of a specific attribute. It is important to note that the actual
interpretation of values corresponding to a type depends on the language that
is used to implement the Data-flow Rules.

Data-flow Rule
As stated in the challenge of flexibility on a technological level, it should be
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possible to specify the execution semantics of data-flow equations using ar-
bitrary programming languages. A Data-flow Rule (or semantic rule) in the
context of the attribution language therefore has to encode both the actual
implementation of the rule as well as information that is required to invoke it.

In traditional data-flow analysis, result variables are initialized with a value
that represents a neutral element with respect to DFA operations (such as ∅
for the union operator), while the equations are used to calculate the instances’
iteration values during the fixed-point computation. However, with the intro-
duction of custom Datatypes, the nature of neutral elements depends on the
actual type of the result values. To address this issue, we state that Data-flow
Rules may not only be used to specify iteration rules but also for initialization
purposes, i.e. the assignment of initial values to attributes.

Attribute Definition
Attribute Definitions constitute the type definitions of an attribution. An at-
tribute is characterized by a unique name, a Datatype and a Data-flow Rule
which yields the initialization values for all instances of this attribute.

In the design goal of versatility, we discussed two different application scenar-
ios: Attribute Definitions (and their derived instances) can either be used to
approximate dynamic properties of models or to validate their well-formedness.
We therefore distinguish between Assignment attributes which can compute re-
sult values of arbitrary Datatypes and Constraint attributes that evaluate to
the boolean values of true or false, indicating whether the associated structural
restriction has been met.

Attribute Occurrence
In the attribute grammar formalism, a single attribute may have multiple
occurrences in different production rules. Correspondingly, we introduce an
Attribute Occurrence concept that indicates the presence of an Attribute Def-
inition at a specific metamodel class. This is referred to as an occurrence of
this attribute at the respective class. Each definition can therefore possess an
arbitrary number of occurrences at different classes.

In attribute grammars, each occurrence is supplied with a semantic rule that
describes how to calculate its value depending on the respective context. The
same concept also applies in our scenario: While all occurrences of an attribute
are initialized with the same value, the computation of their iteration values
may differ. Therefore, an Attribute Occurrence also has to declare a Data-flow
Rule for the calculation of its fixed-point iteration results.

Attribute Instance
The concepts listed above constitute the attribute specification language. To
instantiate an attribution for a M1 model, each occurrence of an Attribute
Definition has to be instantiated for all elements that conform to the type of
the occurrence’s target class. This process results in a set of Attribute Instances
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which are connected to elements in the target model and carry a value of the
attribute’s Datatype.

As has been described above, the instantiation process has to take into ac-
count the generalization relationships between classes. Inheritance semantics
demand that an Attribute Occurrence attached to a target class is also im-
plicitly defined for subtypes. This leads to another problem that must be
addressed: When specifying the instantiation mechanism, it is also necessary
to consider the case of redefinition, because an occurrence of an attribute at a
subtype may override the definition of an occurrence of the same attribute at
a superclass.

While it is not essential to define an abstract syntax for Attribute Instances, do-
ing so has several benefits: A model-based representation of Attribute Instances
is able to provide a clear definition of their properties and their relationships
with other modeling artifacts such as the target model and the analysis speci-
fication. This approach therefore supports the goal of staying in the modeling
domain. For example, one can directly navigate from an Attribute Instance ele-
ment in the attributed model to its defining Attribute Occurrence using default
MDE methods.

Figure 4.11.: Extending the MOF language framework to support attributed models.

Effectively, the presented concepts amount to a domain-specific language for the
specification of data-flow based model analyses in the notion of attribute grammars.
The definition and usage of this language is illustrated in Figure 4.11. In this
schematic, the MOF language framework is extended with the ability to define
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attributions for metamodels which in turn leads to attributed models on M1. These
can then be subjected to a fixed-point evaluation.
On the top level, the attribution specification language itself is defined and a

(unidirectional) link to the Class concept in MOF is established. Attributions can
now be defined for metamodels on M2. In this example, two occurrences of the same
Attribute Definition are attached to Class 1 and Class 2 in the target metamodel. Each
occurrence uses a separate Data-flow Rule to calculate DFA iteration values while the
definition uses a third rule that provides the initialization values for the fixed-point
computation. Because of the generalization relationship between the two classes, the
occurrence annotated at Class 1 is overwritten at Class 2. Instantiating this analysis
specification for the displayed model consequently yields two Attribute Instances on
the M1 layer. Note that because of the redefinition at Class 2, the second instance’s
iteration value will be computed with a different Data-flow Rule than the first one’s.

Just as is the case for any model-based DSL, the development of the analysis
specification language requires the definition of the following artifacts:

Abstract syntax
The abstract syntax defines the structure of model-based attributions. In
the modeling domain, the abstract syntax is specified as a metamodel. This
metamodel has to encode the concepts listed above along with their properties
and relationships. Furthermore, it has to define a connection point to MOF,
i.e. implement the possibility to annotate classes in a given target metamodel
with Attribute Occurrences.

Concrete syntax
The abstract syntax has to be complemented by a concrete representation.
Because of the declarative nature of the attribution method and since its char-
acteristics were derived from the technique of attribute grammars, it can be
assumed that the preferred method for representing attribution specifications
is a textual format.

Static semantics
As mentioned in Section 4.1.5, not all properties that constitute the well-
formedness of a model can be encoded in the abstract syntax. Naturally, this
restriction will also apply to the metamodel that describes the abstract syntax
of the analysis specification language. Therefore, it is necessary to state addi-
tional constraints that will ensure that an analysis is valid, i.e. it constitutes
a valid specification that can be evaluated by a fixed-point algorithm.

Dynamic semantics
In the context of the proposed approach, the dynamic semantics of attributions
have to reflect how an analysis specification can be instantiated and evaluated
for a given model. The challenges that arise from the adaption of the DFA
method to the modeling approach will be discussed in the next paragraphs.

As [Bra09] states: “The development of domain specific modeling formalisms in-
volves more than just the development of metamodels or profiles. It also involves the

116



4.2. Towards an Application of DFA to Models

development of tooling, methodology and even validation of the modeling formalism
via empirical research”. These issues will be addressed in the following chapters:
While Chapter 5 focuses on the theoretical aspects of the approach, Chapter 6
provides detailed technical specifications of the presented concepts based on MDE
technologies. Chapters 7 and 8 demonstrate how the proposed approach can be im-
plemented by devising a suitable architectural design and describing a prototypical
tooling environment.

Information Propagation

In contrast to control-flow graphs, models do not possess a corresponding backbone
structure that provides an inherent flow direction along which information can be
automatically propagated (forward vs. backward flow analysis). Neither do models
impose a hierarchical order on the elements of the language instance as is the case
with attributed syntax trees (inherited vs. synthesized attributes).
A possible solution to this problem would be to explicitly define in the attribution

specification the routes along which information should be propagated. These route
configurations would need to describe how information flows from one element to the
other, or in other words, which values are provided as input for the computation of
a specific attribute instance. For example, it could be stated that results calculated
at model elements of class type 𝐶𝐴 should always be propagated to elements of type
𝐶𝐵 along the association 𝐴𝐶𝐴→𝐶𝐵

connecting those elements. The fixed-point solver
could then interpret these specifications before the actual computation takes place
and build the corresponding dependency graph for the attributed model.
However, the need for a separate definition of information propagation paths

would violate the goal of ease of use. Moreover, it also has a negative impact on
the performance and scalability requirement. This reason for this is that specifying
route configurations on the meta level can lead to an over-approximation of the
dependencies between attribute instances which in turn has a negative effect on the
performance of the fixed-point computation since more iterations may be necessary
until a stable fixed-point is reached. This can be illustrated through an example: We
assume that information should only be propagated from a model element of type 𝐶𝐴

to an element of type 𝐶𝐵 if a specific condition is met that cannot be verified by the
solver18. This restriction therefore cannot be included in a route configuration on the
meta level. The definition of an output dependency 𝐶𝐴 ↦−→ 𝐶𝐵 would consequently
establish dependency relationships between all elements of types 𝐶𝐴 and 𝐶𝐵 while,
in reality, only a subset of these dependencies is relevant to the computation.
To solve this problem, we propose a different approach that does not require

explicit specifications of information propagation paths but instead embeds the de-
pendencies inside the data-flow rules themselves. This can be achieved through a
dedicated operator that is made available in the rule implementation language’s
syntax to access instances of data-flow attributes and retrieve their values. Using
this method, it is no longer necessary to explicitly state the dependency 𝐶𝐴 ↦−→ 𝐶𝐵.

18For example, if the condition itself is computed by a data-flow analysis and thus is not available
at the start of the result computation.
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Rather, the implementation of a data-flow rule of an attribute assigned to class 𝐶𝐵

actively requests the value of a specific instance of type 𝐶𝐴 as input and thereby
establishes a dependency relationship between exactly these two M1 objects. How-
ever, this approach introduces a new challenge: Because these requests occur during
the fixed-point computation, the dependency graph cannot be constructed ahead
of time but rather has to be built dynamically during the execution of the rules
by monitoring and recording the accesses made by the DFA rules. This requires
an adaption of the traditional solving algorithms to provide support for the dy-
namic discovery of new dependency relationships during the solving phase and the
incorporation of these dynamic dependencies in subsequent fixed-point iterations.
However, as another positive side-effect, this approach also eliminates the problem

of different edge semantics. The reason for this is that the dynamically discovered
dependencies result in a dependency graph that superimposes the model graph.
Strictly speaking, information is not propagated along model edges but rather along
the edges of the dependency graph. Since the structure of this graph may differ
from the layout of the model, this property further simplifies the definition of the
information flow as information can be routed along arbitrary paths. It is, for
example, possible to envision a use case where information should be propagated
from an ActivityNode in an UML Activity Diagram to its successor node. Instead of
routing the data from 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦1 to the outgoing ActivityEdge 𝐸𝑑𝑔𝑒𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦1→𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦2

from where it is again forwarded to 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦2, we can propagate the DFA value
directly from 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦1 to 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦2, skipping the intermediate edge. This approach
therefore also provides flexibility on a technological level.

Instantiation of Flow Analyses for Models

As a prerequisite for the execution of an analysis, the analysis specification must first
be instantiated for the target model. In essence, for each occurrence of an attribute
assigned to a class, a corresponding attribute instance has to be created at model
elements of this type. In the absence of generalization relationships, this process is
straightforward. If, however, a class inherits from another class, this property has
to be reflected in the instantiation process.

In [SB13], we first described the properties of attributed metamodels:

The instantiation semantics for attributes follows the EMOF seman-
tics for the instantiation of metamodel classes: An attribution AT(MM,
AT𝐷𝐸𝐹 , AT𝑅𝑈𝐿𝐸, AT𝑂𝐶𝐶 , AT𝐷𝑇 , AT𝑇𝑌 𝑃𝐸, AT𝐴𝑁𝑁) extends a meta-
model MM(MM𝐶𝐿, MM𝐺𝐸𝑁) given by the set of classes MM𝐶𝐿 and their
generalization relationships MM𝐺𝐸𝑁 indicating inheritance of structural
and behavioral features in accordance to EMOF semantics. The attribu-
tion consists of attribute definitions AT𝐷𝐸𝐹 , each possessing a datatype
(AT𝐷𝑇 ) and an initialization rule (AT𝑅𝑈𝐿𝐸) assigned by the relation
AT𝑇𝑌 𝑃𝐸. Furthermore, the annotation relation AT𝐴𝑁𝑁 ties each occur-
rence in AT𝑂𝐶𝐶 to a class 𝑐 ∈ MM𝐶𝐿 and an iteration rule in AT𝑅𝑈𝐿𝐸.

We then went on to outline the instantiation process itself:
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An instantiation INST(AT, M, INST𝐴𝑇 , INST𝐿𝐼𝑁𝐾) contains attribute
instances INST𝐴𝑇 for an attribution AT and a model M C MM with
objects M𝑂𝐵𝐽 and a relation M𝑇𝑌 𝑃𝐸𝑂𝐹 denoting their class type. For
each 𝑜𝑏𝑗 ∈ M𝑂𝐵𝐽 , an attribute instance 𝑖 ∈ INST exists iff there are ≥ 1
occurrences 𝑜𝑐𝑐 ∈ AT𝑂𝐶𝐶 for the class type of 𝑜𝑏𝑗 or its super-types. To
realize overwriting at subtypes the most specialized type is used. This
can be implemented by starting at a model object’s concrete type and
traversing the generalization hierarchy upwards. For the first occurrence
of each distinct attribute definition which is encountered an instance is
created. Multiple inheritance is only supported if generalization relations
are diamond-shaped and a unique occurrence candidate can be identified.

Figure 4.12.: Instantiation of an attributed metamodel.

The instantiation process is exemplified in Figure 4.12. The artifacts given as
input are the metamodel, an attribution of that metamodel and the model for which
this analysis should be executed. In this example, the metamodel describes a simple
control-flow graph while the attribute allPredecessors computes the set of transitive
predecessors for each node using a DFA rule written in imperative OCL. Based on
this input, the attribution can now be instantiated for arbitrary models. In this
case, attribute instances are created for and assigned to each element of type node.
While the illustration indicates the existence of data-flow dependencies with dashed
lines, it is important to note that these dependencies are not yet known at this point
since they are encoded in the OCL rule and will only become apparent when this
rule is invoked during the fixed-point computation.
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Fixed-Point Evaluation with Dependency Discovery

The need for a customized version of a fixed-point evaluation algorithm stems from
the fact that associations in a metamodel do not necessarily provide meaningful
paths for the propagation of data-flow information. The starting point for the im-
plementation of an efficient and scalable evaluation method is the worklist algorithm
traditionally used in compiler construction. This algorithm must be adapted to pro-
vide support for the challenges resulting from the graph structure of models, i.e.
the dynamic discovery of the dependencies implicitly encoded in the rules. More
specifically, the DFA solver must be extended with the ability to record the in-
put/output relationships between attribute instances and incrementally build the
attribute dependency graph. Based on this graph, the solver can then derive an op-
timized scheduling for the execution of the iteration rules. Additionally, knowledge
about the dependencies can also be used to parallelize the execution of the data-
flow equations in unrelated branches of the graph. Finally, the algorithm should
also support on-demand analysis: Supplying a subset of attribute instances that are
of interest, the solver should be able to automatically expand this set to include
depending instances.

The cornerstone of this algorithm is a callback mechanism that provides DFA
rules (executed in the context of a specific instance) with the ability to request other
attribute instance values as input. This is in contrast to the traditional approach
where inputs are supplied automatically based on the structure of the underlying flow
graph. By relaying the request for an input back to the solver, it is able to record the
hitherto unknown dependency between the requesting and the requested instance.
Repeating this process for all relevant instances yields the overall dependency graph
that describes the data-flow paths. Since the starting set of instances can be chosen
arbitrarily, support for lazy evaluation strategies is inherently provided. Obviously,
the successful implementation of this approach relies on the definition of language
interfaces that allow implementations of data-flow rules to actively request the values
of other attribute instances.

Figure 4.13.: Recording implicit dependencies through a callback to the evaluator.
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Figure 4.13 demonstrates the callback mechanism based on the example shown in
Figure 4.12. In this case, we assume the solver is currently interested in evaluating
the instance of the attribute allPredecessors which is located at node 3b . For this
purpose, the solver invokes the iteration rule assigned to the instance’s corresponding
attribute occurrence. In the fourth line of the OCL code, the navigation statement
self.incoming.source collects the direct predecessors of the current node, skipping the
intermediate edges. For 3b , this results in the set { 2 }. Then, the OCL interpreter
invokes the attribute access operation 𝑎𝑙𝑙𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠()19 on the elements in this
set. This method triggers a callback which informs the solver that the instance
of allPredecessors at node 3b has requested the value of the instance of the same
attribute at 2 as input. The solver can now record the discovered dependency and
schedule the instance at 2 for a subsequent evaluation. In the meantime, the rule
of the requesting instance is supplied with the defined DFA initialization value and
is able to continue with its execution.

19The operation 𝑎𝑙𝑙𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠() is a black-box method that has been injected into the OCL
environment for elements of the type node. The information required to automate this process
can be derived from the attribution. This method is detailed in Section 6.4.
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Model Analyses

In the last chapter, we discussed conceptual and technical properties of the target
domain, the MDE ecosystem, and the resulting implications on the transfer of the
DFA method. Based on these considerations, we will now develop a formal definition
of the semantics of flow analysis annotations at metamodels. This is an essential
requirement as only a sound formal model is able to provide a solid foundation for
an in-depth understanding of this technique. The importance of this endeavor is
evident from the effort which has been directed at the formalization of the Object
Constraint Language which - in some sense - can be viewed as a precursor of the
flow-based analysis approach. The authors of [RG98] state that the OCL is “mainly
defined in a semi-formal way by using English text descriptions, a context-free gram-
mar specifying the concrete syntax [. . . ] and many examples illustrating the intended
meaning of expressions” and argue that “[w]hile this style of presentation is perfectly
well-suited to introduce and demonstrate the concepts of OCL, [. . . ] a thorough
understanding of OCL semantics requires a formal definition”. In [CK04a], it is
mentioned that since the “navigational expression language forms the basic building
blocks from which the requirements on system states and executions may be con-
structed [. . . ] the practical use of the OCL thus depends not to the least degree on
a clear understanding of the basic OCL expressions”. It is further emphasized that
“[a] clear semantic foundation of the OCL in general represents a sine qua non if
we want to put OCL on equal footing with other well-established model specification
languages”.
The task of providing a concise description of the proposed method requires the

choice of a suitable formalism for this purpose. Multiple approaches exist in related
research fields which are applicable in different contexts and thus possess individ-
ual strengths and weaknesses. In many cases, these techniques are based on formal
logic or set theory. Methods which have already been applied in the modeling do-
main include [BW02; CK01; Var02; MB06]. For obvious reasons, it is preferable to
select a suitable formalization methodology from the repertory of methods which
have already been successfully put to use for similar purposes. For the formal-
ization of the flow-based methodology, we have chosen to base our specifications
on the method which has been used by Cengarle & Knapp in [CK01; CK04a] to
define big-step operational semantics for OCL expressions. This choice was mo-
tivated by the assumption that the conceptual similarities between OCL and the
DFA method would simplify the adaption of the original approach: Analysis speci-
fications, whether they are written in OCL or encode a DFA, represent an extension
of an existing metamodel. As noted by the authors of [RG98], the “primary purpose
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of OCL is to augment a model with additional information that often (if at all) can-
not be expressed appropriately in UML” and that the “intended effect of a constraint
specification is a restriction on possible system states and transitions with respect to
a given model”. Therefore, it is necessary to provide a suitable representation of the
relevant properties of (meta)models for the subsequent specification of the evalua-
tion semantics. Furthermore, an “OCL expression is declarative in the sense that an
expression says what constraint has to be maintained, not how this is accomplished.
Therefore, specification of constraints is done on a conceptual level, where imple-
mentation aspects are mainly irrelevant”. These properties also hold for the flow
analysis technique. The reuse of an approach which has already been successfully
employed to specify the semantics of OCL expressions therefore can be expected to
streamline the formalization of our own method.

This chapter is divided into two parts: In Section 5.1, we present a formal abstrac-
tion of metamodels and models along with accompanying evaluation semantics for
expressions. These definitions are then extended in Section 5.2 to include support for
data-flow attributes both on the meta and the instance layer. Correspondingly, the
evaluation semantics are enhanced with support for the computation of interdepen-
dent attribute instances. This includes an algorithm for the derivation of fixed-point
results. Finally, we employ the formal specification to assert a number of essential
claims.

5.1. Formal Semantics for Models

In this section we introduce a formalization of elementary modeling concepts on
the metamodel and model layer along with corresponding evaluation semantics for
expressions. These descriptions form the foundation for the subsequent formal spec-
ification of data-flow annotations at metamodels and their evaluation in Section 5.2.
The formalization is inspired by the methodology employed by [CK01; CK04a] for
the definition of big-step operational semantics for the Object Constraint Language.
Section 5.1.1 defines the basic syntactic elements of the target domain, namely class
and object descriptors which represent the model and metamodel artifacts and a
syntax for expression statements. In Section 5.1.2 we then present evaluation se-
mantics which are able to interpret expressions in the context of model elements.
As mentioned, these concepts form the basis for the attribute-based extensions in
the next section which describe the definition and evaluation of data-flow analyses.

5.1.1. Class and Object Descriptors

The descriptions in this section, which we will incrementally develop, are based on a
formalization which encodes the relevant syntactical aspects of metamodels, models
and expressions.
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Definition 5.1.1 (Class descriptor)

The signature of a class descriptor 𝒞 is given as

(𝐶,𝑄), where

i. 𝐶 is a set of classes and types

ii. 𝑄 is a set of query signatures in the form

𝑞 : 𝑐𝑐𝑡𝑥 × 𝑐1 × . . .× 𝑐𝑛 → 𝑐𝑟𝑒𝑡, with

– query context 𝑐𝑐𝑡𝑥 ∈ 𝐶

– input parameters 𝑐1, . . . , 𝑐𝑛 ∈ 𝐶

– return type 𝑐𝑟𝑒𝑡 ∈ 𝐶

Definition 5.1.1 introduces the concept of class descriptors. A class descriptor 𝒞
conforms to a simplified formal representation of the respective target metamodel.
More specifically, the tuple (𝐶,𝑄) describes the classes and types contained in the
metamodel as well as concepts defined by the underlying modeling framework (in-
cluding e.g. primitive data types). Furthermore, it specifies a set of query signatures
which denote functions that operate on the available types. A query is always defined
in the context of a specific class 𝑐𝑐𝑡𝑥, possesses a set of input parameters 𝑐1, . . . , 𝑐𝑛
and returns an output element 𝑐𝑟𝑒𝑡. For clarity reasons, we omit features such as
a sophisticated typing system, generalization hierarchies and associations between
classes. It should be noted that this does not result in a loss of generality as the pro-
posed flow analysis methodology relies on a very basic set of fundamental properties.
Semantics for omitted features can be easily inferred from the listed specifications.
The exhaustive definitions provided by [CK04a] can be used as a starting point.

Definition 5.1.2 (Object descriptor)

An object descriptor ℐ over a class descriptor (𝐶,𝑄) is given as

(𝐶ℐ , 𝑄ℐ), where

i. 𝑐ℐ ∈ 𝐶ℐ is a set of objects for each class 𝑐 ∈ 𝐶

ii. 𝑞ℐ ∈ 𝑄ℐ is a function for each query 𝑞 ∈ 𝑄 in the form

𝑞ℐ : 𝑐ℐ𝑐𝑡𝑥 × 𝑐ℐ1 × . . .× 𝑐ℐ𝑛 → 𝑐ℐ𝑟𝑒𝑡

We further require that the interpretation includes non-termination (⊥):
⊥ ∈ 𝑐ℐ for all 𝑐 ∈ 𝐶
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The concept of an object descriptor ℐ is formalized in Definition 5.1.2. This
structure represents an interpretation of a given class descriptor (𝐶,𝑄) and thereby
conforms to an instance of the respective language. An object descriptor ℐ consists
of interpretations of classes 𝑐 ∈ 𝐶 and queries 𝑞 ∈ 𝑄. A specific interpretation of
a class represents the set of objects in the target model which are of the respective
type. Query interpretations represent functions which are interpreted in the context
of an element of type 𝑐𝑐𝑡𝑥 and map input parameters 𝑐ℐ1 × . . . × 𝑐ℐ𝑛 to an output
object or value in 𝑐ℐ𝑟𝑒𝑡. Since, in the case of cyclic dependencies between queries, the
evaluation of an expression may result in non-termination, the element ⊥ has to be
included in the set of potential results.

Definition 5.1.3 (Expression syntax)

Expressions 𝑒 are defined as

𝑒 ::= self
| 𝑒.𝑞(𝑒1, . . . , 𝑒𝑛) with 𝑞 ∈ 𝑄
| if 𝑒 then 𝑒1 else 𝑒2 endif

Definition 5.1.3 provides a syntax for simple expressions. Again, we restrict our-
selves to the examination of a reduced set of features to enable a short and concise
formalization of the evaluation semantics. More specifically, we study only state-
ments which include the self reference (which denotes the context object) and
queries 𝑞 (as defined in the class and object descriptors) which possess an arbitrary
number of input parameters. To exemplify the application of this methodology for
common expression types which are an essential part of languages such as OCL, we
additionally include the conditional if . . . then . . . else operator. Using this example
as a starting point, it is possible to extend the specifications to provide support for
additional functionality such as iteration or navigation statements.

5.1.2. Expression Semantics

Based on the definition of the syntactical properties of (meta)models and expres-
sions, it is now possible to specify the semantics of expression statements.
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Definition 5.1.4 (Evaluation semantics for expressions)

(self↓) ℐ, 𝛾 ⊢ self ↓ 𝛾(self)

(q↓)
ℐ, 𝛾 ⊢ 𝑒 ↓ 𝑣 (ℐ, 𝛾 ⊢ 𝑒𝑖 ↓ 𝑣𝑖)1≤𝑖≤𝑛

ℐ, 𝛾 ⊢ 𝑒.𝑞(𝑒1, . . . , 𝑒𝑛) ↓ 𝑞ℐ(𝑣, 𝑣1, . . . , 𝑣𝑛)

(cond↓1)
ℐ, 𝛾 ⊢ 𝑒 ↓ true ℐ, 𝛾 ⊢ 𝑒1 ↓ 𝑣1

ℐ, 𝛾 ⊢ if 𝑒 then 𝑒1 else 𝑒2 endif ↓ 𝑣1

(cond↓2)
ℐ, 𝛾 ⊢ 𝑒 ↓ false ℐ, 𝛾 ⊢ 𝑒2 ↓ 𝑣2

ℐ, 𝛾 ⊢ if 𝑒 then 𝑒1 else 𝑒2 endif ↓ 𝑣2

Definition 5.1.4 lists a set of inference rules which describe natural semantics
for the derivation of judgements for expressions which conform to Definition 5.1.3.
Statements in the form 𝛾 ⊢ 𝜎 ↓ 𝜂 denote that the evaluation of a statement 𝜎 in a
system state 𝛾 results in the value 𝜂. We require that 𝛾 contains a binding for self
and thus the context object can be retrieved via 𝛾(self). The upper part of each
rule identifies the hypothesis for the application of the rule while the lower section
denotes the respective judgement. The evaluation of a (partial) expression relies on
an environment which consists of an object descriptor ℐ and a variable binding for
self. Evaluation is non-strict for if . . . then . . . else.
The first rule, which does not have a prerequisite, states that self always evalu-

ates to 𝑜 for a variable binding self ↦→ 𝑜 in 𝛾. The evaluation of a query 𝑞 on an
expression 𝑒 requires the evaluation of both the context and the input parameters
and applies the function 𝑞ℐ to determine the query’s result value. The interpretation
of if . . . then . . . else statements depends on the value derived for the condition 𝑒. If
the condition evaluates to true, the overall result corresponds to the evaluation of the
then branch. Otherwise, the value which is yielded by the else branch is returned.

5.2. Formal Semantics for Attributed Models

We will now extend the definitions from Section 5.1 to provide support for the dec-
laration and evaluation of data-flow attributes. For this purpose, it is necessary
to enhance the definitions of class and object descriptors as well as the syntax of
expression statements with attributes. This is detailed in Section 5.2.1. In the next
step, we adapt the evaluation semantics to ensure a correct handling of expressions
in attributed models. Since there exist multiple strategies to address this problem,

126



5.2. Formal Semantics for Attributed Models

we chose to present two different approaches which can be used interchangeably:
The semantics specified in Section 5.2.2 strictly limit the evaluation of attribute
dependencies, thus preventing recursive calls. On the other hand, the definition
in Section 5.2.3 allows multiple consecutive recursion steps, halting only if circular
dependencies are encountered to prevent non-determination. Both specifications ad-
ditionally rely on semantic functions which control the iterative evaluation to enable
the computation of the desired fixed-point results. Finally, in Section 5.2.4, we state
two claims which assert specific properties that hold for the proposed semantics and
provide the necessary proofs.

5.2.1. Attributed Class and Object Descriptors

The following descriptions extend the definitions from Section 5.1.1 with support
for data-flow attributes.

Definition 5.2.1 (Attributed class descriptor)

The signature of an attributed class descriptor 𝒟 is given as

((𝐶, 𝑄), 𝐴), where

i. (𝐶, 𝑄) is a class descriptor

ii. 𝐴 is a set of attributes in the form

𝑎 : 𝑐𝑐𝑡𝑥 → 𝑐𝑟𝑒𝑡 = 𝐸𝑎

which assigns an expression 𝐸𝑎 to each attribute 𝑎 ∈ 𝐴.

Definition 5.2.1 enhances the signature of class descriptors (cf. Definition 5.1.1)
with a set of data-flow attributes 𝐴 which represent the attribution of an existing
metamodel. The resulting structure is termed an attributed class descriptor. An
attribute is defined in the context of a class 𝑐𝑐𝑡𝑥 and produces an output of type
𝑐𝑟𝑒𝑡 ∈ 𝐶. The result for an attribute is computed by an expression 𝐸𝑎 (cf. Definition
5.2.3) which in turn may rely on other attributes.

Definition 5.2.2 (Attributed object descriptor)

An attributed object descriptor 𝒪 over an attributed class descriptor ((𝐶, 𝑄), 𝐴)
is given as

(ℐ,𝒜), where

i. ℐ is an object descriptor

ii. 𝑎𝒜 ∈ 𝒜 is an interpretation of the attribute 𝑎 : 𝑐𝑐𝑡𝑥 → 𝑐𝑟𝑒𝑡 = 𝐸𝑎 ∈ 𝐴 with

𝑎𝒜 : 𝑐ℐ𝑐𝑡𝑥 → 𝑐ℐ𝑟𝑒𝑡
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Definition 5.2.2 extends conventional object descriptors (cf. Definition 5.1.2) to
specify the concept of attributed object descriptors. This process mirrors the ex-
tension of class descriptors and delineates the structural properties of attributed
models. For this purpose, a set 𝒜 is included in the descriptor which consists of
interpretations of the data-flow attributes 𝑎 ∈ 𝐴. Consequently, 𝑎𝒜(𝑜) retrieves the
current value of an attribute of type 𝑎 in the context of an object 𝑜. It should be
noted that the state of 𝒜 may change over time due to the iterative fixed-point
evaluation process which repeatedly updates the values of attribute instances 𝑎𝒜(𝑜).

Definition 5.2.3 (Expression syntax (including attributes))

Expressions with attributes 𝐸 are defined as

𝐸 ::= self
| 𝐸.𝑞(𝐸1, . . . , 𝐸𝑛) with 𝑞 ∈ 𝑄
| 𝐸.𝑎 with 𝑎 ∈ 𝐴
| if 𝐸 then 𝐸1 else 𝐸2 endif

Definition 5.2.3 extends the expression syntax from Definition 5.1.3 with support
for attributes. Similar to queries, occurrences of attributes 𝑎 ∈ 𝐴 in an expression
𝐸 denote properties which have to be evaluated the context of an object. However,
as mentioned above, the evaluation of an attribute may lead to an update of the
instantiated attribution 𝒜. Furthermore, if an attribute depends on other attributes
(resulting in circular dependency relationships) this situation does not result in
non-termination (assuming the value domain and the operations conform to the
requirements of the data-flow analysis approach as stated in Section 2.3.2).
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5.2.2. Non-recursive Expression Semantics

In the following, we present inference rules for the evaluation of attributed object de-
scriptors. This specification relies on the combination of two sets of rules to manage
the potentially cyclic dependencies between attributes. In this case, dependencies
between attributes are not regarded. Instead, the computation is controlled by an
external algorithm which resembles the round-robin strategy for solving fixed-point
equation systems.

Definition 5.2.4 (Expression semantics: direct evaluation)

(self↓) 𝒜, 𝛾 ⊢ℐ𝑑 self ↓ 𝛾(self)

(q↓)
𝒜, 𝛾 ⊢ℐ𝑑 𝐸 ↓ 𝑣 (𝒜, 𝛾 ⊢ℐ𝑑 𝐸𝑖 ↓ 𝑣𝑖)1≤𝑖≤𝑛

𝒜, 𝛾 ⊢ℐ𝑑 𝐸.𝑞(𝐸1, . . . , 𝐸𝑛) ↓ 𝑞ℐ(𝑣, 𝑣1, . . . , 𝑣𝑛)

(a↓)
𝒜, 𝛾 ⊢ℐ𝑑 𝐸 ↓ 𝑣

𝒜, 𝛾 ⊢ℐ𝑑 𝐸.𝑎 ↓ 𝑎𝒜(𝑣)

(cond↓1)
𝒜, 𝛾 ⊢ℐ𝑑 𝐸 ↓ true 𝒜, 𝛾 ⊢ℐ𝑑 𝐸1 ↓ 𝑣1

𝒜, 𝛾 ⊢ℐ𝑑 if 𝐸 then 𝐸1 else 𝐸2 endif ↓ 𝑣1

(cond↓2)
𝒜, 𝛾 ⊢ℐ𝑑 𝐸 ↓ false 𝒜, 𝛾 ⊢ℐ𝑑 𝐸2 ↓ 𝑣2

𝒜, 𝛾 ⊢ℐ𝑑 if 𝐸 then 𝐸1 else 𝐸2 endif ↓ 𝑣2

Definition 5.2.4 specifies the evaluation semantics direct evaluation (⊢ℐ𝑑) which
extends Definition 5.1.4 with the rule (a↓). This rule states that the evaluation of
an attribute for an expression 𝐸.𝑎 has to return the value 𝑎𝒜(𝑣), i.e. the value
which is assigned to attribute 𝑎 in the context of object 𝑣 for the current state of
𝒜. Consequently, the application of this rule set will always evaluate expressions
based on the values stored in 𝒜 which in turn is not affected by the evaluation
of expressions. It is easy to see that the exclusive application of this definition is
pointless as it will never converge in a fixed-point result. However, it represents an
integral building block for the methodology detailed in this section as it provides
the ability to stop the recursion at an arbitrary point.

Definition 5.2.5 (Evaluation semantics: direct evaluation)

The evaluation of an expression 𝐸 for given attributed object descriptor (ℐ,𝒜)
and an object 𝑜 conforms to the application of the expression semantics ⊢ℐ𝑑 :

J𝐸K𝑑ℐ,𝒜,𝑜 = 𝑣 ⇔ 𝒜, 𝛾 ⊢ℐ𝑑 𝐸 ↓ 𝑣
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Definition 5.2.5 declares that the evaluation of an expression 𝐸 to a value 𝑣 con-
forms to the application of the expression semantics ⊢ℐ𝑑 .

Definition 5.2.6 (Expression semantics: no recursive calls)

(self↓) 𝒜, 𝛾 ⊢ℐ𝑛 self ↓ 𝛾(self) ◁𝒜

(q↓)
𝒜, 𝛾 ⊢ℐ𝑛 𝐸 ↓ 𝑣 ◁𝒜0 (𝒜𝑖−1, 𝛾 ⊢ℐ𝑛 𝐸𝑖 ↓ 𝑣𝑖 ◁𝒜𝑖)1≤𝑖≤𝑛

𝒜, 𝛾 ⊢ℐ𝑛 𝐸.𝑞(𝐸1, . . . , 𝐸𝑛) ↓ 𝑞ℐ(𝑣, 𝑣1, . . . , 𝑣𝑛) ◁𝒜𝑛

(a↓)
𝒜, 𝛾 ⊢ℐ𝑛 𝐸 ↓ 𝑣 ◁𝒜′

𝒜, 𝛾 ⊢ℐ𝑛 𝐸.𝑎 ↓ 𝑣′ ◁𝒜′{(𝑣, 𝑎) ↦→ 𝑣′}
where 𝒜′, 𝛾{self ↦→ 𝑣} ⊢ℐ𝑑 𝐸𝑎 ↓ 𝑣′

(cond↓1)
𝒜, 𝛾 ⊢ℐ𝑛 𝐸 ↓ true ◁𝒜′ 𝒜′, 𝛾 ⊢ℐ𝑛 𝐸1 ↓ 𝑣1 ◁𝒜′′

𝒜, 𝛾 ⊢ℐ𝑛 if 𝐸 then 𝐸1 else 𝐸2 endif ↓ 𝑣1 ◁𝒜′′

(cond↓2)
𝒜, 𝛾 ⊢ℐ𝑛 𝐸 ↓ false ◁𝒜′ 𝒜′, 𝛾 ⊢ℐ𝑛 𝐸2 ↓ 𝑣2 ◁𝒜′′

𝒜, 𝛾 ⊢ℐ𝑛 if 𝐸 then 𝐸1 else 𝐸2 endif ↓ 𝑣2 ◁𝒜′′

Definition 5.2.6 incorporates ⊢ℐ𝑑 to specify the no recursive calls semantics ⊢ℐ𝑛
which can derive meaningful judgements for interdependent attributes. As the ap-
plication of these rules results in the evaluation of attributes and thus a subsequent
change in the state of 𝒜 (indicated by ◁), all rules - with the exception of (self↓) -
update the instantiated attribution (resulting in 𝒜𝑛, 𝒜′ and 𝒜′′ respectively).

Apart from this distinction, the no recursive call semantics employs a modified
version of the rule (a↓) to derive a new value for the attribute and to update 𝒜
accordingly. Since the respective expression 𝐸𝑎 is interpreted using ⊢ℐ𝑑 , this process
will not trigger a recursive invocation if 𝑎 depends on other attributes. In other
words, the application of this rule will always substitute attribute references with
their current value when evaluating an attribute’s expression.
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Definition 5.2.7 (Evaluation algorithm (non-recursive))

Expression evaluation for given attributed object descriptor (ℐ,𝒜) and object 𝑜:

J𝐸K𝑛ℐ,𝒜,𝑜 = J𝐸K𝑑ℐ,fixpoint(𝒜),𝑜

with

fixpoint(𝒜) =
do

for 𝑐𝑐𝑡𝑥 ∈ 𝐶, 𝑎 : 𝑐𝑐𝑡𝑥 → 𝑐𝑟𝑒𝑡 = 𝐸𝑎 ∈ 𝐴 do
for 𝑣 ∈ 𝑐ℐ𝑐𝑡𝑥 do
𝒜, 𝛾{self ↦→ 𝑣} ⊢ℐ𝑛 𝐸𝑎 ↓ 𝑣′ ◁𝒜′

𝒜 ← 𝒜′

od
od
if 𝒜 = 𝒜′

return 𝒜
od

We will now present an algorithm for the fixed-point evaluation of expressions
based on the no recursive call semantics. As a prerequisite for the execution of the
algorithm shown in Definition 5.2.7, we assume that the initialization values for 𝒜
are given semantically as they are not specified in the syntax. In the remainder of
this thesis, we employ a syntactical initialization to provide the starting point for
the fixed-point computation. To ensure that the algorithm terminates, we request
that 𝒜′ ≤ 𝒜 where ≤ is the partial order of the semilattice which represents the
value domain (cf. Section 2.3.2). The existence of a greatest lower bound and a
top element ⊤ guarantees that the algorithm will eventually terminate in a unique
fixed-point solution.
Using the semantics of Definition 5.2.6, attribute expressions are evaluated with-

out entering a recursion. This method therefore enables a targeted evaluation of
single attribute instances at a given point in the iterative solving process. The
downside of this approach is that it is not possible to factor in the dependencies
between attributes to guide the evaluation process. Consequently, it is necessary
to derive fixed-point results for all attributes in order to determine the final value
for a single expression J𝐸K𝑑ℐ,𝒜,𝑜. This is realized by the function fixpoint(𝒜) which
iterates over all model objects 𝑣 and triggers the computation of the respective at-
tributes, updating the state of 𝒜 accordingly. This process is nested in a while loop
which ensures that the computation is carried out repeatedly until all values have
converged in the most precise fixed-point solution.

5.2.3. Recursive Expression Semantics

We will now present an alternative evaluation semantics for attributes which - in
contrast to the method presented in Section 5.2.2 - enables the application of multiple
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recursive steps in a row. This presents an improvement over the no recursive call
method since it enables a focused evaluation of a single attribute by automatically
including all of its dependencies in the respective evaluation run.

Definition 5.2.8 (Expression semantics: recursive calls)

(self↓) 𝒜,𝒟, 𝛾 ⊢ℐ𝑟 self ↓ 𝛾(self) ◁𝒜,𝒟

(q↓)
𝒜,𝒟, 𝛾 ⊢ℐ𝑟 𝐸 ↓ 𝑣 ◁𝒜0,𝒟0 (𝒜𝑖−1,𝒟𝑖−1, 𝛾 ⊢ℐ𝑟 𝐸𝑖 ↓ 𝑣𝑖 ◁𝒜𝑖,𝒟𝑖)1≤𝑖≤𝑛

𝒜,𝒟, 𝛾 ⊢ℐ𝑟 𝐸.𝑞(𝐸1, . . . , 𝐸𝑛) ↓ 𝑞ℐ(𝑣, 𝑣1, . . . , 𝑣𝑛) ◁𝒜𝑛,𝒟𝑛

(a↓)
𝒜,𝒟, 𝛾 ⊢ℐ𝑟 𝐸 ↓ 𝑣 ◁𝒜′,𝒟′

𝒜,𝒟, 𝛾 ⊢ℐ𝑟 𝐸.𝑎 ↓ 𝑎𝒜′(𝑣) ◁𝒜′,𝒟′ if (𝑣, 𝑎) ∈ 𝒟′

𝒜,𝒟, 𝛾 ⊢ℐ𝑟 𝐸 ↓ 𝑣 ◁𝒜′,𝒟′ 𝒜′,𝒟′, 𝛾{self ↦→ 𝑣} ⊢ℐ𝑟 𝐸𝑎 ↓ 𝑣′ ◁𝒜′′,𝒟′′

𝒜,𝒟, 𝛾 ⊢ℐ𝑟 𝐸.𝑎 ↓ 𝑣′ ◁𝒜′′{(𝑣, 𝑎) ↦→ 𝑣′},𝒟′′ ∪ {(𝑣, 𝑎)}
otherwise

(cond↓1)
𝒜,𝒟, 𝛾 ⊢ℐ𝑟 𝐸 ↓ true ◁𝒜′,𝒟′ 𝒜′,𝒟′, 𝛾 ⊢ℐ𝑟 𝐸1 ↓ 𝑣1 ◁𝒜′′,𝒟′′

𝒜,𝒟, 𝛾 ⊢ℐ𝑟 if 𝐸 then 𝐸1 else 𝐸2 endif ↓ 𝑣1 ◁𝒜′′,𝒟′′

(cond↓2)
𝒜,𝒟, 𝛾 ⊢ℐ𝑟 𝐸 ↓ false ◁𝒜′,𝒟′ 𝒜′,𝒟′, 𝛾 ⊢ℐ𝑟 𝐸2 ↓ 𝑣2 ◁𝒜′′,𝒟′′

𝒜,𝒟, 𝛾 ⊢ℐ𝑟 if 𝐸 then 𝐸1 else 𝐸2 endif ↓ 𝑣2 ◁𝒜′′,𝒟′′

To prevent non-termination in the case of circular dependencies, the rules listed
in Definition 5.2.8 introduce the structure 𝒟 to identify the point where the evalu-
ation of the expression would enter a cycle. For this purpose, 𝒟 keeps track of the
attributes (𝑣, 𝑎) which have already been processed in the respective derivation. If
an attribute has already been evaluated, the first alternative of the rule (a↓) applies
which - just like the rule (a↓) in Definition 5.2.4 - simply retrieves the current value.
This approach ensures that the recursive evaluation of cyclic dependencies halts as
soon as all attributes belonging to the cycle have been processed once. For attributes
which have not yet been “visited” in the current state, the second alternative applies.
This rule computes a new value by evaluating 𝐸𝑎, potentially entering a recursion
if the expression depends on other attributes. Furthermore, it updates the object
descriptor with the new value for the attribute and includes it in the set of recorded
dependencies.
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Definition 5.2.9 (Evaluation algorithm (recursive))

Expression evaluation for given attributed object descriptor (ℐ,𝒜) and object 𝑜:

J𝐸K𝑟ℐ,𝒜,𝑜 =
do
𝒜, 𝛾 ⊢ℐ𝑟 𝐸 ↓ 𝑣 ◁𝒜′

if 𝒜 = 𝒜′

return 𝑣
fi
𝒜 ← 𝒜′

od

In this case, the iterative fixed-point evaluation of expressions is controlled by
the algorithm shown in Definition 5.2.9. Again, we assume that initialization values
are given semantically and that 𝒜′ ≤ 𝒜. Because the evaluation of an attribute
automatically triggers the evaluation of all of its dependencies, this approach does
not require an outer loop. Consequently, for an expression evaluation J𝐸K𝑟ℐ,𝒜,𝑜 for an
initial attributed object descriptor (ℐ,𝒜) and an object 𝑜, it is sufficient to evaluate
𝐸 to 𝑣 and update the state of the instantiated attribution accordingly. If the new
state is equal to the old one, the result is returned. Otherwise, the current state is
updated and the computation continues.

5.2.4. Claims

Claim I

We assert that the evaluation of an expression 𝑒 using the syntax listed in Definition
5.1.3 must yield the same results for (attributed) object descriptors whether the
evaluation semantics from Definition 5.1.2 or the algorithms from Definition 5.2.7
or Definition 5.2.9 are used.

ℐ, 𝛾 ⊢ 𝑒 ↓ 𝑣 ⇔ J𝑒K𝑑/𝑛/𝑟ℐ,𝒜,𝑜 = 𝑣

Proof:

It is easy to see that this statement follows from the definitions of the semantics
and the evaluation algorithms. Since the primitive form of expressions introduced
in Definition 5.1.2 does not include support for data-flow attributes, the algorithms
will never enter into an iterative fixed-point computation. The results for the other
constituents of expressions are the same.

Claim II

For the recursive call evaluation semantics ⊢ℐ𝑟 we assert that, if an expression 𝐸
evaluates to 𝑣 for a given attribution state 𝒜1, then it also evaluates to 𝑣 for a
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different state 𝒜2 with the same initial dependency set 𝒟 if both states are indistin-
guishable with respect to the values of the attributes in 𝒟 and that subsequently,
the resulting states 𝒜′

1 and 𝒜′
2 will be indistinguishable as well. In other words, if

two derivations of 𝐸 start in similar states, they will consider the same attributes
and yield the same result.

This assertion can be formalized as follows:

𝒜1,𝒟, 𝛾 ⊢ℐ𝑟 𝐸 ↓ 𝑣 ◁𝒜′
1,𝒟′ and 𝒜1 ∼𝒟 𝒜2 ⇒

𝒜2,𝒟, 𝛾 ⊢ℐ𝑟 𝐸 ↓ 𝑣 ◁𝒜′
2,𝒟′ and 𝒜′

1 ∼𝒟′ 𝒜′
2

with 𝒜1 ∼𝒟 𝒜2 denoting that 𝒜1 and 𝒜2 are indistinguishable with respect to the
attributes in 𝒟:

∀𝑣 ∈ 𝑐ℐ , 𝑎 ∈ 𝒜 : (𝑣, 𝑎) ∈ 𝒟 ⇒ 𝑎𝒜1(𝑣) = 𝑎𝒜2(𝑣)

Proof sketch:

Let 𝑑 be a derivation of 𝐸: 𝑑 = 𝒜1,𝒟, 𝛾 ⊢ℐ𝑟 𝐸 ↓ 𝑣 ◁ 𝒜′
1,𝒟′. We perform a

structural induction by examining the application of the inference rules 𝛾 ⊢ 𝜎 ↓ 𝜂
in a case analysis on the last proof step1.

𝜎 = 𝐸.𝑎 ∧ (𝑣, 𝑎) ∈ 𝒟′

Here, the first case of (a↓) applies, resulting in:

𝒜1,𝒟, 𝛾 ⊢ℐ𝑟 𝐸 ↓ 𝑣 ◁𝒜′
1,𝒟′

𝒜1,𝒟, 𝛾 ⊢ℐ𝑟 𝐸.𝑎 ↓ 𝑎𝒜′
1(𝑣) ◁𝒜′

1,𝒟′

with the induction hypothesis we can derive the judgement for the right hand side

𝒜2,𝒟, 𝛾 ⊢ℐ𝑟 𝐸 ↓ 𝑣 ◁𝒜′
2,𝒟′

𝒜2,𝒟, 𝛾 ⊢ℐ𝑟 𝐸.𝑎 ↓ 𝑎𝒜′
2(𝑣) ◁𝒜′

2,𝒟′ and (𝑣, 𝑎) ∈ 𝒟′

In both cases, (𝑣, 𝑎) ∈ 𝒟′ and therefore 𝒜′
1 ∼𝒟′ 𝒜′

2.

𝜎 = 𝐸.𝑎 ∧ (𝑣, 𝑎) ̸∈ 𝒟′

Here, the second case of (a↓) applies, resulting in:

𝒜1,𝒟, 𝛾 ⊢ℐ𝑟 𝐸 ↓ 𝑣 ◁𝒜′
1,𝒟′ 𝒜′

1,𝒟′, 𝛾{self ↦→ 𝑣} ⊢ℐ𝑟 𝐸𝑎 ↓ 𝑣′ ◁𝒜′′
1,𝒟′′

𝒜1,𝒟, 𝛾 ⊢ℐ𝑟 𝐸.𝑎 ↓ 𝑣′ ◁𝒜′′
1{(𝑣, 𝑎) ↦→ 𝑣′},𝒟′′ ∪ {(𝑣, 𝑎)}

with the induction hypothesis we can derive the judgement for the right hand side

𝒜2,𝒟, 𝛾 ⊢ℐ𝑟 𝐸 ↓ 𝑣 ◁𝒜′
2,𝒟′ 𝒜′

2,𝒟′, 𝛾{self ↦→ 𝑣} ⊢ℐ𝑟 𝐸𝑎 ↓ 𝑣′ ◁𝒜′′
2,𝒟′′

𝒜2,𝒟, 𝛾 ⊢ℐ𝑟 𝐸.𝑎 ↓ 𝑣′ ◁𝒜′′
2{(𝑣, 𝑎) ↦→ 𝑣′},𝒟′′ ∪ {(𝑣, 𝑎)}

and (𝑣, 𝑎) ̸∈ 𝒟′′

The claim 𝒜′′
1 ∼𝒟′′ 𝒜′′

2 follows from 𝒜′′
1{(𝑣, 𝑎) ↦→ 𝑣′} ∼𝒟′′∪{(𝑣,𝑎)} 𝒜′′

2{(𝑣, 𝑎) ↦→ 𝑣′}.
1Since each nested term is a proper subset of its parent, all derivation trees are of finite height.
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6. Model-based Integration of

Data-flow Analysis

In the previous chapter, we investigated the formal properties of the DFA method
with respect to its application in the technological space of modeling. Based on these
definitions, we will now describe in detail the artifacts that are required to specify
and execute analyses using standards and technologies from the MDE domain. For
this purpose, a dedicated model-based domain-specific language has been developed.
This specification language supports the annotation of existing metamodels with
analysis constructs in the notion of attribute grammars. The application of the
presented methods is illustrated in the context of a running example.
This chapter comprises the following parts: In Section 6.1, we define the abstract

syntax of the analysis specification language in the form of a metamodel. A concrete,
textual syntax for this model-based DSL is presented in Section 6.2. The process
of instantiating a specified analysis for a given model is described in Section 6.3.
Data-flow rules can be written in an arbitrary executable language as long as they
adhere to the standardized interface required by the DFA solver. This is explored in
Section 6.4 and exemplified for the widely-used languages Java and OCL. Finally,
in Section 6.5 we demonstrate how a (potentially cyclic) equation system can be
derived from an instantiated analysis and how it can be solved by applying fixed-
point evaluation semantics.

6.1. Abstract Syntax

In this section, we present a metamodel that implements the abstract syntax of
the analysis specification language. It has been designed in the notion of attribute
grammars to support the non-intrusive enrichment of existing modeling languages
with DFA expressions. The advantage of this approach is that neither the meta
language MOF nor the target metamodel have to be modified in any way. The fact
that all existing artifacts remain unaware of the annotated analyses ensures that
full compatibility with existing standards and practices is preserved. The underlying
principles of this approach are discussed in Section 6.1.1 while the actual metamodel
is presented in Section 6.1.2.
Furthermore, we introduce a simple modeling language for control-flow graphs

that will serve as a running example to demonstrate the application of the developed
methods. Section 6.1.3 describes the corresponding metamodel and defines a DFA-
based reachability analysis to visualize the structural composition of the analysis
constructs.
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6.1.1. Attribute-based Metamodel Extension

The abstract syntax of the specification language must realize all components re-
quired for the definition of a data-flow analysis as well as properly encoding their
relationships. In Section 4.2.2, the constructs that are relevant to the analysis spec-
ification process were derived from the stated objectives and the properties of the
target domain.

However, from a technical perspective, there is another factor that influences the
language design which pertains to architectural considerations in the realization of
the proposed method. For this purpose, we investigated the relationships between
the technological spaces of compiler construction and MDE to assess the impact of
the conceptual similarities and differences between these two areas on the transfer
of the DFA method to the modeling domain. In this context, we discussed the align-
ment of abstraction layers (Section 4.1.3) and the principles behind the annotation
of constructs at MOF-based metamodels (Section 4.1.4). In Section 4.2.1, we also
stressed the importance of maintaining compatibility and ensuring that the analysis
remains unintrusive.

The conceptual aspects of analysis specification and execution that will form the
basis for the descriptions in this section were outlined in Figure 4.10. Through an
evaluation of the attribute grammar technique, we derived a method that imple-
ments a corresponding functionality for the purpose of model analysis. For each
construct available in attribute grammars, we proposed a respective counterpart in
the modeling space. The results were further concretized in Figure 4.11, where we
described the resulting elements and their relationships with each other as well as
with the classes and objects in the target (meta) models in more detail. In short, the
approach can be summarized as follows: Occurrences of attributes are annotated at
classes in a metamodel and instantiated for derived model objects while the struc-
tural composition of the attribution is itself governed by a model-based specification
residing on the M3 layer.

From a technical view point, this concept presents a problem insofar as a di-
rect implementation would require to extend MOF with the necessary attribution
constructs which could then be used to annotate metamodels on M2. This pro-
cess would however require a modification of the MOF language and thus endanger
compatibility with existing standards and tooling ecosystems. Since this explicitly
contradicts the stated objectives an alternative approach must be devised.

As a straightforward solution to this problem, we can define the abstract syntax
not as an extension of the M3 layer but rather as a model-based domain-specific
language or, in other words, a conventional M2 metamodel. A concrete analysis
therefore corresponds to a M1 model instance of the analysis metamodel. An at-
tribute occurrence contained in this model can then directly reference the class in
the target metamodel at which the corresponding attribute should be annotated.
Strictly speaking, these connections therefore cross the line between the M1 ab-
straction layer, on which the analysis resides, and the M2 layer on which the target
metamodel is defined. This is however not a problem since the MOF modeling frame-
work can specify references between model and metamodel elements. By defining

136



6.1. Abstract Syntax

the analysis language itself as a traditional metamodel, we can also make use of
MDE tool support to develop the analysis DSL.
This approach has one effect that requires special attention: Since an analysis is

now technically a model, it cannot itself be instantiated. To instantiate an analysis,
we therefore have to provide a separate modeling language that acts as a container
for the instantiated attributes and connects them to the target model.

Figure 6.1.: Definition and instantiation of attribute-based metamodel extensions
[SB13].

The general idea behind this architecture is illustrated in Figure 6.1. Note that
for reasons of clarity and comprehensibility, we have aligned the analysis artifacts
according to their conceptual properties rather than placing them on the layer that
represents their actual technical type. Consequently, the attribution metamodel
AttrMM is located on the top layer because it effectively defines an extension of
M3 although it is actually a M2 metamodel. Similarly, M1 attribution models
(Attribution) that constitute analysis specifications are located on the same level as
the M2 metamodels that they annotate.
The metamodel that encodes the structure of attribute-based flow analyses will

subsequently be referred to as attribution metamodel or AttrMM for short. By defin-
ing a reference to the MOF metaclass, it supports the annotation of modeling lan-
guages through attribution models. Effectively, this method therefore implements
the annotation concept as depicted in Figure 4.11.
The architecture shown in Figure 6.1 already includes a solution to the previously

mentioned problem of instantiating attribution models. We can circumvent this issue
by simply defining a separate metamodel that formalizes the structural properties of
these instances. The metamodel that describes the properties of attribute instances
is called instantiation metamodel (or InstMM) and will be discussed in more detail in
Section 6.3.1. At this point, it is sufficient to know that it specifies links to both the
attribute occurrence class from AttrMM and to MOF’s class instance concept (i.e. the
metaclass of all model elements). An attribute instance contained in an instantiation
model can therefore directly reference the occurrence from which it has been created
and the model object at which it is annotated (cf. Section 6.3.1). Each attribute
instance conforms to its respective type definition in the form of an occurrence
while the object in the target model represents its context. This distinction between
specification and instantiation of attributes requires that the logic that governs the
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creation of attribute instances has to be implemented separately. The instantiation
process itself is described in Section 6.3.2.
It should be noted that the use of this model-centric approach is not mandatory.

A DFA solver could very well implement the instantiation data structures in an
internal, proprietary format without relying on model-based specifications. While
this approach would also be viable, the motivation behind the presented method is
that it provides a consistent and integrated representation of attributions and their
instantiations. All properties, including attribute type definitions and annotation
links to the elements in the target (meta) models are encoded in a unified model-
based representation.

6.1.2. Attribution Metamodel

We will now give a description of the metamodel that represents the abstract syntax
of the analysis specification language. For this purpose, the metamodel implements
the language elements that have been proposed in Section 4.2.2 and formally defined
in Chapter 5 and specifies their properties and relationships. It has been developed
using the EMF framework and therefore conforms to the EMOF subset of the Meta
Object Facility.

Figure 6.2.: Condensed version of the analysis specification metamodel (AttrMM).

The basic language constructs, i.e. the classes and enumerations, have been
grouped into four packages according to their respective responsibilities in the task
of assigning attributes to metamodel classes. These packages are: Attribution, At-
tributes, SemanticRules and DataTypes. A condensed version of the metamodel which
aggregates the central concepts from the different packages in a single representation
is depicted in Figure 6.2. A full listing of all contents can be found in Appendix B.1.

We will now give a short description of the central elements and their properties:
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Attribution
An attribution acts as a container for an arbitrary number of attribution con-
cepts, namely attribute definitions, datatypes, semantic rules and attribute exten-
sions which in turn contain the occurrences. An attribution is itself part of an
attribution collection (not present in the condensed version of the metamodel).
This structure organizes attributions into libraries from which a DFA solver
can then pick and assemble customized collections of analysis functions.

AttrDefinition
An attribute definition represents the type declaration of an attribute. It is an
abstract class with the two specializations assignment and constraint.

AttrAssignDefinition
Attributes of the type assignment are able to compute result values of an
arbitrary type. For this purpose, they must possess both a datatype (dataType)
and a semantic rule which is used to initialize the fixed-point calculation process
(initializationRule).

AttrConstDefinition
A constraint can be considered to be an assignment of type boolean whose
derived instances are automatically initialized with the value false. In addi-
tion to assignments, they define a severity level and a violation message (class
attributes violationID and severity). These properties can be used to generate
appropriate feedback for the user if the constraint is not fulfilled.

AttrDataType
Datatypes specify the value domain for assignment results. Knowledge about
the type of an attribute value is required to generate valid method signatures
for languages such as OCL.

AttrSemanticRule
A semantic rule is a function that is executed in the context of an attribute
instance and yields a result that represents either the initialization or the it-
eration value of the instance. In that sense, this concept corresponds to data-
flow equations. The semantic rule class provides support for the invocation
of methods that are implemented in different languages. This is discussed in
more detail in Section 6.4.

AttrExtension
Attribute extensions are containers that connect a set of occurrences to a class
in the target metamodel (reference attributedClass). As mentioned in Sec-
tion 6.1.1, the reference to the target class creates a link between an object in
the attribution model and a metamodel class, thereby bridging the M1 and
M2 layers.

AttrOccurrence
An occurrence of an attribute definition indicates the presence of the respective
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attribute at a class in the target metamodel. An attribute may have multiple
occurrences at different classes. Each occurrence is contained in exactly one
attribute extension (containment reference containedIn) and has a reference to
an assignment or constraint that constitutes its type declaration (definedBy).

EClass
This element is the EMF counterpart of the MOF metaclass object and there-
fore represents all classes in the target metamodel. While it is not part of the
AttrMM metamodel, it has been included in Figure 6.2 to visualize the link
between the attribution metamodel and MOF’s M3 layer.

In some cases, e.g. when an attribution is given in a textual representation (cf.
Section 6.2) and has to be parsed, it is important that elements can be addressed via
a unique identifier rather than through the references between model objects. For
this purpose, the following concepts inherit from the abstract class AttributionEle-
mentWithID (omitted from the condensed version of the metamodel): Attribution-
Collection, Attribution, AttrDefinition, DataType and SemanticRule.

6.1.3. Running Example

To clarify the meaning and the usage of the language constructs presented in the
previous section, we will now apply them to a simple use case. The use case is
based on the control-flow graph metamodel shown in Section 4.2.2 and will serve as
a running example in the following sections. In contrast to the predecessor analysis
that was used in Figure 4.12 to exemplify the instantiation process, we now employ
a reachability analysis to demonstrate the implementation of a simple validation
scenario. In this section, we will focus on the structural layout of the elements that
constitute the analysis specification. This includes the relationships between the
attribution and the target metamodel which together form an attributed metamodel.

Figure 6.3.: Control-flow graph metamodel with an annotated analysis [SB13].

The target metamodel of the running example is shown in Figure 6.3. It defines
a modeling language for control-flow graph structures which can be considered to
be very simplistic versions of UML Activity Diagrams. The figure also contains
a reachability attribution which is annotated directly at the metamodel’s classes.
Since the textual format of analysis specifications is the subject of the next section,
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a simple representation was chosen that is reminiscent of the annotation of OCL
constraints.
In all, the metamodel defines six classes with the following semantics: A control-

flow graph cfg contains edges and named nodes as its primary constituents. The
references between these two concepts connect the graph’s nodes through directed
edges, thus forming a directed (potentially cyclic) graph. Each node may possess
multiple incoming and outgoing edges while an edge has exactly one source and
one target node. The beginning and the end of the control-flow are indicated by a
startnode and an endnode respectively, both of which are specializations of the node
class.

We additionally define the following set of well-formedness rules:

Definition 6.1.1 (Well-formedness rules for control-flow graphs)

WF1 The names of all nodes are unique.

WF2 Each graph contains exactly one startnode and one endnode.

WF3 A startnode has at least one outgoing but no incoming edge and vice versa
for an endnode.

WF4 Other nodes have at least one incoming and one outgoing edge. All edges
have a source and a target node (connectedness).

WF5 All nodes are reachable from the startnode (reachability).

WF6 The endnode is reachable from all nodes (liveness).

It is easy to see that the expressiveness of the OCL is completely sufficient to
implement constraints WF1 through WF4. This is however not the case for WF5
and WF6. To determine the reachability/liveness state of each node, the respective
state of the immediate predecessor/successor nodes must be known which in turn
depends on the state of its predecessors/successors and so on. In other words, the
analysis relies on flow-sensitive information.
The reachability state for each node can be easily defined using a recursive specifi-

cation: While the startnode is always reachable, all other nodes are reachable only if
at least one of their immediate predecessors is reachable. Liveness can be computed
correspondingly by substituting endnode for startnode and reversing the direction of
information flow (backward analysis).
Consider the example model shown in Figure 6.4 in which nodes 3 , 4 and 5 are

not reachable from startnode S . The problematic node 3 can be identified easily
since it also fails the connectedness property (WF4). However, this is not the case
for 4 and 5 because of the cyclic control-flow between these elements. To identify
these problematic cases, a flow-sensitive analysis is required.
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Figure 6.4.: Example control-flow graph model.

The annotation depicted in Figure 6.3 defines a reachability analysis that relies on
the existence of an assignment attribute1 isReachable with the datatype boolean and
the initialization value false2. A noticeable difference when comparing this analysis
to the predecessor analysis from Section 4.2.2 is the presence of two distinct occur-
rences at the classes node and startnode which nevertheless share the same attribute
type isReachable. Taking the semantics of the generalization relationships into ac-
count, the occurrence at the node class will also be inherited to the subtypes startnode
and endnode. However, since startnode declares its own occurrence of isReachable,
the occurrence inherited from node is overwritten. Consequently, instances of is-
Reachable at model objects of the type node and endnode will be calculated with one
rule, instances at startnode elements with the other.
The rules for this simple use case have been written in OCL as its navigation ex-

pressions allow for short and concise statements. The expression self.incoming.source
builds a set of a node’s immediate predecessors. From each predecessor, the value
of the attached isReachable instance is requested through an invocation of the cor-
respondingly named operation isReachable(). It is important to note that these
attribute access operations cannot be implemented through standard function calls
as this would lead to an infinite recursion in the case of backward edges. Instead,
the responsibility for managing the invocation order for rules and the provisioning
of the correct instance values lies with the data-flow solver (cf. Section 6.4 and
Section 6.5).
If at least one of the retrieved instance values is true, the returned result for the

current node is also true. In summary, we can conclude that this specification is
a direct implementation of the declarative definition of the reachability property
which has been presented above.
Figure 6.5 shows an abstract representation of the attributed metamodel with

a focus on the structural composition of the attribution constructs. The diagram
depicts the elements of the attribution model and the classes from the target meta-
model at which the occurrences are annotated.
In this diagram, it can be seen that the two occurrences of the assignment at-

tribute isReachable are attached to the startnode and node classes from the target

1Section 6.2.2 demonstrates how this assignment can be complemented by a constraint which
generates an appropriate feedback message highlighting the problematic element(s).

2The declarations of this attribute and its datatype are not shown in the diagram.
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Figure 6.5.: Structure of the abstract syntax of the attributed metamodel depicted
in Figure 6.3 [SB13].

metamodel via extension containers. This representation illustrates how this ap-
proach manages to ensure a clear separation between an existing modeling language
and the components of the attached analysis.

6.2. Concrete Syntax

In the last section, we introduced the attribution metamodel which constitutes the
abstract syntax of the analysis specification language. For a practical application
of this model-based DSL, we still have to devise a concrete syntax by assigning
syntactical representations to the language constructs.
This process requires a decision on the type of the language. Typically, models

are represented as diagrams or in a textual format depending on the properties of
the language and its intended use. One option would be to visualize attributes as
elements connected to the classes in the target metamodel’s diagram. Since MOF
already defines a commonly used graphical syntax for metamodels, an extension of
metamodel diagrams with attribution elements could therefore resemble the visu-
alization of OCL expressions. Another method would be the definition of a tex-
tual DSL that uses cross-model links to attach analysis specifications to metamodel
classes.

Based on an examination of the design goals and challenges listed in Section 4.2, it
has been decided that only the second approach, a text-based language, can fulfill the
requirements of our application scenario. In detail, this choice has been motivated
by the following considerations:

∙ The attribution metamodel contains only a small number of core concepts
whose relationships define a very specific structure for language expressions.
It is therefore possible to develop a simple and concise textual representation of
these elements which is easy to learn and can be understood even by someone
who is not familiar with the syntax. Support for inexperienced users may be
provided through features such as syntax highlighting and autocompletion.
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∙ In many respects, working with text documents simplifies the development
process. For example, the version control systems that are used to manage
program code are also able to support collaborative work on other types of
textual artifacts. Because metamodels and analysis annotation models are
separate entities, these artifacts can also be worked on independently.

∙ Using default text editing functions, textual specifications can be easily split
and combined, enabling a modular approach to analysis management. In this
context, we can envision an extension of the presented technique that supports
the implementation of complex libraries of analysis functions. Similar to the
class concept employed in object-oriented programming languages, an analysis
could subclass existing specifications and thereby automatically inherit their
elements or overwrite them with more specialized definitions.

∙ A graphical annotation of metamodels would require an extension of existing
MDE tooling environments. Since we explicitly stated full compatibility with
existing tools as a central design goal, this is not a viable option. It would
also contradict the previous point of managing metamodels and attributions
separately since the metamodel’s diagram would also have to include the at-
tribution elements.

∙ Because of the structural properties of attributions, it is inherently difficult to
specify them using a graphical syntax. Elements such as attribute definitions
or semantic rules constitute global definitions which can be referenced and
reused in different contexts. It is therefore not clear where these elements
should be displayed in a metamodel diagram.

In order to properly define a domain-specific language, it is not sufficient to just
assign concrete representations to the language constructs. A clear mapping between
the elements of the abstract and the concrete syntax has to be provided as well.
The grammar presented in Section 6.2.1 not only defines the concrete syntax but
also links the textual representations to the respective classes in the attribution
metamodel. In Section 6.2.2, we use the running example from the last section to
illustrate how analyses can be formalized in the proposed language.

6.2.1. Specification Syntax

To realize the attribution DSL, the facilities of the Xtext language workbench have
been used. The basic principles and techniques behind this toolset are described
in more detail in Section 7.1.4. Aside from being able to automatically generate
parsers that transform textual expressions into model-based abstract syntax trees,
it also supports cross-references between (model) objects, a feature not found in
traditional compiler tools based on context-free languages.
Production rules in Xtext are written in a notation that is similar to the EBNF

with additional constructs for encoding cross-reference relationships and specifying
mappings to metamodel elements.
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Standard rules3 are written using the following syntax:
<production rule name> returns <metamodel class> :

’<text> ’
<class attribute> = <lexer rule>
<containment reference> += <production rule>
<cross reference> += [ <metamodel class> ] ;

The semantics of these elements can be described as follows:

∙ <production rule name> is the name by which a rule can be referenced inside
the grammar. By convention, we use the name of the return type (see below).

∙ returns <metamodel class> determines the type of the model object that
will be returned by this rule.

∙ <text> that is part of the source code is enclosed in apostrophes.

∙ <class attribute> values are parsed using lexer rules such as ID or STRING.

∙ <containment reference> delegates to another production rule to recursively
parse contained text fragments and organize the resulting model elements in
a containment hierarchy.

∙ <cross reference> sets the value of a cross-reference in the model by speci-
fying the type of the target element that can be referenced.

∙ Additional operators can be applied to parser instructions to indicate optional
constructs (?), determine multiplicity (+, *) and allow unordered groups (&).

The concrete syntax incorporates all relevant artifacts of the specification lan-
guage: Attribute definitions, attribute extensions, semantic rules and datatypes. Except
the extensions (and the therein contained occurrences), all elements of an attribution
can be cross-referenced. The arrangement of the production rules in the following
descriptions reflects the package structure of the AttrMM metamodel.

Attribution Package

Each AttrMM model has exactly one attribution collection object which represents
the model’s root element:
At t r i bu t i onCo l l e c t i on returns attribution::AttributionCollection :
( imports+=Import )*
( attributions+=Att r ibut i on )* ;

Collections serve as containers for imports and attributions and do not possess an
explicit syntactical representation themselves. Instead, the existence of a collection
is assumed for each document.

Import returns attribution::Import :
’import ’ importURI=STRING ’; ’ ;

3A standard rule returns an instance of the specified metamodel class. Enumeration types can
be encoded using dedicated enum rules.
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Imports are used to reference the target metamodels, i.e. the abstract syntax of
the modeling language that should be enriched with analysis annotations. While
not strictly required by DFA solvers4, Xtext relies on these import statements to
properly resolve cross-references between attribute extensions and classes in the
target metamodel.

The second kind of element that can be part of an attribution collection are the
attributions themselves:
Att r ibut i on returns attribution::Attribution :
’attribution ’ id=ID
’{ ’

( ’name ’ name=STRING ’ ; ’ )?
( ’version ’ version=STRING ’ ; ’ )?
( ’description ’ description=STRING ’ ; ’ )?
( ( attrDefinitions+=At t r i bu t eDe f i n i t i o n )* &

( attrSemanticRules+=SemanticRule )* &
( attrDataTypes+=AttrDataType )* &
( attrExtensions+=AttrExtens ion )* )

’} ’ ;

An element of this type starts with the keyword attribution followed by a
(unique) identifier. Through this identifier, a user can constrain the fixed-point
computation to the attributes contained in specific attributions. Additional meta
information can be encoded in optional tags. These fields - name, version and descrip-
tion - are part of the AttributionElementWithID type (cf. Section 6.1.2) and therefore
also available at other elements. Statements for attribute definitions, semantic rules,
datatypes and extensions are also contained in the body of the attribution element
and can be specified in an arbitrary order.

Attributes Package

This package handles the specification of attributes and occurrences and the assign-
ment to classes in the target metamodel.

Using the following syntax, assignment and constraint attributes can be declared:
At t r i bu t eDe f i n i t i on returns attributes::AttrDefinition :
’attribute ’ ( At t rAs s i gnDe f i n i t i on | Att rCons tDe f in i t i on ) ;

At t rAs s i gnDe f i n i t i on returns attributes::AttrAssignDefinition :
’assignment ’ id=ID ( name=STRING )? ( ’[ ’ description=STRING ’] ’ )? ’: ’
dataType=[datatypes::AttrDataType ]
’initWith ’ initializationRule=[semanticrules::AttrSemanticRule ] ’; ’ ;

At t rCons tDe f in i t i on returns attributes::AttrConstDefinition :
’constraint ’ id=ID ( name=STRING )? ( ’[ ’ description=STRING ’] ’ )? ’: ’
severity=ConstSever i ty
( violationID=STRING )? ’; ’ ;

enum ConstSever i ty returns attributes::ConstSeverity :
i n f o | adv ice | warning | e r r o r ;

For assignments, the declaration has to start with the keyword attribute followed
by assignment. For constraints, the term constraint is used instead. In each case,
the second keyword instructs the parser to interpret the following characters using

4The required artifacts may also be directly configured inside the solver module (cf. Section 8.3).
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the correct production rule for the respective type. Here, the grammar directly
reflects the structure of the attribution metamodel with an abstract element and
two concrete specializations.
A unique identifier is required for both attribute types while the meta information

tags are again optional. The remaining part of the declaration syntax is different
for both elements. Each assignment has to define cross-references to a datatype and
to an initialization rule. Constraints, on the other hand, possess a severity level and
an optional message that can be shown to the user if the check fails.

Defining occurrences and binding them to classes is now simply a matter of es-
tablishing the correct relationships between the existing elements:
AttrExtens ion returns attributes::AttrExtension :
’extend ’ attributedClass=[ecore::EClass ]

’with ’ ’{ ’ (attributes += AttrOccurrence )* ’} ’ ;

AttrOccurrence returns attributes::AttrOccurrence :
’occurrenceOf ’ definedBy=[attributes::AttrDefinition ]

’calculateWith ’ calculatedBy=[semanticrules::AttrSemanticRule ] ’; ’ ;

An attribute extension starts with the keyword extend followed by a reference to
a class from the target metamodel. In its body, an extension lists the occurrences
which should be attached to this class. Each occurrence is characterized by an
attribute type and a semantic rule that computes its data-flow iteration values.
Meta tags are not available for these elements since they merely point to existing
concepts which have been defined elsewhere.

SemanticRules Package

All semantic rules conform to a single class type in the attribution metamodel. How-
ever, different methods for executing the corresponding code also require different
parameters. To implement this property, the rules governing the interpretation of
these statements employ the same principle used for parsing attribute definitions:
A single production rule serves as starting point and redirects the parser to the
matching subtype. Currently, the types java, ocl and auto are supported.
SemanticRule returns semanticrules::AttrSemanticRule :
’rule ’ ( SemanticRuleJava | SemanticRuleOCL | SemanticRuleAuto ) ’; ’ ;

The keyword java indicates that the rule is written in the Java language.
SemanticRuleJava returns semanticrules::AttrSemanticRule :
’java ’ id=ID ( name=STRING )? ( ’[ ’ description=STRING ’] ’ ) ? ’: ’
ruleType=SemanticRuleTypeJava
rule=STRING ;

enum SemanticRuleTypeJava returns semanticrules::SemanticRuleType :
j ava_ca l l=’call ’ | j ava_constructor=’constructor ’ | j ava_in l i ne=’inline ’ ;

The enumeration SemanticRuleTypeJava defines multiple techniques that can be
used to execute Java code. A call invokes a method using the name specified in
the rule field while constructor instantiates the class of the given name. Finally, by
specifying the ruleType as inline, Java source code can be directly embedded in the
rule’s definition (cf. Section 6.4.3).

OCL expressions may be written in either the standard or in the imperative form:
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SemanticRuleOCL returns semanticrules::AttrSemanticRule :
’ocl ’ id=ID ( name=STRING )? ( ’[ ’ description=STRING ’] ’ ) ? ’: ’
ruleType=SemanticRuleTypeOCL
rule=STRING ;

enum SemanticRuleTypeOCL returns semanticrules::SemanticRuleType :
o c l =’standard ’ | impocl=’imperative ’ ;

Finally, the type auto provides the null element as well as a default value constant
which can be used to initialize the fixed-point computation (by interpreting this
value as the top element ⊤, cf. Section 9.2 for a demonstration of how this INIT
constant can be employed in practice):

SemanticRuleAuto returns semanticrules::AttrSemanticRule :
’auto ’ id=ID ( name=STRING )? ( ’[ ’ description=STRING ’] ’ ) ? ’: ’
ruleType=SemanticRuleTypeAuto ;

enum SemanticRuleTypeAuto returns semanticrules::SemanticRuleType :
const=’constant ’ | n u l l =’null ’ ;

DataTypes Package

The definition of the syntax for datatypes follows a similar pattern. A datatype
declaration starts with type followed by an additional characterization that distin-
guishes between different kinds of datatypes.

AttrDataType returns datatypes::AttrDataType :
’type ’ ( AttrDataTypeJava | AttrDataTypeOCL) ’ ; ’ ;

If an attribute uses Java objects to represent its values, it must be assigned a
corresponding datatype:

AttrDataTypeJava returns datatypes::AttrDataType :
’java ’ id=ID ( name=STRING )? ( ’[ ’ description=STRING ’] ’ ) ? ’: ’
dataType=DataTypeJava ;

enum DataTypeJava returns datatypes::DataType :
Java_Object=’object ’ ;

Datatypes for OCL are based on the OCL typing system. The most commonly
used types are encoded in the enumeration DataTypeOCL and can be directly ref-
erenced. Alternatively, it is possible to set the definition to manual and provide a
custom declaration.

AttrDataTypeOCL returns datatypes::AttrDataType :
’ocl ’ id=ID ( name=STRING )? ( ’[ ’ description=STRING ’] ’ ) ? ’: ’

(dataType=DataTypeOCL | dataType=DataTypeOCLManual dataTypeManual=STRING) ;

enum DataTypeOCL returns datatypes::DataType :
OCL_Integer=’integer ’ | OCL_Boolean=’boolean ’ | OCL_Real=’real ’ |
OCL_String=’string ’ | OCL_Set_String_=’set(string) ’ | OCL_Set_Integer_=’set(integer) ’ |
OCL_Set_Any_=’set(any) ’ | OCL_OrderedSet_String_=’orderedset(string) ’ |
OCL_OrderedSet_Integer_=’orderedset(integer) ’ | OCL_OrderedSet_Any_=’orderedset(any) ’ |
OCL_Sequence_String_=’sequence(string) ’ | OCL_Sequence_Integer_=’sequence(integer) ’ |
OCL_Sequence_Any_=’sequence(any) ’ | OCL_Bag_String_=’bag(string) ’ |
OCL_Bag_Integer_=’bag(integer) ’ | OCL_Bag_Any_=’bag(any) ’ ;

enum DataTypeOCLManual returns datatypes : : DataType :
OCL_ManualDeclaration=’manual ’ ;
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6.2.2. Running Example

We will now demonstrate the usage of the presented domain-specific language in the
context of a use case. For this purpose, we revisit the running example that has
been introduced in Section 6.1.3.

Algorithm 3 The attribution reachability_analysis

1: attribution reachability_analysis

2: – attribute that indicates whether a node is reachable from the start node
3: attribute assignment isReachable : OCLBoolean
4: initWith boolean_false;

5: – ocl rule to check whether at least one of the direct predecessors is reachable
6: rule ocl node_isReachable : standard
7: “self.incoming.source.isReachable()->includes(true)”;

8: – attach ’isReachable’ to ’nodes’ and compute with rule ’node_isReachable’
9: extend node with {
10: occurrenceOf isReachable
11: calculateWith node_isReachable;
12: }

13: – attach ’isReachable’ to ’startnodes’ (overwriting the ’node’ occurrence) and always set to true
14: extend startnode with {
15: occurrenceOf isReachable
16: calculateWith boolean_true;
17: }
18: }

Using the textual domain-specific language, we are able to give a full specification
of the reachability analysis as shown in Algorithm 3.

Algorithm 4 The attribution reachability_validation

1: attribution reachability_validation

2: – constraint that indicates whether a node is reachable
3: attribute constraint checkReachability : error
4: "unreachable node detected";

5: – use the result of attribute ’isReachable’
6: rule ocl node_checkReachability : standard
7: “self.isReachable()”;

8: – attach ’checkReachability’ to ’nodes’ and compute with rule ’node_checkReachability’
9: extend node with {
10: occurrenceOf checkReachability
11: calculateWith node_checkReachability;
12: }
13: }

The constraint checkReachability specified in the attribution listed in Algorithm 4
processes the results computed for isReachable instances to provide corresponding
feedback to the user.
In Section 4.2.2, the control-flow graph modeling language has been used to il-

lustrate some basic properties of the data-flow evaluation process. The example
given in that context computes the set of all (transitive) predecessors for each of the
graph’s nodes. To further clarify the representation of the attribution concepts in
the proposed syntax, we enhance this definition with a second analysis that deter-
mines whether a node is part of a strongly connected component (SCC). A strongly
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connected component is a maximal cyclic subgraph of a graph 𝒢 = (𝒱 , ℰ) in which,
for each pair of vertices 𝑣, 𝑤 ∈ 𝒱 , there exist paths 𝑝1 : 𝑣

*⇒ 𝑤 and 𝑝2 : 𝑤
*⇒ 𝑣

[Tar72].
This goal can be achieved in a number of ways. By reusing the results of the

predecessor analysis, it is possible to check whether a node is a predecessor of itself.
Another method would be to compare the result set of each node to the union of the
results at its direct predecessors to see whether both sets contain the same elements.
In each case, the test reveals whether a node is part of a cyclic structure while the
data-flow mechanism ensures that the final result will consist only of the maximal
cycles.
Since a control-flow can contain multiple SCCs, a further characterization is re-

quired which uniquely identifies the SCC the respective node belongs to. By defini-
tion, each node can only be part of exactly one SCC and all of its members share
the same predecessors. If it is determined that a node belongs to a SCC, a matching
identifier can therefore be generated by simply mapping the node’s transitive set of
predecessors to a single value, e.g. using a hash function.

Algorithm 5 The attribution flow_analysis

1: attribution flow_analysis

2: – the set of all predecessors
3: attribute assignment allPredecessors : OCLSet
4: initWith set_empty;

5: – identifies the SCC the node belongs to (or ’0’ otherwise)
6: attribute assignment sccID : OCLInteger
7: initWith int_zero;

8: – create union of direct predecessors and transitive predecessors at the direct predecessors
9: rule ocl node_allPredecessors : imperative
10: “var directPred : Set(node) := self.incoming.source->asSet();
11: var transitivePred : Set(node) := self.incoming.source.allPredecessors()->asSet();
12: return directPred->union(incomingPred)”;

13: – compare local ’allPredecessors’ to predecessors’ ’allPredecessors’ and generate identifier
14: rule ocl node_sccID : imperative
15: “var selfPred : Set(node) := self.allPredecessors()->including(self);
16: var allPred : Set(node) := self.incoming.source.allPredecessors()->asSet();
17: if (allPred=selfPred) then
18: return selfPred->hashCode()
19: else return 0 endif ;”;

20: – alternative method to detect SCC membership: check if node is predecessor of itself
21: rule ocl node_sccID_alternative : standard
22: “if (self.allPredecessors()->contains(self)) then
23: return self.allPredecessors()->hashCode()
24: else return 0 endif ;”;

25: – attach ’allPredecessors’ and ’sccID’ to ’node’
26: extend node with {
27: occurrenceOf allPredecessors
28: calculateWith node_allPredecessors;

29: occurrenceOf sccID
30: calculateWith node_sccID;
31: }
32: }

The attribution shown in Algorithm 5 defines the attributes allPredecessors and
sccID to implement both the predecessor and the SCC analysis:
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Note that there are multiple ways to structure analyses. The examples in this sec-
tion have been split into three attributions: reachability_analysis, reachability_validation
and flow_analysis. Ultimately, the decision on which elements should be part of
which attribution is up to the developer. This way, both the specification and the
evaluation process can be organized and modularized.
For example, reachability_analysis and reachability_validation could both be part

of the same attribution collection (i.e. be located in a single text document). Al-
ternatively it would also be possible to combine the definition of isReachable and
checkReachability in a single attribution or even split them across separate files. Re-
gardless of the chosen method, once the attribution(s) have been loaded by a DFA
solver5, the user is able to choose whether only the reachability computation should
be carried out or if the validation that generates the constraint messages should be
performed as well6.
For the presented flow_analysis attribution, it could also make sense to move the

predecessor computation into a separate attribution which could then be reused as
a module by other analyses that depend on its results.

6.3. Analysis Instantiation

Once an analysis has been defined for a metamodel, it can be instantiated for de-
rived models. This process is a prerequisite for the execution of the fixed-point
computation. In this section, we detail the principles behind the instantiation of
flow analysis attributions and the necessary steps to carry out this task.
In the first step, we describe the instantiation metamodel. This specification

encodes the structure of attribute instances and is the topic of Section 6.3.1. In
Section 6.3.2, we examine basic properties of the instantiation process while the
corresponding algorithms are listed in Section 6.3.3. Like in the previous sections,
we will demonstrate the application of the presented techniques in the context of
the running example. This is the subject of Section 6.3.4.

6.3.1. Instantiation Metamodel

In Section 6.1.1 we motivated and detailed an architectural layout for the technical
implementation of the analysis technique. An integral part of this concept is the
partitioning of the analysis language. To avoid any modification to the MOF’s M3
layer, two different metamodels are used to describe the structure of attribute spec-
ifications and instantiations respectively. The attribution metamodel AttrMM that
implements the abstract specification syntax has been presented in Section 6.1.2.
Now, we will focus on the second part, the instantiation metamodel InstMM.
This artifact provides a container for instantiated attributions by encoding the

structural properties of attribute instances as well as their relationships to all of the

5Section 6.3.3 describes how multiple attributions can be merged.
6Techniques for the configuration and customization of analyses are discussed in Section 7.3.1. The
Model Analysis Framework employs the Evaluation Strategy concept to constrain the evaluation
process to a relevant subset of attributes.
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involved modeling artifacts. This encompasses the instance’s defining occurrence
from the attribution model and the context object from the target model. By
tying together the related concepts, this definition realizes a sound, model-based
representation of these elements.

Figure 6.6.: Analysis instantiation metamodel (InstMM).

The instantiation metamodel InstMM is shown in Figure 6.6. Its elements and
their properties can be characterized as follows:

AttributionInstantiation
This is the root object that contains all attribute instances (attrInstances) that
have been created for the target model during the instantiation process.

AttrInstance
This abstract class represents a single instantiated attribute attached to a
specific object in the target model. The associated model element is referenced
through the attributedObject relationship while createdBy connects the instance
to its defining occurrence from the attribution model. Since the occurrence
is itself connected to an attribute definition, this link implicitly provides the
attribute type of the instance. The class in the target metamodel at which the
occurrence has been annotated is also available through this reference.

The class attributes initialized and executed can be used by fixed-point algo-
rithms to store object-dependent data during the solving process. The field
traceObject can provide an alternative representation of a model object.

AttrAssignInstance
Assignment instances represent instantiated occurrences of attribute assign-
ments. Consequently, the value field holds a value from the attribute’s datatype
domain. Its contents may change during the evaluation process as it is first
set to the initialization value and then updated with new fixed-point iteration
results.
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AttrConstInstance
A constraint instance represents an instantiation of a constraint occurrence.
The field passed indicates whether the validation of the constraint was suc-
cessful. The message string can be modified by data-flow rules to provide
customized problem indicators that can be displayed to the user afterwards
(not to be confused with the constant violationID of the constraint class).

EObject
The EObject class from the Ecore meta metamodel is the generic type of all
elements in target models. In the instantiation metamodel, it represents the
context element of the attribute instance, i.e. the model element to which the
instance has been attached.

AttrOccurrence
The occurrence is part of the attribution and denotes the type of an instance.

6.3.2. Instantiation Process

Instantiation refers to the process in which one or more7 attributions that extend
a single target metamodel are instantiated for a given model. In this phase, an
attribute instance is created for each attribute occurrence annotated at the class
type of a model element. In the following paragraphs, we give a description of the
required input, the instantiation process itself and the resulting artifacts.

Instantiation Artifacts

Instantiation requires three different types of interconnected artifacts as input:

1. The target metamodel, i.e. the abstract syntax of a modeling language.

2. One or more attributions that have been defined for this metamodel.

3. A model conforming to the target metamodel.

Generally speaking, the output of the instantiation process consists of a set of
attribute instances associated with elements in the target model. Their obvious
role in the execution of an analysis is to hold the data-flow values. However, since
the instantiation metamodel establishes connections between the different model
artifacts, they also encode detailed information about the relationship between the
analysis specification and the target modeling language.
To enable a better understanding of the properties of attribute instances, we

can visualize the relationships between the relevant modeling artifacts in a ma-
trix: Figure 6.7 provides a conceptual overview depicting how the elements from
the three input artifacts are all tied together by the generated instances. Essen-
tially, the instantiation semantics describe how to transfer attribution annotations

7If multiple attributions are provided, they can be merged into a single attribution before the
instantiation process is carried out. This is addressed in Section 6.3.3.
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Figure 6.7.: Relationships between model and attribution concepts.

(attributedClass) to the model level (attributedObject), taking into account the gen-
eralization hierarchy between classes in the target metamodel.

It is worth mentioning that the four model artifacts can be classified according to
different criteria:

1. With respect to the instantiation process, a distinction can be made between
input (metamodel, attribution, model) and output (instantiation) artifacts.

2. It is also possible to distinguish between the (conceptual) abstraction layers:
The attributed metamodel consisting of the attribution and the target meta-
model is located on the language definition layer. On the other hand, the
model together with its associated instantiation (the attributed model) are
both expressions that conform to these syntactical definitions.

3. As a variation of the previous point, the artifacts can also be classified on the
basis of their technical properties. While an attribution effectively constitutes
an abstract syntax, its actual format is that of a M1 model. The target model
and the instantiation are also M1 artifacts while the target metamodel resides
on the M2 layer.

4. Finally, the artifacts can be grouped according to their respective function.
Metamodels and models represent the syntactical components of modeling
languages while attributions and instantiations constitute analyses.
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Inheritance Semantics

In order to provide a consistent integration with MDE concepts, the instantiation
semantics for analyses has to follow the same guiding principles that are also applied
to models. It is therefore clear that an occurrence of an attribute at a metamodel
class has to result in an instance at model elements of this specific type. If the target
class is part of a generalization hierarchy, this is also true for subclass elements as
they implicitly inherit the class type of their parents.
Another important aspect in this context is the possible redefinition of attributes.

In certain cases, it is necessary to compute instances at subtypes with a different
rule than instances of the same attribute at a parent class. For this purpose, an
occurrence of a specific attribute attached to a class may be overwritten at a child
class with another occurrence of the same attribute type. An example for this can
be found in the reachability analysis where the attribute isReachable is redefined at
the startnode class. An instance of an attribute must therefore always be derived
from the occurrence annotated at the element’s most specific (super)class.

(a) Inheritance with redefinition (b) Diamond-shaped inheritance

Figure 6.8.: Inheritance of attribute occurrences with redefinition.

The examples shown in Figure 6.8 illustrate this principle. In the diagrams, oc-
currences that have been specified in the attribution are shown in red while the
occurrences whose presence is implicitly assumed based on application of the gener-
alization semantics are marked green.
As indicated in Figure 6.8(a), the redefinition of attributes is straightforward if the

metamodel does not contain multiple inheritance. In this example, two occurrences
of the same attribute have been attached to Class1 and Class3. The occurrence anno-
tated at Class1 is inherited by its child Class2. At Class3, this element is overwritten
by another occurrence which is then again inherited by Class4.
Figure 6.8(b) demonstrates the behavior in the case of a diamond-shaped general-

ization hierarchy. It comes as no surprise that Occurrence1 is then inherited by both
Class2 and Class3. However, an interesting situation arises at Class4 as this element
now obtains two occurrences of the same attribute from its parents. This does not
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present a problem though as both elements originate from the same occurrence at-
tached to Class1. We can conclude that conflicts that arise from multiple inheritance
can be resolved for occurrences which share the same point of origin. Consequently,
it would also not be a problem if the root element Class1 was removed entirely from
the diagram and Occurrence1 was instead attached to either Class2 or Class3.

Figure 6.9.: Diamond-shaped inheritance with unclear semantics.

Unfortunately, it is not always possible to resolve these conflicts because certain
circumstances prevent the identification of a unique source occurrence. This is
an inherent problem with multiple inheritance and also exists in object-oriented
programming languages such as C++ (ambiguous base class).
The problem is illustrated in Figure 6.9. Again, the metamodel contains a diamond-

shaped generalization hierarchy with an occurrence attached to the root element.
Since the attribute is now redefined at Class2, Class4 inherits two different occur-
rences of the same attribute. This results in undefined behavior as instances associ-
ated with Class4 objects would now be associated with two different semantic rules8.
The same would be true if Class1 was removed and Occurrence1 instead had been
attached to Class3. Since this situation cannot be meaningfully resolved, this is a
violation of the well-formedness rules. This case can be detected through a static
validation of the attribution specification and subsequently be indicated to the user.
Note that if an additional occurrence Occurrence3 was attached to Class4, the

specification would be nevertheless be valid. In this case, the conflicting occurrences
Occurrence1 and Occurrence2 would be overwritten and a new, unique declaration
would be available.

6.3.3. Attribute Instantiation

We now present algorithms in pseudo code that implement the instantiation process.

Merging Attributions

To simplify the following steps, multiple attributions contained in the analysis ar-
tifacts can be merged. This can be accomplished through a combination of their
contents as shown in Algorithm 6.

8In practice, it would not be possible to instantiate attributes at Class4 objects at all, since the
syntax of InstMM allows only one defining occurrence.
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Algorithm 6 Merging attributions

1: function mergeAttributions(Set<Attribution> inputAttributions)
2: mergedAttribution = new Attribution
3: for all (inputAttribution : inputAttributions) do
4: mergedAttribution.definitions += inputAttribution.definitions
5: mergedAttribution.datatypes += inputAttribution.datatypes
6: mergedAttribution.semanticrules += inputAttribution.semanticrules
7: mergedAttribution.extensions += inputAttribution.extensions

return mergedAttribution

Computing available Attribute Occurrences

Before attribute instances can be created for a model object, it must first be deter-
mined which occurrences are available for the object’s class type. To provide proper
support for attribute inheritance and the redefinition of attributes at subtypes, it is
necessary to evaluate the generalization relationships in the metamodel.
A simple approach to compute the set of occurrences for a model object would con-

sist of iterating over its class hierarchy to identify all matching occurrences. Starting
with the element’s concrete class, all occurrences in the attribution that have been
assigned to this type are added to a set. Through a traversal of the generalization
hierarchy, this collection can then be extended with occurrences defined at parent
classes. Redefinition semantics demand that only the most specific occurrence of
an attribute is kept. Occurrences at superclasses may therefore only be added if an
overriding occurrence of the same attribute is not already present in the set.
This behavior is implemented in Algorithm 7. The function collectOccurrences

returns the occurrences which are available at a specific model object. For this
purpose, the method addOccurrences traverses the generalization hierarchy upwards
to collect occurrences assigned to parent classes. In line [3], the occurrences for
the respective class are read from the attribution. Lines [7-11] check whether an
occurrence of the same attribute type is already present which would constitute a
redefinition of this attribute. If this is not the case, it is added to the collection
of occurrences for the model element [13-14]. Finally, this process is recursively
invoked for the respective parents [16-17].

Static Enhancement of the Attribution

It is obvious that this method is inefficient since the traversal of the generalization
hierarchy has to be repeated for each object. To alleviate this problem, occurrence
availability can be computed once for all classes in the target metamodel and kept
in an internal data structure. We propose an alternative method that implements
this approach by storing the generated information in the abstract syntax of the
attribution language. The basic idea is to generate a new attribution that enhances
the original specification to reflect the presence of inherited elements. In other words,
occurrences that are available at metamodel classes because they have been defined
at a parent class are made explicit by attaching a copy of the original specification to
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Algorithm 7 Determining available attribute occurrences for model objects

1: function collectOccurrences(Attribution attribution, Object modelObject)
2: ◁ collect occurrences for the object’s class and superclasses

3: objectOccurrences = new Set⟨Occurrence⟩
4: addOccurrences(attribution, object.class, objectOccurrences)

return objectOccurrences

1: function addOccurrences(Attribution attribution, Class class, Set⟨Occurrence⟩
objectOccurrences)

2: ◁ get occurrences assigned to this specific class

3: classOccurrences = getAssignedOccurrences(attribution, class)
4: ◁ examine the occurrences

5: for all (classOccurrence : classOccurrences) do
6: ◁ check if occurrence with same attribute type is already present

7: attributeAlreadyPresent = false
8: for all (objectOccurrence : objectOccurrences) do
9: if (classOccurrence.definition == objectOccurrence.definition then
10: attributeAlreadyPresent = true
11: break
12: ◁ add occurrence only if its attribute type is not already represented

13: if (not attributeAlreadyPresent) then
14: objectOccurrences.add(classOccurrence)

15: ◁ recursively traverse generalization hierarchy

16: for all (superClass : class.superClasses) do
17: addOccurrences(objectOccurrences, superClass)

the children. This enhanced version of the attribution can then be used to instantiate
the analysis for multiple models and it can even be persisted to avoid a repeated
execution of this step.

Algorithm 8 defines the function enhanceAttribution which takes the attribution
that should be augmented as input. In lines [3-6], a helper map is built that asso-
ciates classes with the attribute definitions which have been assigned to them via
occurrences. Lines [8-10] then invoke the function inheritOccurrence for each occur-
rence in the attribution to attach copies to all child classes, provided they don’t
redefine the attribute. This method iterates over the direct subclasses [3] and re-
trieves the list of available attribute definitions from the precomputed helper map
[5]. If the current attribute is not in this collection [7], the subclass does not provide
a redefinition and a copy of the occurrence must therefore be attached to it [9]. The
function then recursively invokes itself to process all children in the generalization
hierarchy [12]. To avoid separate recursive calls for each branch of diamond-shaped
inheritance structures, it is essential to update the helper map [11].

In its current form, the algorithm is not able to detect problematic cases such as
the one shown in Figure 6.9. Instead, one of the conflicting occurrences would be
inherited at random (depending on the order in which the elements are processed)
which would subsequently be regarded as a redefinition. To detect this situation, the
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Algorithm 8 Statically enhancing attributions with inherited attributes

1: function enhanceAttribution(Attribution attribution)
2: ◁ create a map that links classes to their attached attributes

3: classAttributeMap = new Map⟨Class, Set⟨Attribute⟩⟩
4: for all (extension : attribution.extensions) do
5: for all (occurrence : extension.occurrences) do
6: classAttributeMap.put(extension.class, occurrence.definition)

7: ◁ iterate over all defined occurrences and inherit them to subclasses

8: for all (extension : attribution.extensions) do
9: for all (occurrence : extension.occurrences) do
10: inheritOccurrence(classAttributeMap, extension.class, occurrence)

1: function inheritOccurrence(Map⟨Class, Set⟨Attribute⟩⟩ classAttributeMap,
Class class, Occurrence occurrence)

2: ◁ iterate over the direct subclasses

3: for all (subclass : class.subClasses) do
4: ◁ get the attributes attached to the class

5: subclassAttributes = classAttributeMap.get(subclass)
6: ◁ check if the subclass overwrites this attribute

7: if (not subclassAttributes.contains(occurrence.definition)) then
8: ◁ inherit occurrence to subclass

9: attachOccurrence(subclass, occurrence)
10: ◁ update map and invoke function recursively for subclass

11: subclassAttributes.add(occurrence.definition)
12: inheritOccurrence(classAttributeMap, subclass, occurrence)

algorithm must be able to distinguish between occurrences specified in the original
attribution and occurrences that were later added during the inheritance extension
process. This can be achieved through a second data structure that stores the point
of origin for newly created occurrences. The conditional statement in line [7] would
then be able to differentiate between original specifications and newly generated
elements.

Specified Attributes
Class Attributes

Class1 {Attribute1}
Class2 {Attribute1}

Added Occurrences
Class Occurrences

Class4 {Attribute1.Occurrence2}
Class3 {Attribute1.Occurrence1}

Table 6.1.: Conflict detection in the case of the example from Figure 6.9.

Table 6.1 demonstrates this method for the example presented in Figure 6.9. The
first table lists the now immutable contents of classAttributeMap that reflect the
attachment of the same attribute to both Class1 and Class2. Assuming the recursion
first traverses the left branch of the generalization hierarchy, an entry is added to
the second table that indicates the attachment of a copy of Occurrence2 at Class4.
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While processing the right branch, another entry is added for Class3 which inherits
Occurrence1. The problem that arises at Class4 can now be detected as the second
table already contains a conflicting entry - Occurrence2 - for this class with the same
attribute type as Occurrence1.

Using Data-flow Analysis to compute Inheritance

It is worth mentioning, that the inheritance of attribute occurrences can also be
computed using DFA.

Algorithm 9 The attribution inherit_attributes

1: attribution inherit_attributes

2: – map of available attribute occurrences
3: attribute assignment availableOccurrences : Map(AttrDefinition, AttrOccurrence)
4: initWith map_empty;

5: – create union of locally defined occurrences and inherited occurrences
6: rule eclass_availableOccurrences
7: “var Map(AttrDefinition, AttrOccurrence) allAvailableOccurrences := Map{};
8: for (Map attributeMap in self.superClass.availableOccurrences())
9: allAvailableOccurrences := allAvailableOccurrences->include(attributeMap);
10: return allAvailableOccurrences->include(self.getOccurrences())”

11: – attach ’availableOccurrences’ to ’EClass’
12: extend EClass with {
13: occurrenceOf availableOccurrences
14: calculateWith eclass_availableOccurrences;
15: }
16: }

The attribution shown in Algorithm 9 attaches the attribute availableOccurrences
to EClass. Its result values are maps where attribute definitions are used as keys
and the relevant occurrences of the respective attribute as values.

The rule eclass_availableOccurrences (which is specified in pseudocode) first queries
the available occurrences from the supertypes of the respective class and aggregates
them in the result map allAvailableOccurrences. It then looks up the occurrences
annotated at the local class using getOccurrences() and also stores them in the map.

This process ensures that, for each attribute type, only the most specific occur-
rence is retained. Occurrences of the same type that are redefined at the local class
will be replaced when updating the result map.

The well-formedness rule that validates whether multiple inheritance results in an
ambiguous specification can also be given in the form of an attribution.
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Algorithm 10 The attribution inherit_attributes_check

1: attribution inherit_attributes_check

2: – checks for illegal multi-inheritance cases
3: attribute constraint inheritanceCheck : error
4: "illegal multi-inheritance detected";

5: – check inherited occurrences
6: rule eclass_inheritanceCheck
7: “var Map(AttrDefinition, Set(AttrOccurrence)) conflictingOccurrences := Map{};
8: for (Map attributeMap in self.superClass.availableOccurrences())
9: for (KeyValuePair attributeEntry in attributeMap)
10: conflictingOccurrences := conflictingOccurrences->include(attributeEntry.key,
11: conflictingOccurrences->get(attributeEntry.key)->include(attributeEntry.value));
12: for (KeyValuePair attributesEntry in conflictingOccurrences)
13: if (attributesEntry.value->size() > 1 and
14: not self.getDefinitions()->contains(attributesEntry.key))
15: return false
16: return true”

17: – attach ’inheritanceCheck’ to ’EClass’
18: extend EClass with {
19: occurrenceOf inheritanceCheck
20: calculateWith eclass_inheritanceCheck;
21: }
22: }

The rule eclass_inheritanceCheck in the attribution in Algorithm 10 builds a map
conflictingOccurrences that relates the attribute definitions that are inherited by the
local class to a set of the relevant occurrences. If this set contains more than one
occurrence, conflicting information is received from the supertypes. However, this
only presents a problem if the attribute is not redefined at the local class anyway.

6.3.4. Running Example

We now apply the instantiation concept to the running example and visualize the
structure of the resulting elements in their abstract syntax.

Figure 6.10.: Control-flow model with attribute instances.

Instantiating the reachability analysis for the control-flow model results in a set
of instances that are attached to the graph’s nodes. In Figure 6.10, the instantiated
attributes are annotated as rectangles at their respective base elements. It can be
seen that, although all of these instances are of the same attribute type (isReachable),
they have been created by two different occurrences.
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Figure 6.11.: Abstract syntax of the instantiated analysis.

The abstract syntax of the involved modeling artifacts and the connections that
exist between them are shown in Figure 6.11. Because the attribute isReachable is
redefined at the startnode class, the instance that has been created at node S is
connected to another occurrence than the instances at the remaining elements.
In this case, it is assumed that the attribution specification was not enhanced to

reflect the inheritance of occurrences and instead a dynamic process such as the one
provided by Algorithm 7 is used to determine the availability of attributes at model
objects. If Algorithm 8 was used to extend the attribution, the endnode class would
appear as a separate entity in this diagram with a copy of the occurrence that has
been defined for the node class attached to it. The node E would then be connected
to this occurrence.

6.4. Rule Specification Languages

One of the design goals listed in Section 4.2.1 deals with the requirement of versa-
tility on a technical level. In the context of the specification of data-flow equations,
this refers to the ability to employ different languages to formulate these rules. The
abstract syntax of attributions provides a generic interface for rules and datatype
definitions and thereby offers the possibility to devise a highly versatile methodol-
ogy for the inclusion of different implementation languages. This section discusses
methods for adapting arbitrary executable languages for the purpose of defining
data-flow rules.
In Section 6.4.1, we discuss the general properties of the rule execution interface.

Concrete realizations of this technique (which can be regarded as starting points for
custom adaptions) have been developed for both Java and OCL and are discussed
in Section 6.4.2 and Section 6.4.3. More details about the actual implementation of
these language interfaces can be found in Section 8.1.4.

6.4.1. Requirements for Execution Languages

To be able to employ different implementation languages for writing data-flow rules,
a certain amount of flexibility is required on the analysis specification level. For
this reason, the constructs defined by the specification language’s abstract syntax
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realize a very generic framework for the invocation of arbitrary functions. More
specifically, this pertains to the properties of rule and type specifications which
themselves do not contain concrete information about the actual invocation process.
Instead, attribution rules are represented as plain text that, along with an identifier
for the respective execution language, is passed to the DFA solver. The solver can
then invoke the rule with the help of an adapter for the specified language that
is able to process the rule’s contents. For this purpose, the solver module must
implement an interface for each supported language which is able to interpret and
execute rules written in this language. Two additional requirements must be met by
these interfaces: Because the same data-flow rule may be used for the calculation of
different occurrences and even different attributes, its behavior may depend on the
attribute instance for which it is invoked. Therefore, the current execution context
must be passed to the rule. Secondly, a method must be provided for accessing the
values of other instances from inside a data-flow rule.
Because of the complex interaction patterns between the language interfaces and

the DFA algorithms, we must examine several aspects of the invocation process of
data-flow rules. First, we discuss the implications of the structural composition
of analysis specifications and their execution semantics on the execution context of
rules. Then, we investigate the process of invoking DFA rules and the related matter
of requesting the values of attribute instances in more detail. Next, we outline two
different approaches for defining the rules, namely the embedding of executable code
inside an attribution and referencing external rule specifications.

Context of Semantic Rules

The concepts from the abstract syntax that are relevant to the execution of rules
are the semantic rules themselves and the attribute datatypes. The datatype of an
attribute defines the value domain for all occurrences of this attribute and subse-
quently for all instances that are derived from these occurrences. The return type of
a rule assigned to an occurrence therefore has to match the datatype of the respective
attribute.
In an attribution specification, a semantic rule is a global definition that can

be used by multiple occurrences and thereby be invoked in different contexts. If
the respective attribute definitions have different datatypes, this means that the
corresponding rule has to return an object of the respective type depending on its
execution context. This case is not very frequent as it is usually expected that a rule
always computes a value of the same type9. However, there may be special cases,
e.g. if for convenience reasons, a combined initialization rule was used to initialize
attribute instances of different datatypes.
Some languages such as OCL use a strict type system that requires that all func-

tions possess a unique return type. Because semantic rules do not necessarily ad-

9A more common case in which the execution context influences rule behavior would be the use
of a single rule by multiple occurrences. In the running example (Figure 6.3), the startnode rule
could have been merged with the node rule. Depending on the execution context’s class type,
the implementation can then select and carry out the corresponding behavior.
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Unique contexts for the rules in the running example

Rule Context Context Unique Rule Context Identifier

Attribute Class

boolean_false isReachable isReachable::boolean_false : OCLBoolean (initialization)
boolean_true isReachable startnode isReachable::startnode : OCLBoolean (iteration)
node_isReachable isReachable node node::isReachable : OCLBoolean (iteration)

endnode endnode::isReachable : OCLBoolean (iteration)

Table 6.2.: Unique rule contexts for the running example. This information can be
used to generate different method signatures that incorporate the correct
datatype depending on the rule’s execution context.

here to this restriction, one possibility to ensure compatibility with such languages
would be to make sure that the usage pattern of rules will only generate results of a
single datatype. While this restriction could easily be stated as an additional well-
formedness rule, it would remove a degree of freedom from the analysis specification
process.
To preserve the expressiveness of the abstract syntax, all possible contexts in which

a rule might be executed have to be identified and a matching method signature has
to be generated for each case accordingly. On the specification level, the relevant
contexts of a rule are given by its referencing attribute definitions (initialization
rule) and by the occurrences (iteration rule).

For attribution specifications, the contexts in which a rule will be applied can
therefore be uniquely identified as follows:

∙ For initialization rules, the context descriptor is the name of the attribute
definition combined with the name of the rule.

∙ For iteration rules, a unique identifier can be created by combining the name
of the occurrence’s target class with the attribute name.

By applying this method to the running example, we are able to derive the con-
texts shown in Table 6.2. Note that the endnode context stems from the static
enhancement of the attribution to reflect attribute inheritance as described in the
previous section. The language interface can now make use of this information to
generate method signatures for the rules that include the correct return type.
If, for example, we were to define a second attribute isReachableInfo of type

OCLString that returns “yes” for reachable nodes and “no” otherwise, we could
modify the existing rule node_isReachable to return either a boolean or a string
value, depending on the attribute context in which it has been invoked. In this
case, a new context node::isReachableInfo would be generated that invokes the same
rule node_isReachable but expects a return value of type OCLString instead of
OCLBoolean.

Properties of Datatypes

As mentioned previously, datatypes provide the domain for the values of attribute
instances. Several aspects must be considered to ensure that this concept is used
correctly and consistently.
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For one, there is the challenge of interoperability between attributes using differ-
ent datatypes. Obviously, a semantic rule that computes a result for an attribute
instance has to return a value that is compatible with the datatype of the defining
attribute. This implies that the datatype must be valid for the language that is
used to implement the rule. A similar situation arises if the implementation of a
rule requests the value of another instance as input. In this case, the rule must
be able to process the provided input parameters. Because the data-flow paths
between attribute instances are not known beforehand, these restrictions cannot be
checked statically. The attribution specification language does not include constructs
for specifying datatype compatibility. Any implementation of a language interface
therefore must include appropriate datatype conversions and runtime validation.
Because of the variety of different execution languages, the attribution technique

does neither provide nor enforce a specific typing system. Nevertheless, it is possi-
ble to make use of existing typing systems by defining custom datatypes inside an
attribution in the form of manual datatype specifications. These can then be used
as return types by the language interfaces when generating valid method signatures
for data-flow rules.
Because the rules of the running example are written in OCL, the (inbuilt)

datatype OCLBoolean, which translates to OCL’s Boolean type, has been assigned to
the isReachable attribute. This way, if the isReachable() is invoked on a model object
to access the attribute instance’s value at this object, OCL’s execution environment
knows that the return value is of type Boolean.
Some types, for example primitive datatypes like integer or boolean, are very

common and supported by almost any language. For this reason, both the abstract
and the concrete syntax of the specification language provide support for some basic
types of specific languages, namely Java and OCL, but do so in a very generic and
unintrusive manner. This allows the user to benefit from language-specific support
to a certain degree but also makes it easy to extend the existing definitions with
support for additional types.
Finally, the DFA solver must be able to determine whether two values are equal

to establish whether a stable fixed-point has been reached. Typed values in an
execution language must therefore implement a method for equality checks.

Rule Invocation

Without going into details about specific fixed-point solving strategies, it is clear
that, at some point, data-flow rules have to be invoked to calculate result values
for attribute instances. Since the behavior of a rule may vary depending on its
execution context, a language interface must provide a way to execute rules in the
context of the respective instance.
The unique context for the invocation of a rule on the level of instantiated attri-

butions therefore consists of the attribution-level context described above and the
model element to which the instance has been assigned. Based on this informa-
tion, the DFA solver is able to select the matching language interface and provide
it with the data necessary for identifying the respective rule and executing it with
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the appropriate return type for the given context.

This process can be illustrated using the running example:

∙ Assuming that the solver needs to execute the initialization rule for an endnode,
the attribute name isReachable is relayed to the interface for the OCL language
along with the model element. Because no context class was given, the inter-
face is able to determine that the initialization rule attached to the isReachable
attribute has to be executed and its return value is of type OCLBoolean.

∙ Now we assume that the iteration rule for an object of the endnode type should
be invoked. In this case, the rule context handed to the language interface
consists of the attribute occurrence which is uniquely identified through the
combination of the target class (endnode) and the attribute name (isReachable).
The interface can then invoke the associated data-flow rule with the return type
assigned to the occurrence’s definition.

As mentioned, the behavior of a rule may depend on the context in which it
is executed. Therefore each rule must be called with a set of input parameters
that indicate these properties. Each language interface should therefore employ a
standardized method signature that passes the execution context to the rule. This
information has to consist (at least) of the target model element (corresponding to
the self variable in OCL) and the attribute definition.
Once the execution of a rule has finished, the result value must be retrieved and

potentially be converted to comply to the specified datatype. For the sake of interop-
erability, conversion routines can be implemented that yield a unified representation
of common types. A DFA solver implemented in Java could e.g. convert an OCL
result of type Boolean to a Java bool value.
When considering performance aspects of the solving process, it is also important

to note that some steps of the rule invocation can be carried out statically for the
whole attribution and do not need to be repeated for each model that is to be
analyzed. An application of this principle can be found in the extension of the
attribution to reflect a metamodel’s generalization hierarchy as described in the
previous section. Language interfaces may carry out various steps to prepare the
execution such as a (pre)compilation of data-flow rules or the generation of lookup
tables for speeding up the identification of matching rules for a given context. In
this case, it is vital that rule contexts are computed statically, e.g. in the form
demonstrated in Table 6.2. The distinction between the preparation step and the
actual execution of a rule is presented in more detail in Section 8.1.4.

Attribute Access

Because, in contrast to traditional flow analysis approaches, data-flow paths are not
known in advance, language constructs are needed that allow a semantic rule to
dynamically request the values of another attribute instance as input. From the
perspective of the fixed-point solving algorithm, an access made by a rule equates to
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a callback that prompts the solver to supply the corresponding value and to correctly
handle the dependency between the requesting and the requested instance.
Generally, a callback to the DFA solver has to specify the attribute instance from

which the result value should be retrieved. In practice, it is however sufficient to
supply the model element and the name of the attribute to uniquely identify the
corresponding instance.
Concrete methods for encoding attribute accesses of course depend on the respec-

tive execution language. Model-centric languages such as OCL may provide access
to DFA attribute values by extending model objects with “virtual functions”. This
is demonstrated in the running example where an operation isReachable() is auto-
matically made available at each element of type node. In languages such as Java,
an accessor interface can be passed to each method for requesting instance values
by providing the target element and the attribute name as parameters.

Embedded vs. Referenced Rules

The attribution metamodel (cf. Figure 6.2) specifies two fields for semantic rules.
In the rule field, a string is stored that contains whatever constitutes the rule in the
respective target language, e.g. Java or OCL code. The ruleType property, on the
other hand, signifies which language interface should be used to execute the rule’s
contents. Thereby, it is not only possible to distinguish between different languages
but also to provide multiple interfaces for the same language that implement different
strategies to invoke rules.
In most cases, there are two different methods which can be used to encode rules:

The executable code can either be directly embedded in the rule specification itself or
it can be stored in an external library while the rule field only contains a reference to
it. In the case of embedded code, it is possible that the statements must be compiled
before they can be executed. This usually involves generating a valid expression in
the target language (e.g. a Java class structure) around the rule statements and
compiling it. Alternatively, if a rule specifies a reference to a library function, the
respective language interface must resolve the dependency and create a method
handle.
Both variants have respective advantages and disadvantages. If the actual code is

stored in an external library, the attribution specification remains clear of the im-
plementation itself which improves readability. Theoretically, it is also possible to
dynamically alter rule behavior by exchanging the underlying library, thus providing
different functionalities based on the same attribution. For example, we could define
a single attribute for the calculation of both reachability and liveness and use two
libraries that provide different implementations of the referenced methods, comput-
ing node reachability and liveness respectively. The downside to this approach is
that in addition to the attribution, the DFA solver must also be supplied with the
required libraries which can introduce complications on the technical level.
Correspondingly, the advantage of embedded code is that all the necessary infor-

mation is directly encoded in a single specification. However, embedded code may
clutter the attribution specification and has to be compiled or parsed when an attri-
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bution is loaded which has an impact on performance. Finally, editing code inside
an attribution is more difficult because no language-specific editing capabilities are
available. However, this problem can be solved by providing a dedicated editor for
attributions (cf. Section 8.2.2).
In general, it is advisable to use embedded code for small statements and references

for more sophisticated specifications.

6.4.2. OCL

The Object Constraint Language language comes in two different variants. Standard
OCL supports the specification of functional statements that are free of side effects.
Imperative OCL (part of the QVT model transformation framework), on the other
hand, is able to modify the underlying model and introduces several imperative
concepts such as conditional statements and loops. If used as a language for writing
DFA rules, both variants have their respective advantages and disadvantages. The
traditional form is well-suited for simple and concise statements while the imperative
variant simplifies (and is sometimes necessary for) the specification of more complex
functionality. However, due to the increased complexity of the language, interpreters
for imperative OCL often suffer from a worse performance.

To include support for both languages, it is necessary to discuss the implications
of the points presented in Section 6.4.1:

Context of Semantic Rules

The context of OCL rules can be identified using the methods presented in the
last section. For each rule, constraints with appropriate method signatures can
be generated for all contexts in which the rule is used. For initialization rules,
OCL constraints have to be parsed without a context object while iteration
rules can be defined as constraints for the respective metamodel class.

Properties of Datatypes

Both the standard and the imperative form of OCL include a rigid typing
system with limited support for type casts. It is therefore necessary to assign
the correct return datatype to attribute access functions (see next item).

As mentioned in the previous section, the attribution specification syntax al-
ready includes support for the most commonly used types. If additional types
are required, they can be defined manually.

Since many commonly used primitive and collection types are supported by
OCL, interoperability with other languages such as Java can be easily imple-
mented by the language interface.

Rule Invocation

Iteration rules written in OCL are executed in the context of a model object
which can be accessed using the keyword self. To execute an iteration rule,
the language interface must therefore configure the interpreter with the correct
context element.
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To parse a set of rules in a single run, it is possible to build a library that
includes all OCL rules defined in the attribution.

Attribute Access

In order to be able to request attribute instance values located at model ele-
ments, attribute access operations can be injected into OCL’s execution envi-
ronment (cf. Section 7.1.3). If, for example, an operation isReachable() with
return type Boolean is injected in the context of the node class, it can be di-
rectly invoked on all elements of this type. The implementation of the access
method then has to correctly identify the context of the requested instance and
pass this information to the DFA solver. Method injection can be done either
programmatically or by automatically generating a library of helper functions
and parsing them alongside the original rules. To trigger the callback to the
DFA solver, QVT black box methods can be used.

Because both variants of OCL provide only a limited set of functions, the in-
jection mechanism can also be used to enrich the existing functionality with
additional methods, e.g. to compute hash values for model elements as re-
quired by the SCC analysis.

Embedded vs. Referenced Rules

Since most implementations of OCL interpreters support the definition of li-
braries, it is possible to implement language interfaces for embedded code as
well as for invoking rules defined in an external library.

6.4.3. Java

As a generic programming language, Java can be used to implement more complex
logic than OCL at the cost of more verbose specifications.

Again, we examine the aspects listed in Section 6.4.1 to derive their implications
on the implementation of a rule invocation interface for the Java language:

Context of Semantic Rules, Properties of Datatypes

As with OCL, contexts for Java rules can be generated using the presented
method. However, this is not necessarily required since Java provides more
powerful methods for type casting. Return values could therefore also be
specified as generic objects with the type handling implemented in the rules
themselves. For this purpose, the specification language provides a predefined
type JavaObject.

Rule Invocation

The current execution context can be passed to Java rules using method pa-
rameters. For this purpose, a standard method signature has to be defined
that expects the model object, the context instance’s defining attribute and
an accessor (see next item).
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If multiple embedded Java rules are defined, a class can be dynamically con-
structed and compiled that aggregates these rules in a single library.

Attribute Access

To enable rules to request attribute instance values, an attribute accessor
class can be implemented and passed as a parameter to the Java methods (cf.
Section 7.3). This accessor has to provide a function that takes a model object
and an attribute name as input, locates the corresponding attribute instance
and triggers the fixed-point solver to compute and return the instance’s value.

Embedded vs. Referenced Rules

Java code can be directly embedded in the attribution specification. In this
case, the language interface has to wrap the code in a method using the default
signature and insert the resulting methods in an empty class template. The
resulting class can then be compiled and method handles for executing the
rules can be extracted using Java’s reflection API.

If rules in an existing class should be referenced instead, the semantic rule
has to specify the classpath and the method name. Again, references to the
methods can then be extracted using the reflection interface.

To simplify the initialization of attribute instances, a third interface for the
Java language can be implemented that simply creates a Java object by in-
voking its default constructor. In this case, the semantic rule simply has to
contain the fully qualified name of the Java class that should be instantiated.

6.5. Analysis Configuration and Execution

In the Sections 6.1 to 6.4, we detailed how the definition and instantiation of
attribute-based flow analyses can be realized through the use of modeling tech-
nologies and how a generic interface for the invocation of semantic rules can be
implemented. We will now provide a description of a flexible DFA solver archi-
tecture that is able to evaluate these specifications by employing different solving
strategies to compute fixed-point results. This architecture establishes connections
between an instantiated analysis (in the form of an attributed model), a specific
implementation of a fixed-point solving algorithm and the language interfaces for
semantic rules.
Commonly used algorithms in the DFA context rely on the propagation of data-

flow results along the paths of an underlying control-flow structure. However, in the
case of model-based flow analysis, the input/output dependencies between attribute
instances are not made explicit in the specification. Instead, they only become vis-
ible during the execution of the semantic rules. For this reason, the traditional
methods for computing flow analysis results have to be adapted, so that they are
able to dynamically record and update dependency relationships between instances
(dynamic dependency discovery). We propose several concrete algorithms that in-
corporate dependency discovery mechanisms and can be interchangeably used by
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the solver to compute fixed-point results. In addition, we will examine several op-
timization methods that are able to reduce the average amount of rule executions
necessary to arrive at the most precise result set.
The contents of this section are structured as follows: In Section 6.5.1, we discuss

the general architecture of the solver framework with respect to the requirements
of our approach. Next, in Section 6.5.2 and Section 6.5.3, we present extensions of
the traditional approaches to solve DFA equation systems, namely the round-robin
and the worklist algorithm. We describe how these methods can be enhanced with
support for dynamic dependency discovery and how they can be integrated with the
solver framework. In Section 6.5.4, we introduce an approach called the dependency-
chain algorithm. This method records relationships between instances and uses this
information to dynamically build a detailed, model-based representation of the data-
flow paths. In each case, we demonstrate the solving processes of the presented
algorithms in the context of the control-flow graph example.

6.5.1. Solver Architecture

The process of evaluating a flow analysis requires certain input artifacts and relies
on the interaction of multiple components to derive and solve the equation sys-
tem. A generic framework which supports exchanging implementations of specific
functionality has the benefit of providing a flexible architecture which can be easily
adapted and extended. This is an important aspect since, depending on the scope
of an analysis, different methods that can be used to solve DFA equation systems
may have certain advantages/disadvantages over other methods. Additionally, being
able to switch between multiple implementations also supports the comparison and
evaluation of different approaches.
It is often the case that the efficiency of an algorithm depends on the specific

properties of the current problem such as the size of the equation system and the
complexity of the therein contained dependency relationships. For fixed-point al-
gorithms, this leads to a tradeoff between the time and memory that is spent on
recording and analyzing the dependencies between attribute instances and the re-
quired amount of rule executions. This tradeoff stems from the fact that algorithms
may differ in the way that they manage dependencies and the scheduling of rule in-
vocations. On the one hand, an algorithm may choose to ignore information about
attribute dependency relationships and simply repeat the execution of rules until
a stable fixed-point is reached. In this case, the management overhead is minimal
but this comes at the cost of requiring many rule executions until the final result
is available. This approach may be nevertheless be beneficial if the rules are very
simple and their execution is therefore inexpensive. On the other hand, the ex-
amination of dependency relationships and a subsequent derivation of an optimal
scheduling for rule executions often can reduce the number of necessary fixed-point
iterations. If the execution of the rules is more time-consuming or the equation sys-
tem is very large, the increased effort that goes into the management of dependencies
may quickly pay off.
In the first step of the solving process, the solver must be supplied with an in-
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stantiated analysis. This artifact conforms to the attributed model which, in turn,
consists of the target model and the instantiated attribution. Additionally, a subset
of instances can be provided that are of specific interest to the user. The solver can
then limit the computations to the requested instances and their input dependencies
(demand-driven analysis). The actual process of calculating the results is carried
out by an algorithm that implements a fixed-point solving strategy. For this pur-
pose, the solver module must be able to access the language interfaces to invoke the
data-flow rules. Additionally, the solver has to handle the callbacks that occur when
the execution of a rule requests the value of another instance as input. This request
must be relayed to the respective implementation of the fixed-point algorithm which
is then responsible for handling this dependency and returning the requested value.

Figure 6.12.: Fixed-point evaluation of an attributed model.

The overall evaluation process is outlined in Figure 6.12. In this case, the at-
tributed model consists of the control-flow graph model presented in Figure 4.12.
The set of initially requested attribute instances consists of two attribute instances
which are annotated at nodes 2 and 3b. Performing the dependency discovery
yields the dependency relationships shown in the lower left. In this case, four addi-
tional instances - S , 1 , 3a and 4 - have been discovered that contribute to the
results of the initial query. Based on information about the dependency relation-
ships, a valid scheduling for the execution order of rules can be determined, e.g.
S→ 1→ 2→3a→ 4→3b.
In summary, the specification of a generic architecture for DFA solvers is moti-

vated by the goal of providing a flexible, modularized framework that divides the
responsibilities between different, exchangeable components. The framework has to
define interfaces for the analysis input, for the invocation of rules and for solving
strategies that support the dependency discovery mechanism.
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6.5.1.1. Requirements for the Solver Architecture

We will now shortly discuss several aspects that have a profound impact on the
principal architecture of the solver framework:

Demand-driven Attribute Selection

In a broader sense, the input for the fixed-point algorithm consists of an at-
tribution specification that has been instantiated for a specific model, i.e. an
attributed model. However, in practice, it is sufficient to supply the solver with
a set of attribute instances as the structure of the underlying (meta)model el-
ements is not relevant for the actual result computation process.

However, the user might only be interested in the results for a specific subset
of attribute instances. For example, while Algorithm 5 attaches both allPre-
decessors and sccID to all nodes in the model, the user may want to limit the
result computation to a single instance of the attribute allPredecessors at a
specific node. In this case, the input for the solver would consist of this single
instance. We refer to this process as a demand-driven computation.

Computing the results for the set of requested instances however may require
the evaluation of other instances which are not part of this initial set. In
the allPredecessors example, the calculation of a specific instance will implic-
itly trigger the recursive computation of allPredecessors instances at preceding
nodes. We therefore distinguish between results for instances which have been
explicitly requested and results for discovered instances.

In summary, the input that must be supplied to the solver consists of a (sub)set
of attribute instances of an attributed model while the output comprises the
results for these elements as well as for dynamically discovered instances.

Dynamic Attribute Instantiation

For very large models with many attributes, the instantiation process itself
may have a substantial impact on the overall performance of the analysis. It
is therefore advisable to extend the demand-driven approach to the creation
of attribute instances: Rather than instantiating the complete attribution, it
is possible to delay the task of creating a specific instance until it is accessed
by the solving algorithm.

To support a dynamic instantiation mechanism, the solver must be able to
instruct the instantiation module to instantiate attributes on-demand. For this
purpose, the solver supplies the context of the prospective instance - consisting
of the attribute name and the target model element - to the instantiator. As a
result of this process, the attributed model is extended with the newly created
attribute instance.

Unified Rule Invocation Interface

In the previous section, we discussed the properties of language interfaces
that support the specification of data-flow rules in arbitrary implementation
languages. Because the rules used to compute results for attributes contained
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in a single attribution may be written in different languages, it is beneficial
to hide this technical property behind a unified invocation interface. This
interface requires two input parameters: The instance for which a rule should
be invoked and an indication whether its initialization or its iteration value
should be computed. In the first case, the invoker has to execute the rule
assigned to the instance’s definition and, in the latter case, the rule assigned
to its occurrence. After the execution of the rule has finished, the invocation
interface has to assign the computed result value to the respective instance.

Dynamic Dependency Discovery

If, during the execution of a rule, a request is made to retrieve the value of an
attribute instance, this access is redirected to the solver. The solver then has
the duty to

1. instantiate the attribute based on the provided context if this has not
already happened (dynamic instantiation).

2. relay the request to the chosen fixed-point solving strategy (callback)
which is then responsible for recording the dependency, determining a
valid and efficient execution order and returning a preliminary result for
the requested instance with which the execution of the rule can continue.

These two functions realize the feature of dynamic dependency discovery.

6.5.1.2. Architecture of the Solver Framework

We will now present a high-level overview of a solver architecture that realizes the
features listed above. A detailed discussion of the technical aspects of this architec-
ture can be found in Chapter 7 while Chapter 8 describes a concrete prototypical
implementation.
A schematic representation of this architecture can be seen in Figure 6.13. In this

diagram, the external components - the Attributed Model that represents the input
for the analysis, the Unified Language Interface for executing the semantic rules and
an implementation of a Solving Strategy - are grouped around a central DFA Solver
module. In this design, the solver is responsible for facilitating the communication
between the components involved in the solving process.
In the first step of this process, the set of requested attribute instances10 is relayed

to the Analysis Entry Point of the chosen Solving Strategy via the Trigger Analysis
function of the solver. The entry point of the solving algorithm is then responsible
for executing the rules associated with these instances.
When a request to invoke a rule is relayed to the solver module, the Invoke Rule

function has to trigger the execution of the rule by supplying the correct context
(cf. Section 6.4.1).

10While it is not necessary to instantiate the complete attribution due to the dynamic instantiation

feature, this setup requires that at least the requested instances have been created statically.
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Figure 6.13.: Universal solver architecture for performing demand-driven data-flow
analysis, supporting dependency-discovery and dynamic instantiation.

If, during the processing of a rule, another instance’s value is requested as input,
this request results in a callback that must be handled by the solver. For this pur-
pose, the language interface passes information about the context of the requested
instance to the solver’s Trigger Callback function. As described above, this method
now has to check if an instance already exists for the supplied context. If this is
not the case, it has to be created dynamically and added to the set of discovered
instances. This is accomplished through the solver’s Instantiate Attribute function
which performs the instantiation and updates the attributed model. The routine
then has to inform the Callback Handler of the respective Solving Strategy that the
currently executed rule requested the value of another instance as input. Once the
Callback Handler has processed this dependency, the interrupted execution of the
rule can continue.
Finally, when the solving strategy determines that the stable fixed-point has been

reached, it has to abort the iterative computation process. The output of the anal-
ysis then consists of an updated attributed model, containing both the originally
requested and the dynamically created instances and their respective result values.

6.5.1.3. Solving Strategy

Each solving strategy has to implement the following two functions:

Analysis Entry Point

The entry point of an analysis receives the set of initially requested attribute
instances and is tasked with invoking their corresponding rules until a stable
fixed-point has been reached.
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A simple approach (such as the round-robin algorithm) may choose to evaluate
all instances repeatedly by executing their respective rules and continue this
process until two subsequent iterations yield the same results, in which case
a fixed-point has been reached. More sophisticated approaches may start in
a similar fashion, but additionally use the callback mechanism to record the
data-flow dependencies between instances to derive more optimal schedulings
for subsequent iterations.

Callback Handler

The callback handler is informed when, during the execution of an instance’s
rule, another instance’s current iteration value is requested as input. The pro-
vided information consists of both the requesting and the requested instance
and a flag that indicates whether the requested instance has been dynamically
instantiated. This mechanism can therefore be used to construct a represen-
tation of the dependency relationships between instances.

While the concrete method used to derive an efficient scheduling for rule execu-
tions depends on the respective algorithm, there are nevertheless some issues that
must be addressed by every implementation.
For one, a newly instantiated attribute may not yet have been initialized, i.e.

its value is still undefined. An algorithm can therefore either choose to assign the
initialization value immediately on creation or delay this step until the value is first
accessed. The latter option has the potential to increase the performance of the
evaluation as - under certain circumstances - it is possible to immediately assign
iteration values to instances, thus eliminating the need for initialization altogether
(dynamic initialization).
Another aspect that allows optimization under certain conditions is the recursive

lookup of discovered instances. Generally, there are two approaches the Callback
Handler can take: One option is to simply record the reported dependency and
immediately return control to the requesting rule. However, this method has a
significant disadvantage with respect to instance discovery: During each callback,
only one instance that is not in the initial set of requested instances can be dis-
covered. If this instance has dependencies to other hitherto undiscovered instances,
a new fixed-point iteration may be necessary to unveil each of these dependencies.
As a solution to this problem, the handler can schedule a recursive evaluation of
discovered instances before yielding control back to the requesting rule. This way,
complete chains of interdependent instances can be discovered in a single fixed-point
iteration.

6.5.2. Round-Robin (Dynamic Dependency Discovery)

In the traditional round-robin method (cf. Section 2.3.3), the data-flow rules are
repeatedly executed until a stable fixed-point is reached. This is possible because
the order of the executions does not affect the result of the analysis. However, an
inherent problem with this method is that it does not take the dependencies between
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attribute instances into account. Instead, it relies on a repeated evaluation of all
instances which only stops after every single value remains stable.

6.5.2.1. Algorithm

Algorithm 11 implements the two functions that provide the interface to the solver
architecture: AnalysisEntryPoint and CallbackHandler.

Algorithm 11 Round-robin algorithm for the DFA solver framework

1: boolean unstable = true ◁ marker for (un)stable results

1: function AnalysisEntryPoint(Set⟨AttrInstance⟩ selectedInstances)
2: Set⟨AttrInstance⟩ iterationInstances = selectedInstances ◁ init iteration set

3: while (unstable) do ◁ iterate until all values are stable

4: unstable = false ◁ reset stable marker

5: for all (instance : iterationInstances) do ◁ process the iteration instance set

6: Object oldValue = instance.value ◁ remember old value

7: invoke(instance) ◁ invoke rule (triggers callback)

8: if (not oldValue == instance.value) then ◁ check if value changed

9: unstable = true ◁ mark iteration as unstable

10: iterationInstances.addAll(discoveredInstances) ◁ add discovered instances

1: function CallbackHandler(AttrInstance requestingInstance, requestedInstance,
boolean dynamicallyDiscovered)

2: if (not requestedInstance.initialized) then ◁ dynamic initialization

3: init(requestedInstance)

4: if (dynamicallyDiscovered) then ◁ recursive lookup for discovered instances

5: unstable = true ◁ mark iteration result as unstable

6: invoke(requestedInstance) ◁ trigger recursive discovery

The collection selectedInstances, which is passed as a parameter to the method
AnalysisEntryPoint, indicates the subset of instances from the attributed model for
which results should be computed (demand-driven evaluation). This function also
maintains a set iterationInstances that holds the instances that that are of relevance to
the current fixed-point iteration. While this set is initially identical to the requested
instances [2], it is later expanded to include dynamically discovered elements.
This solving strategy relies on a global variable unstable [1] that indicates whether

a fixed-point has been reached. The main loop in lines [3-10] is responsible for
triggering a new iteration as long as this is not the case. At the beginning of each
new iteration, this marker is reset to false [4].
The processing of the instances takes place in lines [5-9]. This loop iterates over

all instances that are part of iterationInstances and stores their current value in the
variable oldValue [6]. It then invokes the instance’s iteration rule [7] which potentially
results in a callback to the method CallbackHandler. Afterwards, the old value of
the attribute is compared to the new value and the iteration is marked as unstable
if the values differ [8-9].
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Finally, in line [10], the set iterationInstances is updated with the instances that
have been discovered in the current iteration so that they will be processed in the
next iteration.
As stated above, the function CallbackHandler is triggered by the solver when the

execution of a rule in line [7] results in a request to another instance. For this pur-
pose, it is supplied with three parameters: requestingInstance and requestedInstance
respresent the source and the target instance of the request while dynamicallyDiscov-
ered is a flag that indicates whether the requested instance has been dynamically
created.
In its first step [2-3], this method checks whether the requested instance has

already been initialized and invokes the instance’s initialization rule if this is not
the case (dynamic instantiation). This way, instances that do not possess any output
dependencies do not need to be explicitly initialized.
Lines [4-6] implement the recursive lookup feature. If the instance has been created

dynamically, it may have dependencies to other attributes which are still undiscov-
ered. In this case, line [5] marks the current iteration as unstable as the discovered
attribute must be reevaluated in the next iteration. Then, line [6] triggers the in-
vocation of the requested instance’s iteration rule. This step may again result in
a callback to a hitherto undiscovered instance for which this process is repeated
recursively. Because this lookup function is only carried out for newly instantiated
attributes, it is guaranteed that this method will not result in an endless loop.

6.5.2.2. Running Example

We now demonstrate the application of the adapted round-robin solving strategy.
As a basis for this process, we use the attributed model from Figure 4.12 which im-
plements a predecessor analysis (cf. Algorithm 5) on a control-flow graph model. For
clarity reasons, we represent an instance of the attribute allPredecessors attached to
a node in the model as the node itself. For example, instead of ⟨ 2 B allPredecessors
⟩, we simply write 2 .
We assume that the set of initially requested instances that are passed to the

analysis entry point consists of the nodes { 2 , 3b }. In other words, the solver
is tasked to compute results for the two instances of the attribute allPredecessors
which are located at the specified nodes. Additionally, the solver has to identify and
evaluate instances whose values are required as input for the calculation of the two
explicitly requested instances.
The steps of the solving process11 as carried out by the round-robin algorithm are

outlined in Table 6.3.
The first iteration triggers the invocation of the rules associated to the requested

instances 2 and 3b. Each of these calculations accesses the values of the instances
located at the respective node’s direct predecessors as input. Therefore, the execu-
tion of the first rule (invoke 2 ) results in two callbacks to the values of 1 and 4 .

11It should be noted that this is not the only order in which these steps can be executed. Depending
on the sequence in which the data-flow rules are executed, the intermediate values of the fixed-
point calculation may vary.

178



6.5. Analysis Configuration and Execution

Invocation Stack Actions Values

Iteration 1 iterationInstances : { 2 , 3b }
entrypoint invoke 2

callback 2→ 1 init 1 , invoke 1 1 : {}
callback 1→ S init S , invoke S S : {}

return 1 : { S }
callback 2→ 4 init 4 , invoke 4 4 : {}
callback 4→3a init 3a , invoke 3a 3a : {}
callback 3a→ 2 init 2 2 : {}

return 3a : { 2 }
callback 4→3b init 3b 3b : {}

return 4 : { 2 , 3a , 3b}
2 : { S , 1 , 2 , 3a , 3b , 4 }

entrypoint invoke 3b
callback 3b→ 2 3b : { S , 1 , 2 , 3a , 3b , 4 }

Iteration 2 iterationInstances : { S , 1 , 2 , 3a , 3b , 4 }
entrypoint invoke S S : {}
entrypoint invoke 1 1 : {S}
entrypoint invoke 2 2 : { S , 1 , 2 , 3a , 3b , 4 }
entrypoint invoke 3a 3a : { S , 1 , 2 , 3a , 3b , 4 }
entrypoint invoke 3b 3b : { S , 1 , 2 , 3a , 3b , 4 }
entrypoint invoke 4 4 : { S , 1 , 2 , 3a , 3b , 4 }

Iteration 3 same end results as in Iteration 2

Table 6.3.: The steps of the round-robin solving strategy.

We assume that the request from 2 to 1 is processed first (callback 2→ 1 ). In
the first step, the callback function initializes the requested instance 1 . Then, since
1 is not in the set of initially requested instances, a recursive lookup is triggered
to detect any additional dependencies of 1 . For this purpose, the current iteration
is marked as unstable and the rule associated with the discovered node is invoked.
This process leads to another callback since 1 requests the value at its direct pre-
decessor S as input. Consequently, this instance is initialized and also subjected
to a recursive lookup. However, because S has no predecessors, the execution of
the associated rule does not result in a callback. The invocation of 1 is thus able
to complete its computation by creating the union of the value acquired from its
direct predecessor S and the predecessor node itself: {} ∪ { S } = { S }. Now, the
request to 4 is processed (callback 2→ 4 ). Again, 4 is initialized and a recursive
lookup is triggered. This process stops when 3a requests the value of 2 as 2 is
not a newly discovered instance. Once the execution of 2 has finished, the same
procedure is carried out for the other initially requested instance, 3b . In the final
step of the first iteration, the newly discovered instances { S , 1 , 3a , 4 } are added
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to the instance set which will be evaluated in the next iteration.
The second iteration processes the extended instance set now containing { S , 1 ,

2 , 3a , 3b , 4 }. Just like in the first iteration, each of the rule invocations results
in a callback as the values of the respective predecessors are accessed. However,
since all of the requested instances have already been initialized and discovered,
the callback handler aborts without triggering any additional rule executions. We
therefore have omitted these callbacks from the tabular representation. Since some
instances have been updated with new values, the second iteration is also marked
as unstable.
The third iteration repeats the invocations of the rules for all elements in the

iteration instance set. However, during this run, no new instances are discovered
and all values remain unchanged. Therefore, the results represent a stable fixed-
point and no further iterations are necessary.
As a final result, the initially requested { 2 , 3b} and the dynamically discovered

{ S , 1 , 3a , 4 } instances in the attributed model now possess the correct values.
It is obvious that, while this algorithm incorporates the necessary features to solve

DFA equation systems in the proposed solver architecture, it is very inefficient as it
neglects optimizations that can be derived from knowledge about the dependency re-
lationships between instances. This is especially true in the last fixed-point iteration
where instances are repeatedly evaluated although their input has not changed.

6.5.3. Worklist Algorithm (Dynamic Dependency Discovery)

In Section 6.5.1, we argued that for dynamic dependency discovery algorithms, there
is generally a trade-off between the effort put into dependency management and
the amount of required data-flow rule executions: The overhead of recording and
analyzing the dependencies between attribute instances may inflict a penalty on the
performance of the algorithm but this may be compensated by a considerably lower
number of necessary rule invocations.
In this respect, the round-robin method presented in the last section has a very

limited overhead. In fact, its permanent memory footprint solely consists of a single
variable, the unstable marker that indicates whether a fixed-point has been reached.
However, by executing rules in a random order, this algorithm neglects the fact that,
if the value of a specific instance changes, only the instances that directly depend
on this value as input have to be recomputed.
The traditional worklist algorithm employed in compiler construction makes use

of this potential for optimization by taking into account the output dependencies
resulting from the structure of the underlying control-flow graph. For this purpose,
the eponymous worklist is initialized with the first node12 in the control-flow whose
value is not required as input by any other node. If the execution of the respective
data-flow function results in a changed value, the output dependencies of this node,
i.e. its successors in the control-flow, are added to the worklist. This process is

12In the case of a backward analysis, the last node is used instead.
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repeated until the worklist is empty (cf. Algorithm 5).

We will now present an adaption of the traditional worklist approach for the DFA
solver architecture. To conform with the requirements of this method, we must be
able to determine:

1. A set of instances that can be used to initialize the worklist. The shared
property of these elements is that their values are not required as input by
any other instance. Since they therefore represent leaf nodes in the instance
dependency graph, we will subsequently refer to them as leaf instances.

2. The output dependencies of any given instance. These are the instances to
whom changed data-flow values are propagated.

The difficulty in the implementation of these functions stems from the fact that -
in contrast to traditional data-flow analysis - the dependencies between the attribute
instances are not known before the rules are actually executed. It is therefore neces-
sary, to dynamically construct a representation of these dependencies that can then
be used to schedule instances for a subsequent execution once one of their input
values changes. Additionally, we have to identify the leaf instances which represent
the starting point for the processing of the worklist. Again, it is also beneficial to
incorporate support for recursive lookup to uncover multiple levels of dependency
relationships during rule invocations, thereby reducing the number of required eval-
uation steps.

6.5.3.1. Algorithm

The adapted version of the worklist approach is shown in Algorithm 12.

The implementation of this algorithm maintains two global variables that are
accessed by both the entry point and the callback function. The variable output-
Dependencies [1] stores the dynamically recorded dependency relationships between
attribute instances. For each instance that represents a key in this table, the set
that constitutes the respective value field encodes the output dependencies of this
attribute. If it is determined that the value of an instance has changed after the
execution of its data-flow rule, the output dependency set represents the instances
whose values must be subsequently recomputed. The second global variable leafCan-
didates contains the instances that constitute the initial contents of the worklist. In
theory, it would be possible to analyze the contents of the outputDependencies map
to derive the set of elements which are not required as input by any other instances.
However, as this map may grow very large for complex DFA equation systems, it is
more efficient to compute the leaves dynamically.
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Algorithm 12 Worklist algorithm for the DFA solver framework

1: Map⟨AttrInstance, Set⟨AttrInstance⟩⟩ outputDependencies = {}
2: Set⟨AttrInstance⟩ leafCandidates = {} ◁ instances with no output dependencies

1: function AnalysisEntryPoint(Set⟨AttrInstance⟩ selectedInstances)
2: leafCandidates.addAll(selectedInstances) ◁ mark instances as leaf candidates

3: for all (instance : selectedInstances) do ◁ initialize output dependencies

4: invoke(instance) ◁ execute data-flow iteration rule

5: if (not leafCandidates.contains(instance)) then ◁ reset non-leaf instances

6: init(instance)

7: OrderedSet⟨AttrInstance⟩ worklist = new OrderedSet() ◁ set up worklist

8: repeat ◁ process worklist entries

9: for all (leafCandidate : leafCandidates) do ◁ initialize worklist

10: worklist.addAll(outputDependencies.get(leafCandidate))

11: leafCandidates = {} ◁ reset discovered leaf instances

12: AttrInstance instance = worklist.remove(0) ◁ pick and remove worklist entry

13: Object oldValue = instance.value ◁ remember old value

14: invoke(instance) ◁ invoke rule

15: if (not oldValue == instance.value) then ◁ if value changed, update worklist

16: worklist.addAll(outputDependencies[instance])

17: until (worklist.size == 0)

1: function CallbackHandler(AttrInstance requestingInstance, requestedInstance,
boolean dynamicallyDiscovered)

2: ◁ remove requesting instance from the set of leaf candidates

3: leafCandidates.remove(requestingInstance)
4: if (dynamicallyDiscovered) then ◁ recursive lookup for discovered instances

5: leafCandidates.add(requestedInstance) ◁ mark instance as leaf candidate

6: invoke(requestedInstance) ◁ trigger recursive discovery

7: if (not leafCandidates.contains(requestedInstance)) then ◁ reset non-leaf

8: init(requestedInstance)

9: ◁ add requesting instance to output dependency set of requested instance

10: outputDependencies[requestedInstance] += requestingInstance ◁ store dependency

In the first step of the analysis process, the entry point registers the set of selected
instances as potential leaves by adding them to leafCandidates [2]. The task of
the subsequent steps in lines [3-6] consists of the computation of a preliminary
representation of the data-flow dependencies and the identification of suitable leave
instances. For this purpose, iteration rules are executed for the provided set of
relevant instances [4]. During this process, the callback handler is responsible for
recording the dependencies between the respective instance and its recursive inputs
and for discarding elements that do fulfill the leaf property.
Since the worklist algorithm schedules the execution of data-flow rules based on

unstable values, it is important that the preliminary results generated during this
initialization step are afterwards replaced with the correct initialization values. To
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provide a clean and consistent starting point for the subsequent worklist processing,
lines [5-6] therefore reset the values of non-leaf instances.
The main worklist loop starts in line [8]. Lines [9-10] add the output dependencies

of the identified leaf instances to the worklist. It should be noted that the initial-
ization of the worklist with the leaves themselves would be problematic. Since, by
definition, their result does not depend on any external input, their repeated execu-
tion would always yield the same value and therefore lead to a premature abortion
of the worklist processing.
Afterwards, the leafCandidates set is cleared. This is necessary, because the eval-

uation of an instance may result in the discovery of new instances if a rule’s input
requests are part of a conditional statement. Consequently, the preliminary state
of the dependency graph that has been computed in lines [3-6] of the entry point
has to be updated. This implementation ensures that output dependencies of newly
discovered leaves will be processed in subsequent worklist iterations.
Line [12] then retrieves an element from the worklist. Quite similar to the round-

robin approach, its current value is stored before the associated iteration rule is
executed [14]. Line [15] then checks whether the instance’s value has changed in
which case line [16] adds its output dependencies to the worklist. The evaluation
finishes once the worklist is empty.
As has been mentioned, the CallbackHandler function is responsible for recording

dependencies between data-flow attributes and for identifying leaf instances. During
each invocation of this method, the requesting instance is removed from the set of
leaf candidates, if present [3]. The reason for this action is that an instance that
requests another instance’s value as input is not a leaf according to the definition and
thus does not represent a valid starting point for the initialization of the worklist.
The recursive lookup feature is implemented in lines [4-8]. If the requested in-

stance is marked as newly discovered, it is first registered as a potential leaf in the
dependency graph [5]. Afterwards, in line [6], the discovered instance is evaluated.
If this step triggers a callback, the element will again be removed from the set of leaf
candidates by the recursive invocation of the callback handler. Otherwise, it can be
concluded that the execution of the rule does not depend on values retrieved from
any other instances and therefore it is a valid leaf. After the (recursive) rule invo-
cation has finished, lines [7-8] are responsible for resetting the discovered instance
to its initialization value. This process is comparable to the action taken in lines
[5-6] in the entry point for the set of initially requested instances. Again, the step
of resetting non-leaf instances is required to provide a clean starting point for the
worklist processing.
Finally, the callback handler records the dependency. For this purpose, the entry

for the requested instance in the map outputDependencies is updated with the re-
questing instance [10]. This step is necessary because, in addition to the discovery
of instances during the processing of the worklist, it is also possible that new de-
pendencies between already known instances are uncovered. In this case, the target
instance has to be reevaluated.
In Appendix B.2, we present an alternative version of an adapted worklist algo-

rithm. This implementation focuses on the identification of cyclic re-entry points
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and uses this information to schedule reevaluations of unstable nodes. For this rea-
son, the alternative approach does not require an initialization run for the detection
of leaf instances. Instead, it relies on a call stack that records the invocation order
of instances during the recursive lookup phase. By checking whether a requested
instance is already on the call stack, the callback handler is able to detect requests
that result in cyclic dependencies and add their output dependencies to the worklist
for subsequent reevaluation.

6.5.3.2. Running Example

We again demonstrate the application of the adapted version of the DFA solving
strategy. For this purpose, we employ the same scenario as described in Section 6.5.2:
A computation of the transitive closure of predecessors with the initial instance
selection consisting of attributes at nodes 2 and 3b.

Invocation Stack Actions Output
Dependencies

Leaf
Candidates

entrypoint invoke 2
callback 2→ 1 invoke 1 { 1 }
callback 1→ S invoke S S : { 1 } { S }

return 1 : { 2 }
callback 2→ 4 invoke 4 { S , 4 }
callback 4→3a invoke 3a { S , 3a}
callback 3a→ 2 2 : {3a} { S }

return 3a : { 4 }
callback 4→3b 3b : { 4 }

return 4 : { 2 }

entrypoint invoke 3b
callback 3b→ 2 2 : {3a, 3b}

Table 6.4.: Initial computation of output dependencies in the worklist algorithm.

Table 6.4 outlines the initial phase of the presented worklist approach, i.e. the
building of the output dependencies map and the computation of leaf candidates.
This process involves the invocation of the iteration rules associated with 2 and

3b and the subsequent recording of the resulting dependency relationships. In this
example, we assume that 2 is evaluated first which leads to a callback to 1 . Since
this element is not in the initial selection set, it is treated as a newly discovered
instance. It is therefore marked as a leaf candidate and a recursive discovery of
additional dependencies is triggered by executing its iteration rule.
This again results in a callback, this time to S . Because 1 now can be clearly

ruled out as a suitable candidate for initializing the worklist, it is removed from leaf-
Candidates. S however, as a newly discovered instance, is registered as a potential
leaf and its associated rule is executed. Since S is the first node in the control-flow
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model, it has no predecessors and therefore does not request any other instance’s
value. Therefore, the callback handler will never be invoked with S being the re-
questing instance and this element will remain in the leafCandidates set. In the last
step of the callback 1→ S , instance 1 is registered as an output dependency of
S , indicating that it must be reevaluated every time the value of S changes. The
recursion then folds back to the callback 2→ 1 which records 2 as being an output
dependency of 1 .
Since 4 is also a predecessor of 2 in the control-flow graph model, the evaluation

of 2 will also trigger a request to this instance. During the following recursive
lookup, 3a is discovered and the dependencies between the respective instances are
recorded. Any modification to the set of leaf candidates is reversed in subsequent
invocations of the callback function, leaving S as the sole starting point for the
analysis.
After the execution of 2 has finished, the same process is repeated for 3b . This

leads to the callback 3b→ 2 which updates the dependency map with the final
entry, the output dependency from 2 to 3b .

Selected
Instance

New Instance Value Worklist

{ 1 }
1 { S } { 2 }
2 { S , 1 , 4 } {3a, 3b}
3a { S , 1 , 2 , 4 } {3b , 4 }
3b { S , 1 , 2 , 4 } { 4 }
4 { S , 1 , 2 , 3a , 3b , 4 } { 2 }
2 { S , 1 , 2 , 3a , 3b , 4 } {3a, 3b}
3a { S , 1 , 2 , 3a , 3b , 4 } {3b , 4 }
3b { S , 1 , 2 , 3a , 3b , 4 } { 4 }
4 { S , 1 , 2 , 3a , 3b , 4 } {}

Table 6.5.: Worklist processing.

Now that an initial representation of the output dependencies between the in-
stances has been constructed and S has been identified as a suitable starting point,
the worklist processing can start. Because S is a leaf instance, its value (which
hasn’t been reset to the initialization value in contrast to non-leaf instances) can
be considered to be stable. Consequently, the worklist is initialized with its output
dependencies, in this case consisting of { 1 }. The evaluation of this instance yields a
new result value { S } which requires to schedule the respective output dependencies
{3a, 3b} for recomputation. This is repeated until, after 9 steps, the worklist is
empty, indicating that a stable fixed-point has been reached.
It is obvious that the knowledge about the dependency relationships between

instances can help in deriving a reasonable execution order for the evaluation of
attributes when compared to the randomized approach taken by the round-robin
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algorithm. However, a direct comparison with the example presented in the last
section reveals that this does not necessarily lead to a reduced number of execu-
tions. In fact, for our use case, the worklist algorithm performs slightly worse than
round-robin, requiring a larger amount of rule invocations as well has having a big-
ger memory footprint. The reason for this unexpected situation can be found in
the overhead resulting from the initial derivation of dependency information. While
the round-robin method is able to make use of the results that are computed dur-
ing the recursive lookup step, the worklist approach requires to reset the instances
to their initialization value to provide a consistent starting point for the analysis.
However, this problem is mitigated by the fact that there is an upper bound for the
number of rule executions whose values will be thrown away after the initialization
step. For each instance, only one rule execution is necessary to determine its de-
pendencies. Therefore, the overhead increases in a linear fashion with the number
of instances. On the other hand, the intelligent scheduling of instance evaluations is
able to significantly reduce the number of iterations for complex equation systems.

6.5.4. Dependency Chain Algorithm

In Sections 6.5.2 and 6.5.3, we presented adaptions of traditional approaches for
solving DFA equation systems. We will now outline our own method that imple-
ments a more elaborate representation of dependency relationships that we refer to
as dependency chain. In general, the structure of these chains mirrors the control-
flow graphs that serve as a backbone for the propagation of data-flow analysis values
in the traditional approach. However, there are some additional features such as the
detection of cyclic structures in the dependency relationships that allow for a more
thorough analysis of data-flow propagation paths.
For one, knowledge about the actual structure of dependency relationships is ben-

eficial when parallelizing certain aspects of the solving process. This mainly pertains
to the invocation of rules for which the algorithm can guarantee, based on the de-
pendency chain’s structure, that their parallel execution will not result in conflicting
data accesses. A more practical advantage of this approach is that this representa-
tion supports an easy monitoring of the single steps and the overall progress of the
evaluation process. This is demonstrated, for example, in Figure 8.15 which depicts a
visualization of the dependency relationships and indicates the ordering for the eval-
uation of attribute instances that has been devised and implemented by the solving
strategy. In Section 4.2.1 we motivated the use of modeling technologies to specify
the structural aspects of the analysis artifacts. The same reasoning also applies to
the representation of attribute instances in the form of dependency chains, for which
we will consequently provide a metamodel that defines their abstract syntax.

We will now discuss several aspects that are relevant to the representation of
dependency relationships. In the following list, we outline the motivations behind
this endeavor:

Dependency Graph vs. Flow Graph

In traditional data-flow analysis, information is propagated along the edges of
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a control-flow graph. In our approach, this is however not the case. Not only
is the information routed between attribute instances which form an auxiliary
dependency graph that superimposes the model but the directionality of the
resulting edges is reversed. Instead of specifying the target elements to which
local results should be propagated, the execution of a data-flow rule yields
the input dependencies of the respective instance. For this reason, we have
to reverse the derived dependency relationships between attribute instances to
yield the direction of the propagation of data-flow information. A directed flow
edge in the dependency chain graph therefore encodes an input dependency
with its source node conforming to the requested instance and the target node
representing the requesting instance.

Comprehensive Propagation Paths

For model-based data-flow analysis, the dependency graph has to be con-
structed dynamically as dependencies only become visible during the execu-
tion of data-flow rules. Unlike the traditional approach, it is also possible that
flow paths from different analyses become intertwined. For example, the com-
putation of the attribute sccID from the attribution presented in Algorithm 5
relies on the values of allPredecessors. This means that the representation of
the dependency relationships has to leverage the underlying model structure
to be able to reflect the complex relationships between attribute instances.

Dynamic Extension

Because of dynamic dependency discovery, solving strategies must incorporate
functions which can modify existing graphs during the evaluation phase. If
additional dependencies are unveiled after the initial construction step, the
respective dependency graph may need to be extended with new nodes and
edges. Alternatively, it is also possible that this process results in the need to
merge previously separate graphs into a single structure.

Starting Points for Fixed-Point Iterations

As has been demonstrated in Section 6.5.3, knowledge about valid starting
points for the fixed-point iterations is vital to the scheduling of an optimized
execution order. In a graph that reflects the input dependencies between
attribute instances, the leaf nodes automatically conform to this property.

Handling of Cyclic Dependencies

While the worklist algorithm stores information about output dependencies,
it does not explicitly detect cycles in the data-flow paths. Cyclic structures in
the dependency graph however are important indicators for additional starting
points for fixed-point iterations. For this purpose, cycles have to be identified
and one of their constituents must be selected as an entry point from which
any fixed-point reevaluation of the cyclic structure will be started. As a con-
sequence, a solving strategy can then schedule a recomputation of unstable
values for specific cycles.
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In general, a solving strategy that employs a mechanism that is able to encode de-
pendency relationships in the described fashion has to carry out a set of specific task
to accomplish this goal. We will now give an informal description of a methodology
that supports these requirements. It consists of three main evaluation stages:

Phase 0 In the first stage, an initial representation of the dependency relationships
is constructed by monitoring callbacks resulting from input requests during
rule executions. This also includes a detection of cyclic data-flow propagation
paths. In principle, this process is quite similar to the initialization step of the
adapted worklist method described in Section 6.5.3. However, instead of only
using this information to record output dependencies, this method builds de-
pendency chains containing exhaustive information about these relationships,
including cyclic data-flow paths.

Phase 1 Since the dependency chain representation provides information about
output dependencies, it would now be possible to employ the worklist algo-
rithm to evaluate the attributes. However, we found that the precise knowledge
about the data-flow dependency paths enables further optimizations: Starting
at entry points of unstable cyclic structures, an optimized execution order for
the fixed-point iterations can be derived from the graph. It is also possible to
exclude stable branches from reevaluation and in certain cases postpone the
execution of rules to later iterations if it is clear that their input is likely to
change. Finally, a major advantage can be found in the fact that using the
recorded dependencies, the calculation of rules which are independent of each
other can be parallelized.

Phase 2 An inherent effect of a demand-driven approach is the lazy discovery and
evaluation of dependencies if they are contained in different branches of con-
ditional statements. This case is handled by a third stage in which newly
discovered dependencies between attribute instances are incorporated into the
existing dependency graphs. Afterwards, the scheduled evaluation order for
attribute instances may have to be adapted to reflect the newly discovered
instances and dependency relationships.

6.5.4.1. Dependency Chain Metamodel

In Section 6.3.1 we defined a metamodel that encodes the structure of attribution
instantiations. The motivation behind this step was to provide a unified represen-
tation and to facilitate a consistent technical integration of all analysis artifacts.
Correspondingly, we now present a model-based format that supports the manage-
ment of dependencies.
For this purpose, we developed the dependency chain metamodel (DepChainMM)

shown in Figure 6.14 which encodes the data-flow relationships between attribute
instances and supports the management of cyclic dependencies.

The metamodel defines the following concepts:
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Figure 6.14.: The dependency chain metamodel (DepChainMM).

DependencyChainSet
This element acts as a container for all dependency chains that are relevant
to a specific evaluation process.

DependencyChain
A dependency chain represents the data-flow relationships between attribute
instances and therefore forms the basic data structure that the solving strategy
operates on. Each chain conforms to a non-cyclic tree with one or more roots
and leaves. Its contents are a set of interconnected instance nodes representing
the attribute instances.

It is important to note that membership in a specific chain depends only on
the dependency relationships of an attribute instance. As a consequence, each
chain may contain instances of different attribute types and instances of the
same attribute type may be part of different chains.

In contrast to DFA control-flow graphs, chains must be acyclic to enable an
straightforward derivation of evaluation schedulings. The leaves of a depen-
dency chain are either true leaf nodes which correspond to instances with no
input dependencies or virtual nodes that represent entry points into cyclic de-
pendency structures. The top-most elements of this structure are of the type
root node, denoting instances with no output relationships. All other con-
stituents that do not fulfill the listed properties are known as inner nodes.

As mentioned above, the structure of dependency chains and the types of their
nodes may be altered dynamically. For example, a root node may become an
inner node if output dependencies are discovered later on or two separate chains
may have to be merged into a single data structure.
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DependencyChainType
During the evaluation process, dependency chains are subjected to different
kinds of processing. The type of a chain therefore reflects its current state.

The type building indicates that the chain is currently being constructed. After
this step is finished, the state changes to intermediate as the resulting chain
may still be modified, e.g. by being merged with another chain in which case
the replaced chain is marked as obsolete. After the initial phase, the type of
all constructed chains is set to built. The type evaluating is applied during the
evaluation phase while the final results are marked as evaluated.

InstanceNode
This abstract concept defines the basic properties of dependency chain nodes.
Each node may possess multiple connections to preceding and succeeding ele-
ments.

Since the relationships encode the direction of the data-flow, a node’s suc-
cessors represent input dependencies of the respective attribute instance. In
other words, leaf nodes are nodes without successors while root nodes have no
predecessors.

Node
This concept indicates the presence and the position of an attribute instance in
the dependency chain graph. Each node is connected to exactly one attribute
instance from the instantiation metamodel AttrM. Just like the connection
between an attribute instance and its target model element, this reference is
unidirectional.

As the type of a node can change dynamically, e.g. a root node becoming
an inner node, the implementation of separate class types for different types
of nodes would result in problems during the evaluation phase. Instead, the
node type is stored in an attribute field.

InstanceNodeType
This enumeration encodes the node types root node, inner node and leaf node.

VirtualNode
Back edges to preceding nodes indicate cyclic data-flow paths. To preserve
the acyclic structure of the dependency chain graph and at the same time
identify entry points into cyclic components, back edges must be replaced with
virtual nodes either during the chain building process or afterwards. Instead
of introducing a back edge, a new virtual node has to be created that replaces
the target of the dependency relationship. Because of this property, a node of
this type is always a leaf of the dependency chain and denotes an entry point
for the reevaluation of cycles. As once identified cycles will always continue to
be part of the chain, the type of a virtual node never changes.

In essence, a virtual node is a “copy” of the target node of the cyclic dependency.
This relationship is stored in the referencedNode property. After each iteration
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- consisting of a bottom-up processing of the chain - the new value computed
for the referenced node is propagated to its virtual copies and stored in their
virtualValue field. When a new iteration 𝑛 is started, the value of this field
therefore represents the instance’s result of iteration 𝑛− 1.

Iterative Dependency Chain Algorithm

As has been mentioned, it is possible to implement a dependency chain based solving
strategy that relies on an iterative evaluation of data-flow attributes. While it would
also be possible to evaluate dependency chains top-down in a recursive fashion, the
iterative approach has two distinct advantages: In large models, data-flow propaga-
tion paths can become very long. The resulting recursive invocations may therefore
exceed the capabilities of the runtime environment. Secondly, knowledge about the
dependency relationships in combination with an iterative, task-based scheduler for
rule executions supports a parallelization of the evaluation of unrelated data-flow
results.
As underlying technique for the parallelization of data-flow computations, we

employ the thread pool pattern. Using this methodology, each step of the evaluation
process is wrapped in a task which is then submitted to a work queue. An arbitrary
number of worker threads are then able to acquire the tasks from the queue and
process them. The execution stops once the thread queue is empty.

The goal of phase 0 of the evaluation process is to build the initial dependency
chain structure. This function is implemented by the following steps:

1. Parallelized Recording of Dependencies
The initial recording of dependencies can be implemented by a parallelized
execution of the initially requested and additionally required instances. For
this purpose, the selected instances are submitted to the work queue.

Each worker thread removes an instance from the queue and invokes its asso-
ciated iteration rule. The callback handler then has to initialize requested
instances and relay information about the requests back to the respective
thread. Consequently, after the evaluation of an instance has finished, the
worker thread possesses a collection that contains all input dependencies of
the invoked instance. Each of the requested instances is then itself added to
the task queue.

During this process, the worker is able to create dependency chain nodes for
the executed and the subsequently requested instances. The nodes are stored
in a global access map that is shared by all threads and which links attribute
instances to their respective chain nodes. It is therefore important that this
data structure is accessed in a thread-safe way. By querying the contents of
this map, it can be ensured that each instance is scheduled for evaluation only
once.

2. Resetting the Instance Values
In a preparation for the iterative fixed-point computation, the instances have
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to be reset to the initialization value specified for the corresponding attribute
definition. This is necessary because the exploratory execution of the rules
in the first step may leave the results of the attribute instances in an unde-
fined state13. As initialization rules do not depend on external values, the
parallelization of this step is straightforward.

3. Assembling the Dependency Chains
In the last part of the algorithm’s initialization phase, the interconnected de-
pendency nodes are segregated into separate dependency chains. First, root
node sets - collections of root nodes belonging to a single dependency chain -
have to be identified and submitted to the task queue. For this purpose, the
chain builder workers can access information generated during the recording
of the dependencies. By performing a breadth-first search starting from iden-
tified leaf nodes (cf. Section 6.5.3), associated root nodes can be grouped into
sets.

The workers can then assemble the chains by classifying their nodes as root,
inner and leaf nodes and replacing cyclic dependencies with virtual nodes. It is
possible to speed up this process by identifying cyclic dependencies during the
recording of dependencies using an algorithm that is able to detect the creation
of a cycle when new edges are added. For example, the method described in
[Hae+12] operates in 𝒪(𝑚3/2) for 𝑚 additions of edges.

The fixed-point evaluation in phase 1 schedules a bottom-up processing of the
dependency chain by submitting the unstable nodes to the work queue. In the
first fixed-point iteration, the set of unstable nodes consists of all leaves and virtual
nodes. For each subsequent iteration 𝑛, only virtual nodes whose reference value
from the last iteration 𝑖𝑡(𝑛−1) differs from the stored virtual value from iteration
𝑖𝑡(𝑛−2) are marked as starting points for the reevaluation. If the evaluation process
entered phase 2 due to the discovery of additional instances or dependencies, an
intermediate evaluation step has to be carried out. In this case, the new iteration
starts with the set of newly discovered instances from which their shared predecessors
have been subtracted.
The worker threads that carry out the bottom-up processing of nodes start with

an execution of the associated iteration rules. Afterwards, the worker has to check
for each predecessor of the evaluated node if all of its successors have either already
been executed or are not scheduled for execution in the current iteration. If this is
the case, the predecessor can be added to the work queue.
The evaluation process stops when no unstable nodes can be identified at the start

of a new iteration and the task queue is empty.
In summary, the presented iterative approach is a viable solution for analyses that

implement complex data-flow rules. In this scenario, the computational overhead
caused by the dependency management facilities of the algorithm can be neglected
in favor of the ability to make use of modern multicore processors for a parallelized
evaluation process.

13This process resembles the initialization run of the worklist algorithm (cf. Algorithm 12).
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6.5.4.2. Running Example

We will now outline the evaluation process using the dependency chain solving
strategy. We apply this method to the reachability analysis (cf. Algorithm 3)
and the model shown in Figure 6.10. For this purpose, we assume that a new
(unreachable) node 0 is included as a predecessor of 1 .

(a) Recorded dependencies (b) After iteration 𝑖𝑡0 (c) Final result after
𝑖𝑡1

Figure 6.15.: Dependency discovery and result computation [SB13].

The following description of the evaluation process is taken from [SB13]:

In the first phase of the evaluation process, the DFA equations cor-
responding to the selected instances are executed. By monitoring the
input requests during the rules’ execution, the solver is able to construct
an initial dependency graph from the recorded data-flow dependencies.
The graph is then converted into an acyclic representation by identifying
cyclic dependencies through a depth-first traversal strategy and replacing
back edges with virtual nodes. Finally, all instances in are reset to their
respective initialization value. This is demonstrated in Figure 6.15(a):
The back edge between isReachable instances at nodes 3 and 2 has
been replaced by a reference node and all values have been reset to false.

In the second phase, the graph is traversed repeatedly in a bottom-up
fashion, starting at unstable leaf nodes. Each instance node’s iteration
rule can be executed once its input dependencies have been satisfied,
i.e. all of its children have been either executed or do not have an
unstable node in their transitive children set. Parallelization is possible
if rules are executed through a working queue to which the parents of
traversed nodes are added once the aforementioned condition applies.
Since rules are free of side effects, it is safe to stop traversal at nodes
if their execution yields the same result for an instance as in the last
iteration. This avoids unnecessary recalculations of stable results. After
the traversal, unstable instances at cyclic dependencies can be detected:
A reference node is classified as unstable if its result from the previous
iteration 𝑖𝑡(𝑛−1) is different from the current iteration (𝑖𝑡𝑛) value at the
referenced node. As long as instances with values that differ between
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iteration 𝑖𝑡(𝑛−1) and 𝑖𝑡𝑛 are identified, a new fixed-point iteration 𝑖𝑡(𝑛+1)

is triggered starting with the parents of the unstable reference nodes.
For the first iteration 𝑖𝑡0, all leaves are classified as unstable with the
DFA initialization values representing 𝑖𝑡(𝑛−1).

Figure 6.15(b) shows the result after the initial iteration with the high-
lighted nodes representing the executed rules. Since isReachable at the
model object 2 now differs from its previous value, the new result is
transferred to the reference node. Its predecessor, the instance at model
node 3 , is scheduled as starting point for bottom-up traversal in 𝑖𝑡1. The
stable fixed-point is reached after iteration 𝑖𝑡1, shown in Figure 6.15(c).
Since the value for model object 1 has not changed, the traversal can
be aborted without recalculation of 2 and E .

The discovery of new dependencies during the evaluation process can
result in the introduction of additional nodes, the reconnection of existing
nodes or the merging of previously separate graphs. To handle this case,
the required modifications are postponed until after the current iteration
𝑖𝑡𝑛 finishes. Then, an intermediate step 𝑖𝑡𝑛′ is carried out in which the
existing graphs are extended by repeating the chain-building steps of
phase 1 for the discovered attribute instances. For iteration 𝑖𝑡(𝑛+1), re-
evaluation is scheduled to start at the smallest set of leaf nodes that
includes all newly created instances and nodes which introduced new
dependencies to existing instances as parents.

6.5.4.3. Evaluation

The following paragraphs present our findings in the evaluation of the scalability of
the algorithm and its performance and were originally published in [SB13]:

Both the number of rule executions in relation to the amount of instances
and the time for the analysis are indicators for its performance aspects.
The goal is a qualitative assessment of the applicability of the approach
for the analysis of large models. The evaluation employs four attributes
- isReachable, allPredecessors and sccID - as well as allPredecessorsMin
which calculates the dominating sets, using equivalent bitvector-based
implementations of the semantic rules. To evaluate the scalability with
respect to the amount of instances, five models have been generated
randomly to contain 50, 100, 500, 1000 and 2000 nodes. Except the
start and the final node, each node has exactly two outgoing connec-
tions to arbitrary targets. Because each attribute is calculated for each
node, the number of results therefore amounts to four times the number
of nodes. The computation has been carried out with the dependency
chain method using a modified worklist algorithm that does not con-
struct a dependency graph to demonstrate the unoptimized application
of traditional DFA to the modeling context. The values represent the
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median of 90 of 100 analysis runs (to eliminate caching issues, the first
10% have been discarded) on an Intel i7 2,20GHz computer.

Figure 6.16.: Number of rule executions Figure 6.17.: Time in ms (log. scale)

Figure 6.18.: Evaluation of the algorithm’s performance (cf. [SB13]).

Figure 6.16 shows the total amount of rules executed in the fixed-point
iterations. The time in milliseconds is pictured in Figure 6.17 using a
logarithmic scale. From the results it can be deduced that while the
worklist method is faster at a lower number of instances, it is soon out-
performed by the dependency graph approach. This can be explained by
the overhead induced by the complex data structures maintained by the
graph-based algorithm. The dependency graph algorithm breaks even
between 100 and 500 nodes (400-2000 instances) as the time and the
amount of rule executions scales with the total number of results.

In the master thesis [Min12] our approach has been applied to detect
illegal backward data dependencies in AUTOSAR (cf. Section 10.4)
models. The author concludes that with an execution time of 2.4 seconds
(including pre-analysis steps) for the TIMMO-2-USE breaking system
use case, the “case study shows that the analysis tool is able to cope with
medium sized systems”.
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7. Architecture and Technology

The Model Analysis Framework (MAF) is an Open Source project implemented on
top of Eclipse IDE [MLA10]. It provides a reference implementation of the specifi-
cations described in Part II of this thesis. During the evolution of our approach, the
Model Analysis Framework not only served as a proof-of-concept demonstrator but
has also been used as a research platform in order to test specific enhancements and
modifications and verify the validity and practicability of the proposed solutions.
The experiences gained during the implementation of the tooling therefore provided
valuable feedback for the refinement of our approach.
A highly flexible and modular design along with integrated capabilities to gather

statistical data enabled the evaluation of the identified objectives (cf. Section 1.2).
At the same time, specific characteristics such as the performance properties of dif-
ferent solving algorithms and the effects of certain optimizations could be measured
in the context of real-world applications. This functionality has also been used in
the assessment of the case studies (cf. Chapter 10).
However, the design of this framework was not only driven by academic require-

ments. MAF also represents a high-quality analysis tool chain suited for usage in a
productive environment. This is facilitated by an architecture that anticipates the
technical integration of analysis capabilities into (existing) third-party applications.
Aside from the solver component, the framework also comprises a fully featured
IDE to support the complete development life cycle, consisting of analysis speci-
fication, configuration and debugging. The Model Analysis Framework has been
successfully used in several research projects such as the ITEA2 project VERDE1

and WEMUCS2 (cf. Section 10.4). It has also been employed in several industry
projects and has been the subject of student theses, including [Kra12], [Min12] and
[Den13].
In the following sections, we will describe the conceptual and technical properties

of the implementation: Section 7.1 outlines the principles behind the Eclipse Rich
Client Platform (RCP) which provides the basis for plugin-oriented development
and presents additionally required components of the Eclipse modeling ecosystem.
This includes the Eclipse Modeling Framework (EMF) which realizes the underlying
MDE functionality, the Eclipse OCL/QVT implementations for rule specification
and the Xtext framework for the generation of model-based domain-specific language
editors. The basic requirements for the framework’s architectural design are listed
in Section 7.2 while the proposed architecture - describing components, their layout
and the integration with the Eclipse platform - is the subject of Section 7.3.

1Validation-driven design for component-based architectures, http://www.itea-verde.org
2Methods and tools for iterative development and optimization of software for embedded multicore
systems, http://www.multicore-tools.de
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The conceptual considerations developed in this chapter represent the foundation
for the detailed overview of the components of MAF and their functions in Chapter 8.

7.1. Technological Platform

The Eclipse framework provides not only an Integrated Development Environment
for software development with languages such as Java or C++, but is itself a highly
configurable and extensible platform that can be customized to create IDEs for
specific application domains. The choice of Eclipse as a basis for the implementation
of the data-flow analysis approach was motivated by the widespread use and the
maturity of the platform and its accompanying projects as well as the excellent
support of MDE technologies, many of which realize OMG specifications relevant to
the implementation of the DFA approach.
In Section 7.1.1, we describe the basics of the Rich Client Platform concept.

The Eclipse Modeling Framework (EMF) that implements the (Essential) MOF
specification is presented in Section 7.1.2. To enable the definition of DFA rules in
OCL, we make use of Eclipse’s OCL component which is the subject of Section 7.1.3.
Finally, the Xtext framework - a workbench for the development of textual model-
based domain-specific languages - is introduced in Section 7.1.4.

7.1.1. The Eclipse Rich Client Platform

The Eclipse Foundation has been created as a not-for-profit corporation in 2004 to
host “the Eclipse projects and helps cultivate both an open source community and an
ecosystem of complementary products and services”3. While many software develop-
ers are aware that Eclipse offers a sophisticated Java development environment, this
represents only one - although arguably the most popular - use case of this platform
[Gee05].
At the core of Eclipse lies the Equinox framework, an implementation of the OSGi

specification4 which “provides a general-purpose, secure, and managed Java frame-
work that supports the deployment of extensible and downloadable applications.”
[OSGi] “This small kernel [. . . ] provides the environment in which plug-ins execute.
Each plug-in contributes to the whole in a structured manner, may rely on services
provided by another plug-in, and each may in turn provide services on which yet
other plug-ins may rely. [. . . ] The minimal set of plug-ins necessary to create a
client application is called the Eclipse Rich Client Platform (RCP).” [CR08]
The extent to which the Rich Client Platform can be customized through the

use of the plugin system is evident from the example of the Java Development
Tools (JDT), the set of plugins responsible for transforming the RCP core into a
fully featured IDE for the development of Java applications. Through its flexible
architecture and the high quality of its components, Eclipse has secured itself a place
as a professional tool for commercial applications: “IBM revamped its Lotus product

3http://www.eclipse.org/org/
4Open Services Gateway Initiative, http://www.osgi.org
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Figure 7.1.: A high-level overview of the Eclipse system architecture [MLA10].

suite to be based on RCP; NASA started using RCP for managing, modeling, and
analyzing space missions; and RCP showed up unnoticed in applications in various
domains. Today RCP is used as the basis of software platforms from banking and
insurance to health care and geographical information systems.” [MLA10]

7.1.2. The Eclipse Modeling Framework (EMF)

According to its official project page [EMFP], the Eclipse Modeling Framework
is “a modeling framework and code generation facility for building tools and other
applications based on a structured data model. From a model specification described
in XMI, EMF provides tools and runtime support to produce a set of Java classes for
the model, along with a set of adapter classes that enable viewing and command-based
editing of the model, and a basic editor.”
In can be observed that, in the field of academic research relating to model-driven

software development, prototypic implementations are often based on EMF. Many
examples for this can be found in the modeling category of Eclipse Labs5, a project
hosting platform set up by Google specifically for non-official Eclipse-related code
repositories. At this time, it is home to hundreds of projects (including MAF), many
of which have an academic background.
The usage of EMF is however not limited to the scientific community. It also

has achieved relevance in industrial application scenarios. This is hinted at by Mike
Milinkovich, the executive director of the Eclipse Foundation, in the foreword of

5http://code.google.com/a/eclipselabs.org/hosting/
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the project’s official handbook [Ste+09]: “As a platform, EMF has transformed the
modeling tools industry. Leading model tools vendors such as Borland and IBM
have based their products on EMF, making a strategic decision that EMF is their
core modeling framework of the future. Almost every new modeling product that I
have seen over the past four years has been based on EMF.”
An important part of this success can be attributed to the wide variety of high-

quality tools being developed as part of the Eclipse Modeling Project6 which have
adopted EMF as a common technical foundation for their own implementations
since this framework supports building complex model-based applications through
an integration of interoperable functionality. In fact, even the new release of the
Eclipse platform itself (Eclipse e47) makes use of the EMF facilities by internally
synchronizing the state of the Eclipse workbench with a model-based representation.
Some of the projects relevant to the implementation of the MAF - the Xtext DSL
language workbench and the Eclipse interpreter for (imperative) OCL - are described
in the following sections.

(a) EMF resource management. (b) The EMF code generator model.

Figure 7.2.: The EMF resource and generator model concepts [Ste+09].

In order to provide a better understanding of EMF and the choices that drove the
design of the Model Analysis Framework, we summarize the most important aspects
of the Eclipse Modeling Framework in the following paragraphs:

The Ecore model

From a technical view point, EMF’s Ecore model can be considered to be a very
straightforward implementation of the Essential Meta-Object Facility specification.
In fact, the development of Ecore itself heavily influenced the separation of the MOF
standard into a lightweight essential (EMOF) and a complete (CMOF) part. The
motivation for this split was that “with a focus on tool integration, rather than meta-
data repository management, Ecore avoids some of MOF’s complexities, resulting in
a widely applicable, optimized implementation” [Ste+09]. Ecore therefore represents
a metamodeling language that is able to reflectively define its own syntax. Within

6http://www.eclipse.org/modeling/
7http://www.eclipse.org/e4/
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EMF, the terminology used for addressing constituents of the modeling language is
mostly the same as in the OMG standard albeit prefixed with the letter “E”8.

Serialization

Ecore models can be created using one of the supplied editors or alternatively be
imported from a number of common formats such as Rational Rose or XML files
and even annotated Java code. The default method for serializing (meta) models is
the XML Metadata Interchange (XMI) format [XMI].
Implementation-wise, this is achieved through the notion of Resources as depicted

in Figure 7.2(a). A Resource encapsulates a model and is able to track changes
through a notification mechanism and also enables the implementation of different
serialization methods such as files-based formats and databases. It is generally
required that all of a model’s objects must be part of a single tree structure with
respect to their containment references (containment tree), i.e. no “dangling” objects
are allowed. It is also possible to create interconnections between different models.
If cross-references exist between elements which are part of multiple Resources, the
corresponding models can be aggregated in shared ResourceSets. In this case, lazy-
loading of depending artifacts is automatically managed.

Code Generation

Once an Ecore model has been created, it can be used for code generation9. Per-
forming this action results in (interface and implementation) Java classes that rep-
resent the classes in the metamodel. Attributes and references are mapped to class
members which can be accessed through automatically generated getter and setter
methods. These methods ensure a proper handling of properties that result from
the definitions in the metamodel. For example, adding an element to a containment
relationship automatically removes it from its previous owner. The code genera-
tion process can be customized by annotating the model’s elements with additional
information which is relevant to the generation step, e.g. the output directories
for the generated code. As shown in Figure 7.2(b), this configuration - referred
to as genmodel (Generator Model) - is also a model which annotates the target
metamodel10.
If manual adjustments have to be made to the Java code, one can remove the

respective Java annotations from the corresponding methods. This step creates pro-
tected areas which will not be overwritten by subsequent invocations of the code
generator. Thereby, the code can be updated to reflect changes to the metamodel
without overwriting manual adaptions. However, a full round-trip engineering ap-
proach in which structural changes to the code are transferred back to the model is

8For example EClass, EObject, EAttribute, etc.
9The code generation step can be customized by altering the templates - based on the Java
Emitter Template (JET) technology - which are used in the Model to Text generation process.

10On a conceptual and on a technical level, this process is therefore very similar to the way analysis
specifications extend metamodels.
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currently not supported.

To ensure high quality and performance, several well-proven design patterns and
best practices [Gam+95] are automatically applied during the code generation:

Interfaces
By default, interfaces and implementations are strictly separated. This is used
to simulate multiple inheritance between metamodel classes, a concept which
is defined in MOF but not available in Java.

Referential Integrity
References between two model elements which are navigable in both directions
are always kept up-to-date on both sides. As mentioned above, containment
relationships are also managed automatically.

Packages/Factories
The metamodel’s EPackages are translated into package classes which provide
convenient access to the Java representations of the meta elements in order to
support reflection on a model level. They also hold a reference to generated
EFactories which are, for example, used by Resources to create the matching
Java objects during the deserialization of a model.

Adapters
The model’s elements act as notifiers which publish typed change events to
subscribers. This can, for example, be used to update UI controls when the
model changes. In addition to implementing a publisher/subscriber architec-
ture, the adapter pattern also acts as a mechanism to extend Java classes with
new behavior without the need of subclassing to circumvent the limitation that
each Java class may only have one parent. This functionality is implemented
through AdapterFactories that are able to associate model elements with other
objects of a given type.

Reflection/Dynamic EMF

Instead of generating code, (meta) models can also be constructed dynamically
through a reflective API. In this case, default behavior is assumed for all aspects
of the model. This API can also be used for static models, e.g. to access attributes
and references using generic getter and setter implementations and to request meta
information such as the defining EClass of an EObject instance or the EAttribute
structural feature that governs the instances of corresponding class attributes.
Dynamic EMF is also automatically used as a fallback method if, during the

deserialization of a model, the generated Java classes representing the metamodel’s
elements cannot be located, i.e. no matching EFactory can be found. This is, for
example, the case when the code generation step has been omitted or the respective
factory has not been registered with the runtime environment.
While dynamic EMF is generally considered to be slower than generated code due

to its reflective nature, it has the distinct advantage of being able to incorporate
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structural changes during runtime through reflective modifications. In addition, it
does not require the presence of generated code and solely relies on the Ecore/XMI
file containing the metamodel specification.

Editing

Using the code generation capabilities of EMF.Edit, the derived Java equivalent of
the model can be complemented with customizable editing facilities. This so-called
edit code supplies the Eclipse environment with the necessary information for an
automatic display of a navigable outline view based on the model’s containment
tree as well as showing element properties in Eclipse’s property viewer. It also
provides corresponding labels and icons for model elements and other information
typically required to build an IDE. The edit code is also able to generate commands
according to the Command pattern to encapsulate changes to the model such as
the modification of an attribute’s value or the addition/removal of elements. This
enables the implementation of features such as undo/redo and drag’n’drop.
Based on this code, EMF is able to create a fully-featured editor that supports

the creation and editing of models corresponding to the underlying metamodel in a
tree-based representation. Other editor implementations, e.g. visual editors created
with the Eclipse Graphical Editing Framework (GEF) or Xtext, profit in the same
way.

7.1.3. The Eclipse OCL Implementation

The Eclipse implementation of the Object Constraint Language11 is part of Eclipse’s
Model Development Tools (MDT). This project implements the OCL standard de-
fined by the OMG using EMF technology as its technical foundation to support
the validation of constraints in Ecore as well as in UML models. Internally, EMF
facilities are used to encode artifacts such as the OCL standard library and parsed
syntax trees of OCL expressions. Although most of the standard is supported, there
are some deviations which in part stem from the fact that the official specification
contains ambiguities and implicit assumptions1213.
The implementation features a visitor API that enables users to manually process

the AST of OCL expressions and a configurable evaluation environment that repre-
sents the context in which a constraint is parsed and executed. Most importantly, it
exposes the necessary functionality to load and invoke OCL queries on EMF models
and to process the results.
Furthermore, the project provides IDE components for the development and ex-

ecution of OCL statements. Notably, this includes Xtext editors (cf. Section 7.1.4)
for the OCL language which support syntax-highlighting, content assistance and a
validation of the well-formedness rules [Wil10].

11http://www.eclipse.org/modeling/mdt/?project=ocl
12http://wiki.eclipse.org/MDT/OCL/Compliance
13http://www.eclipse.org/modeling/mdt/ocl/docs/publications/OMG2012Mar/

ADTFOCL2012.pdf
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Figure 7.3.: The internal workflow of the Eclipse OCL implementation [Wil10].

Figure 7.3 depicts the steps of the evaluation process: First, the tokens of an input
file are read using a lexer and parsed into a concrete syntax tree. The Analyzer
component then transforms the concrete into an abstract representation, thereby
simplifying the tree’s structure and including semantic properties such as cross-
references. Finally, the Validator checks the conformance to well-formedness rules.
Both representational formats are governed by metamodels [Wil10].

Figure 7.4.: The architecture of the Eclipse OCL project’s components (http://
wiki.eclipse.org/MDT/OCL/4.X_Architecture).

Figure 7.4 shows the architecture of the components that constitute the Eclipse
OCL project. Expressions can be stored in and loaded from different formats, for
example as annotations in an Ecore file (oclinecore) or as standalone queries (ocl).
They are converted into a pivot representation of the AST that combines the prop-
erties of OCL queries on EMF and UML (meta) models and supports a subsequent
validation with respect to OCL’s well-formedness rules.

The Eclipse OCL implementation is well suited for use in the Model Analysis
Framework for the following reasons:

Integration with EMF
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Its tight integration with the Eclipse Modeling Framework facilitates the com-
bination with other components of the analysis framework as MAF itself also
heavily relies on the capabilities and services provided by EMF.

IDE Support
The existing editor components of the project can be reused in the imple-
mentation of a development environment for model analyses. Because of the
modular properties of the Eclipse platform, it is possible to directly incorporate
these editing facilities into the Model Analysis Framework’s IDE.

Customizable Evaluation Environment
The evaluation of OCL statements depends on a specific context, for exam-
ple the state of variables such as the self object. MDT OCL supports a
customization of this environment without modifications to existing modeling
artifacts. This simplifies the realization of the callback mechanism necessary
for implementing the dependency discovery functionality required by the solv-
ing algorithms.

In the context of the Eclipse modeling facilities, the OCL project is also reused as
part of the operational Query/View/Transformation implementation which belongs
to Eclipse’s Model-To-Model Transformation (MMT) category. This is relevant
because the QVT specification [QVT] includes an extension of the purely functional
OCL language with imperative concepts such as variable declarations and loops. In
many cases, these constructs simplify the specification of data-flow rules. Support
for black-box operations14 again can be used to realize the callback mechanism for
rules which are specified in QVT.

7.1.4. The Xtext Framework

The Xtext Language Development Framework [XTEX] is a toolkit that supports
the creation of editors for text-based domain-specific languages15. It provides out-
of-the-box support for features which are usually expected from modern development
environments such as syntax highlighting, code completion, code formatting etc.
From its early days as part of the openArchitectureWare16 distribution [EV06],

it has become the main contribution of the Eclipse Textual Modeling Framework
[TMF]. Xtext plays a major role in the recent trend towards the development and
the usage of domain-specific languages which are specifically intended to be used
by domain experts as opposed to technical experts. The goal here is to allow users
without the technical knowledge required to use a general purpose programming
language to participate in the development process [Gho10]. Xtext not only employs
model-driven techniques but also bridges the gap between the modeling domain and

14Black-box operations invoke (Java) methods from inside QVT/OCL expressions.
15A comparison of different tooling environments for this purpose can be found in [PP08].
16The components of openArchitectureWare, a toolkit for model-driven software development,

have since been integrated into the Eclipse Modeling Project.
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textual DSLs. The popularity of this topic is reflected by the large amount of Xtext-
related talks in conferences targeted at software developers17 and its use by many
open and closed source projects. According to [Beh+10] Xtext “is used in the field
of mobile devices, automotive development, embedded systems or Java enterprise
software projects and game development”. It is further stated that “Xtext-based
languages are developed for well known Open-Source projects such as Maven, Eclipse
B3, the Eclipse Webtools platform or Google’s Protocol Buffers and the framework
is also widely used in research projects”.
In the context of the implementation of the Model Analysis Framework, the choice

of Xtext was motivated by the following facts: DSL editors created with the Xtext
framework are tightly integrated with the Eclipse environment, thus enabling the
realization of a consistent IDE experience. Secondly, the generated editor compo-
nents use EMF as a basis for technical and conceptual integration. Finally, the
framework provides the possibility to declare mappings between textual language
constructs and elements in EMF metamodels and automatically synchronizes both
representations.
At the core of Xtext lies a parser that implements a bi-directional mapping be-

tween the EBNF-style grammar and metamodel constructs. Parsing and interpreting
a textual representation of a model therefore supports building a corresponding EMF
model which in turn can be serialized to derive its textual format. The relations
between the grammatical derivation rules and elements (model classes, attributes
and references) in an existing metamodel are established in the grammar itself using
a modified version of the Extended Backus-Naur Form. Alternatively, Xtext is also
able to infer a matching metamodel from the grammar if no reference metamodel is
provided.
Figure 7.5 illustrates the use of modeling technology in the Xtext workflow: The

context-free grammar that constitutes the definition of the abstract syntax is rep-
resented as a Grammar Model. As mentioned, this grammar may extend an existing
Ecore model, declaring textual representations for its constituents. The processing
of textual inputs is carried out by a parser that is generated from the grammar
specification. This results in a model-based Parse Tree representation of the input
tokens. This artifact is then converted into a Semantic Model which conforms to an
abstract syntax tree of the parsed language instance and at the same time represents
a valid model that corresponds to an instance of the language’s (Ecore) metamodel.
The overall architecture of the artifacts generated by Xtext is visualized in Fig-

ure 7.6: The editor’s internal components, the parser, the linker18 and the serializer
use a common representation of the model - the XtextResource - which is a subtype
of EMF’s Resource class. This implementation is able to (de)serialize the model
from and into its textual representation and at the same time allows access to the
model’s contents through EMF interfaces. Consequently, models can be processed
by any EMF-based application which is built on the original metamodel.

17For example at EclipseCon (http://www.eclipsecon.org) which is organized by the Eclipse
Foundation.

18The linker module manages cross-references between model elements, a feature that is not found
in context-free languages.
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Figure 7.5.: The EMF models used by Xtext [Beh+10].

7.2. Design Goals

Development on the Model Analysis Framework began after the basic principles for
the flow-based approach had been established. Originally only planned as a throw-
away, proof-of-concept prototype to validate the applicability of the approach, it
soon became obvious that a more carefully designed implementation could be a
valuable asset for teaching and research purposes as well as for cooperation projects
with industry partners.

Aside from common requirements which should be respected by every software -
such as properly structured and commented code - we identified several points which
are of specific interest in the context of the intended use cases:

Reuse of existing Technology
A fundamental design goal for almost any type of software can be found in
the reuse of existing technology in order to avoid redundant reimplementa-
tions and improve code quality and maintainability. This goal, of course, also
applies in our case. In fact, this requirement is especially relevant since the
analysis approach is based on a combination of many different standards and
techniques and because the tooling is intended not only to be used for research
purposes but also as a high quality platform meeting the requirements of in-
dustrial application scenarios. Moreover, since MAF itself is a development
platform which can be (re)used and extended by developers, its interfaces and
configuration options should be exposed in a way that enables its usage in
different scenarios. For example, it should be possible to include support for
additional rule specification languages or extend standalone applications with
the analysis capabilities provided by MAF.
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Figure 7.6.: The Xtext EMF resource as central concept of the Xtext architecture
[Beh+10].

Conformance to Standards and Tools
Expanding on the reuse aspect, the inherent integration of standards and tech-
niques, such as MOF or OCL, demands the employment of tools and libraries
which conform to official standards rather than implementing proprietary so-
lutions. This aspect is an important prerequisite for ensuring that the project
integrates well with existing tooling. Additionally, it simplifies the integra-
tion of extensions and functions that have been developed externally such
as existing model transformations between different representations. Finally,
conformance to standards retains compatibility with future improvements in
the involved standardization processes and the implementations thereof. From
a technical viewpoint, the implementation should therefore integrate with ex-
isting platforms to provide compatibility with a wide array of existing tools.

Research Platform
Because of the co-evolvement of the theoretical concept and the technical im-
plementation, a flexible and modular architecture was required to approach
specific problems in different ways. Examples for this include the evaluation
of the technical and practical applicability of multiple solving strategies for
fixed-point equation systems and the integration of different rule specification
languages. The research aspect is further emphasized by sophisticated meth-
ods for gathering statistical data about the analysis process, thus providing
feedback for the improvement of the underlying algorithms.

Productivity Platform
Requirements for productive use differ from the properties that must be met by
a research prototype. The framework has to be designed with performance and
stability issues in mind. Also, the incorporation of analysis capabilities into
existing applications requires an UI independent core which can be instantiated
and configured through a well-defined API to control the analysis workflow.
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Since the responsibility for the communication with the user lies with the
third-party application, a notification mechanism must be provided. In order
to support a wide range of varying technological ecosystems, it is essential that
interfaces such as importers and output processors can be integrated at a later
time.

Another important aspect consists of the performance with respect to time
and memory constraints. The analysis core should be designed to run as
a background service that is able to preload required resources such as meta-
models and analysis specifications to minimize the time required for the actual
execution of an analysis. Performance in the context of the evaluation algo-
rithm can further be improved by making use of multicore processors through
a parallelization of analysis tasks.

Integrated Development Environment (IDE)
Most current development platforms provide a graphical interface to simplify
the access to functions and thereby allow users to focus on their respective tasks
rather than spending time on issues arising from insufficient tooling support.
Integrated Development Environments put an emphasis on a consistent user
experience throughout large parts of the development cycle. In the context
of MAF, it is therefore important that the UI-independent analysis core is
complemented with graphical editors that expose as much of the capabilities
of the underlying techniques as needed.

Generally, the development process of model analyses can be split into several
parts: The analysis specification process itself, the configuration and resource
management step and the integration of analysis capabilities into third-party
applications. These issues should therefore be addressed individually.

Based on these design goals, a decision was made to employ the Eclipse Rich
Client Platform and accompanying projects (the most relevant ones having been
described in the previous section) from the Eclipse ecosystem as technical basis for
the implementation of the Model Analysis Framework.

In more detail, the reasons for this decision are as follows:

∙ Eclipse itself (along with many of its related projects) are available as Open
Source, often under the licensing policy of the Eclipse Public Licence (EPL)19

which in many respects can be considered to be more friendly to industrial
applications as, for example, the GNU General Public License (GPL)20.

∙ Through its Equinox core (an implementation of the OSGi standard [MVA10]),
Eclipse provides an advanced plugin mechanism that supports a modularized
approach to software development. The services of different bundles21 can be
combined to realize more complex functionality while the dependencies that

19http://www.eclipse.org/legal/epl-v10.html
20http://www.gnu.org/licenses/gpl-3.0.html
21Bundle is the OSGi terminology for a plugin.
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exist between these bundles (and even between different versions of the same
bundle) are managed automatically by the Eclipse platform.

∙ Through the use of extension points, the appearance as well as the behavior
and the internal functionality of the Eclipse IDE can be easily customized. The
same principle also applies to third-party applications built on Eclipse RCP
which can define and publish their own extension points. This is especially
relevant as more and more commercial applications are developed on top of
the Rich Client Platform and application development is increasingly centered
on the reuse and combination of existing functional modules.

∙ Eclipse is currently the leading platform when it comes to the (Open Source)
implementation of standards and technologies in the MDE domain, more
specifically the standards released by the OMG as stated in an interview by
Ed Merks22, the project lead of the Eclipse Modeling Framework. EMF in
particular is well suited to function as a common basis for the development
and integration of model-based tooling.

7.3. Architecture

Based on the technological properties of the Eclipse platform (cf. Section 7.1) and
the design goals that have been listed in Section 7.2, we now outline the basic ar-
chitecture of the Model Analysis Framework. The stated goals result in a number
of requirements that must be met by the implementation which is detailed in Chap-
ter 8.
These requirements stem from the fact the Model Analysis Framework has to

provide support for two different application scenarios: On the one hand, the frame-
work has to support the analysis specification process by providing a suitable IDE.
On the other hand, its analysis capabilities are intended to be used by domain
experts rather than technical specialists. In this sense, the analysis core of MAF
is not a standalone application but rather represents a customizable module that
can be integrated into existing tools to enhance their abilities. For this purpose,
a technological bridge between the target application and the analysis framework
has to be implemented by the developer who is also responsible for supplying the
necessary analysis specifications. The framework therefore has to define interfaces
for customization with regard to different target domains as well as provide the
functionality that enables integration with third-party products.
In the following sections, we present an architectural design that supports these

application scenarios. In Section 7.3.1, we discuss the components of the analysis
core while Section 7.3.2 presents the functions of the IDE. Section 7.3.3 provides an
overview of the technical components.

22http://jaxenter.com/eclipse-modeling-framework-interview-with-ed-merks-10027.
html
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7.3.1. The Analysis Core

First, we will address the implications on the design of the analysis core. The core
module can be split into a functional and a descriptive part: The first part comprises
the analysis management and solving component while the second part consists of
the language specifications (i.e. the metamodels) used for the internal and external
representation of the analysis artifacts. Since MAF is not only a DFA solver but a
complete framework that exposes analysis capabilities to third-party applications, it
has to provide sophisticated methods for resource management as well as for analysis
configuration and execution. This results in the following functional entities:

Resource Repository
The flow analysis concept requires the combination of multiple resources, some
of which change more dynamically than others. Specifically, the definition of
an analysis comprises the attribution itself as well as the metamodel that it
extends. Usually, it is expected that these artifacts are constant in the sense
that they will not change after having been loaded since they are not affected
by the execution of an analysis on one or more models. Because multiple
analyses may exist for the same metamodel, it is beneficial to load metamodels
only once (e.g. when the framework is initialized), keeping them in memory
and internally connecting them to depending attributions. The same is true for
the relation between attributions and models: Because the same attribution
can be applied to multiple models (or different states of the same model), the
resource should not automatically be discarded once the analysis process has
finished.

Figure 7.7.: The relationships between artifacts in the repository.

The execution of an analysis depends on two artifacts, the model and the in-
stantiated attribution, which together form the attributed model. The concept
of an Instantiation (in the context of the MAF) therefore represents a combi-
nation of three resources: The attribution, the model and - implicitly because
each model and attribution resource are connected to the corresponding target
language - the metamodel itself. These relationships are shown in Figure 7.7.
In addition to the three input resources, this element has to hold the generated
attribute instances. Again, while it would be possible to discard the result-
ing Instantiation resource after the execution of an analysis has finished, under
certain circumstances it can be beneficial to keep it in memory. This is the
case when multiple, incremental analyses should be executed subsequently -
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but not immediately - on the same model. In this case, the Instantiation acts
as a container that holds the already calculated attribute instance results for
later access by other analyses which depend on these values.

To support these requirements, we chose to design a sophisticated internal
repository management system that possesses the ability to load and hold in-
dividual resources from different sources while recording their interdependen-
cies as depicted in Figure 7.7. This information is required during the loading
and instantiation processes to locate the corresponding artifacts but it can
also be used to automatically discard depending artifacts, e.g. the removal of
depending attributions and models if their target metamodel is dropped from
the repository. In summary, this design facilitates the semi-automatic man-
agement of the resource lifecycles which simplifies the programmatic handling
and supports an optimization of the performance of the resulting application
by avoiding redundant loading processes and limiting memory consumption.

Note: To distinguish between the external and internal representations, we
refer to the input in its original format as artifact while the internal represen-
tation is termed resource.

Resource Adapters
An important aspect that directly relates to the notion of resource management
is the need to support different input types. (Meta) models and attributions
may be loaded from memory, from files using different storage formats or even
databases. In some cases, it might also be necessary to apply a preprocessing
step to an input artifact, e.g. a transformation that converts the input into
a suitable internal representation. This requires to generate mappings which
relate the resulting internal elements to their original source format so that
analysis results can be correctly interpreted. Finally, the imported artifacts
have to provide interfaces to the Resource Repository component described in
the previous item.

We refer to the modules that implement this functionality as Resource Adapters.
An adapter has to implement several interfaces that provide functionality for
the import and the internal management of model artifacts. As a consequence,
the analysis core can access the repository’s contents via the standardized in-
terfaces while remaining unaware of implementation-specific details that relate
to the properties of different input formats.

To support customization for different technological domains, it is important
that the adapter interface is exposed to developers who are then able to im-
plement adapters for custom artifact types.

The general approach is outlined in Figure 7.8: Based on the format of the
input artifact, a compatible adapter is chosen by the Resource Loader and
tasked to convert the source to an internal representation which is then stored
in the Resource Repository. The architectures for model and attribution Re-
source Adapters follow a similar pattern. Note that in this case, the resource
manager is responsible for linking the internal representations of models and
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Figure 7.8.: Loading resources using resource adapters.

attributions to the respective target metamodel. The different adapter types
are named Metamodel Adapters, Model Adapters and Attribution Adapters re-
spectively.

Rule Invokers
While the declarative attribution specifications are purely model-based and
thus technology-independent, the associated data-flow rules have to be written
in an executable language. Because data-flow rules may be specified in different
languages, this requires a certain amount of flexibility. To reduce complexity
and decouple functionality, it is desirable that the fixed-point solving algorithm
remains unaware of the respective rule language(s) (cf. Section 6.4). This can
be achieved through a language-agnostic interface to a set of Rule Invokers
which implement the required functionality for different target languages.

To trigger the evaluation of an attribute, the fixed-point solver hands the
respective attribute instance and the information whether its initialization or
iteration rule should be executed to the invocation interface. This module
then has to select the appropriate Rule Invoker for the target language, task
it to execute the specified rule and finally update the attribute instance with
the result value.

Some implementation languages may also require to parse or compile data-flow
rules before they can be invoked. The responsibility for this process also lies
with the Rule Invoker for the respective language. Because data-flow rules are
contained in the attributions, this step can be carried out immediately after
the attribution artifact has been loaded. Since attributions are stored in the
internal Resource Repository and can be used to analyze multiple models, this
preparation step has to be carried out only once. For this purpose, Attribu-
tion Adapters can implement a dedicated preprocessing step that categorizes
all contained data-flow rules according to their language type and task the
respective invokers to convert them into an executable format.

As is the case with Resource Adapters, developers that intend to incorporate
analysis functionality in their own products should be able to extend the pro-
vided functionality with their own implementations. In the context of the
invocation interface, support for additional rule execution languages must be
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included. Therefore, an extension mechanism and suitable interfaces must be
provided for registering custom Rule Invokers.

Attribute Instantiation
As mentioned, instantiating an analysis requires the combination of three types
of elements: A metamodel, an attribution that encodes the analysis and the
target model. The instantiation process involves the traversal of the model’s
elements and the creation of attribute instances according to the declarative
attribution specification.

In this context, the relevant properties of the metamodel are the generalization
relationships between its classes. These have to be taken into account because
the semantics for the instantiation step demand that data-flow attributes de-
fined at a superclass are inherited to subclasses while respecting redefinitions
at inheriting classes. However, depending on the amount and the structural
properties of generalization relationships, this can have a significant impact
on the performance as the generalization hierarchy must be traversed during
the creation of each attribute instance. To alleviate this problem, attribute
inheritance can be handled on the meta level, thereby greatly reducing the
required effort, especially if the same analysis is reused multiple times. For
this purpose, inheritance relationships in the metamodel are analyzed and the
attribution is extended accordingly (cf. Section 6.3.3): Attribute occurrences
are copied and annotated at all classes at which they are available according to
the defined generalization semantics. Consequently, instantiating an attribute
occurrence requires only to search for all model elements with are of the oc-
currence’s target class type. Just as with the preprocessing of data-flow rules
described in the previous item, this step can be carried out statically by the
Attribution Adapter immediately after the artifact has been loaded.

(a) Original attribution (b) Extended attribution

Figure 7.9.: Extending attributions to reflect generalization semantics.

This process is illustrated in Figure 7.9: Figure 7.9(a) shows an attribution
that defines two attribute occurrences for four classes which form a single gen-
eralization hierarchy. The situation after the preprocessing step is depicted in
Figure 7.9(b): The attribution has been extended with two new occurrences
that reflect the inheritance semantics. Using the extended form of the attribu-
tion, instantiable attributes can be identified by checking the model element’s
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concrete class type. It is evident that the performance gain is more significant
if the statically enhanced attribution is reused to instantiate attributes for
multiple models.

Figure 7.10.: Dynamic instantiation of attributes.

Because the evaluation of attributes follows a demand-driven pattern and con-
sequently, not all attributes may have to be instantiated for a specific anal-
ysis, the performance can be further improved if the instantiation is carried
out dynamically (cf. Section 6.3.3): While a single attribution may specify
many attributes, not all of them may be of interest at a given time. Because
the proposed fixed-point algorithms support dynamic dependency discovery,
instantiation can be postponed until an instance is actively requested by the
solver (cf. Section 6.5.1). If the same attributed model is subjected to multiple
analyses, the instantiation container starts out with the instances requested
by the initial analysis and “grows” subsequently to accommodate the instances
created during later evaluations.

This approach allows for the instantiation containers - representing the at-
tributed models - to be empty on creation. Only after a request to retrieve the
value of a specific attribute instance is made, this instance is actually created.
For this purpose, the instantiation container must provide an interface that
allows other components to request single attribute instances. More specifi-
cally, the Strategy Executor as well as the Attribute Accessor must be able to
instantiate attributes in advance and during the execution of an Evaluation
Strategy (see below).

Figure 7.10 provides a simplified overview of this process: Using an attribu-
tion and a model as input, an attributed model in the form of an Instantiation
resource is created. Attributes are then instantiated as needed by the compo-
nents involved in the solving process.

Using this architecture, the choice between a static and a dynamic instanti-
ation strategy does not affect other parts of the framework as this process is
completely transparent.

Attribute Accessor
In contrast to traditional data-flow analysis, data-flow rules for attributed
models cannot automatically be supplied with input parameters due to the
lack of an underlying dependency graph. In Section 6.5.1, we described how
the conventional algorithms can be modified to circumvent this problem. Ef-
fectively, requests for input values are implemented by the rules themselves
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while the solving algorithm has to monitor and record the resulting depen-
dency relationships to update unstable intermediate results. For this purpose,
input requests have to be relayed back to the solver rather than triggering the
recursive execution of the respective data-flow rule.

The component that is responsible for implementing this feature is the At-
tribute Accessor. This module is called by the Rule Invokers any time a data-flow
rule makes an input request (e.g. return the instance value of attribute 𝑋 at
model element 𝑌 ). The Attribute Accessor then has to retrieve the correspond-
ing instance from the Attribute Instantiation (triggering a dynamic instantiation
if the attribute has not yet been instantiated) and notify the solver about the
resulting dependency relationship via its callback method. Because the ac-
cessor is invoked by data-flow rules, each implementation language has to be
supplied with a corresponding interface (cf. Section 6.4.2 and Section 6.4.3).

Strategy Executor / Evaluation Strategy
Due to the potentially large size of models and attributions, it can be beneficial
to restrict the evaluation to a relevant subset of these resources. In some cases,
it might even be necessary to impose an order on the evaluation of attributes
to ensure the analysis yields the correct results. The incremental evaluation of
specific attributes is supported by the lifecycle concept for resources: Instanti-
ations represent containers for computed results, providing the input for later
evaluations of depending attributes.

The selection of attribute instances which should be computed at a given
time is encoded in Evaluation Strategies. A strategy consists of a sequence
of Evaluation Directives which come in two different types, Evaluation Targets
and Evaluation Macros. An Evaluation Target instructs the Data-flow Solver
to evaluate a specified subset of attribute instances. Evaluation Macros on
the other hand, execute non-DFA functions during the automated evaluation
process.

A strategy is processed by the Strategy Executor component. In the first step,
the attribute instances requested by the Evaluation Directives have to be in-
stantiated statically23. Then, the directives are processed one by one. The
execution of Evaluation Targets involves the invocation of the Data-flow Solver
while user-defined Evaluation Macros are executed by calling their respective
implementing function.

Data-flow Solver
The described architecture decouples the actual solver from the resource man-
agement system as well as from the instantiation process, the rule invocation
service and the configuration of complex evaluation strategies. This approach
has two advantages: Without the overhead of unrelated management func-
tionality, the solver module can focus on the implementation of the actual

23Dynamic instantiation is limited to attributes which are detected during the dependency discov-
ery steps of the solving algorithms.
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fixed-point algorithms. Additionally, any realization of a specific fixed-point
solving strategy can be easily substituted.

The Strategy Executor supplies the respective solver with two parameters: A
reference to an Attribute Instantiation (possibly already containing partial re-
sults from earlier analyses) and the subset of therein defined attribute instances
for which values should now be computed. The solver is then responsible for
invoking the initialization and/or iteration rules associated with the requested
instances in a suitable order until the values of the requested and additionally
discovered instances converge in a stable fixed-point.

If the invocation of an iteration rule results in a request to another instance,
the Accessor module relays this information to the solver and, if necessary,
takes care of the dynamic instantiation of newly discovered instances. As
a consequence, each concrete implementation of a solver has to realize two
methods: The Analysis Entry Point which is called by the Strategy Executor to
compute an analysis encoded in an Evaluation Target and a Callback Handler
function that is invoked by the Accessor each time a data-flow rule requests an
instance’s value.

Figure 7.11.: Interaction between the modules during the evaluation.

The interactions between the different parts of the framework during the eval-
uation process are depicted in Figure 7.11: The Strategy Executor first instan-
tiates the attributes requested by the Evaluation Directives and then proceeds
to execute the directives one by one. For each Evaluation Target, it invokes
the Data-flow Solver with the Instantiation container and the set of requested
instances. The solver then executes the instances’ initialization/iteration rules
via the Invoker interface. Input requests made by data-flow rules are first pro-
cessed by the Accessor which retrieves or creates the respective attribute from
the Instantiation before relaying the request back to the solver. Depending
on the chosen algorithm, this may result in additional invocations of data-flow
rules. After the execution of the original rule has finished, the newly computed
value is stored in the attributed model.

Result Processor
Once the execution of a strategy has been completed, results must be handed
back to the main application. This happens in an asynchronous way so as not
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to block the caller and to enable concurrent evaluations runs. For this purpose,
MAF implements a Result Processor interface. Processors can be automatically
loaded during the framework’s initialization phase or registered later on.

The information which processor(s) are responsible for handling the results of
which Evaluation Strategies can either be specified manually when invoking the
strategy or it can be specified via an Analysis Configuration (see below).

Once the execution of an Evaluation Strategy has finished, the configured pro-
cessors are supplied with the computed results and the mappings of the Re-
source Adapters that connect the internal representations to the original arti-
facts. The processors can then refine the raw results before displaying them
in an appropriate fashion. Unsophisticated processor implementations may
simply write the output to the console or to a file.

Debugger
To support analysis development processes, the framework has to provide de-
bugging capabilities: If running in debug mode, information about the inter-
nal actions of the components should be gathered and reported. Since the
analysis core itself does not include a graphical interface, this functionality is
also implemented using a notification mechanism. For this purpose, in addi-
tion to the Result Processors which are invoked after an analysis has finished,
three additional types of notifiers - Repository Loggers, Instantiation Loggers
and Evaluation Loggers - can be implemented that advertise information about
the internal status of the framework and the steps of the evaluation process.
Their respective listener functions are invoked automatically on changes to
the contents of the Resource Repository and on any action carried out by an
Instantiation and the Data-flow Solver module respectively. This functional-
ity connects a graphical debugging interface to any running instance of the
analysis framework or even to a dedicated debugger IDE.

A second feature of the debugger is the automatic gathering of statistical
information about different tasks such as instantiating attributes, executing
rules, etc. This information can be used to optimize analyses by identifying
bottle necks such as data-flow rules that take a disproportionally long time to
execute. In the context of this thesis, this functionality has also been vital in
the evaluation and the improvement of the implemented algorithms and the
case studies.

Finally, a specialized test mode can be realized which is able to execute an
analysis multiple times and validate the result after each iteration. If analyses
rely on complex data structures which cannot be arranged in a semilattice, is
generally not guaranteed that the evaluation converges in a unique fixed-point.
The test mode is a pragmatic solution to this problem as it can detect incor-
rect analysis specifications that yield indeterministic results. This function
also helps in the detection of illegal call-by-reference modifications made by
incorrectly implemented data-flow rules. These occur when a rule unexpect-
edly (i.e. not under the guidance of the solver) modifies an attribute value.
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Analysis Configuration
The execution of an analysis requires a substantial amount of information that
is not related to the actual fixed-point computation. This includes references
to the input artifacts and their types, the Evaluation Directives that control
the instantiation and the evaluation processes and the Result Processors. The
modules of the framework may also require additional parameters to configure
their behavior. While it is possible to achieve this programmatically through
the framework’s API, a more convenient way consists of a configuration file -
called a Project Set - that specifies all of this information. Using this method,
only three inputs are required to set up and execute an analysis: The Project
Set containing the configuration details, the target model and the name of an
Evaluation Strategy.

We will now investigate whether the proposed architecture is suitable for the
relevant application scenarios. More specifically, we will argue that the framework
is able to support the developer during the analysis specification process while also
providing the basis for the incorporation of analysis capabilities into third-party
applications:

∙ The core functionality for analysis configuration and execution should be fo-
cused in a light-weight library. This is achieved through the separation into
a UI-independent analysis core library (that can be incorporated into existing
applications) and an additional IDE with extended visualization and debug-
ging capabilities that are usually not shipped with the final product. Further-
more, the design includes only few dependencies to other libraries which in
part are optional (e.g. support for OCL/QVT) and can be excluded if they
are not used to reduce the size of the application.

∙ To support different modeling technologies and input formats, the internal
functions have to be decoupled from the technological ecosystem in which the
framework is executed. This is made possible through the Resource Adapter
and Result Processor concepts. By providing custom implementations of the
corresponding interfaces, developers can realize compatibility with the formats,
tools and standards of the target environment.

∙ Finally, it is possible to run the framework as a (background) service. This
is necessary if the target application is not based on Java/Eclipse, in which
case the analysis functions have to be addressed in a technology-independent
way. Since the analysis core provides a well-defined API and a sophisticated
internal resource management system, this can easily be achieved, for example
by accessing the respective API calls via a network protocol.

7.3.2. The Integrated Development Environment

The IDE that supports the development and debugging of analyses consists of two
parts: An editor for attribution specifications and a project editor with integrated
debugging capabilities:
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Analysis Editor
In Section 6.2, we provided a textual syntax for the specification of attribu-
tions. With the Xtext language workbench, the development of a correspond-
ing DSL editor is straightforward: Based on a grammar which assigns textual
representations to the elements in the attribution metamodel, an editor plugin
can be generated automatically. To support the annotation of target meta-
models, the editor must then be extended with a function for the import of
existing Ecore files so that their elements can be cross-referenced by the attri-
bution model’s elements.

The standalone Xtext editor has to be integrated with other tooling to support
the simultaneous development of attributions and data-flow rules. By making
use of Eclipse’s composing facilities, the editor for the attribution DSL can
easily be integrated with editors for rule languages such as Java, OCL and
QVT. This combination yields a sophisticated Analysis Editor that supports
the relevant aspects of the analysis specification process.

Project Set Editor
A separate tooling environment is needed for the configuration and the debug-
ging of analyses. A domain-specific language for the specification of Project
Sets has to support the declaration of input artifacts and the respective Re-
source Adapters. It must also provide the possibility to define one or more
Evaluation Strategies alongside the necessary parameters that govern the in-
stantiation and the solving processes. If the Project Set format is specified
through a metamodel, the Xtext framework can again be used to generate a
corresponding DSL editor.

To support the development lifecycle, the resulting Project Set Editor should be
extended to include an instance of the analysis core. This way, complete anal-
ysis configurations can be loaded and tested while providing direct feedback
to the user about the validity of the specifications and supporting an inspec-
tion of the current state of the framework, e.g. the contents of the Resource
Repository.

7.3.3. The Component Stack

The stack that comprises the Model Analysis Framework is outlined in Figure 7.12.
The Eclipse Rich Client Platform with its OSGi-based plugin architecture represents
the common technological foundation for the integration of all functional modules24.
In a similar fashion, the Eclipse Modeling Framework provides the underlying

facilities and a unified API for modeling-related functionality which is reused by
higher-level components for the definition, interpretation and manipulation of struc-
tured information. This applies, for example, to the Xtext and the OCL projects
which are based on EMF technology and depend on (meta) models as input and

24If MAF runs in standalone mode, the OSGi services are not available. Therefore, in this case
some functions that are provided for convenience reasons - e.g. the automatic registration of
Resource Adapters through Eclipse extension points - have to be implemented manually.
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Figure 7.12.: The MAF component stack.

as a representational format for managing their internal data structures. Separated
from the EMF stack are the Java Development Tools (JDT) compilers and editors
which comprise Eclipse’s IDE for Java development. Connection points between
the modeling and the Java facilities exist, for example, in the usage of model-based
code generation and in the invocation of Java methods from OCL/QVT black box
operations.
The MAF Core component that implements the analysis core functionality relies

on EMF to read and process analyses defined in the attribution language and to
load the target (meta) models. Additionally, JDT and OCL/QVT are required
to compile and execute data-flow rules specified in one of these languages. The
component at the top represents MAF’s Integrated Development Environment which
in turn employs Xtext to implement editing capabilities for analysis specification and
configuration and uses MAF Core to enable the debugging and statistical evaluation
of defined analyses.
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8. Implementing Flow-based Model

Analysis

This chapter describes a realization of the theoretical concepts explored in Sec-
tion 7.3. For this purpose, we will develop facilities for the specification, manage-
ment and execution of analyses along the design goals listed in Section 7.2. The
reference implementation, the Model Analysis Framework (MAF), is available from:

http://code.google.com/a/eclipselabs.org/p/model-analysis-framework/

Section 8.1 focuses on the central module of the framework, the MAF Core eval-
uator. This component implements the functionality of the Analysis Core (cf. Sec-
tion 7.3.1) and thus provides the ability to instantiate and solve data-flow analysis
specifications for models. MAF Core supports the loading of analysis resources into
internally managed repositories, offers advanced logging capabilities for collecting
and evaluating statistical information and exposes interfaces for the integration of
custom rule specification languages and different solving strategies.
Assistance for the development of analysis specifications is provided through ded-

icated tooling which is the subject of Section 8.2. Text-based creation and editing of
specifications is supported through a DSL editor generated from an Xtext mapping
between the attribution metamodel (cf. Section 6.1) and the concrete syntax (cf.
Section 6.2). This functionality is combined with embedded Java and OCL editors
to enable the context-sensitive editing of data-flow rules.
For convenience reasons, all information which is required for the execution of

an analysis can be encoded in a project configuration (cf. Section 7.3.2). This
encompasses the input artifacts as well as the directives that govern the process
of executing an analysis by imposing restrictions on the set of attributes (cf. Sec-
tion 6.5). This concept, along with the corresponding tooling, the MAF project
editor and the Project Set metamodel, is presented in Section 8.3.
The basic principles of the Model Analysis Framework, i.e. the facilities for anal-

ysis specification and project configuration, have been published in [SB11].

8.1. MAF Core

MAF Core is the central component of the MAF framework. It implements a highly
versatile and configurable DFA solver, complemented by facilities for resource man-
agement, debugging and statistical evaluation. Its extensible design, which reflects
the principles described in Section 7.3, facilitates the customization of the frame-
work for different technological domains. This enables the integration of analysis
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capabilities into (existing) third-party applications. In this section, we will detail
the overall architecture and the inner workings of the different functional modules.
In Section 8.1.1, we outline the architectural design of MAF Core, the framework’s

realization of the Analysis Core component. The functionality of the Resource Repos-
itory is described in Section 8.1.2. Because of the importance of the Instantiation
concept in the context of the evaluation process, the management and the proper-
ties of this resource type are explained in more detail in Section 8.1.3. Finally, the
invocation of data-flow rules and the configuration and execution of the evaluation
process are the subjects of Sections 8.1.4 and 8.1.5 respectively.

8.1.1. Architecture

Figure 8.1.: Architecture of the MAF-Core component.

Implementation-wise, the MAF Core component has been split into two (Eclipse)
projects, MAF-Core and MAF-Models. While the former implements management
facilities as well as the actual DFA solver, the second project serves as a container
for Ecore metamodels, i.e. the abstract syntax of the associated domain-specific
languages, and the corresponding model and edit code generated by EMF (cf. Sec-
tion 7.1.2).
Overall, four metamodels have to be implemented. Two of those correspond to the

language definitions for attribution specification (AttrMM) and instantiation (AttrM)
as described in Sections 6.1.2 and 6.3.1. An additional metamodel is required for the
internal representation of the dependency chain data structure (cf. Section 6.5.4).

223



Chapter 8. Implementing Flow-based Model Analysis

Finally, the structural composition of Project Set definitions is also based on a mod-
eling language (cf. Section 8.3.1). Aggregating the corresponding Ecore files and
model code in a single plugin simplifies access and enables reuse - both internally
by other MAF components and by external applications (e.g. custom IDEs).
Based on the defined modeling languages, the MAF-Core (Eclipse) project real-

izes the functional aspects of the concepts presented in Section 7.3.1. Its internal
structure, shown in Figure 8.1, can be roughly divided into three parts: The repos-
itory system that implements the resource management facilities, the notification
component (Visualizer) and the modules that enable the execution of flow-analyses.

Parameter Description

logLevel Sets the logging level for the framework

threadCount Determines how many threads are allocated for work queues
(only affects parallelized algorithms)

synchronizeResources Determines whether resources should be synchronized automat-
ically (e.g. if a metamodel changes, all depending models, at-
tributions and instantiations are reloaded as well)

parametersAutoreset If set to true, changing parameters automatically reloads af-
fected resources

autodisposePolicy Determines whether adapters/loggers are automatically dis-
posed when they are removed from the repository

Table 8.1.: Parameters that configure the initialization of a MAF Core instance.

MAF allows the creation of multiple instances of the core component, each of
which possesses its own model and analysis repositories and can be configured inde-
pendently from other instances. For this purpose, the instantiation process returns
a handle to the respective framework instance which, in turn, provides access to all
included functional modules through a well-defined API. Generally, there are two
approaches for instantiating the framework:

∙ The classMAFCore implements static initialization methods (cf. Appendix D.1).
To instantiate MAF Core, a set of parameters (called CoreParameters, cf. Ta-
ble 8.1) is required. Optionally, the framework constructor can be supplied
with a set of status and debug listeners which monitor the initialization process
and subsequent actions of the framework.

∙ If Project Set configurations are used, the framework has to be instantiated
using the methods provided by the MAFProjectSetInterface class (cf. Ap-
pendix D.8). In this case, the required parameters are read from the supplied
Project Set model.

Because the framework core is designed to run as a background service, its modules
and functions possess different lifecycles, the most important of which are outlined
in Figure 8.2. In this example, MAF Core is instantiated (either manually or by
using a Project Set configuration). Then, the required artifacts are loaded into the
model repositories using resource adapters. By applying the instantiation semantics
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Figure 8.2.: The lifecycles of the framework’s components.

described in Section 6.3, a new Instantiation resource can be created from a combi-
nation of a metamodel, a model and an attribution. This object can be passed to
the solver along with a set of evaluation requests and subsequently acts as a storage
container holding the hitherto computed results. These steps can be carried out re-
peatedly, reusing the same MAF Core instance. The resources, as well as the whole
framework, can be disposed once they are no longer needed.
A comprehensive list of the most important API interfaces of the Model Analysis

Framework is provided in Appendix D.

8.1.2. Resource Management

The types of artifacts which are primarily involved in the preparation and the ex-
ecution of an analysis are shown as rectangles on the left hand side of Figure 8.1.
The relevant types consist of the target models, their corresponding metamodel def-
initions and the attributions. Usually, the internal structure of an artifact depends
on the technical domain for which the analysis should be implemented. This applies
both to the employed MDE framework (e.g. MOF vs. KM3) and to the way this
information is stored, i.e. the respective file format. To circumvent the problem of
diverse input formats, we introduced the concept of Resource Adapters which act as
an interface between the input artifacts and their representation as resources inside
MAF’s repository system.
Overall, there exist four types of adapters which are managed by the Resource

Repository. Three of those correspond to the three types of input artifacts while the
forth represents the Instantiation concept. The general structure of Resource Adapters
is very similar, albeit with certain adaptions for the respective input type. For
example, attribution adapters possess the ability to statically extend attributions
so that they reflect the inheritance relationships in the corresponding metamodel
(cf. Section 6.3.3). Additionally, they can make use of registered rule invokers to
precompile the data-flow rules (cf. Section 6.4.1 and Section 8.1.4). Model adapters,
on the other hand, have to establish and store a mapping between the elements
from the model’s source artifact and its target representation inside MAF. In some
cases, it might be necessary for a single adapter to load multiple artifacts at once
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Parameter Description

staticRuleCreation Determines whether rules are parsed/compiled during the load-
ing of an attribution or on demand during the evaluation

inheritancePolicy Determines the inheritance policy used for the attribution. In-
heritance can be disabled, set to follow a strict top-down pattern
and set to allow redefinition at subclasses

javaRuleClasses The classes for external java rules in the format <javaruleclas-
sid, classpath>

mockJavaRules Automatically generates empty implementations of Java rules
for testing purposes

Table 8.2.: Parameters required for loading an attribution.

and merge them into a single, internal resource. This is, for example, required if a
model is based on multiple metamodels or if analyses are built incrementally, reusing
attributes defined in other attributions.

The instantiation of a resource adapter requires the following set of parameters:

∙ Most importantly, the adapter must be provided with references to the source
artifacts that should be loaded. Because a single adapter may have to merge
more than one artifact and each artifact can be defined in a different format,
this information is given in the form of a map. This data structure uses the
concrete type of the artifact (e.g. the file format) as key. The entry’s value
encodes a type-dependent reference to the source element, e.g. a file path or
an EMF model object which is already present in memory.

∙ Secondly, it is necessary to specify an id that uniquely identifies this adapter
inside the framework instance’s Resource Repository.

∙ If the artifact depends on other resources, their repository ids have to be spec-
ified as well. For example, for model and attribution adapters, it is necessary
to provide the id of the metamodel adapter that contains their corresponding
metamodel resource. An Instantiation requires references to the metamodel,
model and attribution adapters from which it should be created.

∙ The attribution adapter additionally requires a separate set of parameters
called AttributionParameters. These parameters control, amongst other set-
tings, the inheritance policy and the precompilation of data-flow rules. They
are listed in Table 8.2.

∙ Instantiation-specific parameters are described in Section 8.1.3.

The adapters themselves do not implement the functionality to import artifacts
of different source types. Instead, the actual loading process is deferred to other
components, so-called Resource Loaders. While only one adapter exists for each
resource type, multiple Resource Loader implementations are used to handle different
input formats. For this purpose, a loader implements a method loadIntoEMFResource
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which is invoked by the corresponding adapter with the reference to the source
artifact. This method is responsible for processing the artifact and converting it
into a suitable internal representation. The loaded resource is then handed back
to the calling adapter which combines all loaded artifacts in a single resource. In
the case of model adapters, the Resource Loader also has to build a map which
connects the elements of the internal representation to their original form in the
source artifact so that analysis results can be connected to their respective input
elements. By default, MAF provides loaders for importing (meta) models from files
serialized as XMI/Ecore and from EMF resources1 which are already present in
memory. The adapter interfaces are documented in Appendix D.2.
The loading process is started when an adapter is put into the Resource Repos-

itory and is repeated every time the contents of the adapter have to be updated.
This happens if a connected resource, e.g. the metamodel of a model, is reloaded
(depending on the state of the synchronizeResources core parameter) but the update
may also be invoked manually. To load the artifacts, the respective adapter iterates
over all provided inputs, determining their artifact type and invoking the corre-
sponding Resource Loader for this type. From the loaded EMF resources, a merged
representation containing all converted artifacts is incrementally built. Providing
support for new input formats therefore only requires the implementation of cus-
tom Resource Loaders. These have to be registered with the framework, e.g. using
Eclipse’s extension point mechanism.
The Resource Repository can be accessed externally via the API of the respective

framework instance. This interface exposes the methods necessary for triggering
the loading of artifacts and to store adapters in the repository (cf. Appendix D.4).
Additional functions enable a lookup of resources based on their ids and the removal
of adapters from the repository. Based on the value of the synchronizeResources core
parameter, dependent resources are automatically refreshed or removed after these
actions. All activities of the repository are also reported to loggers via the repository
listener interface (cf. Appendix D.5).

8.1.3. Managing Attribute Instantiations

Technically, Instantiations can be classified as a forth adapter type. Like the other
adapters, they are also managed by the repository system. In contrast to the other
types, the creation of an Instantiation does however not require the specification of
source artifacts as it solely relies on resources which have already been loaded into
the repository. Their creation can be triggered through corresponding API calls
(cf. Appendix D.4). The required input for this process consists of the ids of a
metamodel, an attribution and a model adapter along with a set of InstantiationPa-
rameters (cf. Table 8.3).
During the initialization process, the Instantiation prepares the rule invokers, the

selected solver and an EMF resource that serves as a container for the attribute in-
stances. Depending on the setting of the instantiationPolicy parameter, the attributes

1EMF models which are loaded from memory into the MAF repository are copied first to avoid
problems that could arise if either MAF or another application modifies the shared resource.
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Parameter Description

instantiationPolicy Determines whether attribute instances are created statically
or on demand and whether they are immediately initialized

autoDeletePolicy Determines whether an instantiation is removed automatically
after it has been evaluated.

synchronizeEvaluation Determines whether the evaluation of all attributes should be
triggered every time the instantiation is refreshed

synchronizeAttributions Limits the evaluation synchronization to attributions with the
specified ids

problemMarkerPolicy Determines whether Eclipse problem markers are added/re-
placed for violated constraints

evaluationVisualizers The Result Processors that are called to examine the results of
the evaluation

validateReferences Detect invalid call-by-reference modifications of attribute values

blockStable Determines whether stable results are blocked for reevaluation
(i.e. treated as constant values)

maxRuleInvoke Abort evaluation after given amount of rule executions

evaluatorType The DFA solving algorithm used for the evaluation process

evaluatorParameters Parameter set specific to the chosen solving algorithm

measurePerformance Record detailed statistical information during fixed-point eval-
uation

evaluatorDebugMode Output debug information about the evaluation process

Table 8.3.: Parameters required for instantiating an attribution.

are either immediately instantiated and assigned their respective initialization values
or the instantiation is deferred to a later stage (dynamic instantiation).
Through the autoDeletePolicy parameter, the repository can be directed to dispose

an Instantiation (and optionally the resources from which is has been created) once
the analysis process has been completed. synchronizeEvaluation triggers the auto-
matic evaluation of the contained attributes on creation. If this parameter is set,
the analysis is carried out immediately after the initialization process and also if one
of the Instantiation’s input resources is reloaded or if one of its parameters changes.
With synchronizeAttributions, the (re)evaluation can be restricted to a subset of at-
tributions.
The Instantiation adapter also implements functionality which is required for ac-

cessing and manipulating attribute instances but is independent of a specific solving
algorithm. It provides interfaces for manual attribute instantiation and for invoking
their associated initialization and iteration rules. All requests and callbacks from
the Strategy Executor, the Attribute Accessor and the selected Data-flow Solver are
relayed through and coordinated by this component. Instantiations therefore provide
the generic functionality required for the preparation and execution of a data-flow
analysis. By activating the blockStable setting, stable instance results computed by
the execution of a previous Evaluation Target are treated as constant inputs for sub-
sequent evaluations, thus avoiding the recomputation of already available results.
Enabling validateReferences provides a check for invalid call-by-reference modifica-

228



8.1. MAF Core

tions of attribute results by data-flow rules2. Furthermore, an Instantiation records
statistical information about the frequency and the execution time of different ac-
tions during the evaluation process. The measurePerformance parameter enables
the collection of more detailed information but may increase the time required for
carrying out computations.

8.1.4. Data-flow Rule Invocation

A Rule Invoker for a specific rule implementation language consists of two parts:
A preprocessor, used by attribution adapters for the precompilation/parsing of the
rules, and the actual invoker. During the loading process, the attribution adapter
traverses all defined data-flow rules and passes each rule to the preprocessor of the
rule’s respective target language using the preprocessor’s addRule() method. Only
after all rules have been assigned to their corresponding processors, the actual pre-
compilation is started by executing finishRulePreparation(). This approach improves
the performance since it reduces the overhead by triggering the compilation step
only once for each processor type. The actual invokers are created at a later stage,
namely during the initialization of an Instantiation. They are supplied with the
precompiled rules stored inside the Instantiation’s associated attribution adapter.

By default, MAF contains four types of invokers, respectively implementing the
preprocessor/invoker design in the following fashion:

Java (source code)
If data-flow rules are specified in the form of Java source code, this code has
to be compiled into a class file. For this purpose, the preprocessor constructs
a Java class containing all rules as Java methods. Each rule is provided with a
fixed method signature that takes the accessor object, the respective attribute
definition and the context object as its parameters. Once all rules have been
added, the class containing the aggregated rules is compiled using Eclipse’s
in-memory compiler. References to the compiled methods are then extracted
from the resulting class using Java’s reflection API. Invoking a rule then only
requires to locate the corresponding method handle and executing it, again
making use of Java’s reflection capabilities. The Instantiation is responsible for
supplying the correct method parameters for these calls.

Java (class files)
The process for invoking methods from class files is essentially the same as
for methods compiled from source code. The difference lies in the preparation
step which locates and loads the class file using MAF’s advanced class loader
capabilities which are able to locate classes in standalone Java applications as
well as in Eclipse plugins.

2By definition, a data-flow rule is not allowed to modify values of other attribute instances. This
problem occurs if a rule requests a result in the form of a non-primitive Java object (i.e. a
reference) from another attribute and changes it.

229



Chapter 8. Implementing Flow-based Model Analysis

OCL
The parsing of OCL rules requires an extension of the OCL evaluation envi-
ronment. The environment provides the context (e.g. variable bindings and
available operations) in which the constraints are parsed and interpreted. In
order to be able to request attribute instance values located at model ele-
ments, each metamodel class has to provide additional operations for access-
ing attributes that have been annotated at this class (cf. Section 6.4.2). For
this purpose, the preprocessor analyzes which attributes extend which classes.
For each attribute available at a class, an accessor operation with the name
of the corresponding attribute is injected into the evaluation environment for
this class type. If, for example, an attribute 𝑎𝑡𝑡𝑟 has been defined for the
metamodel class 𝑐𝑙𝑎𝑠𝑠, attribute instances at model elements can be accessed
via 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑜𝑓(𝑐𝑙𝑎𝑠𝑠).𝑎𝑡𝑡𝑟(). The Java implementation of these operations
automatically redirects these calls to the Attribute Accessor object which gen-
erates corresponding requests to the Data-flow Solver module.

QVT
Conceptually, the process involved in the preparation of QVT rules is a combi-
nation of the Java source code compilation and the method used for preparing
OCL rules. During the preprocessing step, a single QVT library is built that
contains all rules as query definitions as well as custom operations which extend
the metamodel’s classes with accessor methods. This library is then parsed
using the QVT framework’s library compiler. Instead of extending the eval-
uation environment, support for attribute accesses is provided through black
box functions, thereby making use of QVT’s designated extension mechanism.

In summary, providing support for custom rule specification languages requires
the implementation of a Rule Invoker which implements the functionality for both
the precompilation and the rule invocation steps. Precompilation is controlled by
attribution adapters while the execution of rules is triggered by an Instantiation.
Rule implementations also have to be supplied with a language-specific interface
which enables them to request input values by invoking the Attribute Accessor.

8.1.5. The Data-flow Solver

The data-flow solvers for fixed-point computation realize the core functionality of
the Model Analysis Framework by implementing the algorithms required to compute
results for dynamic DFA equation systems (cf. Section 6.5). The architectural
design of the solver infrastructure of MAF provides a highly configurable and flexible
framework for the execution and the statistical evaluation of different algorithms.
For this purpose, the architecture sources out all functionality not essential to the
actual computation process to other modules. As outlined in Figure 8.1, computing
results requires the interaction of three components: The Rule Invokers, a Data-flow
Solver and the target Instantiation. Furthermore, the overall evaluation process is
directed by the Strategy Executor.
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To understand this methodology, we first have to examine how a flow analysis can
be configured and executed. Details about the solving process are encoded in an
Evaluation Strategy which consists of a list of Evaluation Directives (cf. Section 7.3).
The Evaluation Strategy is passed as input to the Strategy Executor API interface of a
MAF Core instance. Optionally, a list of Result Processors which have already been
registered with the current framework instance can be supplied. These processors
will be called automatically on completion of the analysis to handle the results. The
strategy and the list of relevant Result Processors can either be provided via the API
or read from a Project Set definition.
The Strategy Executor processes the list of directives one by one, executing the

contained Evaluation Target and Evaluation Macro directives. From the partial results
returned by each executed target (SimpleEvaluationResult), an AggregatedEvaluation-
Result object is built representing the unification of the results of the overall evalu-
ation process (cf. Appendix D.5). This data structure consists of several maps that
contain the computed values for attribute assignments and attribute constraints, the
latter separated into sets of passed and violated constraints. Furthermore, it con-
tains the trace information generated by the model adapter that is required to relate
the results to their corresponding elements of the original artifact. Finally, it also
provides access to statistical information about the evaluation process such as the
total amount of executed rules and the time spent on different parts of the analysis
process. After the strategy execution has finished, the AggregatedEvaluationResult
object is passed to the specified Result Processors.

Now, we will take a closer look at the two types of Evaluation Directives. The
request to execute a DFA on (a subset of) the attributes contained in an Instantiation
is encoded in an Evaluation Target. The parameters of a target can be grouped as
follows:

Instantiation Target
The first set of parameters specifies the attributed model (i.e. Instantiation)
for which the target should be executed. For this purpose, three repository
ids referencing a metamodel, a model and an attribution Resource Adapter
have to be provided. This information uniquely identifies the corresponding
Instantiation in the repository if it already exists or enables the creation of a
new Instantiation adapter from the selected resources otherwise.

Attribute Instance Selection
The remaining parameters configure the demand-driven computation by nar-
rowing down the set of attribute instances of the selected Instantiation that
should be computed by the execution of this particular target. There are
multiple ways of achieving this effect:

∙ If no further limitations are given, all attribute instances defined in the
Instantiation’s attribution(s) will be evaluated.

∙ Since the merged AttributionCollection resource of the corresponding adapter
may be composed of multiple attribution models, it can be convenient to
limit the computation to a predefined list of attributions. With this
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feature, one can focus on the execution of a specific analysis scenario
(provided that the attributions are structured in a suitable way). For
example, the case study described in Section 10.1 contains multiple use
cases which have been split into separate attributions. By specifying a
list of relevant attributions, all scenarios can be loaded into a single at-
tribution adapter. If the user then chooses to only execute a single use
case, it is possible to limit the computation process to the corresponding
attribution(s).

∙ On a more fine-grained level, it is also possible to compute instances
for specified attribute ids, thereby limiting the calculation to a subset of
attributes defined inside a single attribution. Additionally, this can also
be used to combine the analysis of multiple attributes spanning several
different attributions.

∙ Another way to address a specific set of instances relies on the type of
the attributed class. This means that all instances of attributes that have
been annotated at the given class(es) will be computed. This method of
selection is useful if one is interested in the evaluation of all elements
corresponding to a certain metamodel type.

∙ Finally, it is also possible to provide a set of model elements for which
attribute values should be calculated. This is important if the analy-
sis should focus on the evaluation of a particular model element. The
typical usage scenario would be the selection/modification of a specific
object in the user interface of the target application which then must be
reevaluated.

At this point, it is important to note that an Attribute Instance Selection only
provides a starting set for the DFA solver. Due to the dependency discovery fea-
ture, this set may be extended during the solving process if attribute instances in
the initial selection depend on values of other attributes. This approach therefore
simplifies the execution of analyses as users only need to supply the instances whose
values are currently of interest and the respective solving algorithm automatically
extends this selection to the smallest set of relevant elements required to compute
the desired results.

The steps involved in the execution of a target are shown in Figure 8.3(a). They
consist of:

1. Acquiring the Instantiation Target
In the first step, the Instantiation that corresponds to the Instantiation Target
parameters listed in the Evaluation Target is retrieved from the repository (or
created if it does not yet exist).

2. Collecting the Attribute Instances
Then, the list of relevant attribute instances is built depending on the target’s
Attribute Instance Selection. In this step, the instances are created while the
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(a) Executing a target (b) Dynamically changing the strategy
using macros

Figure 8.3.: Execution of Evaluation Directives through the Strategy Executor inter-
face.

initialization follows the chosen instantiationPolicy (dynamic instantiation/ini-
tialization of additionally required attributes is handled by the respective fixed-
point algorithm).

3. Computing the Results
The selected Data-flow Solver (evaluatorType) is invoked with the set of selected
instances. It is responsible for executing their initialization and iteration rules
in a valid order and for managing dynamically discovered dependencies to
additional attributes (cf. Section 6.5).

4. Result Processing
Once the computation has finished, a SimpleEvaluationResult object is con-
structed that contains the results and statistical information recorded by the
Instantiation and the solver. The StrategyExecutor combines results from mul-
tiple targets into a single AggregatedEvaluationResult. Additionally, depending
on the problemMarkerPolicy setting, Eclipse problem markers are created for
violated constraints.

The second Evaluation Directive type is the Evaluation Macro. A macro consists of
a method which is called by the Strategy Executor once the processing of the list of
directives reaches the position of this element. Apart from providing the possibility
to interweave the analysis process with custom functions, macros also may alter
the structure of the remaining part of the executed strategy. For this purpose,
the macro method is invoked with the hitherto computed results in the form of an
AggregatedEvaluationResult and the list of the succeeding directives in the strategy.
The macro can modify this list by adding or removing directives which influences
the subsequent part of the evaluation process as shown in Figure 8.3(b). The use
case described in Section 10.1.4 makes use of this functionality to recursively apply
the analysis to nested cycles: If a cycle has been identified, the model has to be
modified so that the substructure can be analyzed. In this case, new directives are
dynamically created and added to the Evaluation Strategy to adapt the model and
recursively repeat the analysis on the therein contained substructures.
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We will now shortly describe the properties of MAF’s solver infrastructure. Each
implementation of a fixed-point algorithm has to implement two functions (cf. Sec-
tion 6.5.1). The interface between the Strategy Executor and the solvers consists of
the method evaluateAttributes() which corresponds to the Analysis Entry Point. It is
invoked in the step Computing the Results with the respective instance selection. The
Callback Handler is realized by the method evaluateRecursiveCall() which is called by
the Attribute Accessor if a data-flow rule requests an input. The requested instance
is located by the accessor and passed as a parameter to the solver. The callback
function of the solver is then responsible for handling the dependency between the
calling and the called instance and may invoke the called instance’s initialization or
iteration rule (recursive lookup).

Parameter Description

Round Robin

eval_roundrobin_reclookup Perform recursive lookup for attribute requests

Worklist

eval_worklist_reclookup Perform recursive lookup for attribute requests

eval_worklist_changesets Processor for changesets: processor1, processor2

Dependency Chain

eval_depchain_phase1_parallelize Parallelize phase 1 of the evaluation process

eval_depchain_phase1 Chain builder for phase 1: recursive, iterative1, it-
erative2

eval_depchain_phase2_parallelize Parallelize phase 2 of the evaluation process

eval_depchain_phase2 Traversal strategy for phase 2: bottom-up recur-
sive, bottom-up iterative, worklist

eval_depchain_bu_eliminate Bottom-up processor eliminate (only for bottom-up
traversal)

eval_depchain_bu_postpone Bottom-up processor postpone (only for bottom-up
traversal)

eval_depchain_bu_start Starting point for bottom: complete, leaves,
changed (only for bottom-up traversal)

eval_depchain_wl_adddiscovered Worklist processor add discovered (only for worklist
traversal)

Table 8.4.: Solver-specific parameters.

The different solving strategies can be configured via the evaluatorParameters
which are part of the InstantiationParameters. The available parameters are listed
in Table 8.4, sorted by algorithm. The round-robin and worklist algorithms on the
one hand and the dependency chain algorithms on the other hand each share a set
of common parameters:

∙ Using the parameters eval_roundrobin_reclookup/eval_worklist_reclookup, the
detection of dependencies to attributes outside the set of initially selected in-
stances can be improved. In recursive lookup mode, a callback immediately
invokes the rule for the requested instance to identify multiple unknown de-
pendencies during a single callback.
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∙ The parameters eval_worklist_changesets, eval_depchain_phase1 and eval_
depchain_phase2 can be used to switch between different strategies for separate
phases of these algorithms.

8.2. Analysis Editor

Analysis specification in the Model Analysis Framework IDE is supported through
a dedicated Analysis Editor. This component integrates with the Eclipse workbench
and is automatically activated when an attrmm file is selected for editing. The
Analysis Editor features text-based editing capabilities for attributions. It has been
implemented using the Xtext parser/editor generator and is based on a mapping
between the attribution metamodel AttrMM and a textual domain-specific language.
The editor also supports in-place editing of OCL, QVT and Java code to simplify
the definition of data-flow rules. The validation of the specifications is carried out
using aMAF Core instance that runs in the background and provides - amongst other
services - the facilities required for the compilation/parsing of analysis definitions.
The capabilities of MAF’s Analysis Editor are described in the following sections:

The different methods for the definition of attributions are illustrated in Section 8.2.1
while the aspects of rule specification and management are the subject of Sec-
tion 8.2.2.

8.2.1. Attribution Editors

Figure 8.4.: Analysis specification in the textual editor.

Figure 8.4 shows the Analysis Editor displaying the contents of an attribution
model in the textual editor component. The attribution controlflow_analysis shown
in the screenshot corresponds to the running example from Section 6.1. The Xtext
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editor has been automatically generated from the grammar presented in Section 6.2
which connects the metamodel elements to the textual syntax. It supports fea-
tures commonly expected from modern DSL editors such syntax highlighting, code
completion and autoformatting. Since attributions extend existing metamodels, the
implementation generated by Xtext had to be extended with the ability to load
target metamodels from Ecore files through an import statement. This way, cross-
references to classes from imported metamodels can be directly specified inside the
textual description of the respective analysis.
Further integration with the Eclipse IDE is provided through the utilization of

Eclipse’s outline view as seen on the right hand side of the screenshot. This window
displays the overall structure of the currently selected attribution model, thereby
giving the developer a quick overview over the defined elements. The textual rep-
resentation of the model and its outline view are synchronized so that each change
to one of these formats is immediately reflected in the other. Furthermore, selec-
tion is also synchronized between the outline and the textual editor so that after
selecting an element, the corresponding element in the other view is automatically
highlighted as well. This allows, for example, to quickly navigate to a target element
in the editor by selecting it in the outline view.

Figure 8.5.: Analysis specification in the form-based editor.

While the textual DSL presents a convenient way for creating analysis specifica-
tions, in some cases other types of editors are more suitable for this task. For this
purpose, the Analysis Editor includes a separate form-based interface which is shown
in Figure 8.5. This component can be accessed by selecting the GUI tab at the bot-
tom of the IDE’s main window. It provides several views on the loaded attribution
model that focus on different constituents of the attribution such as occurrences,
rules etc. The creation, modification and removal of elements is supported through
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wizards which enable an easy specification of the required information and validate
the user’s input before the changes are applied to the model.
Finally, as a third option for modifying attributions, a tree-based EMF-style ed-

itor is included (accessible via the left-most tab at the bottom of the window). In
order to synchronize the contents of the loaded specification between the different
representations, all three editors as well as the outline view use a single internal EMF
representation of the underlying model. Through listener interfaces, changes are im-
mediately propagated to all relevant components which update their representations
accordingly.

8.2.2. Rule Editor

The Analysis Editor combines the Attribution Editors with support for the context-
aware creation and manipulation of data-flow rules through the Rule Editor com-
ponent. This is necessary because rules are typically given as strings which are
compiled/parsed once the specification is loaded by MAF Core’s repository system.
While it would be possible to define the rules using the corresponding language
tools such as Eclipse’s Java or OCL editors, this approach has several disadvan-
tages: Firstly, it would require to continuously switch between the language editors
and the Attribution Editor, repeatedly copying the data-flow rules in the language
editor and inserting them in the textual or graphical representation of the attri-
bution model. It is obvious that this does not represent a satisfying solution for a
continuous, intuitive workflow for the analysis specification process. Secondly, many
data-flow rules depend on the context in which they have been defined. This is due
to the fact that rules are interpreted in the context of the metamodel class(es) at
which the rules’ occurrences are annotated. For example, OCL rules may access class
attributes and references through the self object reference which is only available
in the variable environment of the respective metamodel class. If rules are edited
using a separate component, it would be necessary to configure this property manu-
ally. Finally, an integrated rule editor can identify problems caused by inconsistent
definitions during the specification process rather than in a later step, e.g. when the
analysis is loaded into the evaluation framework.
The Analysis Editor addresses these problems by integrating rule editing capabili-

ties for MAF’s default implementation languages. For this purpose, Java, OCL and
QVT editors have been embedded into the tooling’s IDE. These components can
be used to quickly create and modify data-flow rules for existing attributions and
are able to automatically supply the correct context to simplify the specification
process. Furthermore, the Analysis Editor uses an instance of MAF Core to process
the rules using MAF’s internal facilities in order to immediately provide feedback
about the validity of a definition.
This is demonstrated in the example shown in Figure 8.6. In this screenshot,

the rule for computing the iteration value of the allPredecessors attribute at Nodes,
defined in the attribution controlflow_analysis, is selected for editing. Since it is
specified in imperative OCL, the embedded QVT editor is used to display its con-
tents. To enable context-aware editing, the actual code is embedded into a library
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Figure 8.6.: Editing a data-flow rule using the embedded QVT editor.

generated by the precompiler of MAF Core’s QVT Rule Invoker. This library provides
the correct method signature consisting of the context (the metamodel class Node)
and the return type (Set(OclAny)). In order to be able to access attribute instances
at model objects, Attribute Accessor helper queries are automatically generated for
all defined occurrences.

Figure 8.7.: Additional information available for the rule node_isReachable.

The rule specification process is further simplified through the generation of addi-
tional information as shown in Figure 8.7: Because each rule may be used to compute
the initialization and/or iteration values of different attributes, all relevant contexts
of the active rule are displayed in a separate tab named Context Information. In this
case, according to the analysis specification, the selected rule node_isReachable is
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used for the calculation of the value of the attribute isReachable at the Node class.
A separate page Inheritance Information aggregates information about the inheri-

tance status of the attribute and the accompanying rules depending on the general-
ization hierarchy defined in the metamodel3. In the running example, occurrences of
the attribute isReachable have been assigned to the classes Node and InitialNode. The
inheritance page therefore indicates the availability of this attribute at these types.
Since FinalNode inherits from Node and therefore implicitly possesses the attribute
isReachable as well, this class is also contained in that list. Finally, the visualization
indicates that, while the attribute is available at all of these classes, the currently
selected rule node_isReachable is only used to compute results for instances of Node
and FinalNode since InitialNode provides a redefinition of the occurrence. Because of
the redefinition of isReachable at InitialNode, the computation of iteration values at
elements of this type instead depends on the rule ocl_bool_true.

8.3. Project Set Editor

With the Project Set concept, analysis resources can be assembled and packaged
along with fine-grained evaluation strategies into a single project configuration.
In Section 8.3.1, we describe the internal project structure and how this concept

can be used to facilitate the integration of analysis capabilities into third-party
applications. The subsequent sections detail the different aspects of the project
configuration. In Section 8.3.2, the resource management of the Project Set Editor is
outlined. The relationships between analysis resources and Evaluation Strategies is
detailed in Section 8.3.3. We then give an overview over the debugging and testing
capabilities of the project editor in Section 8.3.4. Finally, in Section 8.3.5, we will
outline an alternative way to define Project Sets using a textual DSL editor analogous
to the Xtext Attribution Editor.

8.3.1. Analysis Configuration and Execution

The structure of a Project Set is given by a metamodel which aggregates all infor-
mation that is necessary to load and execute an analysis. The stated goal here is
the reduction of the effort required for configuring an analysis while at the same
time providing enough flexibility to control the evaluation process. This primarily
encompasses tasks such as resource loading and strategy definition.
The principle behind the utilization of Project Sets is illustrated in Figure 8.8. In

addition to the Java API which has been described in Section 8.1, the solver module
provides a separate Project API for loading Project Set configurations. Using the Java
API, resources, processors and strategies have to be handled manually which allows
for a high level of control in the configuration and the management of the evaluation
process. While this approach has the advantage of enabling a detailed management
of all aspects involved in the execution of analyses, it can be beneficial to abstract
from the inner workings of the framework and provide a unified interface for this

3This information is retrieved from the attribution adapter.
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Figure 8.8.: Analysis configuration using the Java API and Project Sets.

purpose. The Project Set based configuration therefore focuses on the realization of
the most common use case of loading a set of resources along with Result Processors
and Evaluation Strategies and making this process easily accessible to developers.
To this end, the Project Set API exposes the required functions to initialize MAF

Core based on a Project Set definition. This model references the required resources
and specifies corresponding analysis configurations. Once a project has been loaded,
only two additional inputs must be supplied to run an analysis: The target model
which should be evaluated (symbolized by a circle in the illustration) and the id of
an Evaluation Strategy. A detailed list of the interfaces of the Project Set API is
given in Appendix D.8.

Figure 8.9.: The Project Set metamodel.

The project metamodel’s essential constituents are depicted in Figure 8.9. The
root element is the ProjectSet class which stores meta information about the project
such as the author and the version number. Since each instance of MAF has to be
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configured with exactly one project definition, a ProjectSet model contains a single
CoreParameters structure (cf. Table 8.1). The ProjectSet element can optionally
specify global Status Loggers and Result Processors via a JavaLink referencing the
implementing Java class.
Resource loading is realized through the MetaModelEntry, ModelEntry and Attri-

butionEntry classes. From their parent class RepositoryModelEntry (not depicted in
the diagram), they inherit an attribute repoID which is used to specify the repository
id for storing the loaded artifacts in the repository system. Relationships between
resources such as a model resource’s respective metamodel entry are expressed us-
ing cross references between the related objects. Each of the three repository entry
types may define links to a list of InputResources consisting of an artifact type and
its location.
Evaluation Strategies, each of which consists of a list of Evaluation Directives, can

be specified using the similarly named class in the project metamodel. A global
InstantiationParameters object can be assigned to each strategy. This configuration
is then used for all contained Evaluation Targets which do not define their own
parameters. An Evaluation Macro simply stores a reference to the implementing
Java class. An Evaluation Target, on the other hand, references one of each of
the three resource types4 (thereby identifying the target Instantiation) as well as a
set of InstantiationParameters if the target needs to override the parameters of its
parent strategy. This approach drastically simplifies the evaluation process since the
creation and the lifecycle management of Instantiations are handled automatically.

Figure 8.10.: Integrating MAF into existing tooling ecosystems.

Figure 8.10 outlines the integration of analysis capabilities into third party tools:
The target and the development environments are located at the bottom of this ar-
chitecture. This level therefore comprises the application which should be extended
with analysis capabilities as well as MAF’s Integrated Development Environment.
The Technology Bride forms the “glue” between MAF and the target application and

4Links to model resources are optional since the target model is usually provided at runtime by
the external application.
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consists of an implementation of the required interfaces and technology adapters.
These may include, for example, model transformations and resource loaders for
converting source artifacts as well as result processors which refine the raw analysis
results. The Analysis layer provides the technology-independent resources such as
attributions and Project Sets. Finally, the top-most layer in this diagram consists
of the Model Analysis Framework which forms the basis for the execution of the
analyses. On the right hand side, the relation between the MAF stack and the
Eclipse RCP and EMF frameworks is depicted. The Technology Bridge forms the
border between MAF-related tools and third-party environments by implementing
interfaces which connect the platform to the analysis layer.
A concrete application of this concept is shown in Figure 10.20 in the context of

the JWT case study which is the subject of Section 10.1.

8.3.2. Resource Management

The Project Set Editor includes a resource management system for specifying which
contents should be loaded into MAF’s internal repository. For each resource, the
corresponding repository entry (cf. Figure 8.9) is immediately created and syn-
chronized with the editor’s internal MAF instance. This way, the validity of the
specifications can be checked immediately.

Figure 8.11.: Resource management in the Project Set Editor.

Figure 8.11 shows the contents of the Analysis Resources tab of the editor. The
interface is divided into four categories that support the specification of metamodel,
model and attribution resources as well as the definition of loggers and Result Pro-
cessors. In this screenshot, the attribution section has been selected. The currently
active edit dialog displays the properties of the attribution from the running exam-
ple which has been assigned the repository id re_attribution. The graphical inter-
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face provides access to all relevant options for the management of source artifacts,
Java rule implementations, the configuration of the AttributionParameter settings
and the selection of the corresponding metamodel resource entry (re_metamodel).
Additional information about the loaded attribution resources, such as available
attributes and attribute inheritance status, is extracted using MAF Core’s API func-
tions and is displayed at the bottom of the main window. The pages for the other
three types of resources are structured in a similar fashion.

8.3.3. Defining Evaluation Strategies

Once the required resources have been defined, the specification process can continue
with the declaration of Evaluation Strategies.

Figure 8.12.: Evaluation Strategies defined for the running example.

The management functions for strategies are located on a separate tab (Analysis
Configuration) of the editor. This is depicted in Figure 8.12. On the left hand
side, the ids of the already defined strategies are listed. By using the controls at the
bottom of this section, it is possible to add, remove, copy or rearrange the strategies.
For the running example, three strategies have been created that are responsible for
executing the reachability, the predecessor and the SCC analysis respectively.
The list of directives which are part of the currently selected strategy is displayed

on the right along with controls that allow the selection of loaded Result Proces-
sors and the configuration of InstantiationParameters. Using the dialog shown in
Figure 8.13, it is possible to connect a target to one of the available Instantiations
and to set up the Attribute Instance Selection. In this dialog, one can also declare
target-specific InstantiationParameters that override the strategy’s global parameter
set. For the strategy scc in the running example (shown in the screenshot), two
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Figure 8.13.: Dialog for configuring the instance selection of an Evaluation Target.

Evaluation Targets have been defined. The first one triggers the computation of all
instances of the allPredecessors attribute while the second one will do the same for
sccID in a subsequent step.

8.3.4. Analysis Debugging

To support the development of analysis projects, the Project Set Editor includes de-
bugging capabilities. For this purpose, the editor synchronizes the currently loaded
Project Set with an instance of MAF Core. Information about the internal status of
the project is reported through a registered debug logger which generates a detailed
visualization for all evaluation steps.

Figure 8.14.: Running example: MAF core output in debugger.

The debugging facilities can be accessed via the Debugger tab. The first page -
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shown in Figure 8.14 - displays the current status of the MAF Core instance and
can enable/disable the automatic synchronization with the editor. Additionally, it
visualizes the CoreParameters that are used to initialize the evaluator. Finally, all
log messages are recorded and shown in a tabular view.
The second tab - Instantiation Repository - provides an overview of all Instantiations

which are available in the repository and enables an inspection of their contents as
well as monitoring the attribute instantiation process itself.

Figure 8.15.: Running example: Different states of the reachability dependency
chain visualized in the debugger.

The third page, titled Inspect Evaluation, enables an in-depth examination of the
whole evaluation process. The execution of an Evaluation Strategy can be triggered
via the Analysis Configuration view as shown in Figure 8.12. In this dialog, several
options can be set which influence the evaluation and its visualization in the debug-
ger interface. It is, for example, possible to deactivate the recording of specific data
in order to increase the performance.
For the execution of the current strategy, Inspect Evaluation provides detailed

information about all steps carried out by the Strategy Executor, the Instantiation
and the selected DFA solving algorithm: Evaluation Runs shows an overview of
all executed Evaluation Directives while the concrete steps are listed on additional
tabs which are generated dynamically for each target. In this example, only one
tab (Run 1) is displayed since the executed reachability strategy contains only one
target. Information that is collected for this target includes a dedicated log section
containing the messages generated by the Data-flow Solver and a list of the requested
Attribute Instances according to the target’s instance selection properties. It also
records the Rule Invocations in the order in which they have been executed along
with the instances for which they were invoked and the respective result values. This
page also displays statistical information about the amount of rule invocations.

245



Chapter 8. Implementing Flow-based Model Analysis

If the dependency chain algorithms are used for DFA solving, some additional in-
formation is provided: The Intermediate Results page lists the instance results after
each bottom-up processing. The Dependency Chain tab shown in the screenshot in
Figure 8.15 is used to visualize the evolvement of the dependency structure during
the execution of the selected target. Dependency chains that result from the appli-
cation of the dependency discovery step are prefixed with intermediate while chains
that are currently being processed are labelled as evaluating. The graph contains
the attribute instances as colored nodes: Gray for inner nodes, blue for leaf nodes
and red for virtual nodes. The recorded output dependencies between the instances
are visualized as edges. Nodes and edges which are highlighted in green have been
processed in the currently selected iteration with the edge labelings indicating the
order in which the solver traversed the chain.
The next main component of the debugger displays the actual Evaluation Results

arranged into the three categories of Attribute Assignments and passed/violated At-
tribute Constraints.

Figure 8.16.: Running example: Statistical evaluation of a test run.

The last section is reserved for the integrated testing and statistical evaluation
facilities. The option of running a strategy in test mode is also selectable from
the menu shown in Figure 8.12. If this mode is activated, the Strategy Executor
will execute the strategy repeatedly a given amount of times. After each run, the
results and gathered statistical information about the execution are stored and the
respective Instantiations are reset to their initial state. Before the next iteration
starts, the results are compared against the results of the previous run and deviations
are immediately reported. If this is the case, then it can be concluded that the
analysis specification is incorrect as it does not converge in a unique fixed-point
(i.e. it is indeterministic). Otherwise, if the validation succeeds, the statistical
information is averaged and reported in a table as shown in Figure 8.16. This
structure provides information about different aspects of the evaluation such as the
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duration of different steps of the solving process and the number of rule executions
in different phases. It lists the overall execution time for the strategy including
the instantiation process, the duration of the actual result computation as well as
recorded times for different aspects of the solving algorithms such as building and
traversing chains and recursive lookup. Additional data includes the number of
bottom-up runs, chain merges, discovered dependencies, the amount of different
node types etc. For each result, the mean value is displayed alongside the standard
deviation, the median and the respective minimal and maximal values.
In conclusion, the debugger provides a comprehensive set of tools that enable

developers to test analyses during the specification process and evaluate their per-
formance as well as the correctness of the specifications.

8.3.5. Project Set DSL Editor

The Project Set Editor described in the previous sections is a useful tool which pro-
vides a powerful set of features for editing and testing analyses. Nevertheless, in
some cases, a more lightweight approach to the definition of a Project Set configu-
ration might be advantageous. For this purpose, a textual DSL has been developed
using the Xtext language workbench. The textual format allows experienced users
who are familiar with the structural design of Project Sets to very quickly devise the
corresponding definitions by avoiding the encumbrance of wizards and other GUI el-
ements intended to help the more inexperienced user. It also provides a full overview
of a definition at a single glance, another feature which can be very beneficial to the
experienced developer as it supports an easy implemention of changes which affect
multiple elements using basic text editing functionality such as search and replace.
Figure 8.17 shows the textual description of the running example’s Project Set in

the generated editor. The syntax follows the grammar definition of the DSL which
is included in Appendix D.9.
When using the DSL editor, the controls for running an analysis can be found

in the toolbar of the Eclipse environment. This is shown in Figure 8.18: If the
editor is active, several new options become available in the toolbar. For example,
all strategies from the current Project Set definition are listed in a dropdown menu
from which they can be directly invoked. The integrated debugger from the Project
Set editor is replaced by a window that can be enabled/disabled by toggling the
respective control. If the debug window is active, the strategy is automatically
executed in debug mode so that all outputs of the framework are captured and
visualized. Finally, a separate toggle switch activates the statistical evaluation in
which case the strategy is run in the test mode and the collected information is
displayed.

8.4. Future Developments

In this chapter, we described the internal design of the Model Analysis Framework.
In its current state, this framework already represents a fully-featured solution for
the implementation of data-flow based model analyses and the integration of analysis
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Figure 8.17.: Running example: Project Set specified using a dedicated DSL.

capabilities into third-party applications. For this purpose, MAF has been designed
to be highly customizable so that its functionality can be extended to meet the
requirements of different technical application domains. Using Eclipse’s model-based
development facilities, we realized an IDE that simplifies the specification process.
By applying the framework to case studies in different domains (cf. Chapter 10),

we were able to identify several points where the existing implementation can be
extended to further improve the applicability and versatility of the technique:

Standalone Usage
Currently, the central part of the framework (MAF Core) can be run in stan-
dalone mode and thus be included in non-Eclipse based Java applications.
Depending on the properties of the target environment, it can however still be
a challenge to access the analysis facilities from other programs. For example,
the widely-used modeling tool Enterprise Architect5 expects that plugins are
provided in a native binary format. In this case, a Technology Bridge (cf. Fig-
ure 8.10) between the different systems must be provided. While it would be
possible to implement the required functionality from scratch for each target
application, a more generalized approach would be beneficial. More specif-
ically, this could be realized by embedding MAF Core in a server container
that exposes the framework’s API through a TCP/IP interface instead of Java

5http://www.sparxsystems.com.au/
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Figure 8.18.: Running example: Project Set DSL editor controls.

method invocations. This would allow developers to access the necessary func-
tions through standardized networking technologies available in almost any
relevant environment. To support this feature, a protocol would have to be
developed that wraps the API functions of MAF. A prototype - called MAF-
Analyzer - which implements parts of this functionality is available from the
source code repository and has been employed in the EAM case study (cf.
Section 10.2).

Multi-Threading Support
In its current implementation, the framework provides multi-threading support
on an analysis level. The computation of analysis results therefore benefits
from the availability of multicore hardware. However, this concept does not
extend to other parts of the framework. The possibility to carry out multiple
actions such as loading models or running analyses concurrently would enable
applications to invoke the framework’s functions in a non-blocking way. From
the user interface’s perspective the application would therefore become more
responsive. Performance-wise, the evaluation of loaded resources - a task that
relies heavily on computing power - and the loading of new source artifacts
from the hard drive could be parallelized. On a computer with many processor
cores, this feature can also be used to execute multiple independent analyses
in parallel. One way to implement this functionality would be to wrap all API
calls to MAF Core in parallelizable commands and use MAF’s existing work
queue infrastructure to submit these tasks for execution.

Multi-User support
The concepts described in the previous two items can be combined and ex-
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tended to provide a server-based multi-user platform. In this case, a server that
encapsulates the functionality of a MAF Core instance and makes the methods
available through a network interface could run on a dedicated machine. This
becomes relevant if more complex analyses have to be carried out or if the
input models are very large so that users would benefit from running the anal-
yses on centralized and more powerful hardware. Server functionality can also
include resource management capabilities so that resources can be stored and
manipulated on the central machine. This could, for example, be realized by
employing EMF persistence frameworks such as the Eclipse projects Teneo6 or
CDO7. Coupling the resource management and the analysis functions would
provide a single entry point for the management and analysis of models. This
would enable applications to automatically invoke the evaluation if models are
modified and to report detected problems to all users that are linked to the
respective resources. This concept is therefore comparable to a continuous in-
tegration server. Additionally, a centralized rights management system could
be provided that restricts access to certain resources based on the users’ access
privileges. On a technological level, this could, for example, be realized using
a model-based integration platform such as ModelBus8.

Integration with the EMF Validation Framework
The EMF Validation Framework9 is a component of the Eclipse modeling
project. It provides an interface for extending models with constraint defini-
tions that can be validated either in live mode (each time a model is modified)
or as batch jobs. These validation hooks can be used as entry points for the
execution of flow analyses. The validation framework also provides an API for
the traversal of models so that partitions that are affected by modifications
can be identified. This can be useful when determining the starting points
for an analysis so that only changed elements are reevaluated. Finally, the
provided facilities can be used to report and visualize detected problems in
the Eclipse IDE.

Improvement of Core Functionality
There are several possibilities for the improvement of the core functions of the
Model Analysis Framework. For example, it would be possible to extend the
Instantiation component with the ability to detect non-converging analyses. An
indication for this property is the repeated occurrence of the same results at
the leaves of the dependency chain structure. This problem can occur if the
specification is incorrect and the result computation does not terminate in a
fixed-point solution. Currently, this would result in an infinite loop unless a
limit has been specified for the maximal amount of rule executions.

6http://www.eclipse.org/modeling/emft/?project=teneo
7http://www.eclipse.org/cdo
8http://www.modelbus.org/modelbus
9http://www.eclipse.org/modeling/emf/?project=validation
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Applications and Evaluation
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9. Application Scenarios and

Analysis Templates

In Section 9.1, we will discuss typical application areas for the data-flow analy-
sis approach and subsequently present an extensible standard library consisting of
templates for the implementation of common analyses in Section 9.2.

9.1. Application Scenarios

This section lists recurring application scenarios in the modeling area in which the
flow-based model analysis approach can be put to use. The shared characteristic of
these scenarios is that they do not depend on a certain implementation technology or
are tied to a specific use case or domain but rather represent conceptual approaches
to model analysis. Consequently, they apply - with slight modifications - to a wide
variety of different application domains. In some cases, complex usage scenarios
may even require the combination of multiple methodologies.

In the following, we will present a list of typical application scenarios. For each
case, a short motivation is given and the use of data-flow analysis for achieving the
desired result is discussed.

Static Model Validation

Model constraint languages such as OCL or EVL (cf. Section 3.1) are typically
employed for a static validation of the correctness of the structural composi-
tion of models. To this end, they rely on specifications which extend the
target language’s syntax on the meta layer. In many cases, static validation
is necessary because the expressiveness of the syntactical features of a given
modeling framework may not be sufficient to encode all restrictions which have
to hold for derived models. The extension of the respective language defini-
tion, i.e. the metamodel, enables analyses to rely on the syntactic structure
of the target modeling language and ensures that they can be automatically
executed for all derived instances. Methods which are specifically adapted to
the modeling domain make use of common modeling semantics to guide the
instantiation process and for providing access to the respective model’s fea-
tures. Consequently, the constraints can retrieve data (such as the values of
class properties) from the models and check whether the elements fulfill the
stated requirements. Furthermore, analyses may take the immediate environ-
ment of the respective elements, such as properties of neighboring objects, into
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account. This can usually be achieved using a number of inbuilt navigation
statements for addressing and evaluating these properties.

The proposed data-flow approach incorporates the ability to employ tradi-
tional constraint languages such as OCL or EVL for the specification of analy-
ses. It additionally implements the principles of information propagation and
fixed-point evaluation which extend the feature set of the traditional methods.
Propagation simplifies the access to information which originates at distant el-
ements, e.g. by exchanging data between nodes in a control-flow graph which
are multiple steps apart. It is furthermore capable of incorporating the model’s
structure in the computation of the results, for example by aggregating or in-
tersecting incoming result sets at gateway nodes. When combined with the
fixed-point evaluation semantics, this feature thereby supports an approxima-
tion of runtime behavior. In conclusion, the flow analysis approach extends
traditional constraint languages with the ability to base the validation process
on a wider range of structural and behavioral properties.

Concrete examples for this application scenario can be found in the case studies
described in Sections 10.1 and 10.3. In these instances, the developed approach
implements consistency checks for business processes and models which encode
information about natural language expressions. The JWT case study further-
more demonstrates the realization of a complex validation scenario based on
the propagation of tokens (tokenflow analysis).

Information Extraction

Traditional validation scenarios are only concerned with the identification of
erroneous structures in models. Effectively, the result of a validation is a bi-
nary assessment which indicates whether the examined structure conforms to
the stated restrictions. However, the usage of analysis techniques also pro-
vides the possibility to extract more sophisticated semantic properties. The
generated output can be a valuable source of information or may form the
input for subsequent algorithms. The data-flow analysis technique provides a
powerful tool for accomplishing this goal as it enables the aggregation of flow-
sensitive information. This feature can therefore be used to assess properties
that require a context-based evaluation of model elements.

While, in theory, this principle can be applied to any modeling language, the
potential of this method is perhaps most obvious in the case of behavioral
models which encode control-flows. For this type of model, the state of an
element can be determined with respect to its position in the overall control-
flow structure. It should be noted that, depending on the derived properties
and the intended use case, the extraction of (flow-sensitive) information can
overlap with other scenarios described in subsequent items.

Multiple examples which represent realizations of the extraction scenario can
be found in Section 10.1.2. This use case demonstrates how different control-
flow properties can be computed in the BPM domain. Section 10.1.3 addi-
tionally explores how the allocation of resources in business processes can be
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examined while the analyses described in Section 10.4.2 rely on the extraction
of control-flow data to support the derivation of valid schedulings for auto-
motive systems. Finally, Section 10.2 applies flow analysis to compute paths
in structural models which, in turn, form the input for a calculation of EAM
metrics.

Modeling Guidelines / Model Metrics / KPI

The derivation of metrics or key performance indicators (KPIs) represents
another application scenario for the proposed approach. This also includes the
evaluation of codified modeling guidelines which, in contrast to a structural
validation, can be used to quantify the quality of a model on a continuous
scale. It can be argued that the computation of metrics can be regarded as a
specialized case of the extraction of flow-sensitive information which has been
discussed in the previous point.

The benefit of the DFA approach for the calculation of model metrics stems
from the fact that the incorporation of flow-sensitive properties can greatly
simplify the implementation of more complex algorithms. Evidence for this
claim can, for example, be found in Section 10.2.2 where different KPIs from
the canonical literature of the EAM domain were (re)implemented using the
proposed method.

Through an approximation of dynamic behavior, flow analysis also supports
the realization of approaches which rely on an assessment of sophisticated
static properties. For example, it is possible to envision a use case in the
domain of model-based testing where different coverage criteria are approxi-
mated statically to determine whether the modeled behavior is likely to yield
suitable test cases. This can be implemented by using DFA to compute all
unique traversal paths for a test model and to subsequently calculate a per-
centage for the contained actions and requirements that indicates the relative
amount of paths which will cover these items. The resulting information could
be used to drive the generation of small but robust test suites which guarantee
that all relevant parts of the target system are considered.

Model Refinement

The scenarios of model validation and information extraction deal with the
assessment of the state of a model and the computation of information which
can serve as input for algorithms which are executed in subsequent steps.
Alternatively, the information could also be used to refine the model itself.
Based on an evaluation of behavioral properties, it is possible to generate
advisories that indicate weak spots in the modeled behavior. The user can
then decide to apply automatically derived optimizations and subsequently
repeat the analysis to iteratively refine the model.

The use case detailed in Section 10.4 implements an iterative refinement sce-
nario in which the structural and behavioral aspects of automotive software
systems are analyzed. The results of the respective analyses not only indicate
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erroneous specifications but are also used to devise a set of problem resolu-
tions which can be iteratively applied to the modeled system to resolve unclear
situations and to increase its level of detail.

Declarative Specifications

One advantage of the flow-based approach to model analysis lies in the inherent
declarative nature of its specifications. Since the underlying DFA solver is
responsible for detecting and managing the dependencies between data-flow
attributes and for controlling the fixed-point evaluation process, no imperative
evaluation logic for algorithms must be provided. This relieves the developer
from being concerned with implementation-specific details.

Furthermore, it can be observed that many algorithms with existing imperative
implementations depend on flow-sensitive information or naturally incorporate
the principle of information propagation to compute contextual results. As a
consequence, one can expect that a flow-based implementation of such an
algorithm would be easier to realize and more intuitive to understand and to
extend than an imperative solution.

This assumption is evaluated in the case studies. For this purpose, we devel-
oped flow-based analyses which mirror the functionality of several imperative
algorithms. One example consists of the tokenflow method described in Sec-
tion 10.1.4 which propagates tokens in control-flow graphs using petrinet-like
semantics to detect structural components. Another example can be found in
the clone detection use case (cf. Section 10.1.5). Furthermore, this scenario
also applies for the use case in Section 10.2 which computes various metrics
and change impacts for the EAM domain.

Model Transformations

Any analysis technique whose specifications rely on the structural composition
of the respective target language can also be employed to implement transfor-
mation algorithms. An example for this principle in the domain of compiler
construction can be found in [Aho+06]. In this case, so-called syntax-directed
translations are used to convert language expressions between different rep-
resentations. More specifically, the authors describe how attribute grammars
are able to output translated versions of the original expressions. Since the
evaluation of the respective attribution follows the syntactical structure of the
language, the transformation process can easily preserve the correct nesting of
(sub)expressions and additionally incorporate contextual information during
the translation of each construct. This approach therefore enables a declarative
specification of transformations without the need for an additional framework.

It can be assumed that this approach is also applicable in the modeling do-
main. For this purpose, DFA rules could be extended to output a translated
expression based on the context of each attribute instance. Effectively, this ap-
proach would therefore constitute a methodology for the realization of model
transformations. Possible use cases include the automatic generation of docu-
mentations or executable implementations from model data.
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Programming Languages

In some cases, modeling languages encode exhaustive information which re-
lates to the execution of the modeled behavior. Examples include models in
the area of model-based testing which are often structured similarly to UML
State Machines or Activity Diagrams. Since these diagrams are used to derive
test paths, they usually contain information for controlling the test execution
and for validating the system’s behavior. For this purpose, the elements of
test models are often annotated with program instructions that configure the
system or with guards that check whether certain conditions are met. It is
obvious that this format bears some resemblance to the program graphs which
form the input for traditional data-flow analysis. It can therefore be assumed
that some of the typical analyses found in the field of compiler construction
can be adapted for use in this domain. A reaching definitions analysis, for
example, could be used to track the usage of variables in test models. This
knowledge can be of use during the design phase as it provides valuable in-
sights into the behavior of the modeled system such as paths which may not
be executable due to conflicting specifications.

Another potential use case can be found in the GeCoS compiler suite [Der+]
which implements a model-based representation for the abstract syntax trees
of C programs. This approach has the advantage of supporting the direct
application of traditional modeling techniques such as model transformations
to program code. The application of the data-flow analysis technique in this
scenario is straightforward as it exactly mirrors its usage in compilers.

9.2. Analysis Templates

In this section, we will present a variety of templates which demonstrate how the
data-flow analysis approach can be employed for the realization of very generic
goals. Consequently, many of these analyses can be adapted to different domains
and modified to compute different kinds of results. The presented templates there-
fore constitute building blocks for custom analysis functions. This listing is by no
means an exhaustive compilation of all possible use cases for the DFA methodology.
Rather, it is intended as an inspiration and a starting point for custom explorations
of the possibilities offered by the described method. To specify the executable parts
of the analyses, we employ a language which follows the notion of imperative OCL.
This choice was motivated by the fact that the navigational statements of this lan-
guage allow for a short and concise description of the relevant computation steps.
Furthermore, the focus on the functional aspects means that the provided templates
can be easily adapted to other implementation languages such as Java.
In general, these analyses can be easily adapted to any modeling language which

possesses the layout of a directed graph and which implements control-flow seman-
tics. Furthermore, they can also be used to extract a variety of information from
structural models, depending on the domain-specific semantics of the target DSL.
The analyses are therefore applicable in a large number of different domains and

256



9.2. Analysis Templates

can be employed to achieve different goals.

9.2.1. Reachability/Liveness

A property shared by any directed graph is the reachability and liveness state of its
constituents. An element is reachable if there exists a path from the first node to
the element. Correspondingly, it is live if the final element is reachable.

Algorithm 13 Reachability analysis

1: Attribution cfg_reachability

2: attribute assignment isReachable : Boolean initWith false

3: extend StartNode with
4: occurrenceOf isReachable calculateWith true

5: extend Node with
6: occurrenceOf isReachable calculateWith
7: “return self.incoming.source.isReachable()->includes(true)”

Algorithm 13 defines a simple reachability analysis. This specification is a varia-
tion of the running example from Chapter 6. It defines an attribute isReachable of
type Boolean which is initialized with the value false. The result for isReachable at
a Node depends on the reachability state of its immediate predecessors. If at least
one predecessor is reachable, the current Node is reachable as well. By default, the
StartNode is classified as reachable.

Algorithm 14 Liveness analysis

1: Attribution cfg_liveness

2: attribute assignment isLive : Boolean initWith false

3: extend EndNode with
4: occurrenceOf isLive calculateWith true

5: extend Node with
6: occurrenceOf isLive calculateWith
7: “return self.outgoing.target.isLive()->includes(true)”

Algorithm 14 provides a modified version of the reachability analysis which de-
termines the liveness state. In this case, the EndNode is considered to be live while
all other Nodes are live if this property is true for at least one successor.
The listed algorithms can be easily extended to incorporate other information in

the assessment of whether an element is reachable or live. For example, based on
an evaluation of guards at model Edges, branches could be excluded which cannot
be reached due to conflicting restrictions. Furthermore, it could be stated that in
the case of multiple incoming edges, all predecessors (successors) must be reachable
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(live). This modification is useful if the target modeling language specifies synchro-
nization points, e.g. JoinNodes for parallel paths, which require that all incoming
paths must be reachable to continue with the execution.

9.2.2. Flow Sets (Predecessors/Successors)

In Chapter 6, we already briefly explored an approach for the extraction of control-
flow data which relates to the predecessor and successor relationships in the model:
In a directed graph, each node has a set of transitive predecessor and successor nodes.
It is furthermore possible to distinguish between the set of minimal (guaranteed)
and maximal (possible) predecessors and successors. As the naming suggests, these
results convey information about the dynamic behavior of the system by indicating
which nodes will or may be traversed before or after the execution reaches the
respective node. This knowledge can be useful in many instances as it relays basic
information about the properties of the model with respect to the semantics of the
target domain. It also forms the input for subsequent analyses such as the SCC
detection described in the next section.

Algorithm 15 Predecessor analysis

1: Attribution cfg_predecessors

2: attribute assignment allPredecessorsMin : Set(Node) initWith INIT
3: attribute assignment allPredecessorsMax : Set(Node) initWith {}

4: extend StartNode with
5: occurrenceOf allPredecessorsMin calculateWith {}

6: extend Node with
7: occurrenceOf allPredecessorsMin calculateWith
8: “var result : Set(Node) := null;
9: self.incoming.source->forEach(predecessor) {
10: var predecessorResult : Set(Node) := predecessor.allPredecessorsMin();

11: if (result = null) then
12: result := predecessorResult
13: else if (not predecessorResult = INIT and not result = INIT) then
14: result := result->intersection(predecessorResult)
15: endif ;
16: }
17: return result”

18: occurrenceOf allPredecessorsMax calculateWith
19: “return self.source.incoming->union(
20: self.source.incoming.allPredecessorsMax())”

The attribution in Algorithm 15 outlines the computation of the minimal and
maximal predecessor sets for control-flow models. The successor sets can be com-
puted correspondingly by adapting this specification to consider succeeding instead
of preceding elements. This principle is evident from the liveness analysis in Algo-
rithm 14 which reverses the direction of the reachability analysis.
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The computation of the attribute allPredecessorsMax is straightforward. The result
consists of the union of the direct predecessors and their respective transitive pre-
decessor sets which are accessed via allPredecessorsMax(). Consequently, the results
yielded by this analysis provide each Node with the set of its transitive predecessors.
Alternatively, it would also be possible to include the current element (self) in the
result set. In this case, each Node would be regarded as a predecessor of itself which
can be useful in certain scenarios.
In the presented solution, the computation of the attribute allPredecessorsMin

is slightly more complicated as it employs the generic initialization constant INIT
instead of the universal set 𝒰 as start value for the fixed-point iterations. This
approach has the obvious advantage of not requiring any previous knowledge about
the nature of the value domain. Consequently, the data-flow rule must be adapted
so as to treat INIT as a neutral value. For this purpose, the calculation starts with
an empty result set and iteratively intersects this result with the preceding results,
provided they already possess a value ̸= INIT. If, however, all inputs are initialization
values, the INIT marker is preserved to indicate that the current iteration value still
conforms to ⊤ and must be recomputed in a later iteration.

Algorithm 16 Predecessor analysis (alternative version)

1: Attribution cfg_predecessors

2: attribute assignment allPredecessorsMin : Set(Node) initWith
3: “return value domain”

4: extend Node with
5: occurrenceOf allPredecessorsMin calculateWith
6: “return self.source.incoming->intersection(
7: self.source.incoming.allPredecessorsMin())”

Conversely, if the value domain is known, the computation of the minimal prede-
cessor set can be carried out similarly to the maximal result. This is demonstrated
in the alternative specification for allPredecessorsMin depicted in Algorithm 16. In
this case, the initialization rule must return the set of all Nodes. For some modeling
languages, this can be achieved by accessing the respective container element and
retrieving the set of all available elements.

9.2.3. SCC Detection

A common requirement when analysing control-flow graphs consists of the identi-
fication of cyclic structures. Information about the maximal connected subgraphs
- or the strongly connected components - is a required input for many other algo-
rithms. This can be achieved, for example, by using Tarjan’s algorithm [Tar72].
Alternatively, it is also possible to implement this feature using data-flow analysis.
This has the benefit of a very intuitive specification that can be easily adapted to
the requirements of the respective target domain. Furthermore, the computed re-
sults can be made available as input for subsequent flow analyses which rely on this
information.
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Algorithm 17 SCC ID analysis

1: Attribution cfg_sccid

2: attribute assignment sccID : Integer initWith -1

3: extend Node with
4: occurrenceOf sccID calculateWith
5: “var predecessors : Set(Node) := self.allPredecessorsMax();
6: if (predecessors = INIT) then
7: return -1
8: else if (predecessors->includes(self)) then
9: return predecessors->hashCode()
10: endif ;
11: return 0”

The attribution presented in Algorithm 17 assigns an identifier sccID to each node
that uniquely identifies the detected SCC or has the value 0 if the node does not
belong to a cycle. For this purpose, the value for sccID is initially set to -1, indicating
that the instance has not yet been processed. Subsequently, the analysis requests
the maximal predecessor set as described in the last section. If the predecessors have
not yet been fully computed, i.e. if their value is still INIT, the initialization value
for the SCC attribute is returned accordingly1. Otherwise, it is checked whether
the predecessor set contains the context element. If a node is a predecessor of itself,
it is part of a cycle and a corresponding identification value is generated from the
hash codes of the predecessors2. As, by definition, all nodes belonging to the same
maximal cycle share the same predecessors, this is a feasible way to generate a
unique identification for each cyclic structure.

1This is not necessary if one can ensure that the predecessor analysis is completed before the SCC
analysis runs.

2Alternatively, the transitive predecessors of the current Node could be compared to the union of
the allPredecessorsMax results computed for the direct predecessors.
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Algorithm 18 SCC objects analysis

1: Attribution cfg_sccobjects

2: attribute assignment sccObjects : Set(Node) initWith INIT

3: extend Node with
4: occurrenceOf sccObjects calculateWith
5: “var sccID : Integer := self.sccID();
6: if (sccID = -1) then return INIT
7: else if (sccID = 0) then return Set{} endif ;
8: var result : Set(Node) := Set{self};
9: self.incoming.source->forEach(predecessor) {
10: var predecessorResult : Set(Node) := predecessor.sccObjects();
11: if (predecessor.sccID() == sccID and not predecessorResult = INIT)
12: then result := result->union(predecessorResult) endif ;
13: }
14: return result”

The identified cycles can be extracted from the analysis results by aggregating
all nodes which share the same identifier ̸= 0 in a group (and elements with sccID
= 0 representing non-cyclic nodes). However, subsequent analyses may require
information about which nodes belong to which cycle as input. For this purpose,
it is possible to define an additional analysis, as shown in Algorithm 18, which
computes this information. This attribution stores the set of all nodes belonging to
the cycle at the respective cyclic nodes.

If the current node belongs to a cycle, i.e. if sccID > 0, then the set of cyclic nodes
is aggregated much like in the maximal predecessor analysis. More specifically, the
value of the sccObjects attribute at the direct predecessors is queried and - if it is ̸=
INIT - is added to the result set.

9.2.4. Alternative Paths

In many cases, it can be beneficial to derive specific execution path alternatives for
control-flow models. The predecessor/successor analysis yields only general infor-
mation about elements which may or must be visited on the route to a target object.
By considering all alternative routes in the control-flow, it is possible to generate
a set of all sequences which lead to a given target element. The information gen-
erated by this analysis could then, for example, be used to assess how many path
variations exist in a model or how many of the available alternatives fulfill a given
set of properties. Since cycles in the control-flow introduce paths of infinite length,
it is necessary to implement restrictions which guarantee that the result set is finite.
Common conditions may, for example, state that each Node or Edge can only have
a limited number of occurrences in each computed sequence.
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Algorithm 19 Flow paths analysis

1: Attribution cfg_flowpaths

2: attribute assignment flowPaths : Set(List(Element)) initWith {}

3: extend StartNode with
4: occurrenceOf flowPaths calculateWith
5: “return Set{List{self}}”

6: extend Node with
7: occurrenceOf flowPaths calculateWith
8: “var result : Set(List(Element)) := Set{};
9: self.incoming->forEach(edge) {
10: edge.source.flowPaths()->forEach(path) {
11: if (not path->contains(self)) then
12: result := result->add(List{path}->append(edge)->append(self));
13: endif ;
14: }
15: }
16: return result”

The analysis described in Algorithm 19 realizes this goal by computing an at-
tribute flowPaths for each Node. The result consists of a set of paths (represented as
ordered lists) from the StartNode to the respective target. For the first element, a
path set with a single entry is created which contains only the StartNode. All other
results are computed by iterating over the incoming Edges and checking whether
each sequence at the respective source already contains the context element. If this
is not the case, a new entry is added to the result collection which appends the
incoming Edge as well as the context element to the received path. The inclusion of
edges is important to uniquely identify the resulting sequence since there may exist
different relationships connecting the same two elements.
The presented analysis may be modified in a number of ways. In its current form,

each Node will appear at most once in each of the generated alternative routes. By
substituting the check in line [11] with a test that ensures that each Edge may occur
only once, Nodes can be “traversed” multiple times, thereby generating a potentially
larger result set. It would also be possible to adapt the analysis to incorporate the
capability to compute parallel paths.
Since this analysis yields different path variations which conform to the stated

restrictions, the results can, for example, be used to aggregate information along
the detected sequences and thereby subject the modeled behavior to a statistical
evaluation. It is also conceivable that paths derived from Activity Diagrams or
State Machines are used as input for a model-based “simulation” of the modeled
system.

9.2.5. Definition/Usage Analysis

In some domains, the modeled behavior not only describes the flow of control for
runtime instances of the modeled system but also includes specifications about the
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production/consuming of resources. An example for this application scenario is
explored in Section 10.1.3 which examines the availability of data objects which
function as the input and output of actions in business process models. An alterna-
tive scenario could consist of the declaration and manipulation of program variables
inside statements assigned to the nodes and edges of MBT models.
In a definition/usage scenario, it is typically assumed that any resource which is

read (or manipulated) during the execution of the modeled system must be defined
at an earlier point. This principle mirrors the notion of statically typed programming
languages which require that any access to a variable is preceded by a declaration
statement. A definition/usage analysis which examines the availability status of
elements that are produced and consumed at control-flow elements can therefore be
beneficial in the task of establishing the correctness of the modeled behavior. An
approximation of the runtime behavior based on the computation of the minimal and
maximal fixed-point results enables the derivation of different kinds of conclusions
about whether the specification is correct for all runtime instances or if there exists
at least one execution which may lead to problematic situations.

Algorithm 20 Available resources analysis

1: Attribution defuse_available

2: attribute assignment availableResourcesMin : Set(Resource)
3: initWith INIT

4: extend StartNode with
5: occurrenceOf availableResourcesMin calculateWith {}

6: extend Node with
7: occurrenceOf availableResourcesMin calculateWith
8: “var result : Set(Resource) := null;
9: self.incoming.source->forEach(predecessor) {
10: var resultPred : Set(Resource) := predecessor.availableResourcesMin();
11: if (result = null) then
12: result := resultPred
13: else if (not resultPred = INIT and not result = INIT) then
14: if (self.IsKindOf(JoinNode)) then
15: result := result->union(resultPred)
16: else
17: result := result->intersection(resultPred)
18: endif;
19: endif ;
20: }
21: if (not result = INIT) then
22: result := result->union(self.availableResources()) endif ;
23: return result”

Algorithm 20 defines an attribution which computes the minimal set of defined
resources which are available at the control-flow elements. The result at each Node
therefore corresponds to the set of resources for which we can guarantee that they will
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have been defined before this point in the execution flow is reached. Consequently,
this set excludes resources produced in branches or inside cycles as not all sequences
leading to the target element will traverse these paths. This is accomplished by
intersecting the incoming result sets. However, an exception is made for JoinNodes
which we assume carry the implicit semantics that all incoming paths must be
traversed for the execution to continue. Just like the analysis in Section 9.2.2, this
specification is able to handle unspecified value domains by relying on the INIT
marker.
The computation of the maximal set of defined resources can be easily imple-

mented by removing the intersection operator and instead unifying the incoming
results for all possible Node types. In this case, the analysis yields the set of re-
sources which are potentially available at each Node. In other words, the computed
results indicate which data objects may be available at each control-flow element
since at least one route exists on which the respective resource is produced.

Algorithm 21 Unused resources analysis

1: Attribution defuse_unused

2: attribute assignment unusedResourcesMin : Set(Resource)
3: initWith INIT

4: extend StartNode with
5: occurrenceOf unusedResourcesMin calculateWith {}

6: extend Node with
7: occurrenceOf unusedResourcesMin calculateWith
8: “var result : Set(Resource) := null;
9: self.incoming.source->forEach(predecessor) {
10: var resultPred : Set(Resource) := predecessor.unusedResourcesMin();
11: if (result = null) then
12: result := resultPred
13: else if (not resultPred = INIT and not result = INIT) then
14: if (self.IsKindOf(JoinNode)) then
15: result := result->union(resultPred)
16: else
17: result := result->intersection(resultPred)
18: endif;
19: endif ;
20: }
21: if (not result = INIT) then
22: result := result->union(self.definedResources())
23: result := result->remove(self.usedResources())
24: endif ;
25: return result”

It is also possible to compute the “life span” for defined resources, i.e. the partial
paths on which resources are available as they have been defined at an earlier point
but have not yet been read, modified or consumed. This result can give an indication
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on how long resources may have to be stored in memory before they can be released
but it also enables an identification of write accesses to a specific resource and
whether data may be produced but never consumed in subsequent steps.
The attribution shown in Algorithm 21 bears similarities to the analysis from

Algorithm 20 as it propagates data-flow results - computed by unusedResourcesMin
- along the direction of the control-flow. However, this specification removes (in
DFA terms kills) locally used resources [23]. Again, the analysis can be adapted to
compute the maximal fixed-point approximation.

Algorithm 22 Missing resources analysis

1: Attribution defuse_missing

2: attribute assignment missingResourcesMin : Set(Resource)
3: initWith INIT
4: attribute assignment missingResourcesMax : Set(Resource)
5: initWith INIT

6: extend Node with
7: occurrenceOf missingResourcesMin calculateWith
8: “var availableResources : Set(Resource) := self.availableResourcesMin();
9: if (availableResources = INIT) then return INIT endif ;
10: var result : Set(Resource) := Set{availableResources};
11: return result->remove(self.usedResources())”

12: occurrenceOf missingResourcesMax calculateWith
13: “var availableResources : Set(Resource) := self.availableResourcesMax();
14: if (availableResources = INIT) then return INIT endif ;
15: var result : Set(Resource) := Set{availableResources};
16: return result->remove(self.usedResources())”

The results of the analysis of defined resources can be used for different purposes
such as a qualitative manual assessment of the properties of the modeled system.
Based on the results, it can also be determined whether all of the resources which
are locally used, i.e. required as input, are available. This allows an automatic
validation of the definition/usage relationships. Algorithm 22 demonstrates this
process for the minimal and maximal approximations of resource availability. Since
the results for missingResourcesMax relies on the potentially available resources, an
resource that is identified as missing indicates an error for all runtime instances. It
is therefore a definitive violation which must be corrected. Conversely, the results
for missingResourcesMax lists resources for which an illegal access occurs on at least
one possible execution. Depending on the semantics of the modeled system, this
may or may not equate to an erroneous specification.
The presented algorithms can be extended to provide support for advanced con-

cepts such as an examination of the definition/usage behavior for parallel paths.
For example, it would be possible to evaluate if the presence of parallel paths may
lead to concurrent accesses to the same resource. Furthermore, if there exists only
a limited number of specific resource instances, the read/write accesses could be
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tracked and the required amount of instances could be approximated for both the
best and the worst case scenario.

9.2.6. Type Analysis

Flow analysis can also be used to derive typing information for structural models
which encode some type of generalization hierarchy for elements. A variation of
this approach has been used in Section 6.3.3 to demonstrate the application of DFA
for the computation of the concrete type of the target model elements for attribute
instance annotations.

Algorithm 23 Unique root types analysis

1: Attribution type_roottypes

2: attribute assignment rootTypes : Set(Node) initWith {}
3: attribute constraint rootTypeUnique : error “no unique root type”

4: extend Node with
5: occurrenceOf rootTypes calculateWith
6: “var result : Set(Node) := Set{};
7: if (self.parent = null) then
8: result := result->include(self.parent)
9: else
10: result := result->include(self.parent.rootTypes())
11: endif
12: return result”

13: occurrenceOf rootTypeUnique calculateWith
14: “if (self.rootTypes()->size() > 1) then
15: self.rootTypeUnique( “multiple roots:” +
16: self.rootTypes().name + “for” + self.name);
17: return false
18: endif ;
19: return true”

The specification shown in Algorithm 23 attaches an attribute rootTypes to the
Node concept of the target modeling language. In this context, we assume that each
Node conforms to a type declaration which may possess a parent type. The analysis
determines the respective root(s) for each element which is part of the hierarchy.
For this purpose, root entries are added to the result set and propagated to child
elements. In many cases, it is required that each element is derived from exactly one
unique root. A subsequent evaluation of the rootTypeUnique constraint generates
corresponding error messages for all Nodes with multiple root type entries.
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Algorithm 24 Test for cyclic hierarchies

1: Attribution type_cycles

2: attribute constraint rootTypeCycles : error “type hierarchy cyclic”

3: extend Node with
4: occurrenceOf rootTypeCycles calculateWith
5: “if (self.sccID() > 0 ) then
6: self.rootTypeCycles(“cyclic hierarchy:” + ;

7: self.sccObjects()).name + “for” + self.name);
8: return false
9: endif ;
10: return true”

It is also often required that type or generalization hierarchies are acyclic. The
SCC detection described in Section 9.2.3 can be used for this purpose. The constraint
rootTypeCycles in Algorithm 24 relies on the value of the attribute sccID to identify
cyclic paths and to generate an appropriate feedback message.

While the presented analyses address typical problems that may occur in hier-
archical type definitions, they can also be applied to different kinds of tree-like
structures.

9.2.7. Context-Sensitive Analyses

The analyses described in the last sections rely on the evaluation of contextual
information to derive the correct results. However, in practice, it is often the case
that the target modeling language provides mechanics for organizing the contents
in a containment hierarchy. Examples for this principle include the use of packages
in structural models or subprocesses in business processes. To perform a global
analysis, i.e. to examine each element in its overall context, it is therefore necessary
to propagate the results to nested model artifacts. The relevance of this concept
and its application in practice is explored in the case study in Section 10.1.
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Algorithm 25 Context-sensitive analysis

1: Attribution synthesize_context

2: attribute assignment attribute : Type initWith Value

3: extend StartNode with
4: occurrenceOf attribute calculateWith
5: “if (self.isKindOf(StartNode) and not self.container = null) then
6: return self.container.getAttribute()
7: endif ;
8: return result”

9: extend Node with
10: occurrenceOf attribute calculateWith
11: “self.incoming.source->forEach(predecessor) {
12: if (predecessor.isKindOf(Container)) then
13: predecessor.nodes->forEach(containedNode) {
14: if (containedNode.isKindOf(EndNode)) then
15: return containedNode.getAttribute() endif ;
16: }
17: endif ;
18: }
19: return result”

The template shown in Algorithm 25 describes a generic way to address this prob-
lem. A data-flow attribute - representing the information which should be evaluated
in the model’s overall context - is attached to the elements of the target model. The
rule for StartNode checks whether the current object resides in a Container. If this is
the case, it requests and returns the Container’s result. This process propagates data-
flow information to the starting point of nested structures such as subprocesses in a
business model. Conversely, the results computed inside the substructure must also
be relayed back to the surrounding environment. This happens inside the rule for
Nodes which query their direct predecessors for Container elements. If a predecessor
contains a nested control-flow, the result from the respective EndNode is transfered
to the current element. Together, these rules therefore realize the inheritance and
the synthesis of data-flow results in nested models.
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In this chapter, we will present several case studies which rely on the developed flow
analysis technique. Each of the following sections focuses on a single application
domain or technological space ranging from areas such as the analysis of business
processes to Enterprise Architecture Management. For every domain, we describe
several use cases, each of which realizes a specific goal by implementing application
scenarios such as model validation or the extraction and processing of semantic prop-
erties. In their entirety, the case studies demonstrate how consistent and powerful
analysis frameworks can be built for different domains using the method detailed
in this thesis. Each case study provides a short introduction of the target domain
followed by a description of the goals and subsequently lists the analysis definitions
in a pseudo code notation. Each implementation concludes with a discussion of the
relevant aspects with respect to the application of the analysis methodology in the
context of the respective domain.
It should be noted that the case studies do not focus on an in-depth evaluation

of the use cases themselves but rather are intended to highlight the versatility of
the approach and demonstrate how complex solutions can be built incrementally on
the basis of the application scenarios and the analysis templates from Chapter 9.
In short, the following sections prove the applicability of the DFA method for the
implementation of analyses in different application areas.

Several factors contribute to the individual challenges which must be overcome to
apply the flow analysis method for a specific use case:

Application domain Each of the case studies introduces a new application domain.
This diversity illustrates the viability of the analysis technique with respect to
its application in arbitrary areas which rely on the modeling paradigm.

Application scenario Analyses may, for example, be used to extract semantic in-
formation which is implicitly encoded in the syntactical structure of a model,
for the validation of static features of a modeling language or the computa-
tion of metrics. More complex use cases may even require the combination of
different application scenarios.

Model structure The development of an analysis requires the consideration of the
specific properties of the modeling language which is employed to encode in-
formation in the respective domain. Modeling languages may focus on the
representation of structural or behavioral features or on a combination thereof
and can use different approaches to encode these properties.

Incremental analysis A concrete analysis may rely on results which have been com-
puted in previous steps as well as drawing from the DFA standard library in
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order to iteratively build a comprehensive analysis framework for the given
task.

Technical integration Seamless integration on a technical level is an additional
challenge that has to be evaluated in the context of realistic applications of
the developed technique.

The first case study, which is presented in Section 10.1, implements multiple use
cases in the area of business process analysis. Business processes are often repre-
sented as directed graphs and therefore provide the opportunity to apply a variety
of common DFA methods such as reachability analysis or the computation of tran-
sitive successor sets. In addition to these traditional use cases, this case study
describes flow-based implementations of existing algorithms for use cases such as
SESE decomposition and clone detection. In Section 10.2, we examine possible ap-
plications of the DFA technique in the context of EAM and describe how the results
can be used to generate comprehensive assessments of the modeled IT landscapes.
Section 10.3 deals with the analysis of models which encode semantic information
about natural language patterns. Finally, in Section 10.4, we take a look at the
AUTOSAR method which is used primarily in the automotive domain. The goal
here is to improve existing development methodologies by providing engineers with
facilities for the validation and improvement of their system design. While the first
case study focuses on the evaluation of behavioral models, the following two sec-
tions demonstrate the analysis of structural information. The models in the last
case study represent a combination of both paradigms.

10.1. Case Study: Business Process Modeling

In this case study, we focus on the area of business process modeling, which in many
organizations has become an integral technology for the management of business
processes. For the analysis of process models, we employ both traditional DFA
algorithms and devise new, domain-specific techniques. Some of these analyses
are reimplementations of existing approaches that have been adapted to follow the
declarative paradigm that lies at the core of flow-based analysis. To evaluate the
practical aspects of the developed methods, we have integrated the analyses in the
BPM tool Java Workflow Tooling (JWT).

10.1.1. Introduction and Motivation

Many competing definitions exist for terms such as business process modeling or
(business) process analysis. Since this case study is intended both as a proof-of-
concept and an evaluation of the capabilities of DFA in a concrete application do-
main, we limit ourselves to a very specific interpretation of these concepts which
is relevant to the use cases in this section. For additional information about man-
agement aspects and different techniques and standards for designing and analyzing
business processes, we refer to literature such as [LS07] and [VTM08].
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[WFM96] defines a process model as a “formalized view of a business process,
represented as a co-ordinated (parallel and/or serial) set of process activities that
are connected in order to achieve a common goal”. In [FH02], a process model is
described as an “abstract representation of a process architecture, design, or defini-
tion”. It is further stated that “process models are used where use of the complete
process is undesirable or impractical. A process model can be analyzed, validated,
and [. . . ] may be used to assist in process analysis, to aid in process understanding,
or to predict process behavior”.
[WFM96] also describes a set of generic concepts supported by many modeling

languages in the BPM field. These include control-flow constructs such as sequential,
parallel or exclusive paths. Arguably one of the most widely used standards for the
modeling of business processes is OMG’s graph-oriented Business Process Modeling
Notation (BPMN) language which, as the authors of [Woh+06] conclude “provides
direct support for the majority of the control-flow patterns and for nearly half of
the data patterns, while support for the resource patterns is scant”. Control-flow
patterns are the most relevant type in the context of this case study as they enable
the application of flow-based analysis.
In [VHW03], the importance of process analysis is stressed since “it is preferable

to identify any problems in software before it is actually deployed. In the case of
Business Process Models this is especially important as they may involve core busi-
ness and/or complex business transactions”. Also, it is stated that analysis can be
“used to investigate ways of improving processes (e.g. reducing their cost)”.

[Aal07] differentiates between the following types of process analysis:

Validation Testing whether the process behaves as expected.

Verification Establishing the correctness of a process definition.

Performance analysis Evaluating the ability to meet requirements with respect to
throughput times, service levels, and resource utilization.

Additionally, an analysis can be classified as being static - i.e. executed during the
design time where “the only basis for analysis is a model” - or as a dynamic analysis
during runtime where “one can also observe the actual behavior and use this as input
for analysis”.
Data-flow analysis is well-suited for validation purposes as well as for the computa-

tion of performance properties as it evaluates processes according to their structural
composition by taking into account the context in which objects appear in relation
to the overall process. Since data-flow analysis approximates properties that can
be derived statically, it constitutes a design time analysis operating on the process
model.

Java Workflow Tooling

The Java Workflow Tooling (JWT) project is part of the yearly official Eclipse
release and belongs to the SOA (Service-oriented Architecture) top-level project.
Since 2010, the author of this thesis has served as the co-project lead of JWT.
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On the official project page1, the goals of JWT are summarized as follows: “Eclipse
SOA’s Java Workflow Tooling project (JWT) provides design time, development time
and runtime workflow tools. It also fosters interoperability between Business Process
Management (BPM) platforms and integration in Information Systems thanks to
Service Oriented Architecture (SOA).”
Because JWT provides support for the core expressions of the Business Process

Modeling Notation2, we can consider it to be a representative for graph-based busi-
ness process modeling languages in general.
The relevant property of BPM that makes this area a suitable candidate for study-

ing the application of DFA is the inherent control-flow structure of business process
models which is typically enriched with additional information required for the ex-
ecution of the process. In addition, the Eclipse-based plugin structure of JWT
facilitates the implementation of the use cases and an integration with the Model
Analysis Framework. Based on the metamodeling framework EMF, JWT employs
the Graphical Editing Framework (GEF) to visualize the process models in its work-
flow editor component - which therefore also is the preferred method of presenting
analysis results to the user.
Figure 10.1 and Figure 10.2 show excerpts of JWT’s metamodel3. The elements

in Figure 10.1 form the basis for modeling the control-flow while the classes in
Figure 10.2 define additional annotations at ActivityNodes which encode information
that is relevant for executing the process. The metamodel also provides means to
organize processes and their associated elements in a UML-like package structure.
The root of the process graph is a Scope which contains ActivityNodes and Ac-

tivityEdges which form the basic control-flow. Scope is subclassed by Activity and
StructuredActivityNode (abbreviated SAN). The latter type is a node which is part
of a process and which itself contains an Activity. This subprocess is triggered every
time the parent SAN is activated. The same is true for ActivityLinkNodes although,
instead of embedding a subprocess in a parent process, they specify a reference to
an existing Activity. Other relevant nodes types include Actions and ControlNodes.
An Action represents the actual task or business function that has to be completed
to continue with the execution of the process. ControlNodes are used to indicate
the start and end points of a process (InitialNode and FinalNode), mutually exclusive
paths (DecisionNode and MergeNode) and parallel paths (ForkNode and JoinNode).
Figure 10.2 is an excerpt of JWT’s ReferenceableElement concepts, namely Roles,

Applications and Data. These elements encode information required by the runtime
environment - i.e. the process engine - to execute the modeled workflow. A Role,
which is assigned to an Action, identifies the person who is responsible for carrying
out the task. This could, for example, mean that a dialog form is displayed on the

1http://www.eclipse.org/jwt/
2[MR08] argues that most process designers use only about 10 of the core patterns provided by
BPMN. These are also implemented by JWT (with the exception of Pool/Swimlane which can
be simulated using JWT’s Role concept). JWT allows to switch between different views on a
process model which include - amongst others - representations as UML Activity Diagrams and
BPMN processes. In addition, JWT models can be imported and exported from and to these
formats through model transformations.

3Further information can be found at http://wiki.eclipse.org/JWT_Metamodel.
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Figure 10.1.: JWT Metamodel: Elements of the core and processes packages.

Figure 10.2.: JWT Metamodel: Referenceable elements Role, Application and Data

workstation of the respective person. An Application identifies the program (e.g.
a webservice) which implements the Action while Data represents values that are
either used or generated as indicated by the inputs and outputs relationships. All
types of ReferenceableElements can be organized in a hierarchical Package structure
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(not shown in the metamodel excerpt).

Semantics of JWT processes with respect to Data-flow Analysis

Validating the static semantics of program code ensures that the statements form
a valid definition with respect to the semantics of the programming language. In
a similar way, well-formedness rules for business processes modeled in JWT must
ensure that the processes can be executed by a workflow engine. This means that,
in addition to providing all necessary data that the runtime environment requires
to invoke the associated programs and services, the elements must adhere to a set
of structural constraints:

∙ Each Activity must start with a single InitialNode and end with a FinalNode

∙ Each ActivityNode must possess exactly one incoming and one outgoing Activ-
ityEdge with the following exceptions:

– InitialNodes have no incoming edges

– FinalNodes have no outgoing edges

– DecisionNodes/ForkNodes may have one or more outgoing edges

– MergeNodes/JoinNodes may have one or more incoming edges

The validation of these constraints is straightforward using e.g. OCL rules. How-
ever, there are also more complex restrictions that require the consideration of an
element’s context:

∙ All ActivityNodes must be reachable from the InitialNode and from each Activ-
ityNode, the FinalNode must be reachable (cf. Section 10.1.2)4.

∙ Parallel regions must be nested correctly (cf. Section 10.1.4).

Furthermore, certain best practices have evolved in the BPM domain:

∙ To improve maintenance and reuse, similar structures (clones) should be stored
in separate subprocesses (cf. Section 10.1.5).

∙ Processes that are structurally and semantically sound may nevertheless vio-
late established notions about how process models should be constructed. In
this case, model metrics and guidelines can be used to assess these properties.

Applying DFA to JWT models requires special handling for the computation of
data-flow properties for processes referenced via ActivityLinkNodes. In these cases,
the same Activity may be referenced multiple times and can therefore be invoked in
different contexts. Normally, this would lead to imprecise - or even incorrect - results
as data-flow values would be aggregated for all contexts of the Activity. To enable
a context-sensitive analysis, linked subprocesses therefore have to be converted to

4These rules have also been explored in the context of the running example in Section 6.1.3.
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embedded processes (StructuredActivityNodes) by copying their contents. This han-
dling is however restricted to process models in which the containment hierarchy of
Scopes is non-cyclic.
To avoid the explicit computation of value domains for analyses which rely on

the intersection operator to combine data-flow sets, we use the initialization marker
INIT to denote the neutral element (⊤) for which we implement specific handling in
the data-flow rules. This increases the evaluation’s performance by reducing memory
and processing resources which would otherwise be required for the computation and
the storage of these values. At the same time, this solution speeds up the execution
of set operations in the case of large process models.

10.1.2. Use Case: Control-Flow Analysis

Since a BPMN-style business process inherently defines a control-flow, the appli-
cation of many common DFA methods is straightforward. The benefit of the ap-
plication of flow analysis is twofold: On the one hand, it is possible to validate
the structure of a process to check whether it conforms to the basic requirements
for control-flow graphs. On the other hand, the extracted data may contain infor-
mation which helps domain experts in assessing certain properties of the modeled
process. Alternatively, it can also serve as input for other algorithms as will be
demonstrated in the following sections. First, we will take a look at how informa-
tion about reachability/liveness, predecessor/successor sets and SCC properties can
be derived from business processes. These use cases can therefore be regarded as a
practical application and evaluation of the concepts described in Section 9.2.

Reachability and Liveness

A very basic requirement for business process models is that they must form a con-
nected graph with a designated start node and a final state. In JWT, these concepts
are implemented by the classes InitalNode and FinalNode. To ensure connectedness,
each Action must be reachable from the InitialNode. If this is not the case, it would
be impossible for it to be executed under any circumstances. Conversely, each Ac-
tion must be live, i.e. there has to exist a path to the FinalNode. Otherwise, the
execution of this element would result in a dead end.
The reachability/liveness properties are independent of the semantics of the execu-

tion path, i.e. one does not need to differentiate between alternative (DecisionNode
/ MergeNode) and parallel paths (ForkNode / JoinNode). Therefore, the relevant
metamodel class for attribute annotation is ActivityNode as it covers all node types
that are part of the model’s control-flow. For this type, the reachability and the
liveness properties can be implemented according to the definitions in Section 9.2.1.
Extending the analysis to include embedded Scopes requires to implement ad-

ditional handling for StructuredActivityNodes. From the view point of their parent
Activity, they act as normal Actions. However, the evaluation of the embedded
Scope’s contents depends on the results computed for the SAN itself: If the SAN
cannot be reached, then all contained Actions are also not reachable. Therefore, the
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InitialNode of an embedded Scope has to inherit the result computed at its parent.
The successors of the SAN are only reachable if the FinalNode of the contained Scope
can be reached. To accommodate for this, data-flow values must be propagated from
the FinalNode of an embedded process to the successors of the parent StructuredAc-
tivityNode. This method has to be adapted accordingly for an implementation of
the liveness analysis.
For the reachability analysis, the boolean result value for the fixed-point compu-

tation is initialized with false. The single exception is the InitialNode of the root
Scope where it is set to true as this element represents the entry point of the overall
process. For the liveness analysis, the same is true for the root Scope’s FinalNode.

Algorithm 26 The attribution cfg_reachability

1: Attribution cfg_reachability

2: attribute assignment isReachable : Boolean initWith false
3: extend InitialNode with
4: occurrenceOf isReachable calculateWith initialnode_isReachable
5: extend ActivityNode with
6: occurrenceOf isReachable calculateWith activitynode_isReachable

1: Rule initialnode_isReachable(attrDef, context)
2: if (context.container is SAN) then
3: return context.container[isReachable ] ◁ inherit from SAN container

4: return true ◁ InitialNode reachable by default

1: Rule activitynode_isReachable(attrDef, context)
2: for all (sourceNode : context.in.source) do ◁ iterate over source nodes
3: sourceReachable ⇐ false
4: if (sourceNode is SAN) then ◁ synthesize from subprocess
5: finalNodesSAN ⇐ sourceNode.nodes→collect{FinalNode}
6: sourceReachable ⇐ finalNodesSAN[isReachable ]→contains{true}
7: else
8: sourceReachable ⇐ sourceNode[isReachable ] ◁ query source node

9: if (sourceReachable) then
10: return true ◁ true if at least one source is reachable
11: return false ◁ false otherwise

The attribution cfg_reachability5, which implements this functionality, is shown in
Algorithm 26. As mentioned, the isReachable attribute at InitialNodes inherits from
its parent if it is part of a SAN while returning true for top-level processes6. Conse-
quently results flow from a parent to the respective subprocesses in the process tree,
mimicking the behavior of inh-type attributes in an attribute grammar. For Activ-

5cfg_liveness is structured similarly with the roles of InitialNode and FinalNode being reversed,
i.e. information is requested from successors as opposed to predecessors.

6Note that this implementation does not require to explicitly initialize the root Scope’s InitialNode
with true.
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ityNodes, all predecessors are considered. If the source node is a SAN, the function
accesses the reachability property at the embedded FinalNodes, otherwise the value
at the source node itself is used. In accordance with attribute grammar nomencla-
ture, we refer to this principle as synthesis. As soon as at least one predecessor is
identified as being reachable, true is returned for the current context.

(a) Reachability analysis (b) Liveness analysis

Figure 10.3.: Reachability/liveness analysis implemented for JWT.

The result of the implemented analysis is shown in Figure 10.3, demonstrating
the validation of the reachability and liveness property for a JWT process.

Flow Sets

It can be assumed that, in addition to reachability and liveness, other control-flow
properties such as predecessor/successor relationships and information about SCCs
are also of interest to the user and may represent relevant inputs for subsequent
analyses (cf. Section 9.2.2). For example, the approximation of an Action’s potential
predecessors indicates which steps may have taken place before the workflow reaches
this point. Correspondingly, the set of guaranteed predecessors determines which
Actions are guaranteed to have been executed at a specific point. This analysis
is therefore able to assess whether certain preconditions are met on all possible
execution paths.
This time - in contrast to the evaluation of the reachability/liveness properties - it is

important to factor in the execution semantics of different path types. DecisionNodes
impose an exclusive-or (xor) behavior on their outgoing edges as, each time the
execution of a process reaches a split node, the execution will continue along exactly
one of the available paths. At runtime, this decision is usually made based on the
Guards annotated at the respective ActivityEdges. The evaluation of these statements
is often context-sensitive as it may depend on the process’ overall state (e.g. by
accessing values of global variables). Parallel paths, which start with ForkNodes and
are merged at JoinNodes, possess semantics somewhat similar to petrinets which use
tokens to synchronize parallel executions [Aal98]. For JWT, this means that parallel
paths have to be nested (overlapping paths are not allowed) and they must merge
in a way that synchronization is always ensured. Otherwise, the process definition
is invalid, potentially resulting in a lack of synchronization error7.
For StructuredActivityNodes, the requirements are the same as in the previous use

case: Nodes in embedded processes depend on the result which has been computed
for their parent process and in turn propagate their results to the successors (or
predecessors) of the SAN.

7This is further explored in Section 10.1.4.
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The initialization value is set to INIT (representing ⊤) for both the minimal
and maximal approximations instead of ∅ and the value domain respectively. This
allows for a more compact definition of the data-flow rules as no initialization set
must be computed. Additionally, this approach facilitates the integration of multiple
analyses in a single attribution specification.

Algorithm 27 Data-flow rules of the attribution cfg_flowset

1: Rule activitynode_flow(attrDef, context, SAN_IN, SAN_OUT, FLOW_EDGE,
FLOW_NODE, MAX)

2: if (context is SAN_IN) and (context.container is SAN) then
3: flowObjects ⇐ {context.container} ◁ use SAN container

4: else
5: flowObjects ⇐ context.FLOW_EDGE.FLOW_NODE ◁ use direct neighbors

6: for all (flowNode : flowObjects) do
7: if (flowNode is SAN) then ◁ synthesize from subprocess
8: flowSet ⇐ flowNode→collect{SAN_OUT}[attrDef.name ]
9: else ◁ query direct neighbor
10: flowSet ⇐ flowNode[attrDef.name ]
11: if (flowSet == INIT) then ◁ preserve DFA initialization constant
12: flowSets ⇐ flowSets + INIT
13: else ◁ add neighbor and queried results to overall result
14: flowSets ⇐ flowSets + (flowSet ∪ flowNode)
15: if (flowSets→size == 1) and (flowSets[0] == INIT) then
16: return INIT ◁ preserve DFA initialization constant

17: if (MAX) or (context is JoinNode/ForkNode) then
18: return

⋃︀
(flowSets − INIT) ◁ maximal approximation

19: return
⋂︀

(flowSets − INIT)) ◁ minimal approximation

1: Rule activity_flow(attrDef, context, ACTIVITY_OUT, MAX)
2: childFlowSets ⇐ context.nodes.ACTIVITY_OUT[attrDef.name ]
3: if (MAX) then
4: return

⋃︀
(childFlowSets)

5: return
⋂︀

(childFlowSets)

The data-flow rules in Algorithm 27 compute four result values for each Activi-
tyNode and each Activity: allPredecessorsMax and allPredecessorsMin8 represent the
potential (maximal) and guaranteed (minimal) predecessors while allSuccessorsMax
and allSuccessorsMin likewise define these sets for the successor analysis. It is obvi-
ous that the computation of each of these four results follows a very similar pattern.
Therefore, instead of implementing four variants of the same rule, we employ a single
method which can be parameterized.
The parameterization is shown in Table 10.1. The first two parameters for the

generalized function activitynode_flow are required for the handling of SAN sub-

8allPredecessorsMin corresponds to the set of dominating nodes.
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Target class Data-flow rule Parameterization

allPredecessorsMin : Set(ActivityNode)

ActivityNode activitynode_flow InitialNode, FinalNode, in, source, false

Activity activity_flow InitialNode, false

allPredecessorsMax : Set(ActivityNode)

ActivityNode activitynode_flow InitialNode, FinalNode, in, source, true

Activity activity_flow InitialNode, true

allSuccessorsMin : Set(ActivityNode)

ActivityNode activitynode_flow FinalNode, InitialNode, out, target, false

Activity activity_flow FinalNode, false

allSuccessorsMax : Set(ActivityNode)

ActivityNode activitynode_flow FinalNode, InitialNode, out, target, true

Activity activity_flow FinalNode, true

Table 10.1.: Parameterization for the flowset analysis.

structures. SAN_IN denotes the node type through which the data-flow enters the
embedded process. For predecessor computations, this is the InitialNode and for
successors the FinalNode type. Correspondingly, SAN_OUT denotes the class where
results computed for the nested elements flow back to the parent process. The
same principle applies to ACTIVITY_OUT in the signature of the activity_flow rule.
FLOW_EDGE and FLOW_NODE are used to navigate to direct predecessors/succes-
sors using the references between ActivityNodes and ActivityEdges. If set to true, the
boolean value MAX indicates that the maximal approximation shall be computed.
In order to calculate the result sets, the rule activitynode_flow first identifies the

predecessors of of the context object. If the context is of the SAN_IN type (i.e. it
receives results from its parent SAN), the container element is stored in flowObjects9

[2 − 3]. Otherwise, line [5] stores the context’s direct predecessors or successors.
Subsequently, lines [6 − 14] request and process attribute values for the identified
flowObjects. For SANs, the result is acquired from the respective SAN_OUT node
[7− 8]. By contrast, direct predecessor or successor nodes are queried directly [10].
If INIT is present in the requested results, the initialization constant is added to
the overall result collection flowSets [12]. If this is not the case, line [14] adds the
context node as well as the received results.
Computing the final value now only requires to unify (or intersect) the flowSets

according to the parameterization. If all inputs of the context yield the INIT value,
then it is also returned as result [15−16]. Otherwise, the rule distinguishes between
potential and guaranteed results based on the value of the MAX variable [17− 19].
One exception has to be made when computing min sets for parallel paths: Since all
parallel paths must be traversed during the process’ execution, line [17] applies the
unification operator even if minimal sets are computed.
The rule activity_flow (which is optional) computes aggregated results for com-

plete (sub)processes. For this purpose, it request the computation of ACTIVITY_OUT
which corresponds to either the first or the last node of the respective Activity. This

9See rule initialnode_isReachable in Algorithm 26.
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step will recursively trigger the evaluation of all depending nodes10.

(a) allPredecessorsMin

(b) allPredecessorsMax

Figure 10.4.: Minimal and maximal predecessor sets for a8.

An example for the application of this analysis is shown in Figure 10.4. The
two depictions of the process highlight the findings for the Action a8: Based on
the results of the analysis, it can be guaranteed that - for any possible execution
of this process - nodes { a4, a5 , a6 } will have been visited before a8 is reached.
Furthermore, taking into account all possible execution traces, { a1, a2 , a3 } may
additionally have been triggered beforehand11. By combining this information with
the SCC detection, it can be determined whether the preceding Actions will have
been executed exactly once, at least once or an arbitrary number of times.

Strongly Connected Components

In this use case, we will apply the SCC detection described in Section 9.2.3 to JWT
models. In addition to indicating the presence of cyclic structures to the process
designer, the computed results will also serve as input for subsequent analyses.
Just like in the flowset analysis, results are computed for both ActivityNodes and

Activities. While not strictly necessary for the execution of the analysis, the aggre-
gation of SCC results at Activities provides a quick overview of all nodes which are
part of a cycle. However, results do not flow in or out of the child process (as is
the case in the flowset analysis) since determining the global status of an Action
is a trivial task: If a SAN is part of a cycle, all of the therein contained Actions
automatically belong to the same (global) cycle. This information can therefore
be retrieved by a simple traversal of the process tree. Computing the SCC status
for each Activity’s contents independently of its location with respect to parent pro-
cesses therefore yields more fine-grained information. As the presence of SCCs is a
property that depends only on the structural composition of a control-flow graph,
it is not necessary to differentiate between alternative and parallel paths.

10This requires that all nodes are connected.
11In this case, either a1 and a2 or only a3 will be executed before a8.
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Algorithm 28 The attribution cfg_scc

1: Attribution cfg_scc

2: attribute assignment sccID : Integer initWith 0
3: attribute assignment sccObjects : Set(ActivityNode) initWith ∅
4: extend ActivityNode with
5: occurrenceOf sccID calculateWith activitynode_sccID
6: occurrenceOf sccObject calculateWith activitynode_sccObjects
7: extend Activity with
8: occurrenceOf sccID calculateWith activity_sccID
9: occurrenceOf sccObject calculateWith activity_sccObjects

1: Rule activitynode_sccID(attrDef, context)
2: if (context is SAN) then
3: activity_sccID(attrDec, context) ◁ trigger subprocess evaluation

4: if (context[allPredecessorsMax ]→contains{context}) then
5: return contextAllPredecessors→hashValue ◁ generate SCC hash

6: return 0 ◁ node not in SCC

1: Rule activity_sccID(attrDef, context)
2: return

⋃︀
(context.nodes[sccID ]) ◁ trigger evaluation for nodes

1: Rule activitynode_sccObjects(attrDef, context)
2: if (context is SAN) then
3: activity_sccObjects(attrDec, context) ◁ trigger evaluation for nodes

4: if (context[sccID ] != 0) then ◁ only if node belongs to SCC
5: for all predNode : context.in.source) do ◁ process predecessors
6: if (predNode[sccID ] == context[sccID ]) then ◁ same SCC hash
7: sccObjects ⇐ sccObjects ∪ predNode[sccObjects ] ∪ context
8: return sccObjects

1: Rule activity_sccObjects(attrDef, context)
2: return

⋃︀
(context.nodes[sccObjects ])

The attribution which implements the SCC detection is listed in Algorithm 28. It
defines the two attributes sccID and sccObjects which are responsible for computing
the SCC state at the classes Activity and ActivityNode.
To calculate the cycle identifier, the rule activitynode_sccID requests the set of po-

tential predecessors allPredecessorsMax of the context node and checks if the context
is part of that set [4−5]. If a node is found to be its own predecessor, it is contained
in a cycle and the hash value of the set of all predecessors (which is the same for
every node of the respective SCC) is used as an identifier12. Lines [2− 3] of the rule
trigger the evaluation of embedded subprocesses at SANs. This functionality has

12Alternatively, the local allPredecessorsMax value could be compared against the unification of
allPredecessorsMax at the preceding nodes in the control-flow as both sets have to contain the
same elements for nodes which are part of the same SCC.
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been added for convenience reasons to automatically evaluate the process subtree of
any given Activity. For each Activity13, the rule activity_sccID creates the union of
all SCC identifiers14, thereby triggering the evaluation of the contained elements.
To compute sccObjects, the rule activitynode_sccObjects iterates over all direct

predecessor nodes of the context object (lines [5 − 7]) if the local node is part of a
cycle [4]. If the preceding ActivityNode is part of the same SCC [6], its sccObjects
result is requested and extended by the current context [7]. This process iteratively
builds a set of all SCC objects over the course of the fixed-point evaluation of the
attribute. Due to the conceptual similarities, activity_sccObjects is structured in the
same way as activity_sccID.

(a) sccID (b) sccObjects

Figure 10.5.: Identified SCC in a JWT process.

The application of this analysis is demonstrated in Figure 10.5. The identified
SCC elements have been highlighted in green in the depiction of the process in
Figure 10.5(a). The screenshot in Figure 10.5(b) shows the two unique sccObject sets
which have been extracted from the analysis results. The empty set ∅ is available at
each node which does not belong to a cycle while the set containing the ActivityNodes
2 to 8 is returned for all nodes of the identified SCC.

SCC Ports

The following analysis computes another set of relevant SCCs properties: Ports are
nodes which connect a cyclic structure to the surrounding environment.
If a cycle is part of a process graph in which every element is reachable and live

and the overall number of process nodes is larger than the amount of nodes that are
part of the SCC, then the cycle contains nodes that are connected through edges
with nodes outside the SCC. Following the naming conventions of [Got+09], these
are termed ports as they provide a “bridge” between the SCC and the remainder of
the process. We will refer to the incoming and outgoing edges of these ports as in

13An attribution of Scope (which is a superclass of Activity and SAN) would not be possible in
this case as this would lead to an incoherent attribute inheritance structure: Due to multiple
inheritance, SAN objects would be associated with two occurrences of the same attribute.

14Since the computation relies solely on the precomputed predecessors, there would be no benefit
in adhering to a specific order, e.g. starting at InitialNodes.
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edges and out edges of the SCC respectively. Nodes and edges that belong to a cycle
but do not fulfill these properties are named inner edges and inner nodes.

The JWT modeling language requires the presence of dedicated InitialNodes and
FinalNodes. Additionally, multiple incoming and outgoing connections are only al-
lowed for gateways. It is also not possible to enter or leave a cycle at parallel
paths. As a consequence, the well-formedness rules only allow for DecisionNodes
and MergeNodes to be connection points of cycles. For this reason, any SCC in a
JWT model possesses at least one input and one output port of these types. For
each port one or more in and out edges may exist.

As ports are properties of a SCC and the following analysis is based on the cfg_scc
attribution, results are again computed on a Scope/Activity level rather than inher-
iting the SCC status to embedded processes in order to achieve more significant
results. The evaluation starts out with empty sets for the attribute values. The
attribution that identifies the in/out edges is shown in Algorithm 29 while the ports
are computed by Algorithm 30. As with cfg_flowset, parameterized rules are used -
in this case to combine the calculation for the in and out cases. The parameterization
is listed in Table 10.2.

Target class Data-flow rule Parameterization

sccInEdges : Set(ActivityEdge)

ActivityEdge activityedge_sccEdges in, source, target

ActivityNode activitynode_sccEdges in

Activity activity_sccEdges

sccOutEdges : Set(ActivityEdge)

ActivityEdge activityedge_sccEdges out, target, source

ActivityNode activitynode_sccEdges out

Activity activity_sccEdges

sccInPorts : Set(ActivityNode)

ActivityEdge activityedge_sccPorts source, target

ActivityNode activitynode_sccPorts in, sccInEdges

Activity activity_sccPorts

sccOutPorts : Set(ActivityNode)

ActivityEdge activityedge_sccPorts target, source

ActivityNode activitynode_sccPorts out, sccOutEdges

Activity activity_sccPorts

Table 10.2.: Parameterization for the port analysis.

The reference types FLOW_SOURCE and FLOW_TARGET are used to navigate
to the source and the target node of an edge depending on the intended flow di-
rection. To compute edges and ports through which a cycle can be entered, these
parameters must be set to source and target respectively and vice versa for outgoing
elements. The parameter FLOW correspondingly denotes the in or out reference of
ActivityNodes.
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Algorithm 29 Data-flow rules of the attribution cfg_ports

1: Rule activityedge_sccEdges(attrDef, context, FLOW, FLOW_SOURCE,
FLOW_TARGET)

2: sourceSCCID ⇐ context.FLOW_SOURCE[sccID ] ◁ SCC hash from (flow) source

3: targetSCCID ⇐ context.FLOW_TARGET[sccID ] ◁ SCC hash from (flow) target

4: if (sourceSCCID == 0) or (sourceSCCID != targetSCCID) then
5: return ∅ ◁ edge not in SCC or source/target belong to different SCCs

6: for all (flowEdge : context.FLOW_SOURCE.FLOW) do
7: if (flowEdge[sccID ] == sourceSCCID) then ◁ source edge in same SCC
8: sccEdges ⇐ sccEdges ∪ flowEdge[attrDef.name ] ◁ forward results

9: else
10: sccEdges ⇐ sccEdges ∪ flowEdge ◁ add in/out edge to result

11: return sccEdges

1: Rule activitynode_sccEdges(attrDef, context, FLOW)
2: if (context is SAN) then ◁ trigger subprocess evaluation
3: activity_sccEdges(attrDef, context)
4: return

⋃︀
(context.FLOW[attrDef.name ] ◁ combine results in flow direction

1: Rule activity_sccEdges(attrDef, context)
2: return

⋃︀
(context.nodes[attrDef.name ])

The rule activityedge_sccEdges first acquires the sccID of the source and target
node of the current edge [2−3]. Lines [4−5] ensure that the empty set is returned if
the edge is not part of a SCC or the connected nodes belong to two different cycles.
As a consequence, the following computation is only carried out for inner edges.
The loop in lines [6 − 10] then iterates over all incoming edges at the source node
(alternatively all outgoing edges at the target node) to determine which edges enter
(or leave) the cycle. For inner edges, lines [7−8] unify the already computed results,
thereby propagating them throughout the SCC structure. Entering and leaving
edges are added to the result set [10]. The rule activitynode_sccEdges triggers the
computation of SAN subprocesses in lines [2 − 3] and returns the union of the sets
computed for its incoming (or outgoing) edges.
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Algorithm 30 Data-flow rules of the attribution cfg_ports (continued)

1: Rule activityedge_sccPorts(attrDef, context, FLOW_SOURCE,
FLOW_TARGET)

2: sourceSCCID ⇐ context.FLOW_SOURCE[sccID ] ◁ SCC hash from (flow) source

3: targetSCCID ⇐ context.FLOW_TARGET[sccID ] ◁ SCC hash from (flow) target

4: if (sourceSCCID == 0) or (sourceSCCID != targetSCCID) then
5: return ∅ ◁ edge not in SCC or source/target belong to different SCCs

6: return context.FLOW_SOURCE[attrDef.name ] ◁ inside SCC: forward results

1: Rule activitynode_sccPorts(attrDef, context, FLOW_SOURCE, EDGES)
2: if (context is SAN) then ◁ trigger subprocess evaluation
3: activity_sccPorts(attrDef, context)
4: return

⋃︀
(context[EDGES ]).FLOW_SOURCE ◁ compute result from in/out edges

1: Rule activity_sccPorts(attrDef, context)
2: return

⋃︀
(context.nodes[attrDef.name ])

The ports can now be derived from the edge results. The rule activitynode_sccPorts
requests the edge results for the current context, flattens them into a single set and
returns their respective source or target nodes. activityedge_sccPorts now only has
to relay the result computed at its source or target if the context is an inner edge
of a SCC.
Obviously, this approach could also be implemented the other way around with

the in/out edge rules deriving their results from the previously computed ports.
Additionally, it would also be possible to extend this attribution to compute the
inner edges of SCCs and make them available at every node.
One important aspect to consider in this use case is that the computation of

cfg_ports requires that cfg_scc has already been executed. Otherwise, a preliminary
result for sccID might lead to an edge being falsely identified as an in/out edge and
included in the results that are then distributed amongst the SCC nodes. In this
case, the wrongly identified edge will stay in the result set even after the final value
for sccID becomes available.

(a) sccInPorts (b) sccInEdges

Figure 10.6.: Identified input ports and in edges of a SCC in a JWT process.

An example of this use case is depicted in Figure 10.6. The SCC in this process
has two input ports, one of which has two and the other a single incoming edge,
resulting in three in edges overall. By forwarding these attribute values, the results
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are available at each node and each edge belonging to the respective SCC and can
be easily accessed if required for subsequent analyses.

10.1.3. Use Case: Definition/Usage of Data Objects

A major advantage of business process models is their executability by means of
a workflow engine. Objects assigned to JWT’s business actions can trigger the
execution of associated applications, supply them with required input data and
manage the generated output which can then again be passed on as parameters to
other programs. For this analysis, we will focus on latter type of objects, the Data
elements, which are interpreted as parameters by the workflow engine.

From the viewpoint of static analysis, parameters assigned to different nodes in
the control-flow form input/output relationships that can be subjected to an ap-
proximation concerning their availability at subsequent steps. The basic premise of
this concept is that once a specific data object has been generated, it will be avail-
able at other actions (being stored in memory or a database) until it is consumed.
This otherwise straightforward transfer of information is complicated by the use of
gateways which add alternative paths and cycles to the control-flow in which case
the availability of data elements during runtime must be approximated.

These properties make this analysis an exemplary use case for DFA. In fact, it
bears strong similarities to the reaching definitions [AC76] analysis which is one of
the oldest and most commonly cited applications of data-flow analysis. However,
unlike reaching definitions, we will not analyze which exact definition of a data object
reaches subsequent process steps as this information would not be very valuable in
this context15. Instead, we will focus on the general availability status which is
characterized by the two states of data guaranteed to be available on any execution
path and data that might be available on a subset of paths. The goal here is to
support process designers by identifying missing inputs and to draw attention to
information that might be generated but will not be used subsequently.

15In contrast to program code, the semantics of external applications is not encoded in the process
itself. Because, in this case, the analysis aims to validate rather than optimize, little is to be
gained by determining the availability of results based on their specific point of origin.
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Algorithm 31 Data-flow rules for the attributions availableData and unusedData

1: Rule activitynode_availableUnusedData(attrDef, context, MAX)
2: if (context is InitialNode) and (context.container is SAN) then
3: relevantNodes ⇐ context.container.in.source ◁ inherit from container
4: else if (context is SAN) then
5: relevantNodes ⇐ context.nodes→collect{FinalNode} ◁ synthesize

6: else
7: relevantNodes ⇐ context.in.source ◁ query predecessor nodes

8: inDataSets ⇐ relevantNodes[attrDef.name ]
9: if (inDataSets→size == 1) and (inDataSets[0] == INIT) then
10: return INIT ◁ preserve initialization value

11: if (MAX) or (context is JoinNode) then
12: result ⇐

⋃︀
(inDataSets) ◁ union for max/parallel paths

13: else
14: result ⇐

⋂︀
(inDataSets) ◁ intersection for everything else

15: return result − INIT

1: Rule action_availableUnusedData(attrDef, context, UNUSED, MAX)
2: result ⇐ activitynode_availableUnusedData(attrDef, context, MAX)
3: result ⇐ result ∪ context.outputs ◁ add produced outputs

4: if (UNUSED) then
5: result ⇐ result − context.inputs ◁ remove consumed outputs

6: return result

The specifications for the computation of the attributes availableData and un-
usedData for both the minimal and maximal approximations are very similar: The
result type is a set of Data objects and occurrences of the respective attribute are
calculated at elements of the types Activity, ActivityEdge and ActivityNode (which is
overwritten at instances of Action). The initialization marker INIT and the empty
set are used as initial values for the computation of guaranteed/potential avail-
ability information respectively. The respective attribute type (available/unused,
min/max) is configured through a parameterization (cf. Table 10.3) of the rules ac-
tivitynode_availableUnusedData and action_availableUnusedData (cf. Algorithm 31).
As with other use cases in this chapter, activitynode_availableUnusedData takes

its inputs from the direct neighbors of the context object (in this case the incoming
edges), passes results on to subprocesses and propagates them back to the parent
process [2 − 8]. In lines [9 − 10], the INIT marker (representing the ⊤ value) is
preserved if it is received on all paths. Since the semantics of parallel paths require
that all incoming paths arrive at the synchronization point before continuing, the
sets containing the available data are merged at JoinNodes. The same is true if
the desired output should yield the maximal availability [11 − 12]. Otherwise, [14]
intersects the sets to eliminate information which is not received on all incoming
paths. Finally, it is ensured that the INIT marker is removed from the result.
The computation logic for Action elements extends the behavior employed for the
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Target class Data-flow rule Parameterization

availableDataMin : Set(Data)

ActivityNode activitynode_availableUnusedData false

Action action_availableUnusedData false, false

availableDataMax : Set(Data)

ActivityNode activitynode_availableUnusedData true

Action action_availableUnusedData false, true

unusedDataMin : Set(Data)

ActivityNode activitynode_availableUnusedData false

Action action_availableUnusedData true, false

unusedDataMax : Set(Data)

ActivityNode activitynode_availableUnusedData true

Action action_availableUnusedData true, true

Table 10.3.: Parameterization for the available and unused data analysis.

evaluation of ActivityNodes. Therefore, action_availableUnusedData first invokes the
former rule (line [1]) before adding the data objects which are generated by the
local Action to the result [2]. If the set of unused Data should be computed, the
elements which are consumed by the local Action must be subtracted from the result
set [4− 5].

Available Data

(a) Minimal approximation (availableDataMin) (b) Maximal approximation (availableDataMax)

Figure 10.7.: Approximation of the propagation of Data d3.

The application of the availability analysis is demonstrated in Figure 10.7: The
displayed process model defines a set of data elements {d1, . . . d8} which are pro-
duced and consumed by the business actions. In this example, the color denotes the
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availability status of the Data object d3 which is produced by the Action 2 and in-
side the subprocesses of the StructuredActivityNodes link_subact1a and link_subact1b
and is read at 4 , 8 and 13.
The result for the minimal availability of d3 is visualized in Figure 10.7(a). Conse-

quently, the highlighted parts denote elements at which this object will be available
in any execution of the process (guaranteed availability). This concept can be ex-
plained using the example of theMergeNode which is the direct predecessor of Action
2 : While d3 is available at all successors after having been generated at 2 , it is
not propagated to the cycle’s entry point since there exists an execution path (the
first time the execution arrives at this node) where it is not (yet) available. If the
Data element is produced inside cycles or alternative paths, it does not leave these
regions as can be seen at link_subact1a.
In most cases, the minimal approximation represents a suitable, conservative solu-

tion as the computed availability status of data objects is guaranteed to hold for all
possible executions of the process. However, it is also conceivable that one might be
interested in the maximal availability, especially when combined with the analysis
of unused data (see below). Figure 10.7(b) illustrates the results if the maximal
approximation is used, thus yielding the points where d3 might be available consid-
ering all possible executions of the process (potential availability). In other words,
for each element at which d3 is determined to be available, there exists at least one
execution path where this is actually the case.

Unused Data

(a) Minimal approximation (unusedDataMin) (b) Maximal approximation (unusedDataMax)

Figure 10.8.: Approximation of the unused paths of Data object d3.

The results for the unusedData attributes - again with the visualization focusing
on d3 - can be seen in Figure 10.8. Because the rule action_availableUnusedData
removes data as soon as it is read by an Action, the highlighted nodes represent the
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paths alongside which the data objects are transported before being accessed for the
first time.
Again, the analysis may either yield the minimal results that are guaranteed to

hold for any execution of the process (cf. Figure 10.8(a)) or compute an approxi-
mation for all possible execution paths (cf. Figure 10.8(b)). This choice affects the
propagation of information about unused objects on alternative or optional paths.
In the example, we can see how this principle applies to the nodes inside the em-
bedded process str_activity : For unusedDataMax, d3 is reported as unused for all
subsequent nodes until it is read by 13. One could argue that for use cases such as
determining how many resources must be allocated to buffer data until it is read,
the maximal approximation represents the conservative approximation.

Missing Data

For a process designer, it is useful to know whether a data object will be available
at business actions where it is required as input. Because of alternative and cyclic
paths, this information must be approximated, since the analysis has to consider all
execution paths while a human expert might be able to assert that certain prob-
lematic paths will never be reached in practice due to detailed knowledge about the
modeled business domain.

Algorithm 32 Data-flow rules for the attribution missingData

1: Rule action_missingData(attrDef, context, MINMAX)
2: if (context[MINMAX ] != INIT) then
3: return context.inputs − context[MINMAX ]
4: return INIT

1: Rule scope_missingData(attrDef, context)
2: actionsAndSANs ⇐ context.nodes→collect{Action,SAN}
3: return

⋃︀
(actionsAndSANs[attrDef.name ])

Target class Data-flow rule Parameterization

missingDataMin : Set(Data)

Action action_missingData availableDataMin

Scope scope_missingData

missingDataMax : Set(Data)

Action action_missingData availableDataMax

Scope scope_missingData

Table 10.4.: Parameterization for the missing data analysis.

The data-flow rules in Algorithm 32 compute the set of missing data elements
based on the results of the availability analysis. The parameterization is listed in
Table 10.4. The computation is carried out locally at Actions by requesting the
values of availableDataMin or availableDataMax at the local object and subtracting
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the available data from the inputs. Any input data not in the set of available-
DataMin/availableDataMax is thereby marked as missing. Scopes simply collect all
computation results for easy access in post-analysis processing.

Figure 10.9.: Missing Data d4 based on the minimal approximation.

Figure 10.9 shows the results of missingDataMin for the example process. In this
case, a (potentially) erroneous access to d4 is reported for the Action 8 . Since
the results are based on the minimal approximation, this does not imply that the
error occurs on every process execution. Instead, the result indicates that there
exists at least one erroneous path. In the example process, no problem occurs if
the cycle { 2 , 3 , 4 } is traversed at least once before reaching node 8 . As has
been mentioned, based on the knowledge about the modeled business process, a
process designer might either decide that this is in fact a problem within the process
definition or that an assumption can be made that the cycle will always be executed
at least once and therefore dismiss the problem report.
The application of missingDataMax to this process does not yield any errors. Be-

cause this attribute computes the maximal approximation, all possible propagation
paths are considered in the computation of the missing data. Any reported problem
would therefore occur on every possible execution of the process. As a consequence,
we can conclude that the example process has at least one execution path which will
not result in errors due to missing input data.

Conclusions and Outlook

There are many conceivable improvements that can be implemented to the extend
the capabilities of the presented analyses and thereby the value of the generated
information:

∙ As with the use cases described in the previous sections, it would be possible
to reverse the direction of the data flow, turning the forward into a backward
analysis. Currently, the result indicates definition/usage relationships between
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the occurrences of data objects at business actions. A backward analysis would
yield information about usage/definition relations between data objects. This
would improve the detection of unused data by factoring in the last (instead
of the first) location where a parameter is accessed.

∙ Further improvements can be made by including guards at transitions: For
example, if a data object is of the type integer and a guard restricts the execu-
tion of a specific path to cases where the value is constrained to a predefined
range, then we can deduce that all data generated on this path will only be
available if this condition is met, thereby producing a more detailed report.

∙ The analysis can also be extended to record which Roles perform the read/write
operations to track which person was the last to access or modify a specific
data object for each step of the process.

∙ Some resources might not support parallel write access or must be protected
as long as one of multiple concurrent paths might alter their values. In this
case, different instances of the same object could be tracked inside parallel
regions to determine potential conflicts.

∙ The unused analysis removes data from the result set on its first access. This
behavior can be altered to implement different read/consume semantics for
data accesses to reflect the execution semantics of the respective workflow
engine or the backend storage facilities.

10.1.4. Use Case: Decomposition, Validation and
Transformation

A common requirement when dealing with control-flow graphs is the decomposition
of a graph into smaller fragments or components. The act of breaking down a
control-flow into its constituents is motivated by the fact that smaller subgraphs
are often easier to process. Structural decomposition may also be necessary for
the application of certain algorithms. An example for this can be found in [Lau10]
where structural information is used to improve the performance of an automated
process planning algorithm: If the underlying model changes, the process is first
decomposed to identify the smallest component encompassing all modified elements
for which the planning process can then be repeated.
The Single Entry Single Exit (SESE) mechanism provides a convenient way for

dividing a control-flow into (sub)components: SESE components (also called re-
gions or fragments) represent a subdivision of a control-flow graph into hierarchi-
cally structured, non-overlapping subgraphs with exactly one entry and one exit
node. An example of a SESE decomposition and the resulting structure (called a
process structure tree in the domain of business process modelling) can be seen in
Figure 10.10. In this use case, we will develop a unified approach for the structural
processing of control-flow graphs based on data-flow analysis. This encompasses
the hierarchical decomposition of business processes resulting in a tree of SESE
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(a) SESE regions (b) Program structure tree

Figure 10.10.: Single Entry Single Exit decomposition of a business process [Gar08].

components, the structural validation of processes and their transformation into a
block-oriented representation.

Token Analysis

To perform the decomposition, the authors of [Got+09] propose an algorithm which
assigns labels - named tokens - to the transitions of a flow graph. The tokens
are created at split nodes (alternatively called gateways), i.e. nodes with multiple
outgoing edges, and are propagated in the direction of the control-flow. Matching
sets of tokens are subsequently merged if they fulfill certain conditions.
In detail, the algorithm works as follows: First, tokens are created and propagated.

The group of tokens (hereafter referred to as tokenset) created at a split node 𝑛𝑠𝑝𝑙𝑖𝑡

contains a token 𝑡(𝑛𝑠𝑝𝑙𝑖𝑡,𝑖𝑛𝑑𝑒𝑥) for each outgoing edge where 𝑖𝑛𝑑𝑒𝑥 is a unique identifier
in the context of this tokenset. Each token therefore carries with it information about
the node at which it has been created. At nodes with exactly one predecessor, the
incoming tokenset is simply forwarded while nodes that merge multiple paths also
lead to the unification of the respective sets. In the second step of the algorithm,
tokens are removed from an edge’s tokenset if all tokens created at a split node
are available at this edge. This process (referred to as converging tokens) results in
tokens canceling each other out if all tokens originating from a specific split node are
contained in the same tokenset. This way, once all paths originating from a gateway
converge, the token labeling reverts to the state is has been before the split. This
principle also holds true for nested control structures.
A special handling must be implemented for cyclic paths: Because of the forward-

ing of tokensets, cycles as a whole act as if they were nodes. Depending on the
amount of edges leaving a cycle, they behave as either sequential nodes or gateways.
The structure inside a cycle thus cannot be analyzed as tokens created at cyclic gate-
way nodes would propagate throughout the whole cycle, converging at each node.
Instead, the analysis has to be executed recursively: While the remainder of the
graph still contains a SCC, its ports have to be removed and the analysis must be
repeated for the inner nodes and edges.
When the final token labelings have been established, the SESE components can

be detected by identifying their entry and exit points. These are marked by edges
which carry the same token labelings. The exception are sequences of nodes which
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are characterized by multiple nodes with one incoming and one outgoing edge car-
rying identical tokensets. This algorithm ensures that the SESE components are
always fully contained inside each other. Consequently, this analysis results in a
structure tree with SESE components as nodes and the control-flow elements as its
leaves.

Figure 10.11.: SESE decomposition of control-flow graphs using token-flow analysis
(initial tokensets and token convergence) [Got+09].

The application of this algorithm is demonstrated in the example shown in Fig-
ure 10.11. Tokens 𝑡(1,0) and 𝑡(1,1) are generated at the outgoing edges of split node
1 and propagated along the flow edges. The same principle applies at node 2 re-
sulting in the tokens 𝑡(2,0) and 𝑡(2,1). In the second step, the tokensets {(1, 0), (1, 1)}
and {(2, 0), (2, 1)} converge (indicated by curly brackets), resulting in the final token
labeling.

Figure 10.12.: The metamodel used by the tokenflow attributions.

The authors of [Got+09] have provided an imperative implementation of the algo-
rithm which uses timestamps to manage the visitation order and contracts identified
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SCCs into single nodes. Since the calculation of the tokens relies heavily on informa-
tion propagation, this algorithm can be easily realized as a declarative specification
based on the data-flow analysis approach.

Because tokens and the subsequently derived components represent complex data-
types, they can be described by a dedicated metamodel which is shown in Fig-
ure 10.12. In addition to defining Token and Component classes, this metamodel also
implements additional features which are required by other analyses. For example,
Components possess fields for storing their respective structural type (componentType)
and validation results (validationResult, validationClassification) alongside the token
labeling which identifies the component and its children. TokenStack and TokenInfo
can be used to perform a DFA-based component detection while ConvergenceStack
and ConvergenceInfo are used to implement the partial convergence feature of the
tokenflow approach. By extending the generated model code, these datatypes can
implement custom semantics for specific operations such as hash code generation or
instance equality checks.

The attribution tf_token, listed in Algorithm 33, provides a DFA-based imple-
mentation of the token analysis16. It declares two attributes, tokensInitial and to-
kensFinal, which are responsible for token propagation and convergence respectively.
Both attributes are bound to the class ActivityEdge. Furthermore, the attribution
relies on sccID from cfg_scc (and by extension allPredecessorsMax from cfg_flowset)
and sccOutEdges from cfg_ports.

The data-flow rule activityedge_tokensInitial computes the set of initial tokens for
each element of the type ActivityEdge. First, in lines [5−6], it is determined whether
the current edge is located inside a cycle. This is the case if sccID at the source and
the target node of the edge have the same value and if this value is not zero. Line
[7] then combines all tokensets which reach the source node on its incoming edges
into a single tokenset. If the source node is not a split node, this value represents
the result. Otherwise, a new token is created for the source gateway and the current
edge. Depending on whether the source node of the edge is part of a cycle, this
happens in lines [11− 12] or [14− 18]. Finally, line [19] creates the token object as
an instance of the Token class from the metamodel in Figure 10.12 and adds it to
the merged tokenset.

16Appendix C.1.1 contains an alternative implementation of the data-flow rules using imperative
OCL.
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Algorithm 33 The attribution tf_token

1: Attribution tf_token

2: attribute assignment tokensInitial : Set(Token)
3: initWith ∅
4: attribute assignment tokensFinal : Set(Token)
5: initWith ∅
6: extend ActivityEdge with
7: occurrenceOf tokensInitial
8: calculateWith activityedge_tokensInitial
9: occurrenceOf tokensFinal
10: calculateWith activityedge_tokensFinal

1: Rule activityedge_tokensInitial(attrDef, context)
2: sourceNode ⇐ context.source
3: targetNode ⇐ context.target
4: contextSCCID ⇐ 0 ◁ edge not inside SCC

5: if (sourceNode[sccID ] == targetNode[sccID ]) then
6: contextSCCID ⇐ sourceNode[sccID ] ◁ edge inside SCC

7: tokens ⇐
⋃︀

(sourceNode.in[tokensInitial ]) − INIT ◁ combine tokensets

8: if (contextSCCID == 0) and (sourceNode.out→size > 1) then
9: sourceNodeSCCID ⇐ sourceNode[sccID ]
10: if (sourceNodeSCCID == 0) then ◁ create split gateway token
11: splitNode ⇐ sourceNode
12: tokenCount ⇐ sourceNode.out→size
13: else ◁ create SCC token
14: sccOutEdges ⇐ sourceNode[sccOutEdges ]
15: if (sccOutEdges→size == 1) then ◁ SCC has only one out edge
16: return tokens
17: splitNode ⇐ sourceNodeSCCID
18: outgoingCount ⇐ sccOutEdges→size
19: tokens ⇐ tokens ∪ new Token(splitNode, targetNode, tokenCount)
20: return tokens

1: Rule activityedge_tokensFinal(attrDef, context)
2: contextTokens ⇐ context[tokensInitial ] ◁ query local tokenset

3: for all (token : contextTokens) do
4: tokensForSplitNode ⇐ tokenMap.get(token.splitNode) ∪ token
5: tokenMap.put(token.splitNode, tokensForSplitNode)
6: if (tokensForSplitNode→size == token.tokenCount) then
7: remainingTokens ⇐ remainingTokens − tokensForSplitNode
8: return remainingTokens

Three changes have been made compared to the way the original algorithm handles
token creation: Instead of an index, the target node is used as a unique identifier for
the token (line [11]) as this is a more powerful way of distinguishing between tokens
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originating from the same gateway. To simplify the converging process, all tokens
additionally store the total number of tokens created at the respective gateway [12].
The final change concerns the handling of cycles. Instead of contracting SCCs into
single nodes, we have implemented a dedicated handling for this case which makes
the token computation aware of cyclic structures: For this reason, token generation
is skipped for split gateways inside a SCC [8]. If the gateway is an out port and the
SCC has more than one outgoing edge, the sccID is used as split node identifier (line
[17]) while the amount of edges leaving the SCC is used to determine the amount
of tokens in the tokenset [18].
The rule activityedge_tokensFinal implements the convergence mechanism. The

set of available tokens is read from the local context’s tokensInitial attribute [2]. A
loop then iterates over each token (line [2]), building a map with the split nodes as
keys and all tokens generated at these gateways as their values [4 − 5]. If a value
entry reaches the size of the outgoing edge count of the split node, this means that
all members of the tokenset created at the respective split node have “arrived” at
the current edge. In this case, line [7] removes the tokens belonging to this set from
the edge’s tokenset.
According to the authors of [Got+09], the detection of SESE components inside

SCCs is possible if the analysis is repeated for the cycle’s inner elements. As prepa-
ration, the entering and leaving edges of the cycle must be removed along with the
input and output ports. The dangling inner edges formerly linked to the ports are
then connected to artificial Initial/FinalNodes. Consequently, an InitialNode is created
for each outgoing edge of in ports to act as the edge’s new source node. Similarly,
each edge formerly associated with an out port is assigned to a newly created FinalN-
ode. The analysis is then repeated for the modified SCC and the results replace the
originally computed values for these elements. If the modified cycle again contains
a SCC, this process is carried out recursively.
The DFA-based token analysis implements this task using a MAF evaluation

macro (cf. Section 8.1.5) which is scheduled for execution after the tokens have
been computed. The macro builds a new Activity which contains only the modified
SCCs and loads it into the analyzer framework. Finally, the current evaluation
strategy is extended with three new directives:

1. An evaluation target that triggers the analysis of the modified SCC.

2. An evaluation macro that transfers the newly computed values back to the
result set of the original analysis.

3. The macro recursively adds itself to the end of the list to repeat this process
for additional cycles.

To construct the SESE structure tree, components must be identified based on
the computed token labelings. The authors of the token analysis algorithm propose
a straightforward method for classifying components as cyclic, non-cyclic or sequen-
tial (componentType). If exactly two edges exist with the same token labels, they
represent the entry and exit of a SESE component. If the component contains a
SCC, it is cyclic, otherwise non-cyclic. If the same labeling is available at more than
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two edges, this denotes a sequence whose first edge (in control-flow direction) is the
entry while the last one represents the exit. The hierarchy can also be deduced from
the labels: A subcomponent’s token labelings fully include its parent’s tokens.
The process structure tree can be computed by employing the same method as

in the imperative token analysis algorithm. We additionally developed a flow-based
prototype as proof-of-concept to demonstrate the applicability of DFA for this pur-
pose. It follows the general premise of collecting tokens along the control-flow and
putting them on a stack. On this TokenStack, the components can then be identified
using the described properties. Detecting sequences requires additional handling, as
only the maximal sequences are of interest. Therefore once-identified sequences must
be expanded at successor nodes if it is discovered that more elements exist with the
same labeling.

Partial Convergence

[Got+09] describes another useful algorithm called partial token convergence which
uses the computed token labelings to improve component identification for quasi-
structured processes. These are characterized by the property that, by simply adding
split or merge nodes without changing the execution semantics, additional compo-
nents can be identified, thereby improving the level of detail of the output.

(a) Partial convergence at DecisionNode (b) Partial convergence at MergeNode

Figure 10.13.: Partial token convergence [Got+09].

To implement this functionality, the token analysis uses virtual tokensets consist-
ing of any combination of two tokens in the original tokenset to identify suitable
locations for the introduction of new split/merge gateways. In Figure 10.13(a), the
tokens 𝑡(𝑣,0), 𝑡(𝑣,1) and 𝑡(𝑣,2) are produced at the outgoing edges of node 𝑣. In this
case, the virtual tokensets {𝑡(𝑣,0), 𝑡(𝑣,1)}, {𝑡(𝑣,0), 𝑡(𝑣,2)} and {𝑡(𝑣,1), 𝑡(𝑣,2)} are generated
and propagated along the edges. The presence of the virtual tokenset {𝑡(𝑣,0), 𝑡(𝑣,1)}
is detected after w . Consequently, a new split gateway w’ can be introduced as a
successor of v .
To identify merge nodes for quasi-structured components, virtual tokensets are

constructed as partial combinations of the sets received on incoming edges. At
the node 𝑣 shown in Figure 10.13(b), the tokensets {𝑡(𝑢,0), 𝑡(𝑤,0)}, {𝑡(𝑢,0), 𝑡(𝑤,1)} and
{𝑡(𝑢,1)} are available. By combining two of these sets at a time and after applying
token convergence, this step yields the results {𝑡(𝑢,0)}, {𝑡(𝑢,1)} and {𝑡(𝑤,0)}. The
labeling 𝑡(𝑢,0) matches the tokenset before node w meaning that a new merge node
w’ can be added before v .
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(a) Quasi-structured component (b) Implicit decision nodes have been added

Figure 10.14.: Using partial token convergence to improve component detection.

Again, this algorithm has been implemented using DFA and has been integrated
with the analysis specification using a macro call which modifies the underlying
model. This is shown in Figure 10.14 which depicts an example process before and
after the application of partial token convergence. The second representation, while
semantically equivalent to the first, will greatly improve component detection. In
the first process, token analysis will only detect a single complex structure while the
second process results in a much more fine-grained SESE decomposition.

Structural Validation

Using the method presented in [VVL07], the soundness of (a)cyclic business pro-
cesses - i.e. the absence of local deadlocks and lack of synchronization - can be
tested in linear time. This is accomplished by a bottom-up traversal of the SESE
hierarchy, applying heuristics to categorize each sub-graph according to the struc-
ture of its elements. If an error is found, the context in which it appears can be used
to track down its approximate location, i.e. the (sub)component in which appears.
The authors of [VVL07] define the following criteria:

Let F be a fragment of a workflow graph. F is

1. well-structured if it satisfies one of the following conditions:

∙ F has no decisions, merges, forks or joins as children in the process struc-
ture tree (sequence),

∙ F has exactly one decision and exactly one merge, but no forks and no
joins as children. The entry edge of F is the incoming edge of the deci-
sion, and the exit edge of F is the outgoing edge of the merge (sequential
branching),

∙ F has exactly one decision and exactly one merge, but no forks and no
joins as children. The entry edge of F is an incoming edge of the merge,
and the exit edge of F is an outgoing edge of the decision (cycle),

∙ F has exactly one fork, exactly one join, no decisions and no merges as
children. The entry edge is the incoming edge of the fork. The exit edge
is the outgoing edge of the join. (concurrent branching).
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2. an unstructured concurrent fragment if F is not well-structured, contains no
cycles, and has no decisions and no merges as children.

3. an unstructured sequential fragment if F is not well-structured and has no forks
and no joins as children.

4. a complex fragment if it is none of the above.

A complex fragment F is not sound if it satisfies one of the following conditions:

1. F has one or more decisions (merges), but no merges (decisions) as children
in the process structure tree,

2. F has one or more forks (joins), but no joins (forks) as children,

3. F contains a cycle, but has no decisions or no merges as children.

Since the classification of a component thus relies solely on the (non) existence of
certain element types, the computation of these criteria is straightforward as soon
as the SESE tree is available. Implementation-wise, this could be achieved by spec-
ifying a DFA on the Component model which categorizes each component using the
presented properties. The resulting validationClassification provides a more detailed
assessment of the respective structural type than the original componentType of the
token analysis approach. The soundness of the process (validationResult) can be de-
termined recursively as each component containing unsound children also has to be
classified as unsound.
Making use of the capabilities of the Model Analysis Framework, it is also possible

to execute this algorithm for the results of a SESE decomposition by realizing it
as an evaluation macro. An implementation of the classification algorithm which
operates on the results conforming to the metamodel in Figure 10.12 is included in
Appendix C.1.2.

Figure 10.15.

Figure 10.15 shows the example process from [VVL07]. It has been modeled
in JWT and subjected to the structural validation (yielding the same results as
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in the original paper). The box in the upper region of the screenshot contains the
classified SESE tree. Each entry represents a (sub)component and lists its soundness
(validationResult) and classification (validationClassification) property as well as the
type assigned by the tokenflow analysis (componentType) and the respective in and
out edges.

Translation to BPEL

The final use case which depends on the hierarchical SESE decomposition maps
graph-oriented business process modeling languages such as JWT or BPMN to
executable block-oriented representations such as the Business Process Execution
Language (BPEL). Transforming the models between these different representa-
tions while preserving semantics is an inherently difficult task. Graphs allow for a
more complex control-flow while block-oriented languages employ constructs typi-
cally found in imperative programming languages such as loops and therefore adhere
to a more rigid structure.
Several solutions have been proposed for handling the difficulties which arise dur-

ing the translation process. The approaches presented in [Gar08; MLZ06] are of
special interest in the context of this thesis. They make use of the SESE process
tree and data-flow analysis to determine BPEL mappings for fragments of BPMN
processes which can then be translated using a template-based approach. As JWT
shares the properties of BPMN which are relevant to the application of this method,
we can make the assumption that the following discussion also applies to the models
presented in this case study.
The author of [MLZ06] defines a set of data-flow equations which can be applied

to each identified SESE region. These compute information about transitive prede-
cessors (for whole regions as well as limited to sequences), the amount of preceding
split nodes etc. From these results, mappings can be derived for the translation
of the components into corresponding BPEL constructs. A more detailed listing of
relevant BPEL structures and their respective counterparts in BPMN can be found
in [ODA08]. Just like with the validation technique presented above, parts of this
analysis can be implemented as a macro which operates on the results of the SESE
decomposition and stores the results in the generated Component model.

10.1.5. Use Case: Model Clone Detection

It is often desirable to avoid replicating the same (or similar) structures. This
principle applies to both program code as well as to models. For this reason, the
detection of so-called clones, i.e. substructures that resemble each other according to
a predefined set of properties, is an important research area. According to [Kos06],
“code clones are fragments that are similar w.r.t. to some definition of similarity”.
[RCK09] notes that, while cloning in software systems may be intentional, “it can
also be harmful in software maintenance and evolution”. The presence of clones has
an effect on the detection and removal of bugs, the effort for enhancing or adapting
code and complicates tasks such as program understanding, code compaction etc.
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The latter paper describes a categorization for code clones and performs an in-
depth survey of existing approaches and categorizes them according to different
characteristics.
[ADS12] states that “while its counterpart, code clone detection, is a mature and

established area of research, model clone detection is relatively new and has not been
investigated as thoroughly”. Because “unlike source code, which is represented as lin-
ear text, models are typically represented visually, as box-and-arrow diagrams, [. . . ]
the clones we are searching for are similar subgraphs of these diagrams”. [SC13] con-
tains a survey of different approaches and tools for model clone detection operating
on domains ranging from MATLAB Simulink models to UML Sequence Diagrams,
Statecharts and structural models, business process models and also metamodel-
agnostic techniques.
The importance of clone detection in the context of the modeling of business pro-

cesses is stressed by [Uba+11]. Multiple reasons are given to explain why clones have
a negative impact on the tasks of process management and maintenance: “Clones
make individual process models larger than they need to be, thus affecting their com-
prehensibility. Secondly, clones are modified independently, sometimes by different
stakeholders, leading to unwanted inconsistencies across models that originally con-
tained a duplicate clone. Finally, process model clones hide potential efficiency gains.
Indeed, by factoring out cloned fragments into separate subprocesses, and exposing
these subprocesses as shared services, companies may reap the benefits of larger re-
source pools”.

Three types of model clones are defined by [ADS12] which are similar to the
categories for code clones listed in [Kos06]:

Exact model clones Model fragments that only differ in visual presentation, layout
and formatting.

Renamed model clones Structurally identical, except for variations in labels, val-
ues, types, visual presentation, layout and formatting.

Near-miss model clones Additionally allows for differences such as change in po-
sition or connection with respect to other model fragments and small additions
or removals of blocks or lines.

Both the first and the second clone type rely on structurally identical (isomorph)
subgraphs. The second type employs a similarity measure to determine whether
two elements correspond to each other. This allows for certain variations, e.g. to
compensate for spelling errors in labelings. In this use case, we realize a flow-based
method for the detection of exact and renamed model clones which has been inspired
by the ConQAT algorithm. Some elements of this mechanism have been developed
in the context of the master thesis [Kra12].

The ConQAT Algorithm

We base our implementation on the problem definition and the terminology intro-
duced by [Dei+08]. This paper applies the ConQAT algorithm to detect clones in
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Simulink models. The measurements provided for this method will also serve as a
baseline for the evaluation of the performance of the DFA-based approach.

Clone pairs are subgraphs which are considered to be clones with the following
definition:

A clone pair is a pair of subgraphs (𝑉1, 𝐸1), (𝑉2, 𝐸2) with 𝑉1, 𝑉2 ⊂ 𝑉 and 𝐸1, 𝐸2 ⊂
𝐸, such that the following conditions hold:

1. There are bijections ≀𝑉 : 𝑉1 −→ 𝑉2 and ≀𝐸 : 𝐸1 −→ 𝐸2, such that for each
𝑣 ∈ 𝑉1 it holds 𝐿(𝑣) = 𝐿(≀𝑉 (𝑣)) and for each 𝑒 = (𝑥, 𝑦) ∈ 𝐸1 it is both
𝐿(𝑒) = 𝐿(≀𝐸(𝑒)) and (≀𝑉 (𝑥), ≀𝑉 (𝑦)) = ≀𝐸(𝑒).

2. 𝑉1 ∩ 𝑉2 = ∅

3. The graph (𝑉1, 𝐸1) is connected.

For (𝑉1, 𝑉2) ⊂ 𝑉 , we say that they are in a cloning relationship, iff there are
(𝐸1, 𝐸2) ⊂ 𝐸 such that (𝑉1, 𝐸1), (𝑉2, 𝐸2) is a clone pair.

This definition is summarized as follows: “The first condition of the definition just
states that those subgraphs must be isomorphic regarding to the labels L, the second
one rules out overlapping clones, and the last one ensures we are not finding only
unconnected blocks distributed arbitrarily through the model”.

(a) Size 1 (b) Size 2 (c) Size 3

Figure 10.16.: Iterative detection of maximal clones [Kra12].

Figure 10.16 demonstrates the expansion of a clone pair with the initial size of
one to its final extent of three nodes. In this case, this value represents the maximal
size as adding either the DecisionNode or the MergeNode would lead to overlapping
clones. A major challenge of clone-detection methods in general is mentioned in
[Dei+08]: The problem of finding maximal clone pairs is NP-complete17 meaning
that no algorithm exists which can detect all maximal clones in polynomial time.

17It is stated that the detection of maximal clones inside a model graph is very similar to the
NP-complete Maximum Common Subgraph (MCS) problem.
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(a) Structured model (b) Model after
inlining

Figure 10.17.: Applying inlining to structured models [Kra12].

The clone detection must be preceded by a normalization step. This process
includes the inlining of substructures. By copying and inserting embedded or linked
activities, the model graph is flattened. This approach can be compared to the
transformation of LinkedActivityNodes into StructuredActivityNodes as required by
the previous use cases and is exemplified in Figure 10.17. Typically, it is expected
that the data structure which represents the input graph 𝐺 = (𝑉,𝐸, 𝐿) not only
consists of vertices 𝑉 and edges 𝐸 but also defines labelings 𝐿 for these elements.
The labelings are computed by the function 𝐿 : 𝑉 ∪ 𝐸 → 𝑁 . By customizing this
function, node and edge labelings can be normalized18. Since this process influences
the circumstances under which elements are considered to be clones of each other,
this step can be used to implement a detection of renamed model clones.

Algorithm 34 The ConQAT algorithm [Dei+08]

1: 𝐷 = ∅
2: for all (𝑢, 𝑣) ∈ 𝑉 × 𝑉 with 𝑢 ̸= 𝑣 ∧ 𝐿(𝑢) == 𝐿(𝑣) do
3: if {𝑢, 𝑣} /∈ 𝐷 then
4: Queue 𝑄← {(𝑢, 𝑣)}, 𝐶 ← {(𝑢, 𝑣)}, 𝑆 ← {𝑢, 𝑣}
5: while 𝑄 ̸= ∅ do
6: dequeue pair (𝑤, 𝑧) from 𝑄
7: from the neighborhood of (𝑤, 𝑧) build a list of node pairs 𝑃 for which the

conditions (1,2) hold
8: for all (𝑥, 𝑦) ∈ 𝑃 do
9: if (𝑥, 𝑦) ∈ 𝐷 then
10: continue at line 2
11: if 𝑥 ̸= 𝑦 ∧ {𝑥, 𝑦} ∩ 𝑆 == ∅ then
12: 𝐶 ← 𝐶 ∪ {(𝑥, 𝑦)}, 𝑆 ← 𝑆 ∪ {𝑥, 𝑦}
13: enqueue (𝑥, 𝑦) in 𝑄

14: report node pairs in 𝐶 as clone pair
15: 𝐷 ← 𝐷 ∪ 𝐶

18Normalization may include stemming of labels (or manual specifications of equality) and may
respect or dismiss additional information such as class types or edge guards.

304



10.1. Case Study: Business Process Modeling

The ConQAT approach is outlined in Algorithm 34. This method iterates over all
possible node pairings and processes them if both nodes possess the same labels [2].
The steps in lines [4−13] correspond to a breadth-first search which is used to explore
the nodes’ neighborhoods. “During this [. . . ] the sets C of current node pairs in the
clone, S of nodes seen in the current BFS, and D of node pairs we are completely
done with” are managed. Line [7] applies a weighted similarity function which decides
whether two nodes are similar based on their respective neighborhoods. To reduce
the number of necessary comparisons only a single mapping is considered. In the
final step, the identified clone pairs are clustered into clone classes depending on the
contained nodes while ignoring differences in the sets of edges to allow for a certain
flexibility.

Flow-based Clone Detection

We will now study a flow-based implementation of a clone detection algorithm.
The stated goal here is the detection of exact and renamed model clones and the
prevention of the detection of overlapping subgraphs in a way that is comparable to
the presented ConQAT method.
The developed algorithm relies on the computation of the shortest paths connect-

ing each node to the start node. While this information is propagated throughout
the target graph, partial representations of these paths are built. By comparing the
result sets, initial candidates for (sequential) clone structures can be identified. The
clones are then expanded by adding nodes surrounding these base graphs as long as
they possess the same structural layout.

Algorithm 35 Data-flow rule for computing the shortest paths

1: Rule activitynode_shortestPaths(attrDef, context)
2: for all (predNode : context.in.source) do ◁ process predecessors
3: predShortestPaths ⇐ predNode[shortestPaths ]
4: predResult ⇐ ∅
5: for all (shortestPath : predShortestPaths) do ◁ incoming paths
6: if (shortestPath→contains(context)) then
7: continue at [2] ◁ abort at back edges

8: predResult ⇐ predResult ∪ (shortestPath→prepend(context))
9: result ⇐ predResult ∪ (predNode→prepend(context))
10: return result

For a fully connected and normalized graph, the algorithm depends on the follow-
ing steps:

1. In the first step, we apply DFA to derive the set of partial (cycle-free) paths
𝑃𝑁 of length > 1 connecting each node 𝑁 to the start node. For a model S →
A → B (with S being the start node), 𝑃𝐵 = {B ← A , B ← A ← S }.
The computation of 𝑃𝑁 is carried out as follows: First, the results at in-
coming paths, i.e. the values calculated at each predecessor node 𝑁𝑝𝑟𝑒𝑑 ∈
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𝑝𝑟𝑒𝑑(𝑁), are requested. This set is then extended with the predecessor nodes
themselves (or rather, paths of length 1 consisting only of the predecessors):⋃︀

𝑝𝑟𝑒𝑑=𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟(𝑁)(𝑃𝑝𝑟𝑒𝑑 ∪ 𝑝𝑟𝑒𝑑). Now, node 𝑁 is added as a prefix to the
beginning of each of these paths and the result is returned as 𝑃𝑁 .

For the correct handling of cyclic paths, it is essential that the execution stops
at back edges. This can be achieved by checking if the current node is already
included in a path in 𝑁𝑝𝑟𝑒𝑑 in which case the input from this predecessor is
ignored. The data-flow rule which carries out this computation is shown in
Algorithm 35.

2. Next, the sets of partial paths are identified and clustered to prepare for the
subsequent detection of maximal clones. This happens by comparing the label
of each node to the labels of all other nodes which are part of the model. If
a group of similar nodes 𝑁1 . . . 𝑁𝑖 has been identified, their respective 𝑃𝑁 sets
are grouped together in the clone group candidate 𝐶𝐺𝐶𝑁1...𝑁𝑖

.

This structure forms the basis for the detection of clone candidates and in many
cases substantially reduces the required number of comparisons. It should be
noted that clones which consist only of sequential nodes are already fully
contained in this set as paths of the same length.

3. The sets of clone group candidates 𝐶𝐺𝐶 are then processed one by one. Path
entries originating at one node of a matching set are compared to paths of
all other nodes of the same length starting with the longest candidate. If a
path matches one or more other paths with no overlap between them, a new
clone candidate is created and all other paths of the same 𝐶𝐺𝐶 which are
partial representations of the matched graph can be removed. Because of the
no-overlap condition, 𝐶𝐺𝐶 sets for nodes for which a clone relationship has
already been detected do not need to be processed subsequently and can there-
fore be ignored. If a clone candidate overlaps with another clone candidate,
the two are merged. This way, the clone candidates are extended incrementally
so that after the algorithm has finished, they contain the maximal amount of
matching nodes, i.e. the clone groups.

Examples

We demonstrate the application of the DFA-based clone detection using the exam-
ples shown in Figure 10.18(a) and Figure 10.18(b). While normally, these subgraphs
would be part of the same model, for reasons of clarity we have separated them into
two different structures. Nodes which differ only in their index are assumed to repre-
sent matching elements according to the labeling function 𝐿. A1 and A2 therefore
represent a clone pair of the size one. We assume that the normalization step has
already been carried out.
In the first step, the sets of (reversed) partial paths 𝑃𝑁 are computed for each

node. The results are shown in Table 10.5.
It is now possible to derive the clone groups candidates 𝐶𝐺𝐶 by comparing the

nodes. The results of this process are shown in Table 10.6. Clones inside this
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(a) Graph 1 (b) Graph 2 (c) Clone

Figure 10.18.: Graphs containing a clone structure.

Node Shortest paths (𝑃𝑁 )

𝐴1

𝐵1 (𝐵1 ← 𝐴1)

𝐶1 (𝐶1 ← 𝐴1)

𝐷1 (𝐷1 ← 𝐴1)

𝐸1 (𝐸1 ← 𝐵1), (𝐸1 ← 𝐵1 ← 𝐴1),
(𝐸1 ← 𝐶1), (𝐸1 ← 𝐶1 ← 𝐴1),
(𝐸1 ← 𝐷1), (𝐸1 ← 𝐷1 ← 𝐴1)

𝐴2 (𝐴2 ← 𝐵2)

𝐵2

𝐶2 (𝐶2 ← 𝐴2), (𝐶2 ← 𝐴2 ← 𝐵2)

𝐷2 (𝐷2 ← 𝐴2), (𝐷2 ← 𝐴2 ← 𝐵2)

𝐸2 (𝐸2 ← 𝐶2), (𝐸2 ← 𝐶2 ← 𝐴2), (𝐸2 ← 𝐶2 ← 𝐴2 ← 𝐵2),
(𝐸2 ← 𝐷2), (𝐸2 ← 𝐷2 ← 𝐴2), (𝐸2 ← 𝐷2 ← 𝐴2 ← 𝐵2)

Table 10.5.: Shortest paths to the start node.

structure can then be identified by searching for matching paths of the same length
which do not overlap. For example, the path (𝐸1 ← 𝐶1 ← 𝐴1) computed at E1 is
compared to (𝐸2 ← 𝐶2 ← 𝐴2) and (𝐸2 ← 𝐷2 ← 𝐴2) which represent the results for
the matching node E2 . This results in the initial clone candidate (𝐴1/2, 𝐶1/2, 𝐸1/2).
As a consequence, the partial paths (𝐸1 ← 𝐶1) and (𝐸2 ← 𝐶2) can now also
be removed. A further comparison of (𝐸1 ← 𝐵1 ← 𝐴1) and (𝐸1 ← 𝐷1 ← 𝐴1)

with the same paths of E2 yields another initial clone (𝐴1/2, 𝐷1/2, 𝐸1/2). Again,
the contained partial paths (𝐸1 ← 𝐷1) and (𝐸2 ← 𝐷2) are removed since they
already belong to a clone. Because both initial clones overlap, they are combined,
resulting in the final clone pair 𝑉1 = (𝐴1, 𝐶1, 𝐷1, 𝐸1), 𝑉2 = (𝐴2, 𝐶2, 𝐷2, 𝐸2) (shown
in Figure 10.18(c)). Because overlapping between clones is not allowed, we can
remove 𝐶𝐺𝐶𝐴1/2

, 𝐶𝐺𝐶𝐶1/2
and 𝐶𝐺𝐶𝐷1/2

from the list of sets which must still be
processed.
Figure 10.19 shows the application of the clone detection on a real world example,
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CGC Clone candidate paths

𝐴1/2 𝐴2 : {(𝐴2 ← 𝐵2)}

𝐵1/2 𝐵1 : {(𝐵1 ← 𝐴1)}

𝐶1/2 𝐶1 : {(𝐶1 ← 𝐴1)} (𝐶2 : {(𝐶2 ← 𝐴2), (𝐶2 ← 𝐴2 ← 𝐵2)}

𝐷1/2 𝐷1 : {(𝐷1 ← 𝐴1)} (𝐷2 : {(𝐷2 ← 𝐴2), (𝐷2 ← 𝐴2 ← 𝐵2)}

𝐸1/2 𝐸1 : {(𝐸1 ← 𝐵1), (𝐸1 ← 𝐵1 ← 𝐴1), (𝐸1 ← 𝐶1), (𝐸1 ← 𝐶1 ← 𝐴1),

(𝐸1 ← 𝐷1), (𝐸1 ← 𝐷1 ← 𝐴1)},
𝐸2 : {(𝐸2 ← 𝐶2), (𝐸2 ← 𝐶2 ← 𝐴2), (𝐸2 ← 𝐶2 ← 𝐴2 ← 𝐵2),
(𝐸2 ← 𝐷2), (𝐸2 ← 𝐷2 ← 𝐴2), (𝐸2 ← 𝐷2 ← 𝐴2 ← 𝐵2)}

Table 10.6.: Clone group candidates containing identified shortest paths.

Figure 10.19.: Clone detection using DFA [Kra12].

in this case an excerpt of a business process taken from a SAP system and modeled
in JWT. The full example can be found in Appendix C.1.3.

Conclusions and Outlook

The identification and extraction of identical (or similar) subprocesses reduces main-
tenance efforts and provides a better overview over the implemented functionality.
The application of this method therefore enables an improvement of existing pro-
cesses and process libraries. The presented approach for flow-based clone detection
serves as proof that the DFA approach can provide valuable input for the imple-
mentation of complex algorithms.
The described algorithm facilitates the detection of initial clone candidates in the

form of paths which are subsequently extended in an incremental fashion. Flow
analysis is employed to compute combinations of shortest paths connecting each
node to the start node. The paths sets are then compared to each other to identify
suitable paths which represent the backbones of potential clones. These are then
extended to full clone graphs.
The algorithm provides several optimizations which reduce the number of required

comparisons: For example, only paths of length > 1 are subjected to clone detection.
Because, by definition, clones must not overlap, 𝐶𝐺𝐶 sets for nodes which have
already been classified as a partial clones can be discarded immediately, thereby
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greatly reducing the amount of necessary comparisons. Furthermore, only paths of
the same length are matched.
We can state that, just like the ConQAT algorithm, we are able to correctly detect

structural and renamed clones as long as the target graphs are isomorphic. Another
property which is shared by both approaches is the disregarding of overlapping
clones. In its current version, our method is however not able to identify near-miss
clones. Performance-wise, the DFA overhead of the path generation carried out in
the first step is typically negligible for small to medium sized models since the size
and the amount of paths depends linearly on the number of predecessors and no
fixed-point reevaluation is required. The main performance impact stems from the
path comparisons during the last step. As a consequence, the actual complexity
depends heavily on the layout of the graph. This is however a problem which is
inherent to all clone detection mechanisms.

The presented method is only an initial exploration of the concept of implementing
a method for clone detection which is supported by DFA. Consequently, there are
many conceivable ways to improve the described approach:

∙ The identification of back edges in the initial step can be sped up using an
analysis which keeps track of “visited” nodes. This could be interpreted as a
DFA implementation of a depth-first search algorithm.

∙ The grouping of paths 𝑃 in clone path candidates in the second step works
especially well if the sets of matching nodes are small, i.e. if their labelings
are distinct. If this is not the case, e.g. when searching for structural clones,
the creation of the 𝐶𝐺𝐶 sets can be assisted by factoring in the structure of
the immediate neighborhood of the nodes into the labeling function.

∙ The 𝐶𝐺𝐶 sets can be represented as trees. This could be used to speed up
the elimination of partial paths if an encompassing clone has been detected.

∙ Just like in ConQAT, we can limit the clone detection to a single candidate.
This means that that if a path (𝐴2 → 𝐷3 → 𝐸2) existed in Figure 10.18(b),
it would be disregarded as a possible clone in case the clone has already been
extended by the path (𝐴2 → 𝐷2 → 𝐸2), containing the “conflicting” node D2 .

∙ The SESE decomposition presented in Section 10.1.4 could be used to cluster
the target graph into larger components. A subsequent clone detection could
then make use of this information to speed up the identification of similar
regions by focusing on the SESE structures.

∙ Finally, DFA could be applied to potential clones as early as possible. Consider
the graphs in Figure 10.18(a) and Figure 10.18(b): Assuming the existence of
paths (𝐸1 → 𝐹 ) and (𝐸3 → 𝐹 ) which connect both graphs to a gateway 𝐹 ,
the clone relationship (𝐴1/2, 𝐶1/2, 𝐷1/2, 𝐸1/2) becomes evident at 𝐹 . This way,
all partial paths which are contained in this clone could be removed, thereby
reducing the number of comparisons in subsequent steps.
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10.1.6. Tooling Integration

Integration of the analyses with the JWT framework is facilitated through Eclipse’s
plugin mechanism. Since the required functionality for accessing model data and
visualizing the results is accessible via the API provided by JWT, the tooling did
not have to be modified in any way19.

Figure 10.20.: Integrating analysis capability into JWT.

For this case study, a customized ModelAdapter has been implemented which is re-
sponsible for loading and normalizing the business process models. For this purpose,
it converts linked Scopes (LinkedActivityNodes) to embedded activities (Structured-
ActivityNodes), thereby duplicating referenced elements for each context in which
they appear. To track which object in the result set corresponds to which element
in the original model, a trace map is built during this process. Each element is
uniquely identified by a path derived from its containment hierarchy.
Because of the large number of analysis use cases for JWT models, a common

framework has been established which acts as a bridge between the analysis compo-
nents and the target application. This technology bridge (cf. Section 8.3.1) handles
the initialization of MAF, the loading of metamodel and model data and implements
shared functionality for result visualization. Adding a new flow analysis therefore
only requires the specification of the analysis itself as well as a definition of how
the results should be interpreted, e.g. which color should be assigned to a model
element based on its respective data-flow result. The overall concept is outlined in
Figure 10.20: Based on the available analyses, a set of commands is dynamically
added to the main toolbar of the application window. Invoking one of these options

19The implementation of the use cases is available from the official MAF repositories.
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triggers the technology bridge which acquires the currently selected model from the
JWT workflow editor. The model is then normalized and loaded into MAF using
the customized model adapter. In the next step, the chosen analysis is executed us-
ing the Project Set interface. Finally, a visualization is generated for the respective
analysis results. Using the toolbar commands, it is now possible to switch between
different result representations which are immediately displayed in the graphical
editor.

10.1.7. Evaluation of the Use Cases

Section 10.1.2 describes how different kinds of control-flow analyses such as reach-
ability and flowset computation can be adapted to the domain of business process
modeling. To evaluate the scalability of the fixed-point computation for models,
we employed the built-in debugging facilities of MAF (cf. Section 8.3.4) to record
performance data. This evaluation therefore mirrors the steps carried out in Sec-
tion 6.5.4 to assess the properties of the dependency chain algorithm using the
control-flow modeling language which served as running example.
Because of the required fixed-point iterations and due to the large number of

results produced by the DFA approach, it is not surprising that, with respect to ex-
ecution time and memory consumption, DFA-based implementations have a larger
overhead when compared with algorithms which are tailored to solve a specific prob-
lem such as Tarjan’s algorithm for SCC detection [Tar72]. However, the flow analysis
approach provides a multi-purpose “analysis programming language” which enables
concise, declarative analysis specifications which directly reflect the propagation
paths of information and also supports a combination of analyses to implement
more complex scenarios. For example, traditional flow analysis for finding domi-
nators (allPredecessorsMin) runs in 𝒪(𝑛2) [CHK01], although different algorithms
have been proposed that run faster [Geo+04]. It can be assumed that, for the
average case, DFA-based implementations perform much better than in the worst
case scenario as the runtime is highly dependent on the amount of contained cy-
cles. Therefore, one has to weigh the performance advantage of a more complex,
proprietary solution against the straightforward specification enabled by data-flow
analysis.
A prerequisite for executing the tokenflow analysis presented in Section 10.1.4 is

the computation of allPredecessorsMax, sccID and sccOutEdges. The analysis itself
however does not produce new information inside SCCs, so both the token propa-
gation and token convergence steps only require a single iteration.

Figure 10.21.: Worst case for tokenflow analysis.
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In the case of nested SCCs, the evaluation has to be repeated recursively for cyclic
subgraphs. The worst case scenario is depicted in Figure 10.21. Here, only one cycle
can be removed after the tokens have been computed which means that the new
graph is only 2 nodes smaller than the original one. In this configuration, initial and
final tokensets must be calculated for models containing six, then four and finally
two nodes. The total amount of necessary computations in relation to the nodes
therefore amounts to 2×

∑︀(𝑛/2)
𝑘=1 2× 𝑘 or 𝑛2

2
+𝑛. Since the number of components is

always smaller than the amount of nodes and each component consists of at least two
nodes, there can be only 𝑛

2
components. Therefore, the detection and classification

depends on the performance of the used storage mechanism in relation to this worst
case number.
As expected, with about 180 lines of code the DFA variant of the tokenflow

analysis is much more compact than the original reference implementation20 which
implements the token generation in about 400 lines of code with additional 300 lines
for handling SCCs21. The need for assigning time-stamps to nodes to identify their
relative position in the control-flow and the usage of the visitor pattern to process
the nodes also hides the inherent data-flow properties of this algorithm.
In Section 10.1.5, we demonstrated how a DFA-based method can be used to de-

tect clones in (business process) models. The chosen method was inspired by the
ConQAT algorithm which identifies similar nodes and expands matching candidate
sets with additional nodes if their neighborhood is similarly structured to yield max-
imal, non-overlapping clone pairs. Performance-wise, clone detection tends to be a
challenging task. [Dei+08] states that for ConQAT “the time and space require-
ments for the clone pair detection are depending quadratically on the overall number
of blocks in the model”. The described algorithm represents an initial attempt at
DFA-supported clone detection and still requires an in-depth study of its compu-
tational complexity. First tests carried out on real-world examples indicate that it
performs reasonably well for medium-sized models and the optimizations proposed
in Section 10.1.5 may help to further improve the performance.

10.1.8. Summary and Discussion

In this case study, we focused on several use cases to demonstrate the applicability of
static analysis in the business process modeling domain. JWT was chosen as a basis
for these implementations since it is conceptually and technically rooted in model-
driven principles. Furthermore, its similarities to the widely-used BPMN standard,
the extensibility of the Eclipse-based tooling and the inherent control-flow structure
of JWT business process models make it a feasible candidate for DFA both on a
theoretical and on a practical level.
The first use case (cf. Section 10.1.2) realizes the computation of many traditional

DFA properties by adapting these analyses to the BPM domain. The examples
described in the subsequent sections detail additional methods for the evaluation
of business processes which provide valuable feedback to developers and can also

20http://tokenanalysis.svn.sourceforge.net
21Not including datatypes for storing tokens and tokensets as well as internal graph representations.

312

http://tokenanalysis.svn.sourceforge.net


10.1. Case Study: Business Process Modeling

be used as input for other analyses. The latter property is especially evident in
the incrementally structured SESE use case (cf. Section 10.1.4) which employs
already computed information to generate more sophisticated results. The tokenflow
analysis method represents a reimplementation of an existing, imperative algorithm
which allows for a direct comparison between both approaches.
The control-flow properties are easily adapted to this domain because business

processes resemble directed graphs. While these results can be useful on their own,
e.g. by giving an indication which steps will be executed before a certain point in
the workflow is reached, they are also a prerequisite for many of the subsequent
analyses. The definition/usage scenario laid out in Section 10.1.3 extracts informa-
tion about the availability status of resources at different points in the execution of
process instances and therefore not only validates the structural composition of pro-
cess models but also conveys information about the status of resources that can help
to understand the semantics of the modeled workflow. The token analysis from Sec-
tion 10.1.4 generates and propagates tokens to identify SESE regions. This use case
serves as an example for flow-based reimplementations of existing approaches and
demonstrates how the proposed method can be used to combine different algorithms
to build an integrated solution for the decomposition, validation and transformation
of the input models. It also shows that data-flow analysis - which normally oper-
ates on flat value sets - can be used to generate more sophisticated results (such
as SESE components), relying on domain-specific datatype metamodels. Finally,
Section 10.1.5 presented an existing clone detection algorithm along with an im-
plementation which employs results derived using DFA. Although the flow-based
algorithm still requires a thorough evaluation with respect to its performance, this
use case demonstrates how flow analyses can be used to generate intermediate re-
sults that can later be used as input for other algorithms. In some cases, DFA-based
implementations may suffer from a heavier performance impact when compared to
algorithms which are tailored for solving a very specific problem. However, the gen-
erality of the approach makes it a viable alternative to quickly implement algorithms
(or parts thereof) that rely on information propagation. Overall, it can be stated
that many methods which operate on graph structures can be formalized as a flow
analysis by making use of the graph’s inherent flow properties.

In summary, we can make the following observations:

Implementation effort
JWT as well as BPMN share similar concepts and are built on OMG’s meta-
modeling framework. As such, the integration of flow-based model analysis
is a straightforward task although domain-specific adjustments are necessary
(e.g. converting linked activities to embedded subprocesses). Making use of
the capabilities provided by the modeling framework EMF and the analysis
tool MAF this is easily accomplished. Because JWT is based on Eclipse, its
modeling and visualization facilities are accessible through the provided APIs.
In fact, no pre-existing code had to be modified to implement the analyses and
the corresponding result visualizations. The analyses themselves make use of
parameterized methods to avoid the duplication of functionality and reduce
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the overall efforts for implementation and maintenance tasks.

Classification
It was shown that model-based data-flow analysis not only enables the com-
putation of traditional flow-based properties but also supports the derivation
of domain-specific information such as data/resource availability (cf. Sec-
tion 10.1.2). The token analysis use case presented in Section 10.1.4 demon-
strates that DFA actually simplifies the implementation of algorithms that rely
on information propagation based on declarative specifications rather than us-
ing a more tedious and counterintuitive imperative approach. Combined with
validation and transformation tasks which have been implemented using MAF
macros, this use case also demonstrates the feasibility of using DFA to build an
integrated solution which supports the user by offering a collection of related
functions.

Reuse
The control-flow analyses in Section 10.1.2 are heavily influenced by the general
methods described in Section 9.2. These templates have been adapted for the
BPM domain and extended with the capability to examine the contents of
subprocesses. The information which is computed by these analyses is then
reused in other scenarios. For example, properties of SCCs are an integral part
of the token analysis described in Section 10.1.4.

Usability
From a user’s perspective, the tight integration with the existing JWT tool
chain means that it is not necessary to switch contexts when executing an
analysis or examining the results. Also, developers are able to benefit from
easy access to the APIs of the analysis tooling and the modeling facilities.

Performance
Several steps have been taken to improve the performance of the algorithms
including the usage of bitvector types and the employment of the data-flow
initialization constant (INIT) to avoid the computation of the value domain.
A qualitative evaluation has shown that - even for large process models - the
analyses perform reasonably well, making their application in every day usage
scenarios feasible.

Multiple starting points for improvement have been identified. For example, the
evaluation of data availability may benefit from a backward flow analysis to improve
the assessment of the status of unused objects. The section about token analysis
and SESE decomposition describes how the results can be used to transform graph-
oriented to block-oriented languages. Furthermore, by computing alternative paths
connecting an arbitrary node to the start node, the information conveyed by the
predecessor analysis could be vastly improved. The result would not only determine
which actions may have been executed before a specific point in the process but
also indicate all unique (cycle-free) paths leading from the start node to this action.
Furthermore, common metrics such as cohesion or complexity could be calculated for
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process models to assess their quality [Van+07]. Based on estimates made by domain
experts about the time required for the execution of business actions, the minimal
and maximal execution time for the whole process could be approximated. Finally,
if only a limited amount of specific resource types is available, DFA can be used to
approximate the maximum number of concurrent accesses to a resource on (nested)
parallel paths. This information can be used to identify potential bottlenecks in the
process design.
———————————————————————————-

10.2. Case Study: Enterprise Architecture

Management

In this case study, we will present two use cases in the context of Enterprise Archi-
tecture Management (EAM). As the IT landscape in organizations becomes more
and more complex, many companies face the challenge of implementing an efficient
and reliable management of their business-critical systems. The research field of
Enterprise Architecture Management intends to improve this situation by offering
methods and tools which enable organizations to model the technical and business-
oriented properties of their IT systems. [Lan12] notes that EAM supports organi-
zations in getting a clear understanding of their essential business and IT elements.
This understanding can be further improved by analyzing the modeled EA data,
thereby helping enterprise architects to assess different aspects of the company’s IT
infrastructure. Analysis can be a valuable tool for the identification of potentially
problematic situations such as bottlenecks in the allocation of business services and
resources. Furthermore, an evaluation of the current landscape allows organizations
to develop a goal-oriented IT strategy for the improvement of the reliability and
availability of the services provided by their computing infrastructure.

The research work presented in this section is based on two publications:

∙ [LSB14a] develops an approach for the computation of key performance indi-
cators (KPI) based on a generic model-based representation of EAM data.

∙ [LSB14b] covers the topic of impact analysis which enables enterprise archi-
tects to examine how the change of an element (e.g. the failure or replacement
of a server) will affect the remainder of the organization’s IT-based services.

Both methods are based on a flow-sensitive analysis of the underlying EAMmodels
and have been realized using the Model Analysis Framework. The contents of this
section represent an adapted version of the original publications.

10.2.1. Introduction and Motivation

Enterprise Architecture Management provides methods for the management of the
large IT infrastructures encountered in today’s organizations. As a result, models
in the EA domain often contain a large amount of elements which are connected
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through complex relationships. To benefit from this methodology once it has been
successfully established in an organization, it is therefore vital to employ suitable
methods which support the (semi-)automatic analysis of EA data. [Joh+07b] de-
scribes the analysis of EAM models as the “application of property assessment cri-
teria on enterprise architecture models”.
The use of analysis functionality to leverage the representations of IT infrastruc-

tures has many possible applications. An important reason for the relevance of
analysis in this domain stems from the fact that architectural models “provide only
visual and qualitative support” [FFJ09] and EA analysis is therefore required to quan-
tify these models. It can, for example, be used to support decision making through
an assessment of both the current as well as planned future architectures [BMS09].
In this respect, the computation of quantified measures enables the comparison of
different alternatives and the efficiency of investments [Iac+12].
Due to the diverse nature of the EA field, analysis techniques must be able to deal

with a substantial amount of variability. One source of this variability is the large
amount of competing standards. Canonical EAM frameworks - which describe the
constituents and the layers of an enterprise architecture - include ArchiMate [HP12],
TOGAF [The11], RM-ODP [ISO98] or the 4+1 view model of architecture [Kru95].
Furthermore, while the specifications of many of these standards follow the notion of
modeling, they seldom provide reference implementations and often violate restric-
tions imposed by modeling frameworks such as MOF. Another complication arises
from the fact that, in many cases, these languages require extensive customization
to fulfill organization-specific needs.
Despite its obvious benefits, the concept of EA analysis is however scarcely ex-

plored in current industrial applications and research work as much effort is directed
at improving the representational aspects of the EAM methodology [NBE12; Nie06].
It can be assumed that the complications of applying analysis in this domain con-
tribute to this situation. In can be observed that most of the proposed analyses rely
on either very generic techniques which do not take advantage of the rich informa-
tion provided by modeling languages or employ proprietary methods which can only
be applied under very specific circumstances. As a consequence, the adaption of
the defined analyses or the specification of new analyses requires much effort. Tech-
niques employed for EA analysis include, for example, XML [Boe+05b], SPARQL
[SKR13], extended influence diagrams [Joh+07a], probabilistic relational models
[Bus+11], p-OCL [Joh+13] or architecture theory diagrams [JNL07].
In the following paragraphs, we present a framework based on the DFA approach

which enables the specification and execution of metamodel independent analyses.
This framework employs a generic representation of architectural data for which
arbitrary data-flow analyses can be defined, thus enabling a context-sensitive eval-
uation of organization-specific measures.
The application of the developed techniques will be demonstrated in the context

of the MIDWagen example shown in Figure 10.22. This ArchiMate model is shipped
with MID’s Innovator for Enterprise Architects tool [MID14]. It describes the orga-
nizational structure of a car rental company, consisting of roles, business processes,
applications and the underlying technical infrastructure.
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Figure 10.22.: MIDWagen example (ArchiMate representation) [MID14].

Generic Metamodel (GMM)

To derive meaningful information from a model, analyses must incorporate knowl-
edge about the semantics of the language constructs. As mentioned above, this
presents a problem in the EAM domain where a large number of competing stan-
dards and practices exist. To circumvent this complication, we introduce a generic
metamodel (GMM) which acts as a universal interchange format and as common
ground for the specification of analyses. Since the evaluation of a model element
depends on its metamodel type, the GMM not only has to encode the actual model
data but also the corresponding meta information, i.e. classes and associations of
the EA language. To connect the model and the metamodel data, «𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑜𝑓»
relationships must be established between both artifacts. As a consequence, each
instance of the GMM conforms to a representation of the target model as well as
the respective EAM language itself.
Figure 10.23 depicts the most important concepts of the generic metamodel22 and

groups them according to their artifact type. The root element EAModelContainer
consists of an EAMetaModel, an EAModel and a Configuration, each of which in

22Additional types such as NamedElement have been omitted for reasons of clarity.
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Figure 10.23.: Generic metamodel (GMM) for representing EAM (meta) data
[LSB14a].

turn acts as a container for elements of the respective type. Generally speaking,
this format describes a directed graph consisting of stereotyped elements23. For
this purpose, the node, edge and property types of the EAMetaModel specialize the
abstract MetaModelStereotype class while each “instance” of these elements in the
EAModel is a StereotypedElement which links to its respective stereotype.
Mapping an existing EA language to the GMM format requires the translation of

the classes to MetaModelNodes while their associated class attributes become Meta-
ModelProperties. Edge types, on the other hand, require a mapping to two concepts:
MetaModelEdge and MetaModelEdgeConnection. This distinction is necessary be-
cause the specifications of various EAM standards conflict with restrictions imposed
by many common modeling frameworks. For example, implementations of Archi-
Mate often define multiple incoming or outgoing associations with the same name,
a practice which is prohibited by MOF. Workarounds such as assigning a unique
numeric index to each association have a significant downside: Since associations of
the same type but with different indices are technically separate entities, this ap-
proach results in a loss of semantic information. The distinction made by the GMM
solves this problem as a single MetaModelEdge type can be shared by multiple Meta-
ModelEdgeConnections. As mentioned above, the EAModel represents an instance of
the language encoded in the respective EAMetaModel. More specifically, it defines
stereotyped elements in the form of ModelNodes along with ModelProperties and
ModelEdges which establish connections between the nodes.
The Configuration artifact enables the encoding of analysis-specific data inside a

GMM instance. With this setup, configurations can be directly tied to the ele-

23Nodes may additionally possess data fields.
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ments of EAMetaModel and EAModel. Consequently, data-flow rules can access the
configuration data and adjust their behavior accordingly.

Figure 10.24.: Example for the instantiation of the generic metamodel [LSB14a].

Figure 10.24 illustrates the principles behind the GMM using the MIDWagen
example. The left hand side of the diagram represents EAMetaModel type definitions
while the right hand side depicts the instance data.

Figure 10.25.: Derived metamodel for the MIDWagen example [LSB14a].

In general, the easiest way to create a GMM instance for an existing EAM model
consists of a traversal of the source model, creating corresponding GMM nodes,
properties and edges on-the-fly. During this process, the respective meta information
can be extracted as well, thereby generating an EAMetaModel which contains only
the concepts which are actually used in the respective model. This principle is
illustrated in Figure 10.25 which depicts the EAMetaModel of theMIDWagen model.
Note that it only contains a subset of ArchiMate classes and relationships, namely
the concepts which are actively used in the example.
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10.2.2. Use Case: KPI Analysis

IT Continuity Coverage

To exemplify the computation of KPIs for EAM models, we chose to implement
a measure for “the coverage of IT continuity plans in respect to business-critical
processes” as defined by [Mat+12]. This indicator is specified as follows: “Num-
ber of business-critical processes relying on business applications not covered by IT
continuity plan divided by total number of business-critical processes”.

The underlying (ArchiMate) language must therefore be extended with the fol-
lowing properties24:

∙ The boolean attribute IT continuity plan for application components

∙ The boolean attribute business critical for business processes

Algorithm 36 The attribution relevant_application_components

1: Attribution relevant_application_components

2: attribute assignment relevantApplicationComponents : Set(ModelNode)
3: initWith ∅
4: extend ModelNode with
5: occurrenceOf relevantApplicationComponents
6: calculateWith modelNode_relevantApplicationComponents

1: Rule modelNode_relevantApplicationComponents(attrDef, context)
2: for all (Path path : context[allpaths ]) do
3: if (not path.getTarget().type == "APPCOMPONENT") then
4: continue;

5: ignorePath ⇐ false
6: for all (PathEntry pathEntry : path.getEntries() do
7: if (pathEntry is ModelNode) then
8: predecessor ⇐ pathEntry
9: else if (not pathEntry.type == ("REALIZE" || "USEDBY") or
10: not pathEntry.getSource() == predecessor)) then
11: ignorePath ⇐ true
12: break;

13: if (ignorePath) then
14: continue;

15: relevantACs ⇐ relevantACs ∪ path.getTarget()
16: return relevantACs

The KPI is computed by two data-flow attributes, relevantApplicationCompo-
nents and continuityCovered. While these attributes are not themselves propa-
gated throughout the model, they nevertheless rely on context-sensitive informa-
tion, namely the results of the allpaths analysis. This analysis is an adapted version
24This extension is supported by MID’s Innovator tool.
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of the template described in Section 9.2.4 and computes the paths starting at the
local element to arbitrary target objects25. The first attribute represents the set of
application components supporting a business process and can be calculated by eval-
uating the data-flow rule shown in shown in Algorithm 36 in the context of business
processes. Note that this definition does not presume a specific path structure be-
tween business processes and application components. Instead, it relies on the value
of allpaths to identify the relevant connection(s). Lines [3-4] ensure that only paths
targeting an application component are regarded. For each alternative path leading
to an application component, it is then checked whether the local business process
actually relies on the target component. For this reason, the edge stereotypes must
be either of type used by or realize [9]. Additionally, the connection has to be an
incoming edge, i.e. opposed to the flow direction [10]. The path will be discarded
if either of these two conditions is not met [13-14]. Otherwise, it is determined that
the application component supports the business process and it is therefore added
to the set of relevant components [15].
The second attribute, continuityCovered, evaluates to true for business processes

if all of their supporting application components are covered by an IT continuity
plan. Finally, the percentage of covered processes can be computed by dividing the
amount of covered business critical processes by the number of all business critical
processes in the model.

Performance Analysis

The authors of [JI09] propose the computation of performance metrics based on
a top-down propagation of workloads and a bottom-up propagation of the util-
ity. More specifically, these indicators encompass the workload 𝜆, response time
𝑅, processing time 𝑇 and utilization 𝑈 . The following descriptions exemplify the
calculation of the workload and the response time metrics.

The analysis relies on a set of properties which have to be incorporated into the
EAM modeling language and configured by the enterprise architect:

∙ Weight 𝑛𝑒 for any relation 𝑒

∙ Service time 𝑆𝑎 for service 𝑎

∙ Capacity 𝐶𝑟 for any resource 𝑟 (actors, application components, devices and
nodes)

∙ Arrival frequency 𝑓𝑎 for business services and business processes

The workload 𝜆𝑎 for a node 𝑎 in an architectural model is defined as:

𝜆𝑎 = 𝑓𝑎 +

𝑑+𝑎∑︁
𝑖=1

𝑛𝑎,𝑘𝑖𝜆𝑘𝑖

25The Configuration concept of the GMM can be used to restrict the computation of model paths to
sequences of a specific length(PathConfiguration→maxHops) and to ignore transitions of certain
types (EdgeConfiguration→ignore).
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where 𝑑+𝑎 the out-degree and 𝑘𝑖 a child of 𝑎.

Algorithm 37 Data-flow rules for the attribution performance_analysis

1: Rule modelNode_workload(attrDef, context)
2: result ⇐ node.arrivalFrequency
3: for all (ModelEdge outEdge : context.getOutgoing()) do
4: if (not outEdge.target.stereotype == context.stereotype) then
5: result ⇐ result + outEdge.weight * outEdge.target[workload ]
6: return result

1: Rule modelNode_responseTime(attrDef, context)
2: for all (ModelEdge inEdge : context.getIncoming()) do
3: if (inEdge.stereotype == "REALIZE") then
4: continue;

5: utilization ⇐ inEdge.source[utilization ]
6: if (utilization >= 0) then
7: continue;

8: for all (ModelNode node : inEdge.source.getConnectedNodes()) do
9: if (not edge.stereotype == "ASSIGN") then
10: continue;

11: utilization ⇐ node[utilization ]
12: return context[processingTime ] / (1 - utilization)

This definition now has to be translated into a data-flow specification. Conse-
quently, we define a data-flow attribute workload in the context of the class Mod-
elNode. Instance results are computed by the data-flow rule modelNode_workload
shown in Figure 10.26. Line [2] initializes the variable result with the value of the
current node’s arrivalFrequency. The loop in lines [3-5] then iterates over all outgoing
edges. If the stereotype of the referenced object differs from the type of the con-
text object, the result is updated accordingly. This check ensures that connections
between elements of the same type, for example between two business processes,
are ignored [4]. Then, the value of the edge’s weight is multiplied by the workload
data-flow result computed at the edge’s target node [5].

The response time 𝑅𝑎 for a node 𝑎 in an architectural model is defined as:

𝑅𝑎 =
𝑇𝑎

1− 𝑈𝑟𝑎

where 𝑟𝑎 denotes the realizing resource of 𝑎.

The realizing resource 𝑟𝑎 can be either directly connected to the service or in-
directly via a behavior element. Therefore, the rule modelNode_responseTime first
iterates over all incoming edges [2] and ensures that they are of the type realize [3].
If available, the utilization value of the respective source element will be used [5].
Otherwise, a nested loop processes all indirectly connected elements and tries to
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request their utilization value [8-11]. Utilization and processing time can also be
specified as data-flow equations according to the formulas in [JI09].

Application Usage

The authors of [NBE12] present a framework for multi-attribute information system
analysis which includes an evaluation of application usage. This measure addresses
voluntary application usage, i.e. it determines why users employ a specific applica-
tion. The result for the usage attribute at application components can be derived
through the following linear regression model:

𝑢𝑠𝑎𝑔𝑒 = 𝛼 + 𝛽1 * 𝑇𝑇𝐹1 + ...+ 𝛽𝑛 * 𝑇𝑇𝐺𝑛 + 𝛽𝑛+1 * 𝑃𝑈 + 𝛽𝑛+1 * 𝑃𝐸𝑜𝑈

Again, the analysis relies on a number of properties which must be specified by
the enterprise architect:

∙ 𝛼, 𝛽1, ...: Constants determined by processing empirical survey of data of
application usage

∙ 𝑃𝑈 : Perceived Usefulness

∙ 𝑃𝐸𝑜𝑈 : Perceived Ease of Use

∙ 𝑇𝑇𝐹 : Task Technology Fit (derived from the class attributes Task Fulfillment
and Functionality)

This use case depends on the properties Task Fulfillment for business processes,
Functionality for application services and application functions, PU and PEoU for
actor-component relationships, regression coefficients TTF, PU, PEoU and finally
a Domain Constant for application components. For this use case, the modeling
language also had to be extended with the relationship used by which connects
application components and actors.
For the analysis of the application usage, we can define the following data-flow

attributes: The attributes weightedTTF for used by are computed for edges linking
application services to business processes while weightedTAM is annotated at appli-
cation components. The weightedTTF is calculated for each used by edge connecting
an application service to a business process. The values of these attributes are prop-
agated to the corresponding application components via the application functions
of those services. The weightedTAM (weighted PU + PEoU) is calculated for each
application component by iterating over all outgoing edges to an actor. To get the
final usage result, each component has to add both values to the respective domain
constant.

10.2.3. Use Case: Impact Analysis

Impact analysis simulates the effects of architectural changes on an application land-
scape or an enterprise architecture. It is therefore an important tool which enables
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enterprise analysts to assess risks in the current architecture, for example which
business operations may be affected if a specific server goes offline [Boe+05a].
Because the effect of an architectural change on a neighboring element (direct

impact) may in turn propagate to its neighbors (indirect impact), even a small change
in a single element can result in non-trivial consequences. Determining whether
an element is affected and how its status changes therefore requires a contextual
analysis of the (transitive) connections to other elements. Furthermore, different
relationship types may have different semantics with respect to the propagation of
changes. For example, to evaluate the impact of a server failure on a company’s
business processes, the analysis must first examine which applications rely on this
server before computing the effect on the processes. This principle is also mentioned
by [Boh02] who notes that determining the effects of a change requires an iterative
and discovery-based approach.
Since the computation of (in)direct change impacts (n-level impacts) requires the

consideration of transitive paths, information must be propagated in a way that
ensures that all necessary information is regarded while at the same time excluding
irrelevant connections. However, due to the fact that EA models only provide scarce
information about the technical details of the modeled systems, an approximation of
change effects tends to overestimate the result by generating false-positives. For this
reason, the presented change propagation approaches compute results for a best case
as well as a worst case scenario. The result for the best case represents the minimal
amount of affected elements while the worst case reflects all potential impacts. To
assess the actual risks, which can be expected to lie somewhere in between, the
respective result sets must be interpreted by domain experts.

The presented analyses differentiate between the change types extend, modify and
delete as proposed by [Boe+05a]:

∙ An extension (ext) represents a change which preserves the initial functionality
or structure.

∙ While a modification (mod) also affects the functionality/structure, in this
case, it cannot be guaranteed that the components will still be available or
that their behavior remains unchanged.

∙ deletion (del) indicates removal of an element from the enterprise architecture.

∙ Finally, no change (no) represents changes which have no effect on the target.

The prioritization between these types is defined as follows: delete > modifies
> extends > no change. If required, it is possible to extend this definition with
organization-specific change types.

Change Propagation based on Relationship Classes

One possibility to assess the impact of changes consists of a classification of rela-
tionship types according to their semantics. A literature review which included the
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Core Concepts Model (CC) of ArchiMate [HP12] and the DM2 Conceptual Data
Model of DoDAF [US 10] resulted in five classes of relevant EA relationship types:

∙ locate denotes allocation to a location or an organization unit.

∙ provide represents provisioning of functionality, information or behavior.

∙ consume denotes consumption of an element.

∙ structural dependency relationships define the structural aspects of entities.

∙ behavioral dependency connections describe dependencies between behavioral
elements which are neither of the type provide nor consume.

Mapping relationship types to these classes enables the analysis to choose a suit-
able propagation rule for the respective type. If a relationship belongs to more than
one category, the worst case analysis applies the strongest rule while the best case
analysis relies on the weakest one. It should be noted that relationship-to-class map-
pings are always based on a specific interpretation of the relationships’ semantics
and can be adapted if necessary.

Propagation rules can be specified using the following syntax:

𝐴.{𝑋1, 𝑋2, . . . 𝑋𝑛} → 𝐵𝐶 : 𝐵.𝑌, 𝑊𝐶 : 𝐵.𝑍

with objects 𝐴 and 𝐵 representing the source and the target of a relationship and
𝑋1, 𝑋2, . . . 𝑋𝑛, 𝑌, 𝑍 ∈ {𝑒𝑥𝑡,𝑚𝑜𝑑, 𝑑𝑒𝑙, 𝑛𝑜}. The statement on the left hand side en-
codes the prerequesite while the right hand side denotes the effect on the respective
source or target in the best case (BC) and worst case (WC) scenario.
Table 10.7 lists a set of propagation rules for the five classes. As an example, we

assume that the relationship type which indicates that an application component
𝐴 is hosted by an organization unit 𝐵 is mapped to the locate class. The rule
𝐴.{𝑑𝑒𝑙,𝑚𝑜𝑑, 𝑒𝑥𝑡} → 𝐵.{𝑛𝑜} indicates that a change to the application component
has no effect on the organization unit. However, if the organization unit is deleted,
the application component must be assigned to a new host (best case) or has to be
deleted as well (worst case). Finally, in the worst case scenario, a modification or
extension of the organization unit will also require a modification of the component.

Change Propagation based on Effect Classes

An alternative classification methodology relies on the severity of an effect’s im-
pact. Propagation rules for the three categories strong, weak and no effect must be
specified for both directions. The notation 𝑋 − 𝑌 indicates that a change in the
source has a effect of type 𝑋 on the target and vice versa. This leads to six effect
classes: strong-strong, strong-weak, strong-no effect, weak-weak, weak-no effect and
no effect-no effect.
Table 10.8 defines propagation semantics for the three effect types. If 𝐴 has a

strong effect on 𝐵, a deletion of 𝐴 results in an extension (best case) or a deletion
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class rule
locate A.{del,mod,ext} → B.{no}

B.{del} → BC: A.{ext}, WC: A.{del}
B.{ext,mod} → BC: A.{no}, WC: A.{mod}

provide A.{del} → BC: B.{ext}, WC: B.{del}
A.{mod} → BC: B.{no}, WC: B.{mod}
A.{ext} → BC: B.{no}, WC: B.{ext}
B.{del,mod,ext} → A.{no}

consume A.{del,mod,ext} → B.{no}
B.{del,mod} → BC: A.{ext}, WC: A.{mod}
B.{ext} → A.{no}

structural dependency A.{del} → BC: B.{mod}, WC: B.{del}
A.{mod,ext} → B.{no}
B.{del,mod} → BC: A.{no}, WC: A.{mod}
B.{ext} → BC A.{no}, WC: A.{ext}

behavioral dependency A.{del,mod,ext} → B.{no}
B.{del,mod,ext} → A.{no}

Table 10.7.: Impact rules for the relationship classes (adapted from [LSB14b]).

effect rule
strong A.{del} → BC: B.{ext}, WC: B.{del}

A.{mod} → B.{mod}
A.{ext} → B.{ext}

weak A.{del} → BC: B.{no}, WC: B.{mod}
A.{mod} → BC: B.{ext}, WC: B.{mod}
A.{ext} → BC: B.{no}, WC: B.{ext}

no effect A.{del,mod,ext} → B.{no}

Table 10.8.: Impact rules for the effect classes (adapted from [LSB14b]).

(worst case) of 𝐵 while both a modification and an extension of 𝐴 directly transfers
to 𝐵. As a concrete example, we assume that the realization of a service has been
mapped to the strong-weak class, i.e. the component has a strong impact on the
service while the effect in the opposite direction is classified as weak. As a result,
the deletion of the service has either no effect on the component (best case) or it
requires a modification (worst case).

Data-flow based Change Propagation

The propagation of changes, whether based on a categorization of relationships or
effects, can be implemented as a data-flow analysis. Just like in the KPI use case,
the analysis can be specified for the generic metamodel to ensure that its application
does not depend on the specifics of an EAM framework.
Results are computed by a data-flow attribute named status which is initialized
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with the change configuration. For this purpose, attribute instances at the affected
elements are set to ext, mod or del, depending on the change that should be sim-
ulated, while all other values are initialized with no change. To avoid hard coding
the change configuration in the analysis specification or the EA model, it is possible
to supply this information via the GMM instance’s Configuration and process it in
the DFA’s initialization rules.

Algorithm 38 Data-flow rule for the attribution impact_analysis

1: Rule modelNode_changeStatus_bestCase(attrDef, context)
2: currentStatus ⇐ context[status ]
3: for all (ModelEdge edge : context.getIncomingEdges()) do
4: sourceStatus ⇐ edge.source[status ]
5: if (edge == StrongEffectTarget) then
6: if (sourceStatus == (DEL||EXT)) then
7: return computeStatus(currentStatus, EXT)
8: else if (sourceStatus == (MOD)) then
9: return computeStatus(currentStatus, MOD)
10: else if (edge == WeakEffectTarget) then
11: if (sourceStatus == (DEL||EXT)) then
12: return computeStatus(currentStatus, NO)
13: else if (sourceStatus == (MOD)) then
14: return computeStatus(currentStatus, EXT)
15: else if (edge == NoEffectTarget) then
16: if (sourceStatus == (DEL||MOD||EXT)) then
17: return computeStatus(currentStatus, NO)
18: for all (ModelEdge edge : context.getOutgoingEdges()) do
19: targetStatus ⇐ edge.target[status ]
20: . . .

Algorithm 38 demonstrates how propagation rules can be implemented for the
effect classification method. The data-flow rule modelNode_changeStatus_bestCase
iterates over the incoming [3-17] and outgoing [18-20] edges to determine the ap-
propriate propagation rule for the current context. For this purpose, the conditions
in lines [5,10,15] evaluate the effect type associated with the incoming edge. Subse-
quently, the new status is computed based on the current result and the status of
the edge’s source node. The prioritization relationships between the different change
types are implemented in the method computeStatus() which ensures that a weak
change will not overwrite a stronger one. Outgoing edges are computed accordingly.

As with the initial change configuration, it is possible to encode the mappings for
relationship and effect classes in the GMM’s Configuration. This way, the analysis
can be defined in a generic manner while organization-specific properties are supplied
by the respective model transformation which generates the GMM instance.
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10.2.4. Tooling Integration

The market offers multiple tools which support the development of EA models.
Examples include Innovator [MID14], PlanningIT26 and iteraplan27. Many of these
applications provide a plugin interface which can be used to extend the existing
modeling facilities with custom features.
In the original publications on which this case study is based, MID’s Innovator

platform has been chosen to demonstrate the viability and applicability of the pro-
posed methods. However, since this tool is not based on the Eclipse RCP framework
and does not provide support for Java-based plugins, it was not possible to directly
integrate MAF’s core libraries which are necessary to execute the specified analyses.
The development of a native reimplementation of the analysis facilities did not seem
feasible due to the large effort which would be required to carry out this task.
Instead, we opted for a solution which did not necessitate a duplication or mod-

ification of any existing components or functionality. For this purpose, the Model
Analysis Framework was wrapped in a server container28 which enables external
applications to access the analysis facilities using network interfaces. Furthermore,
a Xtext-based DSL was developed for the generic metamodel which allows GMM
instances to be serialized and transmitted via TCP/IP sockets. An Innovator plugin
translates the selected model data into this textual notation. Innovator-specific rela-
tionship mappings and user settings for the respective evaluation run are encoded in
the GMM’s Configuration object. The serialized model can then be sent to the MAF
analysis server which deserializes the model, executes the analyses and transmits
the results back to the plugin. In the final step, the Innovator plugin generates and
displays a suitable visualization for the computed results.
The screenshot shown in Figure 10.26 depicts the results of the performance anal-

ysis computed for the MIDWagen model and displayed by the developed Innovator
plugin.

10.2.5. Evaluation of the Use Cases

The viability of the proposed analysis framework for the EAM domain has been
demonstrated in the context of the MIDWagen example and a prototypic implemen-
tation for the Innovator tool suite. Moreover, it has been shown that the flow-based
approach to model analysis provides a powerful method for the specification and
evaluation of key performance indicators in this domain. To test the generic appli-
cability of this technique, several existing methods described in canonical literature
and research publications have been reimplemented.
Each of the presented use cases required specific adaptions of the underlying mod-

eling language. This reflects the general situation in the EAM domain where many
competing standards exist which are often customized to fulfill organization-specific
needs. Furthermore, some of these standards may conflict with the restrictions

26http://www.alfabet.com
27http://www.iteraplan.de
28This has been discussed in Section 8.4.
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Figure 10.26.: Screenshot of Innovator showing performance metrics computed for
the MIDWagen example.

imposed by modeling frameworks. These problems have been addressed by the
development of a unified representation of EA model and metamodel data. This
method also solved another problem: Structural changes of the underlying model-
ing language also affect the specification of analyses. For example, the metamodel
shown in Figure 10.25 allows business roles and business processes to be connected ei-
ther directly or indirectly via intermediary services. Customizations of the modeling
language may limit these options or introduce additional alternatives. This means
that even the analyses themselves must cope with a certain amount of variability.
The propagation of data-flow values along model edges presents a solution to this
problem as it abstracts from the concrete structure by making information available
along transitive paths.
This principle is, for example, applied in the computation of the IT continuity

metric where the identification of relevant paths happens independently from the
concrete structure of the (meta)model and the language-specific mappings which can
be supplied without changing the analysis itself. The proposed framework therefore
represents an improvement over the methods used in the respective original publi-
cations: The flow-based implementation of the performance analysis is not limited
to ArchiMate models, does not require a normalization step and does not presume
a 1-to-1 mapping of a behavior element to a service/resource. In contrast to the
implementation described in [NBE12], our technique does not require an extension
of the model with intermediate helper entities to support the aggregation of values.
Similar advantages can also be identified in the impact analysis use case. While
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[Boe+05a] presents rules for computing the change impact on an architectural ele-
ment, the definitions are given in an informal and textual manner and no technical
realization exists. A similar situation exists with [Kum+08] which does not specify
a concrete mechanism for the implementation of the change propagation.

Figure 10.27.: Worst case change propagation path for the MIDWagen model
[LSB14b].

The usefulness of the proposed methods for impact analysis can be demonstrated
in the context of the MidWagen example. Figure 10.27 depicts the impact of a mod-
ification of the Booking System service. The red arcs indicate the worst case change
propagation paths. Solid lines represent paths along which a change is forwarded
while dashed lines denote relationships which do not result in change propagation.
The final impact set consists of the elements {Payment AS: modified, Bonus Book-
ing: modified, Return: modified, Collect Bonus: modified, Payment BS: modified,
Renter: modified}. The effect classification method generates the following result
set: {Payment AS modified, Return modified, Payment BS modified, Renter modified}.
In both instances, the best case scenario yields no required modifications.
It can be argued that the results for both the best and the worst case represent

realistic approximations since the final assessment must consider the severity of the
modification. In the best case scenario (e.g. performance issues), an upgrade of the
Booking System service will not affect its functionality. In the worst case, i.e. a
substantial modification of the service, the change may cause other components to
stop working, thereby affecting the business layer. Although the MIDWagen model
is not a real world example, the level of detail and the extensibility of the underlying
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EA language enables a thorough evaluation of the viability and the robustness of
the proposed methods. In essence, the computed impact sets allow an estimation of
the full effects of planned changes or unexpected incidents on the IT landscape of a
company and therefore can be of great value to an enterprise. Since the developed
analysis distinguishes between different semantic relationship classes it can be easily
adapted to the conventions in different organizations by mapping the relationship
types in the respective target domain to the proposed categories. Furthermore, it is
possible to extend the analysis with individual impact propagation rules.
In conclusion, the combination of the generic metamodel, dynamically config-

urable flow analyses and classifications of relationships and effects ensures that this
technique can be used to implement various analysis scenarios and supports the
diverse EA conventions found in different organizations.

10.2.6. Summary and Discussion

In this case study, we presented two analysis methodologies for the EAM domain.
The described use cases focus on the computation of KPIs [LSB14a] and the assess-
ment of the impacts of architectural changes [LSB14b]. Both techniques rely on a
combination of a generic representation of EA data (GMM) and flow-based model
analyses to implement a robust and powerful analysis framework.
By abstracting from the concrete representation of a specific EAM methodology,

the generic metamodel provides support for different standards and practices as
well as for organization-specific adaptions. The GMM is therefore an important
prerequisite for dealing with the variability encountered in this domain and provides
a common ground for analysis specifications. This principle also applies to the
analyses themselves which must be defined in a generic and configurable manner as
the data-flow rules cannot presume the existence of a specific metamodel structure.
This is addressed by the GMM’s Configuration element which can encode language-
specific mappings as well as user settings for a concrete evaluation run. This enables
the data-flow rules to adjust their behavior dynamically. Some analyses rely on the
identification of paths which start and end at elements conforming to a specific
stereotype. Since the underlying modeling language may be subject to changes,
it would not be possible to rely on fixed navigation statements to address distant
objects. The allpaths analysis (cf. Section 9.2.4) provides a solution to this problem
as it computes these paths dynamically.

We will now summarize our findings:

Implementation effort
The presented use cases introduced some complications such as the variability
of meta data and the integration of analysis capabilities into a proprietary
third-party tool. While some of these challenges are specific to the EAM do-
main, others may occur in other areas as well. As a consequence, it was neces-
sary to develop a suitable overall methodology which addresses these problems
by providing a generic approach to the specification and configuration of anal-
yses. Using the capabilities offered by the technological space of modeling,
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it was possible to address these issues with little effort by implementing a
model-based representation of EA meta and model data. Furthermore, this
specification was supplemented with a textual DSL for the (de)serialization of
model artifacts which enabled the realization of an analysis frontend for the
chosen tooling platform.

Classification
The computation of KPIs represents a typical application scenario for model
analyses in combination with a derivation of control-flow properties (cf. Sec-
tion 9.2.4). Impact analysis also falls in the same category as it examines the
structural properties of models. However, in this case, the analysis is stim-
ulated with external information required for specific evaluation runs. More
specifically, it relies on the specification of an initial change configuration. The
overall methodology demonstrates that the flow-based analysis approach can
be applied to use cases with specific requirements.

Reuse
Since the computation of KPIs and change impacts is a highly domain-specific
application scenario, the described analyses represent mostly new methods
which - with the notable exception of the allpaths analysis - are not part of
the standard library. In fact, the implementation of the use cases required
the development of several new methodologies. These include the generic
metamodel, dynamically configurable analyses and the integration of analysis
capabilities in a non-Eclipse platform. It should be noted that these methods
may be beneficial in other domains as well and should therefore be elaborated
in future research work.

Usability
It has been demonstrated that the use cases can be implemented as plugins
for the Innovator tool suite. This allows enterprise architects to configure
and invoke the respective computations from the modeling environment. Fur-
thermore, the visualization of the results also takes place inside this tooling,
thereby providing a unified interface for executing the analyses and reviewing
the results. The MIDWagen example showed that the proposed methods can
be of great benefit when dealing with the challenge of assessing the current or
future state of an IT infrastructure.

Performance
Although the original publications do not provide an assessment of the perfor-
mance aspects of the proposed analyses, it can be assumed that they can be
executed in a satisfactory time frame. While both the KPIs and the change
impacts rely on the propagation principle, they do not compute fixed-point
results. Because each rule must therefore be executed only once to calculate
the final value, the amount of necessary invocations is proportional to the size
of the model. A potential bottleneck can be found in the allpaths analysis
which tends to generate large result sets as the addition of new elements dras-
tically increases the amount of possible routes between objects. However, this
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problem can be addressed by limiting the maximal length of the derived paths
or by ignoring irrelevant relationship types.

In [LSB14a] and [LSB14b], we discussed several possible enhancements to extend
the capabilities and improve the usefulness of the EAM analysis frameworks.
It is stated that propagation rules could be employed to quantify changes, e.g. in

terms of costs, to augment the computation of change impacts with an estimation
of the expected costs or savings. Data-flow attributes could, for example, be used
to aggregate the maintenance costs of all deleted application and infrastructure
components and their corresponding services to compute potential savings on IT
maintenance.
Further proposals refer to the implementation of a failure impact analysis which

examines the availability of architecture elements or the use of probability distri-
butions to improve the assessment of the best and worst case scenarios. The latter
proposition would require to include change probabilities in the propagation rules
and to compute a separate impact for each change type. Rules could be defined in
the following fashion:

𝑃 (𝐴.{𝑑𝑒𝑙}) = 𝑋 → 𝑃 (𝐵.{𝑑𝑒𝑙}) = 0.8×𝑋

This can be interpreted as follows: If the probability that 𝐴 is deleted is 𝑋, then
the probability that 𝐵 has to be deleted is 0.8×𝑋 or, in other words, if 𝐴 is deleted
then in 80% of the cases 𝐵 will be deleted as well.
Another suggestion discusses an extension of the GMM with support for special-

ized relationship types such as generalization or containment. By encoding this
information in the generic metamodel, analyses would be able to directly process
these types without the need for additional mappings. It is also mentioned that it
should be explored how the visualization of the metrics and change impacts could be
improved. It can be assumed that a graphical representation in the diagram editor
would enable a quick and intuitive assessment of the IT infrastructure’s state.

10.3. Case Study: SE-DSNL

In this case study, we will examine the application of data-flow analysis in the
context of Natural Language Processing (NLP). The approach presented in this
section employs ontology-driven methods to enhance traditional NLP techniques
with semantic annotations to improve recognition and classification of natural lan-
guage text. Detailed in [Fis13], it uses a concept termed Semantically Enhanced
Domain-Specific Natural Language (SE-DSNL)29 and heavily employs model-driven
techniques, namely a MOF-based domain-specific language, to support knowledge
engineers in their task of encoding information about the semantics of concepts
and relationships in the target domain. The approach connects natural language

29The approach evolved from the research project BRM 3.0 (http://www.informatik.
uni-augsburg.de/de/lehrstuehle/swt/vs/projekte/semtech/brm30/) and was formerly
named BRM-S (Semantically enabled Business Requirements Management).
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constructs to ontological specifications and uses this information to provide better
support for NLP-specific tasks.
As is the case with most domain-specific languages, SE-DSNL language expres-

sions must conform to a set of restrictions which constitute the static semantics of
the language. It is vital that SE-DSNL models respect these well-formedness rules
so that they can be interpreted correctly by the corresponding NLP algorithms.
The theoretical approach described in [Fis13] is complemented with an integrated,
EMF/GMF-based tooling environment [Loh13]. Consequently, this approach is a
perfect candidate for a practical evaluation of the DFA method as we can study its
application in the context of what constitutes a common usage scenario: The starting
point is a model-based DSL with a set of informally defined well-formedness restric-
tions. In fact, a complete MAF-based validation framework for the SE-DNSL suite
has been developed under the guidance of the author of the SE-DSNL approach.
In the following sections, we will shortly introduce the motivation and the prin-

ciples behind SE-DSNL and the syntactic and semantic restrictions that must be
met by valid language expressions. This is followed by several examples of analyses
which have been implemented in the aforementioned validation framework. Finally,
the technical integration is described alongside a statistical evaluation followed by
a discussion of the case study.

10.3.1. Introduction and Motivation

Most researchers would agree that, with the exception of a few very specific ap-
plication scenarios, the interpretation of natural language expressions (NLP) is a
problem that has not been - and probably will not be - solved in a satisfactory way
for quite some time. Many factors contribute to the difficulties encountered in this
area including the relevance of contextual information or ambiguities in the wording.
In many cases, contemporary NLP techniques parse natural language expressions

and try to derive a mapping between the syntactical representation and semantic
interpretations. These mappings can then be further evaluated to achieve certain
goals (e.g. to implement a question/answer system). The author of [Fis13] notes
that most state-of-the-art NLP systems implement this principle using a pipeline-
driven approach. In essence, these analyses perform a syntactic recognition and
composition of part of speech (POS) fragments in an effort to detect the grammatical
structure of sentences and thus the relations between the syntactic constituents. It
is stated that this approach can be problematic as smaller errors in earlier stages of
the pipeline may have a more severe impact in later stages which is major reason
for imprecise or incorrect results.
As a remedy for this situation, the proposed solution employs the principles of

Cognitive Linguistics [CC04] to improve the recognition process. The research area
of Cognitive Linguistics operates on the assumption that different linguistic levels
must be examined in parallel in an effort to mimic the speech recognition processes in
the human brain. For this purpose, the SE-DSNL approach uses so-called construc-
tion rules which associate syntactic constructs with semantic representations. This
combines the processes of syntactic recognition and semantic analysis by assembling
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semantic interpretations for given texts from the syntactic fragments.
SE-DSNL makes heavy use of the ontology concept to model the syntactic and

semantic properties of language constructs [FB10; FB11]. The area of ontology
research has become more prominent in recent years, especially in the context of
the Web Ontology Language (OWL) [OWL09] which attempts to make information
which is available on the internet usable by computers. An ontology can be viewed
as a knowledge graph that connects concepts and instances through qualified asso-
ciations. Consequently, this formalism bears some resemblance to the technological
space of modeling. Ontologies are however based on rigid logical specifications30 to
enable logical reasoning on the modeled knowledge base.
The authors emphasize that ontologies expressed in standards such as OWL or

RDF(S) are not very useful for NLP. Although these methods support the encoding
of domain-specific semantic relationships, they do not provide sufficient means to
enrich the ontological definitions with the complex linguistic information that is
necessary to “reverse engineer” semantic information from the syntactical structure of
a language expression. To circumvent these limitations, a MOF-based ontology DSL
is proposed which encapsulates the relevant features of ontologies while additionally
supporting the annotation of linguistic information.

Figure 10.28.: Reference Scope of the SE-DSNL metamodel [FB10].

The SE-DSNL metamodel can be roughly divided into three interconnected seg-
ments representing different aspects of the same concepts: The Syntactic Scope, the
Semantic Scope and the Construction Scope. The Syntactic Scope formalizes the lex-
ical representations of words including, for example, different inflections of the same
word. The Semantic Scope, on the other hand, categorizes the relevant elements of
the respective domain and describes their relationships. It therefore conforms to an
ontological representation of the target domain. In this case study, we will mainly
focus on the Construction Scope and examine several analyses in this context. The
Construction Scope combines syntactical and semantic specifications in the notion
of Cognitive Linguistics, i.e. it interweaves the syntactic construction rules with
information from the Semantic Scope.

30Ontologies are often based on description logics which represent a subset of first-order predicate
logic. For more information see http://dl.kr.org/.
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The three scopes are all based on a common infrastructure called Reference Scope.
Shown in Figure 10.28, this specification defines the underlying concepts and rela-
tionships shared by the three main scopes. Although there are differences both in
structure and in semantics when compared to the well-known MOF/UML, in the
context of this case study we can assume that these concepts have a similar mean-
ing. For example, Elements correspond to MOF classes while Relationships denote
references between these types.

Figure 10.29.: Construction Scope of the SE-DSNL metamodel [FB10].

Figure 10.29 shows an excerpt of the SE-DSNL metamodel depicting the elements
of the Construction Scope and their relations to classes from the Semantic Scope. The
most important concept here is the Construction class which combines information
from the syntactic and the semantic domains: “Inheriting from ConstructionEle-
ment, the central element of the ConstructionScope, it consists of a set of Symbols
as well as Statements. A Symbol can be used to reference any kind of information,
be it SemanticElements (SemanticSymbol), SyntacticElements (SyntacticSymbol) or
other Constructions (ConstructionSymbol)” [Fis13].

10.3.2. Static Semantics and Guidelines

In order to ensure that a given SE-DSNL ontology model is sound, it must adhere
to a set of restrictions (static semantics) which relate to the structural composition
of the model’s elements. [Fis13] lists a set of modeling guidelines which detail
these requirements. For the purpose of this case study, a subset of guidelines which
apply to both the Semantic Scope and the Construction Scope has been selected. A
condensed version of these descriptions will be presented in the following paragraphs.
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Predicates

Let 𝑆 be the set of all elements contained within the Semantic Scope of a metamodel
instance. Then 𝑆𝑒 ⊆ 𝑆 is the set of all SemanticElements in 𝑆. 𝑆𝑎 ⊆ 𝑆 is the set of
all Associations in the Semantic Scope.

𝑔𝑒𝑛(𝑎, 𝑏) validates for 𝑎, 𝑏 ∈ 𝑆𝑎 if 𝑏 is a Generalization of 𝑎. The Generalization
relationship is transitive

𝑒𝑞𝑢𝑎𝑙(𝑎, 𝑏) := 𝑎 == 𝑏, i.e. it validates if two elements a and b are the same

ℎ𝑎𝑠𝑇𝑦𝑝𝑒(𝑎) where 𝑎 ∈ 𝑆𝑎, validates if 𝑎 has a type, i.e. if 𝑎.𝑡𝑦𝑝𝑒 ∈ 𝑆𝑒

𝑖𝑠𝑇𝑦𝑝𝑒(𝑎, 𝑠) validates for 𝑎 ∈ 𝑆𝑎, 𝑠 ∈ 𝑆𝑒 if 𝑠 is the type of the Association 𝑎

𝑖𝑠𝑆𝑜𝑢𝑟𝑐𝑒(𝑎, 𝑠) validates for 𝑎 ∈ 𝑆𝑎, 𝑠 ∈ 𝑆𝑒 if 𝑠 is the source of the Association 𝑎

𝑖𝑠𝑇𝑎𝑟𝑔𝑒𝑡(𝑎, 𝑠) validates for 𝑎 ∈ 𝑆𝑎, 𝑠 ∈ 𝑆𝑒 if 𝑠 is the target of the Association 𝑎

Restrictions on the Semantic Scope

S1 ∃𝑒 ∈ 𝑆𝑒 ∀𝑚 ∈ 𝑆𝑒 𝑔𝑒𝑛(𝑚, 𝑒), i.e. all SemanticElements must be part of a single
Generalization hierarchy

S2 Multiple inheritance is allowed

S3 ∀𝑒, 𝑓 ∈ 𝑆𝑒 ¬(𝑔𝑒𝑛(𝑒, 𝑓) ∧ 𝑔𝑒𝑛(𝑓, 𝑒)) ∨ 𝑒𝑞𝑢𝑎𝑙(𝑒, 𝑓): Generalization links are not
allowed to form circles.

S4 ∀𝑎 ∈ 𝑆𝑎 ℎ𝑎𝑠𝑇𝑦𝑝𝑒(𝑎): Each Association must contain a type

S5 The type of an Association 𝑎 ∈ 𝑆𝑎 must be part of a different Generalization
branch than the source and target elements of the Association: Let 𝑜 ∈ 𝑆𝑒 be
the root element of the ontology, 𝑒𝑠 ∈ 𝑆𝑒 the source of an Association, 𝑒𝑦 ∈ 𝑆𝑒

be the type and 𝑒𝑡 ∈ 𝑆𝑒 the target of the Association. Then ∀𝑚𝑠,𝑚𝑦,𝑚𝑡 ∈
𝑆𝑒 𝑖𝑠𝑆𝑜𝑢𝑟𝑐𝑒(𝑎, 𝑒𝑠) ∧ 𝑖𝑠𝑇𝑎𝑟𝑔𝑒𝑡(𝑎, 𝑒𝑡) ∧ 𝑖𝑠𝑇𝑦𝑝𝑒(𝑎, 𝑒𝑦) ∧ 𝑔𝑒𝑛(𝑒𝑠, 𝑜) ∧ 𝑔𝑒𝑛(𝑒𝑦, 𝑜) ∧
𝑔𝑒𝑛(𝑒𝑡, 𝑜)∧ 𝑔𝑒𝑛(𝑚𝑠, 𝑜)∧ 𝑔𝑒𝑛(𝑚𝑦, 𝑜)∧ 𝑔𝑒𝑛(𝑚𝑡, 𝑜)∧ 𝑔𝑒𝑛(𝑒𝑠,𝑚𝑠)∧ 𝑔𝑒𝑛(𝑒𝑦,𝑚𝑦)∧
𝑔𝑒𝑛(𝑒𝑡,𝑚𝑡) ∧ ¬𝑒𝑞𝑢𝑎𝑙(𝑚𝑦,𝑚𝑡) ∧ ¬𝑒𝑞𝑢𝑎𝑙(𝑚𝑠,𝑚𝑦)

S6 The information within the Semantic Scope must always be modeled either in
an active or a passive representation

Restrictions on the Construction Scope

C1 Constructions must be organized in a single Generalization hierarchy

C2 Multiple inheritance is not allowed

C3 ∀𝑒, 𝑓 ∈ 𝑆𝑒 ¬(𝑔𝑒𝑛(𝑒, 𝑓) ∧ 𝑔𝑒𝑛(𝑓, 𝑒)) ∨ 𝑒𝑞𝑢𝑎𝑙(𝑒, 𝑓): Generalization links are not
allowed to form circles
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C4 Atomic Constructions always reference exactly two symbols, one SyntacticSymbol
and one SemanticSymbol

C5 The desired level of detail for construction rules results in a trade-off between
precision and recall31

C6 Constructions must be modeled in a way that prevents the infinite application
of rules

10.3.3. Use Case: Validation of the Construction Scope

An exhaustive overview of all analyses which have been defined for SE-DSNL can
be found in Appendix C.2.1. Overall, 25 attributions have been specified which
define 25 attributes assignments and 15 attribute constraints. Since the analysis
specifications are very fine-grained, they take up 744 lines when formatted using
the default settings. The accompanying rule implementations in Java (including
comments and formatted according to Java coding style guidelines) comprise an
additional 1082 lines.
In this section, we will examine three of these analyses more closely to exemplify

the application of data-flow analysis in this domain. More specifically, this selec-
tion will serve to demonstrate how the notion of flow analysis can be applied to
the SE-DSNL approach. While all three specifications focus on the validation of
properties of the Construction Scope, it is evident that they can be (and have been)
applied to evaluate the Semantic Scope as well with only minimal adaptions. The
examples which are presented in the following paragraphs implement restrictions of
different complexity. They range from straightforward constraints which require the
examination of an object’s local properties to more elaborate specifications which
rely on the combination of multiple analysis results.

Validating Construction Symbol References

The first example consists of a simple constraint that can be evaluated based solely
on locally available information. The goal here is to perform a consistency check
on the symbols and mappings of a Construction in accordance with C4: If a symbol
is set in a mapping (mappings are stored in the containsMappings relationship) as
either destination1 or destination2, it must also be included in the list of referenced
symbols available through the referencesSymbols association. In the case of missing
symbols, an error notification should be raised describing the violation.
The attribution which implements this restriction is depicted in Algorithm 39. It

defines an attribute constraint symbols_in_construction_cons which is attached to
the Construction class and possesses the severity level error.
The result value is computed by the data-flow rule rule_symbols_in_construction:

First the sets of referenced symbols and contained mappings of the Construction are

31Precision is the amount of relevant information in relation to all returned information while recall
denotes the percentage of information considered to be relevant in comparison to all relevant
information.
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Algorithm 39 The attribution symbols_in_construction

1: Attribution symbols_in_construction

2: attribute constraint symbols_in_construction_cons : error
3: extend Construction with
4: occurrenceOf symbols_in_construction_cons
5: calculateWith rule_symbols_in_construction

1: Rule rule_symbols_in_construction(attrDef, context)
2: referencesSymbols ⇐ context.referencesSymbols
3: containsMappings ⇐ context.containsMappings
4: for all (mapping : context.containsMappings) do
5: if (not referencesSymbols→contains(mapping.destination1)) then
6: missingSymbols ⇐ missingSymbols ∪ mapping.destination1
7: if (not referencesSymbols→contains(mapping.destination2)) then
8: missingSymbols ⇐ missingSymbols ∪ mapping.destination2
9: if (missingSymbols→size != 0) then
10: context[symbols_in_construction_cons ] := ’Missing symbols ’ +

missingSymbols.name
11: return (missingSymbols→size == 0)

acquired through the respective associations referencesSymbols and containsMappings
as defined by the metamodel [2−3]. Then, a loop iterates over each mapping, reading
the destination’s attribute fields which have been set for this mapping and checking
whether they are contained in the referenced symbols of the Construction [4 − 8].
If symbols are found to be missing, a notification is generated for the object which
failed the test [9 − 10]. To provide further assistance to the user, this message
includes the names of all missing symbols. Finally, the status of the constraint is
set to passed (true) or violated (false) depending on the result of the validation [11].

Validating the Construction Generalization Hierarchy

The static semantics for the SE-DSNL language demand that the generalization
hierarchy of Constructions is consistent. To fulfill this property, it must be ensured
that no cyclic inheritance relationships are present (C3). Consequently, if the model
does specify cyclic generalizations, a notification should be generated which enables
the user to identify the Constructions which are part of a cycle along with a unique
identifier for each of these SCCs so that it becomes obvious which Constructions
belong to the same cycle.
To achieve this goal, the attribution specification in Algorithm 40 defines an at-

tribute constraint circle_constructions_const which computes the desired output.
The constraint relies on a SCC detection carried out for the generalization hi-
erarchy of the Constructions. This information is computed by the attribute cir-
cle_construction_values_assign.
The algorithm also lists pseudo code implementations for the data-flow rules
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Algorithm 40 The attribution circle_constructions

1: Attribution circle_constructions

2: attribute assignment circle_constructions_values_assign : HashMap
3: initWith EmptyHashMap
4: attribute constraint circle_constructions_const : error
5: extend Construction with
6: occurrenceOf circle_constructions_values_assign
7: calculateWith rule_circle_constructions_values_assign
8: occurrenceOf circle_constructions_const
9: calculateWith rule_circle_constructions_const

1: Rule rule_circle_constructions_values_assign(attrDef, context)
2: return circle_generic(’all_con_successors_assign’, ’Generalization’,

’contains’, ’references’)

1: Rule rule_circle_constructions_const(attrDef, context)
2: sccID ⇐ context[circle_constructions_values_assign ]
3: if (sccID != INIT) then
4: context[circle_constructions_const ] := ’Construction ’ +

context.name ’ belongs to SCC ’ + sccID
5: return false
6: return true

rule_circle_constructions_values_assign and rule_circle_constructions_const: The
computation of the SCC identifier for the local Construction node is relayed to the
method circle_generic. This function (cf. Section 9.2.3) is configured with several
analysis-specific parameters: all_con_successors_assign is the attribute responsible
for computing the set of transitive successors [2]. In this case, the successors are
accessed through the Generalization relationships which, in turn, use the contains as-
sociation to link back to Constructions through references. Depending on the result
of the cycle detection, the attribute constraint rule rule_circle_constructions_const
sets an error message which identifies the local context and also includes the unique
SCC identifier shared by all Constructions belonging to the current cycle [4].
It should be noted that the separation between an assignment and a constraint

attribute necessitates (at least) one additional rule execution for each Construction.
However, as will become evident in the next example, this setup enables the reuse
of the SCC identifier computed by circle_construction_values_assign.

Validating the Construction Hierarchy

The final example combines the validation of three requirements in a single speci-
fication, namely that each Construction has to be part of a single, non-cyclic gen-
eralization hierarchy with a unique root element as well as checking for erroneous
multiple inheritance relations. This analysis depends on the previously described
SCC detection for Constructions and enhances this definition with additional checks.
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The goal here is to implement a unified computation of the well-formedness rules
C1, C2 and C3 as opposed to the previous example which only validates C3. For
reasons of clarity, only a subset of this attribution is presented and discussed here.
The missing parts of the analysis specification can be found in Appendix C.2.2.

Algorithm 41 Data-flow rule for the attribution construction_in_hierarchy

1: Rule construction_in_hierarchy(attrDef, context)
2: failedObjects ⇐ context[constructions_in_hierarchy_assign ]
3: if (failedObjects→getValue(context) != null) then
4: roots ⇐ failedObjects→getValue(context)
5: if (roots→size == 0) then
6: sccID ⇐ context[circle_constructions_values_assign ]
7: for all (succObj : context[all_gen_successors_objects_assign ]) do
8: if (sccID == succObj[all_gen_successors_objects_assign ]) then
9: cycleObjects ⇐ cycleObjects ∪ succObj
10: context[construction_in_hierarchy_const ] ⇐ ’Construction ’ +

context.name + ’ is in cycle ’ + additions.name
11: else
12: context[construction_in_hierarchy_const ] ⇐ ’Construction ’ +

context.name + ’ is one of multiple roots ’ + roots.name
13: return false
14: if (context[element_with_single_parent_assign ]→size > 1) then
15: context[construction_in_hierarchy_const ] ⇐ ’Too many parents’
16: return false
17: return true

The rule construction_in_hierarchy, shown in Algorithm 41, computes the iter-
ation value of the attribute constraint construction_in_hierarchy_const. This con-
straint is attached to and therefore evaluated for every Construction in the model. To
perform the necessary sanity checks, the map failedObjects is acquired through the
attribute constructions_in_hierarchy_assign (note the additional ’s’) [2]. This data
structure is computed once per model at the model’s root container, the Domain
(cf. Figure 10.28). It associates Constructions which have failed the validation with
either an empty list if the Construction is part of a cyclic generalization hierarchy or
the list of all Construction root elements if the uniqueness property is violated.
According to the type of the detected problem, a corresponding error message

is assembled. This message either indicates which elements constitute the SCC to
which this Construction belongs (using the circle_constructions_values_assign as de-
fined in the previous example and the successor analysis as described in Section 9.2.2)
[10] or a list of all detected root nodes (which thus violate the unique root element
property) [12]. The final check validates whether an element’s parents are correctly
set by querying and evaluating the attribute element_with_single_parent_assign
[14 − 15]. This attribute keeps track of the number of parents a model element
has been assigned to based on its contained (contains) Generalization relationships.
Note that, because of the generic nature of the metamodel’s Reference Scope, this
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restriction cannot be incorporated into the abstract syntax.

10.3.4. Tooling Integration

The SE-DSNL approach has been implemented in a research prototype. This ap-
plication makes use of the modeling facilities provided by Eclipse, namely the EMF
metamodeling framework and the Graphical Modeling Framework (GMF) which
is used to complement the abstract syntax with a graphical DSL editor (cf. Ap-
pendix C.2.3). This technological ecosystem facilitates a straightforward integra-
tion of analysis capabilities following the approach described in Section 8.3.5. In
this section, we will illustrate the technical and functional aspects of this process.
By applying the principles laid out in Figure 8.10, it is possible to extend the

SE-DSNL tooling without having to modify any parts of the framework. As a first
step, the primary components of the MAF library - namely the plugins MAF-Core
and MAF-Models - were added to the existing build configuration. The implemen-
tations of the analysis specifications and the technology bridge are combined in a
single plugin (brms-validation). This component declares a dependency to the re-
spective SE-DSNL plugins and thus is able to access the graphical editor and the
model management facilities.

Figure 10.30.: The analysis configuration dialog.

To expose analysis functionality to users, brms-validation contributes preference
settings32 to Eclipse and adds toolbar entries which support the configuration and
execution of the validation process. Each time an analysis is triggered, a custom
implementation of a MAF model adapter (which is part of the technology bridge)

32Eclipse’s preference store concept can be used to (de)serialize and store application-specific
parameters.
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acquires the active model resource from the diagram editor and strips away GMF-
specific visualization data to increase performance and reduce memory consumption.
In addition to on-demand invocations which have to be explicitly triggered by the
user, it is also possible to configure the validation services to operate in live mode.
If this option is selected, the analysis is executed automatically each time the EMF
resource reports a change. To reduce the performance impact in live validation mode,
the configuration dialog (shown in Figure 10.30) offers the possibility to constrain
the evaluation to a relevant subset of the available analyses.

(a) Problem markers in
the graphical editor

(b) Problem markers in the global problem view

Figure 10.31.: Seamless integration of problem reports in the SE-DSNL IDE.

The technology bridge also includes domain-specific implementations of MAF Re-
sult Processors which are capable of refining the analysis results. These functions
make use of Eclipse’s problem indication facilities to generate problem markers for
erroneous model elements. These markers are then used to create appropriate visu-
alizations for the detected constraint violations in both the graphical editor and in
Eclipse’s global problem view: The GMF editor displays problem markers as sym-
bols in the context of the respective diagram elements (cf. Figure 10.31(a)) while
the problem view shows a list of the markers attached to the currently active model
resource (cf. Figure 10.31(b)). It is possible to select an entry in the problem view
and directly navigate to its counterpart in the graphical editor.

10.3.5. Evaluation of the Use Cases

The SE-DSNL prototype ships with two case studies. They consist of large models
which simulate the requirements of real-world application scenarios. It can therefore
be assumed that these case studies also represent a solid basis for the evaluation of
the developed analyses. Information about the instantiation and solving processes
has been recorded using MAF’s inbuilt statistical evaluation facilities. Table 10.9
shows the acquired results for the execution of all available analyses for both example
models. Conversely, Table 10.10 lists the statistical recordings for the evaluation of
a single analysis, constructions_in_hierarchy. It should be noted that the latter
case also includes the computation of implicitly required information such as the
successor analysis for the Generalization hierarchy.
It can be seen that the models contain a large amount of objects: 3324 and 2054

model elements for caseStudy1.brms and caseStudy2.brms respectively. Table 10.9
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File Model Attribute Rule Cons. Cons. Time
elements instances exec. passed violated

caseStudy1.brms 3324 4359 4377 1456 37 534.1ms
caseStudy2.brms 2054 2685 2685 864 159 378.1ms

Table 10.9.: Results for all attributions.

File Elements Instances Exec. Cons.
passed

Cons.
violated

Time

caseStudy1.brms 3324 1186 1201 273 29 121.9ms
caseStudy2.brms 2054 413 413 103 0 55.0ms

Table 10.10.: Results for attribution constructions_in_hierarchy.

indicates that, if all defined analyses are executed, the instantiation of the attribu-
tions yields 4359 attribute instances for the first and 2685 instances for the second
model. By definition, the amount of instances also represents the lower bound for
the execution of iteration rules since each attribute must be computed at least once.
For caseStudy1.brms, the number of rule invocations (4377) is only slightly higher
than the amount of attribute instances. Since the execution of initialization rules is
excluded from this number, this indicates that an iterative fixed-point computation
must have taken place. For the second model caseStudy2.brms, each data-flow rule
was executed only once, suggesting that no cyclic dependencies exist between the
contained elements.
The examination of the statistical data leads to the conclusion that the constraint

attributes (which represent the final analysis results) amount to about roughly a
third of all instances with the remaining attributes realizing preparatory functions
such as SCC detection. Considering that the case studies are officially shipped with
the SE-DSNL tooling, it is perhaps surprising that a substantial number of violations
were discovered. The detected problems amount to 2,48% of the total number of
checked constraints for the first and 15.54% for the second example.
Table 10.11 lists the incidences of the failed attribute constraints: In both mod-

els, violations have been detected for formroot_for_form_const (a sanity check per-
formed on the Syntactic Scope of the SE-DNSL model). This result indicates a num-
ber of dangling Form elements which are not contained in a FormRoot. Another check
which fails for both examples is semantic_symbol_references_element_const. This
problem type points to a faulty structure in the Semantic Scope. This error is how-
ever much more prevalent in the second model. Finally, circle_constructions_const
and construction_in_hierarchy _const are checks that failed only for the first exam-
ple. The former constraint indicates the presence of cyclic Generalization hierarchies
while - according to the generated information messages - the latter was able to
identify irregularities in the form of multiple root elements.
For obvious reasons, the time required for the completion of an analysis is an

important factor which affects the usability of the developed applications. This is
especially true for domains like SE-DSNL where large-scale models are common and
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Analysis Amount Description

caseStudy1.brms
formroot_for_form_const 1 Validates whether each Form belongs

to a FormRoot
circle_constructions_const 2 Checks whether Constructions contain

a cycle
semantic_symbol_references
_element_const

5 Validates whether all SemanticSym-
bols possess a valid referencesElement
value

construction_in_hierarchy
_const

29 Validates whether each Construction is
part of a hierarchy, does not belong to
a cycle and if there exists only one root
Construction

caseStudy2.brms
formroot_for_form_const 5 Validates whether each Form belongs

to a FormRoot
semantic_symbol_references
_element_const

154 Validates whether all SemanticSym-
bols possess a valid referencesElement
value

Table 10.11.: Violated constraints for caseStudy1.brms and caseStudy2.brms.

analyses have to be executed repeatedly to provide immediate feedback to the user
during the modeling process. Not surprisingly, the statistical evaluation shows that
the worst case consists of the evaluation of all 25 attributions for the 3324 model
elements of caseStudy1.brms. Overall, this process takes about half a second. On
the other hand, the constrained evaluation of the same model (which nevertheless
computes 1186 separate result values) takes about 120 milliseconds.

10.3.6. Summary and Discussion

In this case study, we introduced the SE-DSNL approach and discussed several flow-
based analyses which implement sanity checks for the model-based domain-specific
language. The specification of these analyses and the development of the correspond-
ing tooling extensions was supervised by the author of the SE-DSNL technique. For
this reason, this case study represents an opportunity for an evaluation of the ap-
plication of DFA in what constitutes a typical usage scenario: Based on an informal
definition of well-formedness rules, analyses had to be specified and the tooling envi-
ronment had to be augmented with the required capabilities. This matter concerns
the extension of existing program modules in a non-intrusive manner as well as
a seamless integration of analysis configuration and execution functionality and a
suitable visualization of the results. Furthermore, the comparatively large models in
this domain facilitate an evaluation of the performance aspects of the DFA solving
algorithms implemented in the Model Analysis Framework.
Section 10.3.3 detailed three specific use cases chosen from the set of all analy-
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ses which have been defined for the SE-DSNL domain (listed in Appendix C.2.1).
These examples range from simple constraints which can be computed from an el-
ement’s local properties to more complex, incremental specifications which rely on
results from other analyses and reuse templates from the DFA standard library. Be-
cause the objective of this case study represents a typical validation scenario, the
final result of each analysis always consists of a set of attribute constraints. While
some restrictions, such as C4 could also be implemented using canonical constraint
languages such as OCL, others such as C3 rely on the principles of information
propagation and fixed-point computation. It was demonstrated that the flow anal-
ysis technique supports the implementation of both simple and complex rules and
thus provides a unified interface for analysis developers as well as for users. From
the list of constraints provided in Section 10.3.2, it can be deduced that analysis
specifications for the different scopes of the language are often very similar in nature.
For example, both the Syntactic Scope and the Semantic Scope require non-cyclic
inheritance hierarchies. However, at the same time, they either explicitly allow or
prohibit multiple inheritance for Generalizations. The presented analyses limit the
computational overhead by relying on already computed results. Reuse on the im-
plementation level could still be improved, for example through a parameterization
of the data-flow rules as demonstrated in Section 10.1.
Unsurprisingly, it is not possible to implement all restrictions of the target domain

using static analysis methods as some of the language’s semantics define conceptual
rather than structural constraints. This includes for example S6 and C5 which can
be interpreted as guidelines for language engineers. Others - such as C6 - involve
dynamic properties of the language that cannot be verified using static methods.
The evaluation of the official case studies packaged with the SE-DSNL framework

yielded some interesting insights: In general, there were almost no violations of the
no cyclic definitions constraints, meaning that fixed-point computation was only
necessary in the rare occasion of an erroneous specification. In fact, most of the
detected errors belong to the category of basic syntactic problems. In this context,
it is important to emphasize that the confirmation of the correctness of a model
is just as relevant as the detection of errors. It can also be assumed that, since
the supplied models represent fully implemented use cases which have already been
put to the test in various NLP scenarios, the absence of major problems is not
surprising. Obviously, the situation will be different for inexperienced users or when
new models are created from scratch. In these cases, the incremental validation of
the constraints during the modeling process can be very helpful since the detection
of problems during early stages of the design phase is likely to prevent more complex
problems which might arise from the erroneous definitions in later stages.

We will now summarize our findings:

Implementation effort
The SE-DSNL framework is built upon the Eclipse platform and makes use of
the EMF and GMF facilities to implement a domain-specific language. This
setup provided an excellent starting point for the integration of the Model
Analysis Framework: No existing code had to be modified in order to extend
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the tool chain with analysis capabilities. Configuration dialogs and visualiza-
tion of the analysis results are fully integrated with the IDE. The notification
subsystem which employs Eclipse’s problem marker infrastructure to provide
feedback to the user was contributed to the Model Analysis Framework by the
author of the SE-DSNL approach.

Classification
Since this case study automates the checking of restrictions which were origi-
nally stated in an informal fashion, it represents a typical validation scenario
for the DFA approach. The final results consist of attribute constraints which
rely on intermediate computations to generate exhaustive information about
detected problems: In addition to the status (passed/violated), each constraint
indicates the violation type (error/warning/information) and outputs a mes-
sage which details the respective findings.

Reuse
The analyses make use of the functions described in the standard library for
control-flow graphs (cf. Section 9.2) which have been adapted to the SE-DSNL
domain. The computation of transitive predecessor/successor sets enables the
detection of multiple root elements in Generalization hierarchies and represents
the basis for the identification of cyclic paths. The aspect of reuse can also
be found in the domain itself as some constraints can be applied to different
scopes of the SE-DSNL DSL with minimal modifications.

Usability
The seamless integration with the SE-DNSL tooling enables language engineers
to focus on their respective tasks. Since the result visualization makes use of
the corresponding Eclipse facilities, users can rely on their previous experience
with this IDE while benefiting from clear and easily accessible feedback. A
very useful feature in this context is the configurable live analysis mode which
automatically updates the validation status each time the state of the model
changes.

Performance
The analyses were applied to two example models and the characteristics of
their execution were recorded using MAF’s statistical evaluation facilities (cf.
Section 10.3.5). These measurements as well as the experiences reported by
the users indicate that this approach represents a valuable addition for lan-
guage engineers. However, the typically very large SE-DNSL models have been
identified as an inherent challenge of this domain and as a result, the usage
of the live validation mode is typically restricted to a subset of the available
analyses.

During the review of the implemented analyses, we identified several starting
points for future work. For example, it would be possible to extend the current
functionality by implementing a more exhaustive validation of the restrictions listed
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in Section 10.3.2. Additionally, we intend to provide further assistance which enables
users to not only validate but also improve the quality of the modeled artifacts.

Implementation of constraint (S5)
This constraint states that the type of an Associationmust be part of a different
Generalization hierarchy than the Association’s source and target elements. To
implement this constraint, it is necessary to compute a unique identifier for
each inheritance graph and assign this value to all participating objects. For
this purpose, it would be sufficient to generate the hash value of the set of all
elements which belong to a specific hierarchy. The participating elements can
be computed by creating the union of the transitive Generalization successors
and predecessors. Finally, a constraint defined in the context of Associations
can compare the identifier of the Association’s hierarchy to the identifiers of
its referenced elements.

Improve precision/recall (C5)
Achieving a satisfactory balance between precision and recall is an often en-
countered challenge in the area of information retrieval. In the case of NLP-
enabled information extraction, the quality of the modeled knowledge heavily
depends on the respective domain and the intended use cases. For this reason,
a majority of the responsibility rests with the knowledge engineer who encodes
domain-specific information using the SE-DSNL approach. Although it is dif-
ficult to assess the quality automatically, it would be possible to implement a
set of heuristics which are able to assist the user in this task. One example
would be the measurement of the granularity on a structural level. A concrete
implementation could yield the average depth of Construction hierarchies and
compute whether they form well-balanced trees. Depending on the desired
level of detail (fine-grained or coarse) this would enable the modeler to assess
the quality of the model with respect to the current requirements.

Heuristics for infinite loop detection (C6)
Infinite loops are a result of the interpretation of the SE-DSNL models ac-
cording to their dynamic semantics. For this reason, a reliable detection of
these cases cannot be accomplished using static analysis. However, it would
nevertheless be possible to compute a maximal approximation by taking into
account every valid rule application. This way, potential problems can be
identified and indicated to the user who can then examine the potentially
problematic instances. Extending the SE-DSNL framework with the ability
to mark Construction elements as relevant or ignore them based on a manual
review can help to improve the precision of this analysis.

Further changes can be made to improve the structure of the attributions and the
performance of the analysis:

∙ One could argue that the level of detail of the analysis specifications - mostly
one attribute per attribution - may in fact be too fine-grained. A viable
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alternative would be to cluster the attributions by scope and only execute the
analysis collection for the scope in which the user is currently active. This
solution would not only reduce the maintenance effort for developers but also
provide users with the required information for their current working context
while at the same time improving the performance of the analysis.

∙ The performance issues which arise from the large-scale models in this domain
can also be addressed by other means. For example, instead of analyzing the
whole model, only the elements that have been modified by a user interaction
can be submitted for reevaluation. The dynamic dependency discovery feature
of the DFA algorithms ensures that all secondary attributes which are relevant
to the evaluation of the requested results are automatically computed as well.
Furthermore, it would be possible to execute the analyses in a background
process to ensure that the validation does not interfere with the modeling
process. In this case, the results would be displayed in a time-delayed fashion
once the analysis has completed.

10.4. Case Study: AUTOSAR

In this case study, we will present a use case in the context of the development of
modern automotive systems. Due to the increasing computerization of cars, the
physical limitations of current embedded computing platforms become more and
more evident. A promising solution to this problem exists in the form of multicore
systems which provide more computational power while consuming less energy. How-
ever, due to the inherent complexity of parallelized software, new challenges arise
that have to be addressed by car manufacturers and component suppliers alike. For
this reason, developers require new methods and tools which support them in the
task of designing and implementing software for embedded multicore systems.
This case study is based on the research work detailed in the peer-reviewed paper

[Kie+14] and the master thesis [Min12]. Both publications focus on the validation
of AUTOSAR models with the stated goal of optimizing the system design for par-
allelized hardware. An important step in this process consists of the examination of
data dependencies between the modeled components, the so-called RunnableEntities.
The goal is to provide feedback to developers about the validity of their architectural
design and to offer semi-automatic problem resolution methods for identified issues.
The proposed approach for flow-based model analysis represents an integral part of
the methodology described in this section.

10.4.1. Introduction and Motivation

Today, manufacturers in the automotive domain have to deal with increasing ex-
pectations from customers concerning the availability of safety and entertainment
features. An additional complication exists in the fact that the manufacturing pro-
cess itself is more and more characterized by a fine-grained division of labor: Car
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manufacturers assemble their products from components that they buy from differ-
ent vendors and which must be configured to work together properly. Because of
the large number of components and the increasingly complex interactions between
them, this has become a very challenging task. One of the industry’s responses con-
sists of the AUTomotive Open System ARchitecture (AUTOSAR) initiative. The
stated intent of this cooperative effort - which involves many leading car manu-
facturers, component suppliers and providers of software tools - is to standardize
interfaces and development methodologies in the automotive domain.
The adoption of the AUTOSAR methodology - and its model-based domain-

specific language - provides an opportunity to address the challenges which result
from the increasing demands of non-mechanical (i.e. software) functionality. As
automotive software systems become more complex, more processing power is needed
to satisfy the higher requirements. Because “single core architectures are approaching
their limits concerning for example clock speed, memory speed and temperature [the]
system manufacturers are trying to reduce the number of Electronic Control Units
(ECU) while increasing the system functionality” [Min12]. For cost reasons and
because of physical limitations, this goal must be achieved at lower rates of energy
consumption than is currently possible. An obvious solution to this problem lies
in the switch from single to multicore systems. Unfortunately, this step also raises
new issues as the derivation of a suitable parallelized scheduling for the functional
software entities in AUTOSARmodels is a non-trivial task. More specifically, it must
be ensured that the development models specify precise and consistent execution
orders. In a subsequent step, these can then be used to compute a scheduling which
balances the workload for multiple processing cores.

AUTOSAR

The AUTOSAR initiative33 was “founded in 2003 by major OEMs and Tier1 sup-
pliers and now includes a large number of automotive, electronics, semiconductor,
hard- and software companies. AUTOSAR aims at facilitating the re-use of soft-
and hardware components between different vehicle platforms, OEMs and suppli-
ers”. This is achieved through a “methodology that supports a distributed, function-
driven development process and standardizes the software-architecture for each ECU
in such a system” [Fen+06]. A central element of AUTOSAR is the Virtual Function
Bus (VFB) which decouples the software components from the hardware infrastruc-
ture through standardized interfaces. In the following, we will discuss aspects of
AUTOSAR which are of relevance to the implementation of this use case.
The smallest functional unit defined by the AUTOSARmetamodel is the Runnable-

Entity. This type represents an executable piece of code and is a subclass of Exe-
cutableEntity. A runnable is part of a software component (SwComponentType, cf.
Figure 10.32(a)). It is important to note that the same RunnableEntity can have mul-
tiple occurrences in a single model: As can be seen in Figure 10.32(b), a composed
component (CompositionSwComponentType) may reference arbitrary SwComponent-
Types. The implications of this principle are illustrated in Figure 10.32(c). The

33http://www.autosar.org
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(a) A RunnableEntity is part of
an InternalBehavior, which in
turn is part of a component

(b) A Composition-
SwComponentType
can include several
instances of the same
component

(c) Example with four instances of the
same RunnableEntity

Figure 10.32.: Software components and runnable entities in AUTOSAR [Min12].

CompositionSwComponentType C2 itself is used in two contexts (P3.1 and P3.2).
Since C2 in turn has two references to the AtomicSwComponentType C1 which con-
tains the runnable R1, there are four “instances” of R1 overall.
The properties of the communication between runnables can be specified in more

detail using different types of constraints. For example, AgeConstraints (AC) can
be used to impose a limit on the age of a data element. This is necessary if write
and read accesses span multiple computing cycles. In this case, an AC can be
defined which explicitly states that reading a value computed in a previous cycle
is legal. An ExecutionOrderConstraint (EOC), on the other hand, imposes a specific
execution order by annotating an ExecutableEntity with a list of required successor
entities. Both constraint types are relevant to this case study as both affect whether
a concrete scheduling for runnables is considered to be valid.

Multicore Development for AUTOSAR models

The computation of correct schedulings for RunnableEntities requires knowledge
about valid execution sequences. In a multicore environment, it is often preferable
to allow for a certain amount of flexibility as this provides the scheduling algorithm
with more options when assigning functional units to processing cores: [Kie+14]
states that developers have to “preserve as much freedom as possible and simulta-

351



Chapter 10. Case Studies and Applications

neously prevent the system from entering problematic states that cause, e.g., race
conditions, data inconsistencies or dead locks”. As mentioned, in AUTOSAR, this
can be achieved through the use of ExecutionOrderConstraints: Rather than impos-
ing a rigid sequence for the execution of entities, these elements represent a set of
conditions which must be met by each valid scheduling. At the same time, these
constraints can be used to validate the current system design, for example by check-
ing for potentially problematic cyclic data dependencies. Furthermore, it is possible
to improve an existing design by making constraints explicit whose existence can be
derived from the model’s structure. This enables the scheduler to explore a more
focused set of candidates to find valid and well-balanced execution sequences.

Figure 10.33.: Runnable entities of the TIMMO breaking system [Min12].

The authors propose multiple constraint detection and resolution techniques which
are based on an in-depth analysis of ExecutionOrderConstraints and AgeConstraints
in AUTOSAR models. The method which we will examine more closely in this case
study deals with the validation and derivation of constraints based on an evaluation
of the declared data dependencies. [Kie+14] states that the “goals are to discover
design weaknesses, to automatically solve trivial pitfalls, to support the elimination
of the remaining conflicts (mainly cycles) and to write back the modifications to the
model”. The application scenario described in this section will be exemplified in the
context of an example model which has been developed by the TIMMO project34.
This model, shown in Figure 10.33, describes the architecture of a breaking sys-
tem. It defines three main software components - a brake pedal sensor, a brake
controller and a brake actuator - each of which contains one or more runnables.
The components exchange data using AssemblyConnectors, for example BrakePedal-
Position which forwards sensor data to the controller. However, information is also
exchanged on the RunnableEntity level: The connector BrakeForce supplies an input
value to the runnable reBrakeActuator which processes this information and relays it
to reBrakeActuatorOutput which in turn provides feedback to reBrakeActuatorMoni-
toring.
[Min12] emphasizes the importance of data dependencies for the determination of

schedulings for parallelized executions: “[M]ost challenges of multi core systems are

34http://www.timmo-2-use.org
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(a) reCheck-
Plausibility
writes a vari-
able that
is read by
reBrakeForce-
Calculation

(b) reBrakeForceArbiter
writes a variable that is read
by reBrakeActuatorFrontLeft
and reBrakeActuatorFron-
tRight

(c) reBrakeActuatorFrontLeft
writes a variable that is also
written by reBrakeActua-
torFrontRight and read by
reBrakeActuatorMonitor

(d) reBrake-
ForceCalcu-
lation and
reBrakeActu-
atorMonitor
exchange
data in both
directions

Figure 10.34.: Data dependencies in the running example [Min12].

related to the interaction between the (runnable) entities running on different cores”
as “data dependencies can add constraints on the accepted execution orders of the
runnable entities, because any data has to be produced before it can be consumed”.
Problems that are especially relevant the multicore context include “data races and
deadlocks. Additionally multi core development has to cope with non determinism
and load balancing”. Figure 10.34 depicts different kinds of data dependencies be-
tween the RunnableEntities. In the case shown in Figure 10.34(a), reCheckPlausibility
must be finished before reBrakeForceCalculation is started, if the latter requires the
value computed in the current cycle. Similar semantics apply if multiple entities are
involved as is the case in Figures 10.34(b) and 10.34(c). Circular dependencies, as
depicted in Figure 10.34(d), indicate conflicting constraints. These can, for example,
be resolved by introducing AgeConstraints which explicitly allow entities to access
data produced in previous computing cycles. Alternatively, EOCs can be defined
which enforce a specific execution order.

Figure 10.35.: Conflict resolution for cyclic data dependencies [Kie+14].

This principle is illustrated in Figure 10.35 for five runnable entities (REI). The
model “shows a conflict example where the calculated output from “REI 3” is a neces-
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sary input for the calculation of “REI 5” and vice versa. This cycle has to be broken
up via a constraint that allows the transfered data to be as old as one computing
cycle or that imposes an execution order on the involved REIs” [Kie+14].
The information which can be obtained through an analysis of ExecutionOrder-

Constraints can be supplemented by an evaluation of existing AgeConstraints: If a
read and a write operation are both required to occur in the same cycle, it can be
deduced that the write operation must be carried out before the read access. If the
AgeConstraint states that the read operation may use data which has been computed
in a previous cycle, the operations can be carried out in any order. The same is true
if no constraint has been specified for the data age, although it is generally safer to
assume that accesses must happen in the same cycle. Alternatively, an advisory can
be generated which prompts the user to resolve this situation.
Further methods for the validation of ExecutionOrderConstraints include the anal-

ysis of control-flow dependencies and - if available - entity-to-task mappings. Al-
though these mappings impose a strict ordering on the tasks, they should still be
validated to check whether the control-flow conforms to the declared data depen-
dencies.

Figure 10.36.: Dependencies inside a task [Min12].

The task mapping in Figure 10.36 defines a sequential order for the execution of
runnables. Data dependencies between “reCheckPlausibility and reBrakeForceCalcu-

lation and also between reBrakeForceCalculation and reBrakeForceArbiter are forward
dependencies, because in one computing cycle, the variables are first written then
read. The data dependency between reBrakeActuatorMonitor and reBrakeForceCalcu-

lation is a backward dependency, because in one computing cycle the variable is first
read then written.” [Min12]. It is important to note that, in the latter case, the read
and write operations for a specific instance of the respective data object take place
in different computing cycles: The read access in iteration 𝑛 returns the value set
by the write operation in iteration 𝑛−1. As mentioned above, this case requires the
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definition of an AgeConstraint. In other words, this is considered to be an intentional
backward dependency.

10.4.2. Use Case: Backward Dependency Analysis

Precomputation and Caching of Model Relationships

Due to the complex nature of the AUTOSAR modeling language, extracting infor-
mation from the model is a difficult and time consuming task. For example, since
many of the relationships between elements are unidirectional, navigation in the
opposite direction requires a traversal of a large amount of objects to identify the
respective source. Furthermore, the structure of the metamodel is very detailed
(cf. Figure 10.32). It is therefore often impossible to access the necessary infor-
mation with a single navigational statement. In conclusion, because models in the
AUTOSAR domain tend to be very large and the iterative evaluation of data-flow
attributes may result in many requests to read data from the model, these complex
and costly operations can present a problem for the intended use case.
To address this issue, the authors of the analysis approach propose the execu-

tion of a pre-analysis step which extracts the required information and stores it
in an object cache for quick access. The MAF-based implementation realizes this
functionality through a set of storage maps which are automatically filled before
an analysis is executed. This approach also addresses another problem: A single
RunnableEntity may have multiple logical occurrences in the AUTOSAR model (cf.
Figure 10.32(c)) and therefore may possess multiple contexts with respect to the
dependency analysis. It is therefore necessary to compute a separate DFA result for
each of these occurrences. This problem is comparable to the situation in the JWT
case study where the same subprocess can be referenced at different locations in the
parent process (cf. Section 10.1.1). For this reason, the quick access maps enable
data-flow rules executed for runnables to query all contexts in which the respective
element appears.

The author of [Min12] lists the following properties which have to be computed
ahead of time to improve the performance of the analysis:

∙ RunnableEntities store data accesses to variables. From this information, a map
can be generated which links variables to the runnables which perform read
or write operations on the respective entry.

∙ The ExecutionOrderConstraints for RunnableEntities may be organized in arbi-
trary packages. For this reason, the whole model must be traversed to build a
map which stores the successors for each RunnableEntity.

∙ RTEEvents define triggering frequencies for runnables. This information is
required to assess the status of AgeConstraints. For this purpose, the links be-
tween runnables and their timing events must be evaluated and made available
to the analysis.
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∙ Finally, a reversed access map must be generated which connects DataProto-
types to AgeConstraints.

Analysis of Potential Backward Dependencies

As stated above, the evaluation of ExecutionOrderConstraints involves the analysis of
data dependencies and AgeConstraints. [Min12] states that “the conversion of data
dependencies to execution sequence constraints corresponds to an analysis finding
data dependencies for which data age constraints might be violated for the given set
of execution sequence constraints”. The importance of the evaluation of RunnableEn-
tities is emphasized in particular as “cyclic dependencies at component level do not
necessarily lead to cyclic dependencies at runnable entity level” and therefore “there
has to be an analysis on runnable entity level, rather than only an analysis at com-
ponent level”.
In the first step of the analysis, the outgoing data dependencies of a runnable

must be read from the object cache. Then, the data prototypes of the respective
output variables (VariableDataPrototype) can be acquired. Using this information, a
set of RunnableEntities which perform read accesses on these variables can be built.
By combining all of these results, it is possible to organize the runnables according
to their read/write relationships. Finally, these relationships can be classified as
either forward or (potential) backward dependencies.

(a) Forward dependency (protected by ex-
ecution order constraint)

(b) Forward dependency (multiple execution order
constraints)

(c) Backward dependency (d) Potential backward dependency

Figure 10.37.: Data dependency types [Min12].

Figure 10.37 depicts different configurations of data accesses. The variable access
shown in Figure 10.37(a) imposes a forward dependency as the accompanying EOC
prohibits R1 from being executed after R2. This is also true if the execution order
of runnables is specified indirectly as is the case in Figure 10.37(b). To correctly
assess this scenario, it is necessary to compute all possible successors of a runnable.
The example shown in Figure 10.37(c) specifies a read access by R1 that happens
before the variable value is set by R2. Because of the ExecutionOrderConstraint
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which explicitly states that R1 must be executed before R2, this access has to be
classified as a backward dependency which must be resolved using an AgeConstraint.
The situation in Figure 10.37(d) is somewhat similar although, in this case, no
constraint has been defined. Since no information is available about the execution
order of R1 and R2, this access denotes a potential backward dependency.

Algorithm 42 The attribution obligatory_successors

1: Attribution obligatory_successors

2: attribute assignment obligatorySuccessors : Map(EEI, Set(EEI))
3: initWith ∅
4: extend RunnableEntity with
5: occurrenceOf obligatorySuccessors
6: calculateWith runnableentity_obligatorySuccessors

1: Rule runnableentity_obligatorySuccessors(attrDef, context)
2: executableToInstanceMap ⇐ storageMap.get(“executableToInstanceMap”)
3: directSuccessorsMap ⇐ storageMap.get(“directSuccessorsMap”)
4: for all (eei : executableToInstancesMap.get(localObject)) do
5: directSuccessors ⇐ directSuccessorsMap.get(eei)
6: successorsForInstance ⇐ directSuccessors
7: for all (successor : directSuccessors) do
8: successorRunnable ⇐ successor.getRunnableEntity()
9: successorResult ⇐ successorRunnable[obligatorySuccessors ]
10: successorsForInstance ⇐
11: successorsForInstance ∪ successorResult.get(successor)
12: resultMap.put(eei, successorsForInstance)
13: return resultMap

The attribution listed in Algorithm 42 computes the set of all successors for a
RunnableEntity as a prerequisite for the identification of transitive forward depen-
dencies (cf. Figure 10.37(b)). The analysis is carried out by the data-flow attribute
obligatorySuccessors which computes a result for each runnable. As mentioned above,
this process is complicated by the fact that a single RE can have multiple occur-
rences in an AUTOSAR model, each of which has to be considered separately. For
this reason, the data-flow rule returns a map which connects each instance of the
current runnable to a set of entity instances which are its immediate or indirect suc-
cessors according to the available ExecutionOrderConstraints. Each context in which
a runnable occurs is represented as a ExecutableEntityInstance (EEI), a wrapper class
provided by the pre-analysis step. This type identifies specific RunnableEntity “in-
stances” based on their respective component containment hierarchies.
In lines [2 − 3], the rule runnableentity_obligatorySuccessors first acquires the

precomputed access maps and subsequently iterates over all EEIs of the current
RunnableEntity [4 − 12]. The direct successors of the respective ExecutableEntityIn-
stance are read and added to the overall successor list for this particular instance
[5−6]. The recursive computation is implemented by the loop in lines [7−11] which
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iterates over the direct successors and queries their data-flow value for the attribute
obligatorySuccessors and adds it to the current instance’s results. Finally, the new
value is stored in the result map [12].

Figure 10.38.: Obligatory successors for RE instances [Min12].

The results of the application of this analysis can be seen in Figure 10.38. The
diagram contains three ExecutableEntityInstances, two for the runnable R1 and one
for R2. Each of these occurrences lists the computed successors (the entry at the
top left instance contains an error: R3 should be R1). This information can now
be used to classify the data dependencies. If a runnable writes to a variable that
is read by a succeeding runnable, this access represents a forward dependency. If
the RunnableEntity which performs the read operation is not a successor, it is a
(potential) backward dependency.

Algorithm 43 The attribution backward_dependencies

1: Attribution backward_dependencies

2: attribute assignment backwardDependencies : Map(EEI, Set(DataExec))
3: initWith ∅
4: extend RunnableEntity with
5: occurrenceOf backwardDependencies
6: calculateWith runnableentity_backwardDependencies

1: Rule runnableentity_backwardDependencies(attrDef, context)
2: executableToInstanceMap ⇐ storageMap.get(“executableToInstanceMap”)
3: outgoingDependenciesMap ⇐ storageMap.get(“outgoingDependenciesMap”)
4: for all (eei : executableToInstancesMap.get(localObject)) do
5: runnableSuccessors ⇐ eei.getRunnableEntity()[obligatorySuccessors ]
6: eeiSuccessors ⇐ runnableSuccessors.get(eei)
7: for all (variableAccess : outgoingDependenciesMap.get(eei)) do
8: if (not eeiSuccessors→contains(variableAccess.target)) then
9: backwardDep ⇐ backwardDep ∪ variableAccess
10: resultMap.put(eei, backwardDep)
11: return resultMap

This classification of data accesses is carried out by the attribution backward_de-
pendencies shown in Algorithm 43. Again, the data-flow rule first acquires the
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precomputed access maps [2−3]. In this case, this includes outgoingDependenciesMap
which stores the variable accesses of ExecutableEntityInstances. Then, the loop in
lines [4− 10] processes the EEIs of the current RunnableEntity. Lines [5− 6] retrieve
the result map computed by obligatorySuccessors and extract the information for
the current entity instance. It is now possible to process the outgoing dependencies
by iterating over the relevant variable accesses [7− 9]. If the target of the variable
access is not a successor (which would indicate a forward dependency), the access is
classified as a (potential) backward dependency [9]. Finally, the identified backward
dependencies are stored in the overall result map [10].
Intentional backward dependencies can now be recognized by examining which

AgeConstraints explicitly allow access to data computed in previous cycles. If no
matching AC can be found, the backward dependency must be considered uninten-
tional and should be reported to the user for manual problem resolution.

(a) Dependency graph

(b) Forward dependency

(c) Intentional backward dependency

Figure 10.39.: Visualized results of the dependency analysis [Min12].

Figure 10.39(a) shows an excerpt of the results computed for the breaking system
example. In this figure, potential backward dependencies are plotted as red arrows.
The problem resolution system can now present the findings to the user and semi-
automatically resolve these problems by generating appropriate constraints. For ex-
ample, the highlighted backward dependency in Figure 10.39(b) can be transformed
into a forward dependency by adding a corresponding EOC (cf. Figure 10.39(c)).

10.4.3. Tooling Integration

It is possible to implement the presented use case in the form of a fully integrated
tooling environment. This can, for example, be achieved by extending an existing
AUTOSAR development environment such as the Eclipse-based ARTOP35 platform.

35http://www.artop.org/

359

http://www.artop.org/


Chapter 10. Case Studies and Applications

The thesis assignment for [Min12] included the realization of a proof-of-concept pro-
totype based on MAF and the visualization framework Eclipse Zest36. The prototype
is able to evaluate dependencies in AUTOSAR models using the described analyses.
The results are presented in a diagram editor which enables developers to inter-
actively apply the derived conflict resolutions. For this purpose, the tool provides
options for the creation of new EOCs to enforce forward dependency relationships
and the generation of suitable AgeConstraints which mark a backward dependency
as intentional. Once all problems have been resolved, the modifications can be ap-
plied to the original AUTOSAR model. In conclusion, this approach supports the
extension of existing automotive development platforms with the functionality re-
quired for a goal-oriented validation and refinement of existing system designs. On
a technical level, integration with third-party tools is ensured by storing the results
of the analysis in the AUTOSAR format, thereby making them available to any
application which supports this standard.

10.4.4. Evaluation of the Use Cases

The proposed method has been evaluated in the context of the breaking system
example. The usage scenario follows the steps which are expected to be carried out
by actual users of the dependency analysis tool. More specifically, the prototype
which implements the developed methodology is employed to identify problems in
the example model which hinder the derivation of parallelized schedulings. The semi-
automatic fixes computed by the problem resolution algorithms are then applied and
the changes are transferred back to the original model.
Figure 10.40(a) depicts a visualization of the results computed for the RunnableEn-

tities of the breaking example model. A first glance already reveals that the analysis
identified many problematic cases which must addressed in the next step. Typically,
the first action a user is expected to take is the correction of errors for which the
algorithm was able to determine automatic problem resolutions. In this case, the
application of this function significantly reduces the number of problematic depen-
dencies. However, the updated model still contains several cyclic dependencies which
must be resolved manually. One example is the cycle which includes re_BrakeForce-
Calculation and re_BrakeSafetyMonitor. This situation can be corrected by creating
a new AgeConstraint which specifically states that the entity may access data from
a previous calculation cycle. This action can be justified by the assumption that
monitoring is a continuous task and thereby using information from the last cycle
is not a problem. In this case, the prototype is able to automatically generate a
suitable AgeConstraint although the modification of the model must be approved
by the developer. The next step addresses problems with the connections between
re_BreakForceArbiter and the four instances of re_BrakeActuator. The analysis was
not able to automatically resolve these incidences as the runnables possess differ-
ent triggering frequencies which makes this type of problem resolution infeasible37.
Resolving this problem requires the engineer to manually specify matching Age-

36http://www.eclipse.org/gef/zest/
37If triggering frequencies differ, it is possible that one runnable eventually overtakes another.
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(a) TIMMO braking system after first analysis

(b) Braking system after using the analysis tool

Figure 10.40.: Application of the analysis to the breaking system model [Min12].

Constraints. Now, only the problematic connections between the four instances of
re_BreakActuatorOutput and the re_EcuBrakeActuator remain. In this case, the
analysis was able to determine that, while EOCs were specified, they are invalid
because of the mismatching triggering frequencies. Since the constraints cannot be
fulfilled, the engineer must either remove them or modify the system design.
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After the application of these steps, the final state of the model, depicted in
Figure 10.40(b), is free of errors. The model can now be used to map the runnables to
tasks which can be executed in parallel on different processor cores while preserving
a valid execution order. For this purpose, the authors of [Kie+14] describe how the
analysis functions can be integrated into an overall development methodology which
supports the parallelization of AUTOSAR-based systems.
In a domain where large models are very common, it is essential that the analysis

can be completed in a feasible time frame. It is stated that the breaking example
consists of 3000 lines of code38 containing 200,000 characters and that the complete
analysis (on an average notebook computer) takes about 2.4 seconds. The author
concludes that the “case study shows that the analysis tool is able to cope with medium
sized systems and that changes suggested by the analysis can be easily performed”.
A recent case study carried out in the context of the ongoing WEMUCS project
(http://www.multicore-tools.de) suggests that the analysis is also applicable to
very large system models.

10.4.5. Summary and Discussion

This case study introduces a use case in the field of model-based development for
embedded systems, more specifically the AUTOSAR domain. This consortium con-
sists of a large number of car manufacturers, suppliers and software companies who
currently face the challenge of migrating from single to multicore systems. It can
therefore be asserted, that the techniques developed by [Kie+14; Min12] are very
relevant to this industry.
The proposed analysis methodology enables the validation and semi-automatic

refinement of automotive software designs. The methods provided by this approach
are an important prerequisite for a subsequent parallelization of the modeled sys-
tems. For this purpose, the analysis identifies and classifies different types of data
dependencies between RunnableEntities which represent the smallest functional units
in AUTOSAR models. By detecting problematic backward dependencies between
runnables and by offering semi-automatic problem resolution advisories, engineers
are able to iteratively refine their development artifacts. The corrected and enriched
models in turn represent the input for algorithms which derive optimized schedul-
ings that map runnable sequences to processing cores. To evaluate the proposed
solution, a prototype was implemented and the analysis functions were applied to
detect problems in an existing model.

We will now summarize our findings:

Implementation effort
This case study has some unique characteristics. For example, the complex
structure of the AUTOSAR language and the typically very large models ne-
cessitate a pre-analysis step in which the model is traversed and implicit in-
formation, such as the opposite ends of one-directional associations, are stored

38Stored in the AUTOSAR arxml file format.
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in an object cache for quick access. This greatly reduces the effort for the ex-
ecution of navigation operations during the analysis. The performance gain is
especially relevant to the application of data-flow analysis since this method it-
eratively computes a large number of results. The computation of these helper
maps can be easily integrated by encoding this action as a MAF evaluation
macro which is executed as the first step of the evaluation strategy.

Another characteristic of this use case concerns the handling of concepts
which are “instantiated” on the model level. More specifically, although each
RunnableEntity conforms to a single model object, it may be referenced by dif-
ferent software components and thus possess multiple contexts with respect to
the computation of DFA results. While the case study presented in Section 10.1
solves a similar problem by flattening the model’s containment hierarchy, the
use case described in this section employs a different approach. Instead of
creating a copy of the respective element for each context, the data-flow rules
operate on data structures which aggregate the results for all relevant contexts.
For this purpose, the different “instances” of a runnable are encapsulated in
EEI wrappers which uniquely identify each occurrence. This approach repre-
sents a valid solution with respect to DFA semantics although changes to a
single instance result will lead to the recalculation of the complete result set.
The prototypic implementation has shown that these features can be realized
with little additional effort.

Classification
The analysis described in this case study represents one step of an analysis-
assisted development methodology for automotive systems. It has been shown
that the analysis approach can be integrated with existing methodologies in
a complex application domain and is able to provide additional value to the
developers. The analysis realizes several application scenarios: It enables the
validation of AUTOSAR models and supports the enforcement of modeling
guidelines by extracting information which is then used to derive problem res-
olution advisories for a tool-supported, semi-automatic refinement of the target
models. The final result consists of an improved model which still conforms to
the AUTOSAR standard and thus can be processed by any existing tool chain
in this domain. Consequently, this case study demonstrates how the analysis
technique can be employed to extend an existing development methodology.

Reuse
In a broader sense, the presented analyses reuse the idea of computing suc-
cessor sets (cf. Section 10.1.2). However, the unique structure of AUTOSAR
models and the aforementioned complications of having to deal with instantia-
tion on the model level require a different approach to implement this method.

Usability
The authors of the proposed analysis approach have shown that it represents
a feasible solution in the context of an industrial application scenario. The
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method was practically evaluated in the context of a prototypic implementa-
tion which provides support for semi-automatic problem resolution. It is also
described how this technique can be integrated with automotive development
processes, thereby improving existing methodologies and providing important
groundwork for the migration to multicore systems.

Performance
The analysis has been applied to the breaking system example developed as
part of the TIMMO project. It has been found that the analysis performs
reasonably well for this medium-sized model and the use of the provided tools
represents a beneficial addition to automotive development processes.

Several extensions points for future work have been identified which are likely
to improve both the usefulness of the analysis approach and the integration with
the AUTOSAR methodology. It is, for example, suggested that an initial set of
AgeConstraints could be generated from Matlab models, thereby providing better
input for the analysis [Min12]. It is also mentioned, that this technique would
benefit from an in-depth analysis of the runnables’ source code. This would make it
possible to repartition existing code by determining the exact time when variables
are written or read. As a consequence, depending on the respective properties of
the runnable, it would be possible to derive parallelized schedules for entities with
conflicting data dependencies. Analyzing the exact conditions in which multiple
accesses to a variable may occur at the same time would provide the scheduler with
additional opportunities for parallelization. This could be implemented in the form
of adaptions of traditional DFA methods such as reaching definitions. [Kie+14]
also proposes the use of SESE decomposition to cluster parallelizable regions in
AUTOSAR models. The development process itself could be improved through a
computation of metrics and an enforcement of modeling guidelines. [Min12] suggests
that the “number of unsolved backward dependencies can be used as a metric for the
work that is necessary to make the new system run on multiple processing cores” and
that “one can estimate the degree of freedom for mapping the software components
and runnable entities to processing cores”.
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In this thesis, we presented an approach that supports the specification and eval-
uation of static model analyses based on techniques originating from the area of
compiler construction. This chapter contains concluding remarks concerning the
overall methodology and discusses its relationship with the initially stated goals and
lists possible extensions of the developed approach.

Section 11.1 summarizes the initial research questions, the methods which were
chosen to address these problems and provides an overview of the contributions
of this thesis. Section 11.2 discusses how these results relate to the problems and
challenges that were listed in the beginning. Finally, Section 11.3 investigates pos-
sible extension points for the proposed approach and identifies additional research
questions which can be addressed in future work on this topic.

11.1. Summary

The development of a data-flow based approach to model analysis was motivated
by the fact that contemporary techniques such as OCL are limited in their expres-
siveness which complicates their application in certain use cases. With the rising
importance and the more wide-spread use of modeling technologies, especially in the
context of the recent trend towards domain-specific languages, the need for an anal-
ysis method that supports an intuitive and concise specification and evaluation of
semantic properties has increased significantly. The fact that the underlying princi-
ples of the technological space of compiler construction bear a strong resemblance to
the language stack that constitutes the foundation of modeling gave rise to the idea
of adapting existing and well-established static analysis methods for semantic valida-
tion for use in the modeling domain. For this purpose, we studied the techniques of
attribute grammars and data-flow analysis, two methods that are standard practice
in the compiler construction domain which and have been successfully employed
for some decades. While attribute grammars support the enrichment of a target
language’s definition with declarative analysis specifications, the data-flow analysis
method supports a context-sensitive evaluation of language instances and applies
fixed-point semantics to approximate runtime behavior. Based on a comparison of
the properties of both technological spaces, we derived a suitable architecture which
implements an adaption of the flow analysis concept for the modeling domain and
detailed the realization of corresponding methods for the definition and execution
of flow-based analyses on models.
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Goals

In Chapter 1, we detailed our objectives along with a set of requirements which
have to be fulfilled by any method which intends to provide a viable solution to the
presented challenges. Since modeling technologies are usually employed during the
design phase of development processes, it is essential for a suitable analysis technique
to support a static approximation of the behavior of the modeled systems to enable
an early detection of errors. We surmised that, as an extension of this objective,
the approach has to implement a unified method for the realization of different
usage scenarios such as validation tasks, the computation of model metrics or the
assessment of a model’s quality. It was also stated that the extraction of useful
semantic properties requires the consideration of the overall context of language
elements. Additionally, we emphasized that, on the technical level, a consistent
implementation of any analysis method intended for use in the modeling domain
should itself also be based on modeling technology and it has to define appropriate
connection points to the relevant modeling standards. Furthermore, it was argued
that the design must support non-intrusive specifications, so as not to require any
modification to existing standards, tooling and modeling artifacts. On a conceptual
level, it is important that the two different usage scenarios of analysis specification
and analysis execution are considered since they are usually carried out by different
users with diverging interests. Finally, we stated the importance of a practical
evaluation of the viability of the proposed method in the context of a reference
implementation and the realization of multiple case studies.

Method

The process of developing and implementing a suitable approach for static model
analysis involved the following steps:

1. In Chapter 2, we introduced the underlying concepts and technologies of the
relevant technological spaces. In this context, we provided an overview of
the compiler construction domain and presented the analysis techniques of
attribute grammars and data-flow analysis in greater detail. Additionally, we
gave a summary of the basic concepts and principles of the technological space
of modeling with a focus on the notion of abstraction layers and the static
semantics of modeling languages. In Chapter 3, we presented contemporary
techniques for static (model) analysis and discussed their relationships with
our own approach.

2. Since the proposed method for model analysis is based on a combination of
techniques originating from the compiler construction domain and their adap-
tion to the field of modeling, we based the design of our approach on an
in-depth study of the similarities and differences of both technological spaces.
For this purpose, we examined the relevant properties of both domains and
subsequently derived the design goals for our approach in Chapter 4. To sup-
port the integration of the analysis technology with the standards and prac-
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tices of the MDE domain, we put a special emphasis on the connection of the
analysis artifacts with modeling constructs and described how domain-specific
data-flow paths in models can be implemented using a dependency discovery
mechanism. Based on these results, we provided a formal as well as a technical
specification of the proposed techniques in Chapter 5 and Chapter 6. For this
purpose, we defined a model-based DSL for analysis specifications, supplied
the necessary instantiation semantics and adapted the traditional algorithms
for evaluating DFA equation systems to incorporate the facilities required for
handling dynamic dependency relationships and demand-driven evaluation.

3. Chapter 7 and Chapter 8 described the reference implementation of our ap-
proach, the Model Analysis Framework. In these chapters we presented the
basic architecture and the relevant components of the Eclipse RCP platform
which was chosen as technical foundation for our tooling since it provides an
extensible and highly customizable Open Source development and runtime
framework for model-based technologies. To motivate the architectural design
of MAF, we listed a set of design goals to ensure that the reference imple-
mentation constitutes a flexible tooling environment that is able to function
both as a research platform and as an environment that is suitable for use in
industrial application scenarios. We then detailed the MAF Core component
which provides a range of in-built functionality such as a central repository
management system and notification services as well as interfaces for exchange-
able modules including resource adapters for specific input artifact types, rule
implementation languages and different DFA solving strategies. Additionally,
we described the Analysis Editor component and the Project Set concept which
together realize an IDE for analysis development and testing.

4. The practical application of the proposed methods has been evaluated in the
context of several common application scenarios and case studies. In Chap-
ter 9, we listed templates for often used analyses which can be easily adapted
to different domains. This standard library of analysis functions provides a
basis for the implementation of custom analyses as, with the modular analysis
specification approach, it is possible to leverage existing analyses by either
modifying them or by accessing their precomputed results in other specifica-
tions. This concept has been illustrated in the context of the case studies
described in Chapter 10 where we demonstrated how the standard analyses
can be adapted to work in different domains and can be combined to imple-
ment more complex functionality. In the case studies we focused not only on
applying the analysis method to different domains but also on addressing a
range of different application scenarios such as the validation of models, the
computation of metrics and the extraction of semantic properties.

Contributions

The development of the analysis technique along the lines of the initially stated ob-
jectives resulted in a set of theoretical and practical contributions. These include a
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study of the similarities and differences between the technological spaces of model-
ware and grammarware with an emphasis on the alignment and usage of abstraction
layers in both areas and considerations regarding different aspects of the role played
by the abstract and concrete syntax and the static semantics of formal and model-
based languages. Along with the derived challenges and design goals that influenced
the development of our own approach, these results may also be of interest when
addressing related problems in the area of Software Language Engineering.
Contributions relating to the flow-based analysis approach itself consist of mathe-

matical and technical specifications of the language constructs that constitute flow-
based analyses and their relationships with modeling artifacts as well as the cor-
responding semantics that govern their instantiation and execution. More specifi-
cally, these results include model-based domain-specific languages for analysis spec-
ification, instantiation and configuration. Furthermore, traditional DFA algorithms
were adapted to support a demand-driven fixed-point evaluation of data-flow equa-
tion systems relying on the dependency discovery mechanism for handling data-flow
paths which are implicitly contained in the rule implementations. While these con-
cepts were specifically designed for use in the modeling domain, it is conceivable
that they can also be ported back to the original application field of compiler con-
struction.
On the practical side, with the Model Analysis Framework, we supplied a reference

implementation which serves both as a fully featured IDE for the implementation
of model analyses and as a light-weight functional runtime library. The modular
approach and the flexible architecture of MAF enables its usage as a research plat-
form, e.g. to test out new solving strategies, while at the same time providing a
reliable, high-quality environment supporting the extension of existing third-party
tools with analysis functionality. Finally, a standard library containing a set of anal-
ysis templates was defined and several case studies were carried out which not only
served to validate the practical applicability of the approach but can also be used
as starting points for custom implementations.

11.2. Discussion

In Section 1.1 we identified the problems that exist in the context of the application
of analysis technologies in the modeling domain and derived a set of challenges that
must be addressed in order to remedy this situation. Based on these challenges,
Section 1.2 lists the concrete objectives and details an approach which enables the
implementation of a suitable solution. We will now discuss how the methods devel-
oped in this thesis relate to these issues.

Challenge 1: Test the models, not the system

Since modeling is often used during the early phases of development processes, errors
in models may have a significant impact on later stages. While it is often easy to
detect syntactical errors early on, the evaluation of semantic properties is usually
a more difficult task. In Challenge 1 , we therefore stressed the importance of
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providing a powerful static analysis technique for the modeling domain. The flow-
based approach to model analysis realizes this requirement by offering the possibility
to enrich modeling languages with specifications of their static semantics. In the
case studies, we have shown how this concept can be used to, for example, validate
the structural integrity of business processes (cf. Section 10.1.2) and model-based
representations of natural language information (cf. Section 10.3).

Challenge 2: Approximate Dynamic Behavior

Challenge 2 further emphasized the focus on static analysis, i.e. the evaluation of
the language instance itself, to derive useful information about a system’s runtime
properties. It was mentioned that, since modeling languages are usually tailored to
a specific application domain, the analysis technique has to be able to incorporate
domain-specific information. With the presented technique, this is possible due to
a declarative, attribute-based approach to analysis specification which supports the
enrichment of the target language with analysis constructs. This feature also bridges
the technological gap which exists between the definitions of the analyses and their
target language artifacts. Since data-flow analysis relies on the propagation of values,
this method incorporates flow-sensitive information in the evaluation process and
by using fixed-point semantics for solving the DFA equation systems, the dynamic
behavior of a modeled system can be approximated. Overall, this approach can
therefore be considered to be a suitable solution to the presented challenge.

Challenge 3: Support Domain-independence and Reusability

In the third challenge, we further stressed the importance of a unified approach
which is able to support different application scenarios while, at the same time,
being generic in the sense that it does not presume the existence of domain-specific
features. Consequently, our method relies on a very limited set of basic assumptions
that must be met by the target modeling framework. More specifically, the analysis
approach only presumes the existence of the instantiable class concept as a basis
for the annotation and instantiation of analysis constructs. Additionally, because
of their prevalence in many MDE frameworks and their effect on the availability of
data-flow attributes at model elements, we also included the necessary semantics for
the support of generalization relationships.
The versatility with respect to different application scenarios was evaluated in the

context of several case studies. In addition to common validation tasks, we were
also able to demonstrate how advanced analyses can be used to statically derive
approximations of complex structural and dynamic properties. For example, in
Section 10.1.3, data-flow analysis was used to examine the availability of resource
objects in business process instances while Section 10.4 computed information for the
iterative refinement of AUTOSAR models. An example for an analysis which focuses
on structural properties has been provided in Section 10.1.4 which implemented an
algorithm for the SESE decomposition of control-flow models.
In Challenge 3 , we also addressed the different roles of language developers and

users and their respective preferences with relation to the application of analysis
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technology in the modeling context. The textual analysis specification DSL with its
library concept enables developers to efficiently create and manage analysis artifacts
during the whole development cycle. We have also shown that the technique can
be applied without requiring any modifications to existing practices and tooling.
Similarly, from a user’s perspective, the approach supports a seamless integration
with productive environments as demonstrated, for example, in Section 10.1.6.

Challenge 4: Integrate with Modeling Practices

Challenge 4 demanded that the developed technology has to integrate with exist-
ing standards and practices in the modeling domain. This issue has been addressed
by comparing the technological spaces of modelware and grammarware and subse-
quently identifying design goals which enable a consistent integration of the DFA
technique with modeling standards. Notably, the main artifacts of the analysis
method are themselves based on MDE technology. For example, the specification
language has been defined as a metamodel while the concrete syntax was realized
using the SLE-centric Xtext framework which connects context-free grammars to
modeling constructs. Furthermore, as mentioned in the previous item, support for
basic modeling concepts such as classes and generalizations is an integral part of
the approach. Adherence to existing standards is ensured through an extension
mechanism which enriches MOF’s meta language layer M3 with definitions for in-
stantiable analysis artifacts without requiring any modification of MOF itself (cf.
Section 6.1.1). This non-intrusive design also applies to the tasks of analysis speci-
fication and execution. Neither the target metamodel on M2 nor the respective M1
models have to be modified in any way to support the definition and the evaluation
of analyses.
To ensure a consistent integration with the modeling domain, further adaptions of

the data-flow analysis method were devised and implemented: Since model graphs
possess no inherent flow direction which is independent of domain-specific semantics,
the need for declaring a flow direction as commonly required in DFA frameworks (or
the inheritance/synthesis direction of attribute grammars respectively) was elimi-
nated. Instead, we rely on a demand-driven approach in which data-flow rules are
able to request required input values. For this purpose, we adapted the traditional
algorithms for solving flow equation systems so that they are able to dynamically
construct a representation of the dependency relationships between attribute in-
stances and schedule a valid execution order accordingly. It has been shown that
this feature can be implemented in a performant fashion. A positive side-effect of
this approach can be found in the fact that the dependency graph overlays the model
graph. This means that data-flow values may be propagated between arbitrary at-
tribute instances and do not have to follow the layout imposed by the model’s edges.
This is important since the distinction between what constitutes a node and which
concept represents an edge is domain-specific information and therefore has to be
implemented by the analysis itself. The presented approach inherently supports this
requirement. Because of the versatile nature of analyses in the modeling domain,
we decided to lift the requirement of using formal value domains (semilattices) in
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favor of freely configurable datatypes. Since the usage of arbitrary value domains
may complicate the specification of an element ⊤ which is neutral with respect to
the application of the confluence operator, we instead introduced a unique constant
INIT which can be used by implementations of data-flow rules to correctly handle
cyclic dependency relationships.

11.3. Outlook

The descriptions that have been provided in this thesis cover the basic motivation
for the proposed approach, its underlying principles as well as formal and technical
specifications of the components which constitute the analysis method. Furthermore,
a reference architecture was developed and the technique has been evaluated in the
context of a variety of different scenarios and problem domains. In this sense, this
work provides detailed descriptions of all necessary aspects required for a successful
application of the flow-based analysis technology.
Nevertheless, going beyond the requirements of the initially stated objectives,

there is some potential for implementing extensions of the devised methodologies
both on a theoretical and on a practical level. Consequently, in the following, we will
discuss several topics which - in our opinion - warrant future research work. Some
of these items expand on the concepts and definitions that represent the foundation
of the approach while others introduce new aspects that are aimed at enabling a
more focused application of the developed techniques.

Extended Analysis Library Concept

In Section 6.2, we motivated the choice of a textual format for the specification of
attributions. In this context, we also mentioned that this concept can be extended to
include support for complex, interconnected libraries in the notion of class libraries
as found in object-oriented programming languages. While the current approach
is completely sufficient for the specification of any analysis that conforms to the
prerequisites of flow-based fixed-point evaluations, the implementation of this feature
can still be beneficial as it would streamline the specification process. If users were
able to organize whole libraries of interdependent analysis definitions, this would
improve the aspects of reuse and maintainability by further reducing redundancy in
the process of analysis development. This is especially true if analysis functions are
reused across different projects and are worked on by multiple developers.
An implementation of these features would require the extension of the analysis

specification metamodel (AttrMM) and the corresponding textual domain-specific
language with constructs that enable the declaration of inheritance relationships
between attributions. For this purpose, an attribution must be able to declare ex-
tension relationships to one or more other attributions. In this case, the specialized
attribution would inherit attribute definitions, occurrences and semantic rules from
its parent(s). To support polymorphism, it must be possible to overwrite inherited
constructs in extending attributions if they possess the same identifier. This be-
havior can be further customized through the implementation of visibility modifiers
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such as public or private and final. The actual processing of the inheritance rela-
tionships can be implemented statically in a similar fashion to the enhancement of
attributions with generalization relationships as described in Section 6.3.3. Alter-
natively, the instantiator and the rule invoker could be set up to dynamically select
the correct version of a polymorph analysis construct at runtime.

Instantiable Analysis Templates

The adaption of existing analysis templates (such as the ones presented in Chap-
ter 9) can be further simplified if analysis specifications were provided with the
ability to define placeholders for metamodel bindings which can then be instanti-
ated for specific application domains. Currently, a template must be adapted to
the target metamodel by replacing the class references of attribute extensions. For
example, in the case of JWT (cf. Section 10.1), the Node and Edge concepts of
the reachability template must be substituted with the respective types ActivityN-
ode and ActivityEdge. Furthermore, the navigational statements inside the data-flow
rules must be adapted to retrieve their values using the correct model references.
Complementing the analysis library mechanism with a placeholder concept to sup-
port the instantiation of analysis templates for different application domains would
thereby further improve the maintainability and versatility of analyses.
To implement this functionality, a placeholder concept must be implemented for

both the attribution and the rule specifications. A concrete realization of an analysis
template can then implement the mappings between the respective class and refer-
ence types in the target metamodel and the placeholder in the analysis template.
Just as in the previous item, this process would require an adaption of the AttrMM
language to support the declaration of placeholders for metamodel classes and the
navigable model references which are used inside the data-flow rules. Navigational
statements inside the data-flow rules could, for example, be dynamically config-
ured by passing the respective mappings to the rule’s implementation alongside the
execution context (cf. Section 6.4.1).

Graphical Syntax

As mentioned in Section 6.2, the usage of a text-based format for analysis spec-
ification has several advantages: It makes it simpler to manage analysis artifacts
independently of models and does not require any modification of existing tooling
ecosystems. Also, the specific properties of the attribute-based declarations, namely
the usage of global attribute, datatype and rule definitions which can be referenced
in different contexts, are easier to manage when using a textual format.
However, this does not imply that the implementation of a graphical syntax would

not be possible or that there don’t exist any circumstances in which a visual repre-
sentation may actually be preferable. For example, a graphical syntax could provide
a more intuitive way of communicating the structural properties of analyses when
multiple developers are involved and, in this context, also serve as a form of doc-
umentation. This is especially true if the representation consists of a combination
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of the target metamodel and the attribute annotations in a similar way OCL con-
straints can be visualized as annotations at classes. It should also be noted that
textual and graphical methods of displaying analysis artifacts are not mutually ex-
clusive. If both methods were available, the user would be able to switch between
both formats depending on the requirements of the current situation.
To implement this functionality, it would be necessary to first devise a suitable

graphical syntax for analyses and to specify appropriate mappings to the constructs
defined in the abstract syntax. This can, for example, be accomplished with editor
generators for model-based DSLs such as the Eclipse Graphical Modeling Framework
(GMF). Alternatively, existing tooling environments could be extended with the
required functionality. For example, the graphical syntax for attributions can be
integrated with EMF’s diagram-based metamodel editor to support the simultaneous
development and management of model and analysis artifacts. In any case, the
developed tooling must address the inherent problem of global specifications, for
example by providing dedicated dialogs which support the management of global
attribute, datatype and rule definitions.

Additional Application Domains

In Chapter 10, we studied the application of the analysis technique in the context
of a range of different application domains and different usage scenarios. To further
examine the applicability of the approach and to build a more comprehensive library
of analysis functions, it would be beneficial to extend this study to additional areas.
This could include the evaluation of new application domains as well as a focus

on different usage scenarios. For example, it would be possible to realize an im-
plementation of modeling metrics and guidelines for the UML [GPC05; Ber04] and
BPMN [GL06] or other languages. Furthermore, the analysis of alternative paths
in control-flow models (cf. Section 9.2.4) can be extended to derive test paths for
model-based testing approaches according to different coverage criteria [UL07]. For
a detailed study of the relationship between the model-based analysis technique and
the traditional DFA approach in the domain of compiler construction, the devel-
oped technique could be integrated with the GeCoS compiler suite [Der+] which
transforms program code into a model-based representation.

Anticipation of Changes to Modeling Languages

The results of a data-flow analysis are always computed locally in the context of
a specific attribute instance and subsequently propagated throughout the model.
Typically, the input parameters for the computation of a local data-flow result are
acquired from model properties and from data-flow attributes located at adjacent
objects. As a consequence, the navigational expressions used in the data-flow rules
are often very simplistic in nature as they are commonly used to address elements
which are immediate neighbors of the context object. This becomes especially evi-
dent when compared to the more complex navigation statements of OCL constraints
which encode the full path to the target object or property. It can therefore be
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assumed that DFA-based definitions provide a higher level of invariance against
structural changes in the underlying modeling language.
This concept was partially explored in the EAM case study (cf. Section 10.2),

in which changes to the metamodel were anticipated through a generic and unified
representation of metamodel and model data. The respective analyses were defined
in a way that enables them to carry out the computations independently of the
concrete structure of the underlying modeling language. In future work, the pos-
sibilities offered by this approach could be studied in greater detail. With relation
to the Object Constraint Language, the concrete circumstances and the extent to
which these statements could be replaced by more flexible data-flow based defini-
tions could be examined, possibly resulting in a methodology for translating existing
OCL constraints into data-flow based specifications.

Development Methodology

This thesis details the conceptual and the technical aspects of the flow-based analysis
approach. To enable a consistent integration of the devised techniques with exist-
ing development processes, the methodical properties of the application of analysis
functionality have to be studied as well.
For this purpose, it would certainly be beneficial to examine the usage of the anal-

ysis methods in practical scenarios. This could, for example, be accomplished by
monitoring a set developers and evaluating how they employ the provided functions.
Based on these observations, potential challenges and problems could be identified
and the approach could be refined with respect to its usability. The results can,
for example, be used to improve different aspects of the analysis concept such as
the syntax of the analysis specification language or the management of model and
analysis artifacts. Furthermore, a set of guidelines and best practices can be de-
vised aimed at supporting developers in the utilization of the provided functions.
These concepts can then also be adapted to the specific requirements of existing
model-based development approaches such as the Model-driven Architecture or the
Rational Unified Process to support a fully integrated development methodology.

374



Part V.

Annex

375





Bibliography

[BPMN] Business Process Modeling Language (BPMN) 2.0 Specification. Object
Management Group, Jan. 2011. url: http://www.omg.org/spec/
BPMN/2.0/.

[EMFP] Eclipse Modeling Framework (EMF) Project Page. url: http://eclipse.
org/modeling/emf/.

[MDA] Model-Driven Architecture Guide 1.0.1. Object Management Group,
2003. url: http://www.omg.org/mda/.

[MOF] Meta Object Facility Core 2.4.1 Specification. Aug. 2011. url: http:
//www.omg.org/spec/MOF/2.4.1/.

[OCL] Object Constraint Language (OCL) 2.3.1 Specification. Object Manage-
ment Group, Jan. 2012. url: http://www.omg.org/spec/OCL/2.3.1/.

[OSGi] OSGi Service Platform Core Specification, Release 4.1. http://www.
osgi.org/Specifications. 2007.

[QVT] Query / View / Transformation 1.1 Specification. Object Management
Group, Jan. 2011. url: http://www.omg.org/spec/QVT/1.1/.

[TMF] Eclipse Textual Modeling Framework (TMF). url: http://www.eclipse.
org/modeling/tmf/.

[UML] Unified Modeling Language 2.4.1 Specification. 2011. url: http : / /
www.omg.org/spec/UML/2.4.1/.

[UMLi] Unified Modeling Language 2.4.1 Infrastructure Specification. May 2011.
url: http://www.omg.org/spec/UML/2.4.1/.

[UMLs] Unified Modeling Language 2.4.1 Superstructure Specification. June 2011.
url: http://www.omg.org/spec/UML/2.4.1/.

[XMI] XML Metadata Interchange (XMI) 2.4.1 Specification. Object Manage-
ment Group, Aug. 2011. url: http://www.omg.org/spec/XMI/2.4.1.

[XTEX] Xtext - Language Development Framework. url: http://www.eclipse.
org/Xtext/.

[Aal07] W.M.P. van der Aalst. “Trends in Business Process Analysis: From
Verification to Process Mining”. In: Proceedings of the 9th International
Conference on Enterprise Information Systems. ICEIS’07. INSTICC,
2007, pp. 12–22.

[Aal98] W.M.P. van der Aalst. “The Application of Petri nets to Workflow
Management”. In: Journal of circuits, systems, and computers 8.01
(1998), pp. 21–66.

377

http://www.omg.org/spec/BPMN/2.0/
http://www.omg.org/spec/BPMN/2.0/
http://eclipse.org/modeling/emf/
http://eclipse.org/modeling/emf/
http://www.omg.org/mda/
http://www.omg.org/spec/MOF/2.4.1/
http://www.omg.org/spec/MOF/2.4.1/
http://www.omg.org/spec/OCL/2.3.1/
http://www.osgi.org/Specifications
http://www.osgi.org/Specifications
http://www.omg.org/spec/QVT/1.1/
http://www.eclipse.org/modeling/tmf/
http://www.eclipse.org/modeling/tmf/
http://www.omg.org/spec/UML/2.4.1/
http://www.omg.org/spec/UML/2.4.1/
http://www.omg.org/spec/UML/2.4.1/
http://www.omg.org/spec/UML/2.4.1/
http://www.omg.org/spec/XMI/2.4.1
http://www.eclipse.org/Xtext/
http://www.eclipse.org/Xtext/


Bibliography

[ABK07] Kyriakos Anastasakis, Behzad Bordbar, and Jochen M Küster.
“Analysis of Model Transformations via Alloy”. In: Proceedings of the
4th Workshop on Model-Driven Engineering, Verification and Valida-
tion. MoDeVVa’07. 2007, pp. 47–56.

[AC76] F.E.Allen and J.Cocke. “A Program Data flow Analysis Procedure”.
In: Communications of the ACM 19.3 (1976), p. 137.

[AD97] L. Apfelbaum and J. Doyle. “Model based Testing”. In: Software
Quality Week Conference. 1997, pp. 296–300.

[ADS12] Manar H Alalfi, James R Cordy Thomas R Dean, and Matthew
Stephan Andrew Stevenson. “Models are Code too: Near-miss Clone
Detection for Simulink Models”. In: ICSM. Vol. 12. IEEE, 2012, pp. 295–
304.

[Aho+06] Alfred V. Aho et al. Compilers: Principles, Techniques, and Tools. 2nd.
Addison Wesley, 2006. isbn: 0321486811.

[AK03] Colin Atkinson and Thomas Kuhne. “Model-driven Development: A
Metamodeling Foundation”. In: IEEE Software 20.5 (2003), pp. 36–41.

[All70] Frances E. Allen. “Control flow Analysis”. In: SIGPLAN Not. 5.7
(1970), pp. 1–19.

[Ana+07] KyriakosAnastasakis et al. “UML2Alloy: A Challenging Model Trans-
formation”. In: Proceedings of the 10th International Conference on
Model Driven Engineering Languages and Systems. MoDELS’07. Springer-
Verlag, 2007, pp. 436–450.

[Ana+10] K. Anastasakis et al. “On challenges of Model Transformation from
UML to Alloy”. In: Software and Systems Modeling 9.1 (2010), pp. 69–
86.

[AP04] Marcus Alanen and Ivan Porres. A Relation between Context-Free
Grammars and Meta Object Facility Metamodels. Tech. rep. TUCS,
2004.

[Ass11] E.G. Assembly. “Ecmascript language specification - Version 5.1”. In:
Standard ECMA-262 (2011).

[B+05] J. Bézivin, I. Kurtev, et al. “Model-based Technology Integration
with the Technical Space Concept”. In: Proceedings of the Metainfor-
matics Symposium. Springer-Verlag, 2005.

[Baa03] Thomas Baar. “The Definition of Transitive Closure with OCL - Lim-
itations and Applications”. In: Ershov Memorial Conference. Vol. 2890.
Springer-Verlag, 2003, pp. 358–365.

[Bac+57] J.W. Backus et al. “The FORTRAN Automatic Coding System”. In:
Papers presented at the February 26-28, 1957, Western Joint Computer
Conference: Techniques for reliability. ACM. 1957, pp. 188–198.

378



Bibliography

[Bas+09] Muthu ManikandanBaskaran et al. “Compiler-assisted dynamic Schedul-
ing for effective Parallelization of Loop Nests on Multicore Processors”.
In: ACM Sigplan Notices. Vol. 44. 4. ACM. 2009, pp. 219–228.

[BDW06] Achim D. Brucker, Jürgen Doser, and BurkhartWolff. “Semantic
Issues of OCL: Past, Present, and Future”. In: Electronic Communica-
tions of the EASST 5 (2006).

[Beh+10] Heiko Behrens et al. Xtext Documentation. 2010. url: http://www.
eclipse.org/Xtext/documentation/1_0_1/xtext.pdf.

[Ber04] Brian Berenbach. “The Evaluation of large, complex UML Analysis
and Design Models”. In: Proceedings of the 26th International Confer-
ence on Software Engineering. ICSE’04. IEEE. 2004, pp. 232–241.

[Bez05] J. Bézivin. “On the Unification Power of Models”. In: Software and
Systems Modeling 4.2 (2005), pp. 171–188.

[BLL10] Lionel Briand, Yvan Labiche, and Q Lin. “Improving the Coverage
Criteria of UML State Machines using Data flow Analysis”. In: Software
Testing, Verification and Reliability 20.3 (2010), pp. 177–207.

[BMS09] S. Buckl, F. Matthes, and C. M Schweda. “Classifying Enter-
prise Architecture Analysis Approaches”. In: Enterprise Interoperability
(2009), pp. 66–79.

[Boe+05a] F.S. de Boer et al. “Change Impact Analysis of Enterprise Architec-
tures”. In: Proceedings of the 6th International Conference on Informa-
tion Reuse and Integration. IRI’05. 2005, pp. 177–181.

[Boe+05b] F.S. de Boer et al. “Enterprise Architecture Analysis with XML”. In:
Proceedings of the 38th Annual Hawaii International Conference on
System Sciences. HICSS’05. IEEE, 2005.

[Boh02] Shawn A Bohner. “Software Change Impacts - An evolving Perspec-
tive”. In: Proceedings of the 10th International Conference on Software
Maintenance. ICSM’02. IEEE. 2002, pp. 263–272.

[Bra09] M. van denBrand. “Model-driven Engineering meets generic Language
Technology”. In: Software Language Engineering (2009), pp. 8–15.

[Bur+11] C. Bürger et al. “Reference Attribute Grammars for Metamodel Se-
mantics”. In: Software Language Engineering (2011), pp. 22–41.

[Bus+11] Markus Buschle et al. “A Tool for Enterprise Architecture Analy-
sis using the PRM Formalism”. In: Information Systems Evolution.
Springer-Verlag, 2011, pp. 108–121.

[Bus+96] Frank Buschmann et al. A System of Patterns: Pattern-oriented Soft-
ware Architecture. 1996.

[BW02] Achim D. Brucker and Burkhart Wolff. “A Proposal for a Formal
OCL Semantics in Isabelle/HOL”. In: Theorem Proving in Higher Order
Logics. Vol. 2410. TPHOLs’02. Springer-Verlag, 2002, pp. 99–114.

379

http://www.eclipse.org/Xtext/documentation/1_0_1/xtext.pdf
http://www.eclipse.org/Xtext/documentation/1_0_1/xtext.pdf


Bibliography

[CC04] W. Croft and D.A. Cruse. Cognitive Linguistics. Cambridge Text-
books in Linguistics. Cambridge University Press, 2004. isbn: 978-
0521667708.

[CCR08] Jordi Cabot, Robert Clarisó, and Daniel Riera. “Verification of
UML/OCL Class Diagrams using Constraint Programming”. In: Pro-
ceedings of the International Conference on Software Testing Verifica-
tion and Validation Workshop. ICSTW’08. IEEE, 2008, pp. 73–80.

[CHK01] Keith D Cooper, Timothy J Harvey, and Ken Kennedy. “A sim-
ple, fast dominance Algorithm”. In: Software Practice & Experience 4
(2001), pp. 1–10.

[Cho56] N. Chomsky. “Three Models for the Description of Language”. In: IRE
Transactions on Information Theory 2.3 (1956), pp. 113–124.

[CK01] María Victoria Cengarle and Alexander Knapp. “A Formal Seman-
tics for OCL 1.4”. In: Proceedings of the 4th International Conference
on the Unified Modeling Language. Vol. 2185. UML’01. Springer-Verlag,
2001, pp. 118–133.

[CK04a] María Victoria Cengarle and Alexander Knapp. “OCL 1.4/5 vs. 2.0
Expressions Formal Semantics and Expressiveness”. In: Software and
Systems Modeling 3.1 (2004), pp. 9–30.

[CK04b] M.V. Cengarle and A. Knapp. “UML 2.0 Interactions: Semantics
and Refinement”. In: Proceedings of the 3rd Int. Wsh. Critical Systems
Development with UML. CSDUML’04. 2004, pp. 85–99.

[Coc70] J. Cocke. “Global Common Subexpression Elimination”. In: Proceed-
ings of the Symposium on Compiler Optimization. ACM. 1970, pp. 20–
24.

[CR08] Eric Clayberg and Dan Rubel. Eclipse Plug-ins. 3rd ed. Addison-
Wesley, 2008. isbn: 978-0321553461.

[Dei+08] Florian Deissenboeck et al. “Clone Detection in Automotive Model-
Based Development”. In: Proceedings of the 30th International Confer-
ence on Software Engineering. ICSE’08. IEEE. 2008, pp. 603–612.

[Den13] Hadi Deniz. “Konzeption und Implementierung eines DSL Editors für
modellbasierte Datenflussanalyse”. MA thesis. University of Augsburg,
2013.

[Der+] Steven Derrien et al. GeCoS: Generic compiler suite. url: http:
//gecos.gforge.inria.fr/.

[DKV00] Arie van Deursen, Paul Klint, and Joost Visser. “Domain-specific
Languages: An annotated Bibliography”. In: ACM SIGPLAN Notices
35.6 (2000), pp. 26–36.

[DM98] Leonardo Dagum and Ramesh Menon. “OpenMP: An Industry Stan-
dard API for shared-memory Programming”. In: Computational Science
& Engineering, IEEE 5.1 (1998), pp. 46–55.

380

http://gecos.gforge.inria.fr/
http://gecos.gforge.inria.fr/


Bibliography

[EH07] Torbjörn Ekman and Görel Hedin. “The JastAdd System - Modular
extensible Compiler Construction”. In: Science of Computer Program-
ming 69.1 (2007), pp. 14–26.

[EK99] Andy Evans and Stuart Kent. “Core Meta-modelling Semantics of
UML: The pUML Approach”. In: UML’99 - The Unified Modeling Lan-
guage (1999), pp. 754–754.

[ET12] D.W. Embley and B. Thalheim. Handbook of Conceptual Model-
ing: Theory, Practice, and Research Challenges. Springer-Verlag, 2012.
isbn: 978-3642158650.

[EV06] S. Efftinge and M. Völter. “oAW xText: A framework for tex-
tual DSLs”. In: Workshop on Modeling Symposium at Eclipse Summit.
Vol. 32. 2006.

[FB10] Wolf Fischer and Bernhard Bauer. “Combining Ontologies And Nat-
ural Language”. In: Advances in Ontologies (2010), p. 27.

[FB11] Wolf Fischer and Bernhard Bauer. “Cognitive-linguistics-based Re-
quest Answer System”. In: Proceedings of the 7th International Con-
ference on Adaptive Multimedia Retrieval: Understanding Media and
adapting to the User. AMR’09. Springer-Verlag, 2011.

[Fen+06] Helmut Fennel et al. “Achievements and Exploitation of the AU-
TOSAR Development Partnership”. In: SAE Convergence Congress 2006
(2006), p. 10.

[FFJ09] Ulrik Franke, Waldo Rocha Flores, and Pontus Johnson. “Enter-
prise Architecture Dependency Analysis using Fault Trees and Bayesian
Networks”. In: Proceedings of the Spring Simulation Multiconference.
SpringSim’09. Society for Computer Simulation, 2009, p. 55.

[FH02] Peter H. Feiler and Watts S. Humphrey. “Software Process Devel-
opment and Enactment: Concepts and Definitions”. In: ICSP. Jan. 3,
2002, pp. 28–40.

[Fis13] Wolf Fischer. “Linguistically Motivated Ontology-Based Information
Retrieval”. PhD thesis. University of Augsburg, 2013.

[Gam+95] E. Gamma et al. Design patterns: Elements of reusable Object-oriented
Software. Vol. 206. Addison-Wesley, 1995.

[Gar08] LucianoGarcía-Bañuelos. “Pattern Identification and Classification
in the Translation from BPMN to BPEL”. In: Proceedings of the Con-
federated International Conferences, CoopIS, DOA, GADA, IS, and
ODBASE 2008. Vol. 5331. Springer-Verlag, 2008, pp. 436–444.

[GBL05] Vahid Garousi, Lionel C Briand, and Yvan Labiche. “Control Flow
Analysis of UML 2.0 Sequence Diagrams”. In:Model Driven Architecture–
Foundations and Applications. Springer-Verlag, 2005, pp. 160–174.

381



Bibliography

[GBR03] Martin Gogolla, Jörn Bohling, and Mark Richters. “Validation
of UML and OCL Models by Automatic Snapshot Generation”. In:
Proceedings of the 6th International Conference on the Unified Modeling
Language. UML’03. Springer-Verlag, 2003, pp. 265–279.

[GBR07] Martin Gogolla, Fabian Büttner, and Mark Richters. “USE: A
UML-based Specification Environment for validating UML and OCL”.
In: Science of Computer Programming 69.1 (2007), pp. 27–34.

[Gee05] D. Geer. “Eclipse becomes the dominant Java IDE”. In: IEEE Com-
puter 38.7 (2005), pp. 16–18.

[Geo+04] Loukas Georgiadis et al. “Finding Dominators in Practice”. In: Pro-
ceedings of the 12th European Symposium on Algorithms. ESA’04. Springer-
Verlag, 2004, pp. 677–688.

[Gho10] Debasish Ghosh. DSLs in Action. Manning Publications, 2010. isbn:
1935182455.

[GL06] Volker Gruhn and Ralf Laue. “Complexity Metrics for Business Pro-
cess Models”. In: Proceedings of the 9th International Conference on
Business Information Systems. Vol. 10. BIS’06. 2006, pp. 1–12.

[Gog07] Martin Gogolla. “Model Development in the UML-based Specifi-
cation Environment (USE)”. In: Methods for Modelling Software Sys-
tems (MMOSS). Dagstuhl Seminar Proceedings 06351. Internationales
Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss
Dagstuhl, Germany, 2007.

[Got+09] Mathias Götz et al. “Token Analysis of Graph-Oriented Process Mod-
els”. In: Proceedings of the 2nd International Workshop on Dynamic
and Declarative Business Processes in the context of the 13th IEEE
International EDOC Conference. DDBP’09. 2009.

[GPC05] Marcela Genero, Mario Piattini, and Coral Calero. “A Survey of
Metrics for UML Class Diagrams”. In: Journal of Object Technology 4.9
(2005), pp. 59–92.

[Gru+00] Dick Grune et al. Modern Compiler Design. 1st. John Wiley & Sons,
Inc., 2000. isbn: 0471976970.

[GS04] Brian J. Gough and Richard M. Stallman. An Introduction to GCC.
Network Theory Ltd., 2004.

[Hae+12] Bernhard Haeupler et al. “Incremental Cycle Detection, Topologi-
cal Ordering, and Strong Component Maintenance”. In: ACM Trans.
Algorithms 8.1 (2012), 3:1–3:33.

[Hec77] M.S. Hecht. Flow Analysis of Computer Programs. Elsevier Science
Inc., 1977.

[Hed00] GörelHedin. “Reference Attributed Grammars”. In: Informatica (Slove-
nia) 24.3 (2000).

382



Bibliography

[HMU79] J.E. Hopcroft, R.Motwani, and J.D. Ullman. Introduction to Au-
tomata Theory, Languages, and Computation. Vol. 3. Addison-Wesley,
1979. isbn: 0321455363.

[HP12] V. Haren and Van Haren Publishing. ArchiMate 2. 0 Specification.
The Open Group. Van Haren Publishing, 2012. isbn: 978-9087536923.

[HU69] John E. Hopcroft and Jeffrey D. Ullman. Formal Languages and
their Relation to Automata. Boston, MA, USA: Addison-Wesley, 1969.

[HU72] Matthew S. Hecht and Jeffrey D. Ullman. “Flow graph Reducibil-
ity”. In: Proceedings of the 4th Symposium on Theory of Computing.
STOC’72. ACM, 1972, pp. 238–250.

[Iac+12] M. E. Iacob et al. “From Enterprise Architecture to Business Models
and back”. In: Software & Systems Modeling (2012), pp. 1–25.

[ISO96] ISO. Information Technology - Syntactic Metalanguage - Extended BNF.
Tech. rep. ISO, Aug. 1996.

[ISO98] ISO/IEC. ITU-T X.901 ISO/IEC 10746-1: Information Technology -
Open Distributed Processing - Reference Model: Overview. International
Standard V1. 1998.

[Jac02] Daniel Jackson. “Alloy: A Lightweight Object Modelling Notation”.
In: ACM Transactions on Software Engineering and Methodology (TOSEM)
11.2 (2002), pp. 256–290.

[JB05] Frédéric Jouault and Jean Bezıvin. “Using ATL for Checking Mod-
els”. In: Proceedings of the International Workshop on Graph and Model
Transformation. GraMoT’05. 2005.

[JBT06] Frédéric Jouault, Jean Bézivin, and Atlas Team. “KM3: A DSL for
Metamodel Specification”. In: Proceedings of the 8th International Con-
ference on Formal Methods for Open Object-based Distributed Systems.
FMOODS’06. Springer-Verlag, 2006, pp. 171–185.

[JI09] Henk Jonkers and Maria-Eugenia Iacob. “Performance and Cost
Analysis of Service-oriented Enterprise Architectures”. In: Global Impli-
cations of Modern Enterprise Information Systems: Technologies and
Applications, IGI Global (2009).

[JNL07] Pontus Johnson, Lars Nordström, and Robert Lagerström. “For-
malizing Analysis of Enterprise Architecture”. In: Enterprise Interoper-
ability. Ed. by Guy Doumeingts et al. Springer-Verlag, 2007, pp. 35–
44.

[Joh+07a] Pontus Johnson et al. “Enterprise Architecture Analysis with ex-
tended Influence Diagrams”. In: Information Systems Frontiers 9.2-3
(2007), pp. 163–180.

[Joh+07b] P. Johnson et al. “A Tool for Enterprise Architecture Analysis”. In:
11th IEEE International Enterprise Distributed Object Computing Con-
ference (EDOC’07). 2007.

383



Bibliography

[Joh+13] Pontus Johnson et al. “P2AMF: Predictive, Probabilistic Architecture
Modeling Framework”. In: Enterprise Interoperability. Lecture Notes in
Business Information Processing 144. Springer-Verlag, 2013, pp. 104–
117.

[Joh75] Stephen C Johnson. Yacc: Yet another Compiler-Compiler. Vol. 32.
Bell Laboratories Murray Hill, NJ, 1975.

[Jou+06] Frédéric Jouault et al. “ATL: a QVT-like transformation language”.
In: Companion to the 21st ACM SIGPLAN symposium on Object-oriented
programming systems, languages, and applications. ACM. 2006, pp. 719–
720.

[JSS00] Daniel Jackson, Ian Schechter, and Ilya Shlyakhter. “Alcoa: The
Alloy Constraint Analyzer”. In: Proceedings of the 22nd International
Conference on Software Engineering. ICSE’00. ACM, 2000, pp. 730–
733.

[JW91] Kathleen Jensen and NiklausWirth. Pascal User Manual and Report
- ISO Pascal standard. 4th. Springer-Verlag, 1991.

[Kas90] UweKastens. Übersetzerbau. Oldenbourg, 1990. isbn: 978-3486207804.

[KBA02] I. Kurtev, J. Bézivin, and M. Akşit. “Technological Spaces: An
Initial Appraisal”. In: CoopIS, DOA’2002 Federated Conferences, In-
dustrial track. 2002.

[Ken71] K. Kennedy. “A Global Flow Analysis Algorithm”. In: International
Journal of Computer Mathematics 3.1 (1971), pp. 5–15.

[Kie+14] Julian Kienberger et al. “Analysis and Validation of AUTOSAR
Models”. In: Proceedings of the 2nd International Conference on Model-
Driven Engineering and Software Development. MODELSWARD’14.
SciTePress, 2014.

[Kil73] G.A. Kildall. “A unified Approach to global Program Optimization”.
In: Proceedings of the 1st ACM SIGACT-SIGPLAN symposium on
Principles of Programming Languages. ACM. 1973, pp. 194–206.

[KL88] B. Korel and J.W. Laski. “Dynamic Program Slicing”. In: Informa-
tion Processing Letters 29.3 (1988), pp. 155–163.

[Kle09] A.Kleppe. “The Field of Software Language Engineering”. In: Software
Language Engineering (2009), pp. 1–7.

[Knu68] Donald E. Knuth. “Semantics of Context-Free Languages”. In: Theory
of Computing Systems 2.2 (June 1968), pp. 127–145.

[Kos06] Rainer Koschke. “Survey of Research on Software Clones”. In: Du-
plication, Redundancy, and Similarity in Software. Vol. 6301. Interna-
tionales Begegnungs- und Forschungszentrum fuer Informatik (IBFI),
2006.

384



Bibliography

[KPP06] Dimitrios S Kolovos, Richard F Paige, and Fiona AC Polack.
“The Epsilon Object Language (EOL)”. In: Model Driven Architecture–
Foundations and Applications. Springer-Verlag. 2006, pp. 128–142.

[KPP09] Dimitrios S. Kolovos, Richard F. Paige, and Fiona A. C. Polack.
“On the Evolution of OCL for Capturing Structural Constraints in
Modelling Languages”. In: Rigorous Methods for Software Construction
and Analysis. Vol. 5115. Springer-Verlag, 2009, pp. 204–218.

[Kra12] Joachim Kraus. “Konzeption und Evaluation eines datenflussbasierten
Algorithmus zur Clone Detection”. MA thesis. University of Augsburg,
2012.

[Kru95] P. Kruchten. “The 4+1 View Model of Architecture”. In: IEEE Soft-
ware 12.6 (1995), pp. 42–50.

[KSK09] Uday Khedker, Amitabha Sanyal, and Bageshri Karkare. Data
Flow Analysis: Theory and Practice. 1st. Boca Raton, FL, USA: CRC
Press, Inc., 2009. isbn: 978-0849328800.

[KU76] J.B. Kam and J.D. Ullman. “Global Data flow Analysis and iterative
Algorithms”. In: Journal of the ACM (JACM) 23.1 (1976), pp. 158–171.

[KU77] J.B. Kam and J.D. Ullman. “Monotone Data flow Analysis Frame-
works”. In: Acta Informatica 7.3 (1977), pp. 305–317.

[Kum+08] A. Kumar et al. “Enterprise Interaction Ontology for Change Impact
Analysis of Complex Systems”. In: Proceedings of the 3rd Asia-Pacific
Services Computing Conference. APSCC’08. 2008, pp. 303–309.

[Kun08] A. Kunert. “Semi-automatic Generation of Metamodels and Models
from Grammars and Programs”. In: Electronic Notes in Theoretical
Computer Science 211 (2008), pp. 111–119.

[Kur+06] I. Kurtev et al. “Model-based DSL Frameworks”. In: Companion to
the 21st ACM SIGPLAN symposium on Object-oriented Programming
Systems, Languages, and Applications. ACM. 2006, pp. 602–616.

[Lan12] Marc Lankhorst. Enterprise Architecture at Work. German. Berlin:
Springer-Verlag, 2012. isbn: 978-3642296505.

[Lau10] Florian Lautenbacher. “Semantic Business Process Modeling: Prin-
ciples, Design Support and Realization”. PhD thesis. University of Augs-
burg, 2010. isbn: 978-3832294878.

[Lin11] P. Linz. An Introduction to Formal Languages and Automata. Jones &
Bartlett Learning, 2011.

[LJJ07] B. Langlois, C.E. Jitia, and E. Jouenne. “DSL Classification”. In:
Proceedings of the 7th Workshop on Domain Specific Modeling. OOP-
SLA’07. 2007.

[Loh13] Philipp Lohmüller. “Extending GMF to Enable Natural Language
Controlled Applications”. MA thesis. University of Augsburg, 2013.

385



Bibliography

[LS07] Ruopeng Lu and Shazia Sadiq. “A Survey of Comparative Business
Process Modeling Approaches”. In: Proceedings of the 10th Interna-
tional Conference on Business Information Systems. BIS’07. Springer-
Verlag, 2007, pp. 82–94.

[LSB14a] Melanie Langermeier, Christian Saad, and Bernhard Bauer. “A
unified Framework for Enterprise Architecture Analysis”. In: Proceed-
ings of the Enterprise Model Analysis Workshop in the context of the
18th Enterprise Computing Conference. EDOC’14. 2014.

[LSB14b] Melanie Langermeier, Christian Saad, and BernhardBauer. “Context-
sensitive Impact Analysis for Enterprise Architecture Management”. In:
Proceedings of the 4th International Symposium on Business Modeling
and Software Design. BMSD’14. 2014.

[LT79] T. Lengauer and R.E. Tarjan. “A fast Algorithm for finding Dom-
inators in a Flowgraph”. In: ACM Transactions on Programming Lan-
guages and Systems (TOPLAS) 1.1 (1979), pp. 121–141.

[Mat+12] Florian Matthes et al. EAM KPI Catalog v 1.0. Tech. rep. Technical
University Munich, 2012.

[MB06] Slavisa Markovic and Thomas Baar. “An OCL Semantics Speci-
fied with QVT”. In: Proceedings of the 9th International Conference on
Model Driven Engineering Languages and Systems. Vol. 4199. MoD-
ELS’06. Springer-Verlag, 2006, pp. 661–675.

[MFJ05] Pierre-Alain Muller, Franck Fleurey, and Jean-Marc Jézéquel.
“Weaving Executability into Object-oriented Meta-languages”. In: Pro-
ceedings of the 8th International Conference on Model Driven Engi-
neering Languages and Systems. MoDELS’05. Springer-Verlag, 2005,
pp. 264–278.

[MGB04] Tiago Massoni, Rohit Gheyi, and Paulo Borba. “A UML Class Di-
agram Analyzer”. In: Proceedings of the 3rd International Workshop on
Critical Systems Development with UML. 2004, pp. 143–153.

[MH03] Eva Magnusson and Görel Hedin. “Circular Reference Attributed
Grammars - Their Evaluation and Applications”. In: Electronic Notes
on Theoretical Computer Science 82.3 (2003).

[MH05] P.A. Muller and M. Hassenforder. “HUTN as a Bridge between
Modelware and Grammarware - An Experience Report”. In: Proceedings
of the 4th Workshop in Software Model Engineering in the context of the
8th International Conference on Model Driven Engineering Languages
and Systems (MoDELS). WiSME’05. 2005.

[MID14] MID GmbH. MID Innovator for Enterprise Architects. 2014. url:
http://www.mid.de/produkte/innovator-enterprise-modeling.
html (visited on 02/28/2014).

[Min12] Pascal Minnerup. “Models in the Development Process for Paralleliz-
ing Embedded Systems”. MA thesis. University of Augsburg, 2012.

386

http://www.mid.de/produkte/innovator-enterprise-modeling.html
http://www.mid.de/produkte/innovator-enterprise-modeling.html


Bibliography

[MLA10] Jeff McAffer, Jean-Michel Lemieux, and Chris Aniszczyk. Eclipse
Rich Client Platform. 2nd. Addison-Wesley, 2010. isbn: 978-0321603784.

[MLZ06] J. Mendling, K. Bisgaard Lassen, and Uwe Zdun. “Transforma-
tion Strategies between Block-Oriented and Graph-Oriented Process
Modelling Languages”. In: Multikonferenz Wirtschaftsinformatik 2006
(MKWI 2006). Vol. 3. 2. GITO-Verlag Berlin, 2006, pp. 297–312.

[MM06] H. Malgouyres and G. Motet. “A UML Model Consistency Ver-
ification Approach based on Meta-modeling Formalization”. In: Pro-
ceedings of the ACM Symposium on Applied Computing. ACM. 2006,
pp. 1804–1809.

[Mor98] R. Morgan. Building an optimizing Compiler. Digital Press, 1998.
isbn: 978-1555581794.

[MR08] Michael zur Muehlen and Jan Recker. “How Much Language Is
Enough? Theoretical and Practical Use of the Business Process Model-
ing Notation”. In: Proceedings of the International Conference on Ad-
vanced Information Systems Engineering. Vol. 5074. CAiSE’08. Springer-
Verlag, 2008, pp. 465–479.

[MV99] Luis Mandel and María Victoria. “On the Expressive Power of
OCL”. In: World Congress on Formal Methods. Vol. 1708/1999. 1999,
p. 713.

[MVA10] Jeff McAffer, Paul VanderLei, and Simon Archer. OSGi and
Equinox: Creating Highly Modular Java Systems. 1st. Addison-Wesley,
2010. isbn: 978-0321585714.

[NBE12] Per Närman, Markus Buschle, and Mathias Ekstedt. “An Enter-
prise Architecture Framework for multi-attribute Information Systems
Analysis”. In: Software & Systems Modeling (2012), pp. 1–32.

[Nie06] Klaus D Niemann. From Enterprise Architecture to IT Governance.
Springer-Verlag, 2006. isbn: 3834801984.

[NNH99] F. Nielson, H.R. Nielson, and C. Hankin. Principles of Program
Analysis. Springer-Verlag, 1999. isbn: 3540654100.

[ODA08] C. Ouyang, M. Dumas, and W.M.P. van der Aalst. “Pattern-based
translation of BPMN process models to BPEL web services”. In: Inter-
national Journal of Web Services Research (IJWSR) 5.1 (2008), pp. 42–
62.

[Ode+04] Martin Odersky et al. An Overview of the Scala Programming Lan-
guage. Tech. rep. IC/2004/64. EPFL Lausanne, Switzerland, 2004.

[Ode93] Martin Odersky. “Defining Context-dependent Syntax without using
Contexts”. In: ACM Transactions on Programming Languages and Sys-
tems (TOPLAS) 15.3 (1993), pp. 535–562.

387



Bibliography

[OWL09] W3COWLWorking Group.OWL 2 Web Ontology Language: Docu-
ment Overview. Available at http://www.w3.org/TR/owl2-overview/.
W3C Recommendation, 2009.

[Par07] Terence Parr. The Definitive ANTLR Reference: Building Domain-
Specific Languages. Pragmatic Bookshelf, May 2007, p. 376. isbn: 0978739256.

[PP08] M. Pfeiffer and J. Pichler. “A Comparison of Tool support for tex-
tual Domain-specific Languages”. In: Proceedings of the 8th Workshop
on Domain-Specific Modeling. OOPSLA’08. 2008, pp. 1–7.

[Pro59] R.T. Prosser. “Applications of Boolean Matrices to the Analysis of
Flow Diagrams”. In: Eastern Joint IRE-AIEE-ACM Computer Confer-
ence. ACM. 1959, pp. 133–138.

[RCK09] Chanchal K Roy, James R Cordy, and Rainer Koschke. “Compar-
ison and Evaluation of Code Clone Detection Techniques and Tools:
A Qualitative Approach”. In: Science of Computer Programming 74.7
(2009), pp. 470–495.

[RG98] Mark Richters and Martin Gogolla. “On Formalizing the UML
Object Constraint Language OCL”. In: Conceptual Modeling. Vol. 1507.
ER’98. Springer-Verlag, 1998, pp. 449–464.

[Ric53] Henry Gordon Rice. “Classes of Recursively Enumerable Sets and their
Decision Problems”. In: Transactions of the American Mathematical
Society 74.2 (1953), pp. 358–366.

[Rod86] F. Rodney. “Automatic Generation of fixed-point-finding Evaluators
for circular, but well-defined, Attribute Grammars”. In: Proceedings
of the SIGPLAN symposium on Compiler Construction. SIGPLAN’86.
ACM, 1986, pp. 85–98.

[Ros90] Mads Rosendahl. “Abstract Interpretation using Attribute Gram-
mars”. In: Attribute Grammars and their Applications. Springer-Verlag,
1990, pp. 143–156.

[RW82] Sandra Rapps and Elaine J Weyuker. “Data flow Analysis Tech-
niques for Test Data Selection”. In: Proceedings of the 6th International
Conference on Software Engineering. ICSE’82. IEEE. 1982, pp. 272–
278.

[Ryd83] B.G. Ryder. “Incremental Data flow Analysis”. In: Proceedings of the
10th ACM SIGACT-SIGPLAN symposium on Principles of Program-
ming Languages. ACM. 1983, pp. 167–176.

[SAB10] S. Shah, K. Anastasakis, and B. Bordbar. “From UML to Alloy
and back again”. In: Models in Software Engineering (2010), pp. 158–
171.

[Sag+89] Shmuel Sagiv et al. “Resolving Circularity in Attribute Grammars
with Applications to Data Flow Analysis”. In: Proceedings of the 16th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. ACM. 1989, pp. 36–48.

388

http://www.w3.org/TR/owl2-overview/


Bibliography

[Sal87] Arto Salomaa. Formal Languages. San Diego, CA, USA: Academic
Press Professional, Inc., 1987. isbn: 0126157502.

[SB05] A. Staikopoulos and B. Bordbar. “A Metamodel Refinement Ap-
proach for Bridging Technical Spaces, a Case Study”. In: Proceedings of
the 4th Workshop in Software Model Engineering in the context of the
8th International Conference on Model Driven Engineering Languages
and Systems (MoDELS). WiSME’05. 2005.

[SB10a] Christian Saad and Bernhard Bauer. “Analyzing Dynamic Models
using a Data-flow based Approach”. In: Proceedings of the 1st Doctoral
Symposium in the context of the 3rd International Conference on Soft-
ware Language Engineering. SLE’10. 2010, p. 37.

[SB10b] Christian Saad and Bernhard Bauer. “Applying Data-flow Analysis
to Models - A Novel Approach for Model Analysis”. In: Proceedings
of the Spring Simulation Multiconference. SpringSim’10. ACM, 2010,
p. 241.

[SB10c] Christian Saad and Bernhard Bauer. “Data-flow Based Model Anal-
ysis”. In: Proceedings of the 2nd NASA Formal Methods Symposium.
Vol. NASA/CP-2010-216215. NFM’10. NASA. 2010, pp. 227–231.

[SB11] Christian Saad and Bernhard Bauer. “The Model Analysis Frame-
work - An IDE for Static Model Analysis”. In: Proceedings of the In-
dustry Track of Software Language Engineering in the context of the
4th International Conference on Software Language Engineering (SLE).
ITSLE’11. 2011.

[SB13] Christian Saad and Bernhard Bauer. “Data-flow based Model Analy-
sis and its Applications”. In: Proceedings of the 16th International Con-
ference on Model Driven Engineering Languages and Systems. MoD-
ELS’13. Springer-Verlag, 2013, pp. 707–723.

[SC13] Matthew Stephan and James R Cordy. “A Survey of Model Com-
parison Approaches and Applications”. In: Proceedings of the 1st Inter-
national Conference on Model-Driven Engineering and Software Devel-
opment. MODELSWARD’13. SciTePress, 2013, pp. 265–277.

[SCH02] W. Shen, K. Compton, and J. Huggins. “A Toolset for support-
ing UML static and dynamic Model Checking”. In: Computer Software
and Applications Conference, 2002. COMPSAC 2002. Proceedings. 26th
Annual International. IEEE. 2002, pp. 147–152.

[SK95] Kenneth Slonneger and Barry Kurtz. Formal Syntax and Semantics
of Programming Languages: A Laboratory Based Approach. 1st. Boston,
MA, USA: Addison-Wesley, 1995.

[SKR13] Sagar Sunkle, Vinay Kulkarni, and Suman Roychoudhury. “An-
alyzing Enterprise Models using Enterprise Architecture-based Ontol-
ogy”. In: Model-Driven Engineering Languages and Systems. Springer-
Verlag, 2013, pp. 622–638.

389



Bibliography

[SLB09] Christian Saad, Florian Lautenbacher, and Bernhard Bauer. “An
Attribute-based Approach to the Analysis of Model Characteristics”.
In: Proceedings of the 1st International Workshop on Future Trends
of Model-Driven Development in the context of the 11th International
Conference on Enterprise Information Systems (ICEIS). Vol. 9. FT-
MDD’09. 2009.

[Slo08] Tony Sloane. “Experiences with Domain-specific Language Embed-
ding in Scala”. In: Domain-Specific Program Development (2008).

[Soe+10] Mathias Soeken et al. “Verifying UML/OCL models using Boolean
Satisfiability”. In: Proceedings of the Conference on Design, Automation
and Test in Europe. European Design and Automation Association.
2010, pp. 1341–1344.

[Ste+09] Dave Steinberg et al. EMF: Eclipse Modeling Framework. 2. Boston,
MA: Addison-Wesley, 2009. isbn: 978-0321331885.

[SVC06] Thomas Stahl, Markus Voelter, and Krzysztof Czarnecki.Model-
Driven Software Development: Technology, Engineering, Management.
John Wiley & Sons, 2006. isbn: 0470025700.

[SZ08] L. Shan and H. Zhu. “A formal descriptive Semantics of UML”. In:
Formal Methods and Software Engineering (2008), pp. 375–396.

[Tar72] Robert Tarjan. “Depth-first Search and Linear Graph Algorithms”.
In: SIAM Journal on Computing 1.2 (1972), pp. 146–160.

[The11] The Open Group. TOGAF Version 9.1. Van Haren Publishing, 2011.

[Thi09] Krishnaprasad Thirunarayan. “Attribute Grammars and their Ap-
plications”. In: Encyclopedia of Information Science and Technology
(2009), pp. 268–273.

[Uba+11] Reina Uba et al. “Clone Detection in Repositories of Business Process
Models”. In: Proceedings of the 9th International Conference on Busi-
ness Process Management. BPM’09. Springer-Verlag, 2011, pp. 248–
264.

[UL07] Mark Utting and Bruno Legeard. Practical Model-based Testing: A
Tools Approach. Morgan Kaufmann Publishers Inc., 2007. isbn: 978-
0080466484.

[US 10] U.S. Department of Defense. The DoDAF Architecture Frame-
work Version 2.02. 2010. url: http://dodcio.defense.gov/dodaf20.
aspx (visited on 04/09/2013).

[Van+07] Irene Vanderfeesten et al. “Quality Metrics for Business Process
Models”. In: BPM and Workflow Handbook. Future Strategies Inc.,
2007, pp. 179–190.

390

http://dodcio.defense.gov/dodaf20.aspx
http://dodcio.defense.gov/dodaf20.aspx


Bibliography

[Var02] Dániel Varró. “A formal Semantics of UML Statecharts by Model
Transition Systems”. In: Proceedings of the 1st International Conference
on Graph Transformation. ICGT’02. Springer-Verlag, 2002, pp. 378–
392.

[VHW03] Wil M. P.Van Der Aalst, Arthur H. M. TerHofstede, and Mathias
Weske. “Business Process Management: A Survey”. In: Proceedings
of the 1st International Conference on Business Process Management.
BPM’03. Springer-Verlag, 2003, pp. 1–12.

[VJ00] Mandana Vaziri and Daniel Jackson. “Some Shortcomings of OCL,
the Object Constraint Language of UML”. In: Proceedings of the 34th
International Conference on Technology of Object-Oriented Languages
and Systems. TOOLS’00. IEEE, 2000, pp. 555–562.

[VTM08] Kostas Vergidis, Ashutosh Tiwari, and Basim Majeed. “Business
Process Analysis and Optimization: Beyond Reengineering”. In: IEEE
Transactions on Systems, Man, and Cybernetics, Part C 38.1 (2008),
pp. 69–82.

[VVL07] Jussi Vanhatalo, Hagen Völzer, and Frank Leymann. “Faster and
more focused Control-Flow Analysis for Business Process Models through
SESE Decomposition”. In: Proceedings of the 5th international con-
ference on Service-Oriented Computing. ICSOC ’07. Springer-Verlag,
2007, pp. 43–55.

[VW63] V. Vyssotsky and P Wegner. A Graph theoretical Fortran Source
Language Analyzer. Technical Report (unpublished). Bell Laboratories,
Murray Hill NJ, 1963.

[WFM96] WFMC. Workflow Management Coalition Terminology and Glossary
(WFMC-TC-1011). Technical Report. Workflow Management Coali-
tion, Brussels, 1996.

[WG98] William McCastline Waite and Gerhard Goos. Compiler Construc-
tion. Springer-Verlag, 1998. isbn: 978-3540642565.

[Wik08] Wikipedia. Meta Object Facility. 2008. url: http://de.wikipedia.
org/wiki/Meta_Object_Facility (visited on 07/04/2008).

[Wil10] Edward D. Willink. “Re-engineering Eclipse MDT/OCL for Xtext”.
In: Electronic Communications of the ECEASST 36 (2010).

[WIM08] Tabinda Waheed, Muhammad Zohaib Iqbal, and Zafar I. Malik.
“Data Flow Analysis of UML Action Semantics for Executable Mod-
els”. In: Proceedings of the 4th European Conference on Model Driven
Architecture: Foundations and Applications. Vol. 5095. ECMDA-FA’08.
Springer-Verlag, 2008, pp. 79–93.

[Wir63] N.Wirth. “Programming in Oberon”. In: Communications of the ACM
6 (1963), pp. 1–17.

391

http://de.wikipedia.org/wiki/Meta_Object_Facility
http://de.wikipedia.org/wiki/Meta_Object_Facility


Bibliography

[Wir77] Niklaus Wirth. “What can we do about the unnecessary diversity of
notation for syntactic definitions?” In: Communications of the ACM 20
(11 Nov. 1977), pp. 822–823.

[WK03] Jos Warmer and Anneke Kleppe. The Object Constraint Language:
Getting Your Models Ready for MDA. 2nd ed. Boston, MA, USA:
Addison-Wesley, 2003. isbn: 0321179366.

[WK05] Manuel Wimmer and Gerhard Kramler. “Bridging Grammarware
and Modelware”. In: Proceedings of the Satellite Events of the 8th In-
ternational Conference on Model Driven Engineering Languages and
Systems. Vol. 3844. MoDELS’05. Springer-Verlag, 2005, pp. 159–168.

[WM95] Reinhard Wilhelm and Dieter Maurer. Compiler Design. Interna-
tional Computer Science Series. Addison-Wesley Longman Publishing
Co., Inc., 1995. isbn: 0201422905.

[Woh+06] PetiaWohed et al. “On the Suitability of BPMN for Business Process
Modelling”. In: Proceedings of the 4th International Conference on Busi-
ness Process Management. Vol. 4102. BPM’06. Springer-Verlag, 2006,
pp. 161–176.

[Zsc+10] Steffen Zschaler et al. “Domain-Specific Metamodelling Languages
for Software Language Engineering”. In: Proceedings of the 2nd Interna-
tional Conference on Software Language Engineering. SLE’09. Springer-
Verlag, 2010, pp. 334–353.

392



Acronyms

AG Attribute Grammar
API Application Programming Interface
AST Abstract Syntax Tree
AUTOSAR AUTomotive Open System ARchitecture
BFS Breadth-first Search
BPM Business Process Modeling
BPMN Business Process Modeling Notation
CC Compiler Construction
CFG Context-free Grammar
CFL Context-free Language
CRAG Circular Reference Attributed Grammar
CST Concrete Syntax Tree
DFA Data-flow Analysis
DFS Depth-first Search
DFST Depth-first Spanning Tree
DSL Domain-specific Language
DSM Domain-specific Model
EAM Enterprise Architecture Management
EBNF Extended Backus-Naur Form
EMF Eclipse Modeling Framework
EMOF Essential Meta-Object Facility
EOL Epsilon Object Language
EPL Eclipse Public Licence
EVL Epsilon Validation Language
GEF Graphical Editing Framework
GMF Graphical Modeling Framework
GPL GNU General Public License
IDE Integrated Development Environment
JDT Java Development Tools
JWT Java Workflow Tooling
KM3 Kernel Meta Meta Model
KPI Key Performance Indicator
M2M Model to Model
M2T Model to Text
MAF Model Analysis Framework
MBT Model-based Testing
MDA Model-driven Architecture
MDE Model-driven Engineering

393



Acronyms

MDSD Model-driven Software Development
MOF Meta Object Facility
OCL Object Constraint Language
OMG Object Management Group
PIM Platform Independent Model
PSM Platform Specific Model
QVT Query/View/Transformation
RAG Reference Attributed Grammar
RCP Rich Client Platform
RUP Rational Unified Process
SCC Strongly Connected Component
SE-DSNL Semantically Enhanced Domain-Specific Natural Language
SESE Single Entry Single Exit
SLE Software Language Engineering
SSA Static Single-Assignment
TAC Three-Address Code
TMF Textual Modeling Framework
TS Technological Space
UML Unified Modeling Language
XMI XML Metadata Interchange
XML Extensible Markup Language

394



List of Figures

1.1. The structure of this thesis. . . . . . . . . . . . . . . . . . . . . . . . 19

2.1. Compiler classification [Aho+06]. . . . . . . . . . . . . . . . . . . . . 24
2.2. The structure of a compiler [Aho+06]. . . . . . . . . . . . . . . . . . 25
2.3. Parse and syntax trees for the expression 9− 5 + 2 [Aho+06]. . . . . 28
2.4. Different representations of a control-flow graph [Aho+06]. . . . . . . 30
2.5. Special cases of cyclic paths [Aho+06]. . . . . . . . . . . . . . . . . . 31
2.6. Attribute grammar Bin_to_Dec [WM95]. . . . . . . . . . . . . . . . 37
2.7. Information flow between attribute occurrences for Bin_to_Dec [WM95] 38
2.8. Attribute occurrences and attribute instances [WM95]. . . . . . . . . 38
2.9. Dependency graph for Bin_to_Dec and the expression “10.01” [WM95]. 41
2.10. Lattice diagram for ∧ = ∪ and 𝒰 = {𝑑1, 𝑑2, 𝑑3} [Aho+06]. . . . . . . 48
2.11. Relationships between abstraction layers [UMLi]. . . . . . . . . . . . 55
2.12. Simplified version of the MOF [Wik08]. . . . . . . . . . . . . . . . . 58
2.13. The abstraction layers of the MOF modeling framework [ET12]. . . . 59

3.1. A metamodel with two OCL constraints [OCL]. . . . . . . . . . . . . 61
3.2. Ensuring acyclic generalization hierarchies in UML [Baa03]. . . . . . 62
3.3. Requirements for model management languages [KPP06]. . . . . . . 63
3.4. Integrating Ecore and JastAdd [Bur+11]. . . . . . . . . . . . . . . . 66
3.5. Transformations in metamodeling [Bur+11]. . . . . . . . . . . . . . . 66
3.6. JastEMF’s Generation Process [Bur+11]. . . . . . . . . . . . . . . . 67

4.1. Examples of technological spaces, their relations and properties [KBA02] 80
4.2. Language features [LJJ07]. . . . . . . . . . . . . . . . . . . . . . . . 81
4.3. Xtext as an example of the fusion of language engineering approaches

stemming from both compiler construction and modeling. . . . . . . 85
4.4. Illustration of language use vs. language engineering exemplified by

the application scenarios of UML and JWT respectively. . . . . . . . 86
4.5. Alignment of abstraction layers [KBA02]. . . . . . . . . . . . . . . . 89
4.6. Alignment of abstraction layers in modeling (MOF) and compiler

construction (context-free languages) with instanceof relationships. . 90
4.7. Relationships between abstract and concrete syntax in CC. . . . . . 94
4.8. Extending MOF: The OCL expressions package [OCL]. . . . . . . . 98
4.9. Definition of abstract and concrete syntax for If expressions [OCL]. . 98
4.10. Alignment of static analysis in CC and modeling. . . . . . . . . . . . 102
4.11. Extending the MOF language framework to support attributed models.115
4.12. Instantiation of an attributed metamodel. . . . . . . . . . . . . . . . 119

395



List of Figures

4.13. Recording implicit dependencies through a callback to the evaluator. 120

6.1. Definition and instantiation of attribute-based metamodel extensions
[SB13]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.2. Condensed version of the analysis specification metamodel (AttrMM).138
6.3. Control-flow graph metamodel with an annotated analysis [SB13]. . 140
6.4. Example control-flow graph model. . . . . . . . . . . . . . . . . . . . 142
6.5. Structure of the abstract syntax of the attributed metamodel de-

picted in Figure 6.3 [SB13]. . . . . . . . . . . . . . . . . . . . . . . . 143
6.6. Analysis instantiation metamodel (InstMM). . . . . . . . . . . . . . 152
6.7. Relationships between model and attribution concepts. . . . . . . . . 154
6.8. Inheritance of attribute occurrences with redefinition. . . . . . . . . 155
6.9. Diamond-shaped inheritance with unclear semantics. . . . . . . . . . 156
6.10. Control-flow model with attribute instances. . . . . . . . . . . . . . . 161
6.11. Abstract syntax of the instantiated analysis. . . . . . . . . . . . . . . 162
6.12. Fixed-point evaluation of an attributed model. . . . . . . . . . . . . 172
6.13. Universal solver architecture for performing demand-driven data-

flow analysis, supporting dependency-discovery and dynamic instan-
tiation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6.14. The dependency chain metamodel (DepChainMM). . . . . . . . . . . 189
6.15. Dependency discovery and result computation [SB13]. . . . . . . . . 193
6.16. Number of rule executions . . . . . . . . . . . . . . . . . . . . . . . . 195
6.17. Time in ms (log. scale) . . . . . . . . . . . . . . . . . . . . . . . . . 195
6.18. Evaluation of the algorithm’s performance (cf. [SB13]). . . . . . . . 195

7.1. A high-level overview of the Eclipse system architecture [MLA10]. . 199
7.2. The EMF resource and generator model concepts [Ste+09]. . . . . . 200
7.3. The internal workflow of the Eclipse OCL implementation [Wil10]. . 204
7.4. The architecture of the Eclipse OCL project’s components (http:

//wiki.eclipse.org/MDT/OCL/4.X_Architecture). . . . . . . . . . 204
7.5. The EMF models used by Xtext [Beh+10]. . . . . . . . . . . . . . . 207
7.6. The Xtext EMF resource as central concept of the Xtext architecture

[Beh+10]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
7.7. The relationships between artifacts in the repository. . . . . . . . . . 211
7.8. Loading resources using resource adapters. . . . . . . . . . . . . . . . 213
7.9. Extending attributions to reflect generalization semantics. . . . . . . 214
7.10. Dynamic instantiation of attributes. . . . . . . . . . . . . . . . . . . 215
7.11. Interaction between the modules during the evaluation. . . . . . . . 217
7.12. The MAF component stack. . . . . . . . . . . . . . . . . . . . . . . . 221

8.1. Architecture of the MAF-Core component. . . . . . . . . . . . . . . . 223
8.2. The lifecycles of the framework’s components. . . . . . . . . . . . . . 225
8.3. Execution of Evaluation Directives through the Strategy Executor in-

terface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
8.4. Analysis specification in the textual editor. . . . . . . . . . . . . . . 235
8.5. Analysis specification in the form-based editor. . . . . . . . . . . . . 236

396

http://wiki.eclipse.org/MDT/OCL/4.X_Architecture
http://wiki.eclipse.org/MDT/OCL/4.X_Architecture


List of Figures

8.6. Editing a data-flow rule using the embedded QVT editor. . . . . . . 238
8.7. Additional information available for the rule node_isReachable. . . . 238
8.8. Analysis configuration using the Java API and Project Sets. . . . . . 240
8.9. The Project Set metamodel. . . . . . . . . . . . . . . . . . . . . . . . 240
8.10. Integrating MAF into existing tooling ecosystems. . . . . . . . . . . 241
8.11. Resource management in the Project Set Editor. . . . . . . . . . . . . 242
8.12. Evaluation Strategies defined for the running example. . . . . . . . . 243
8.13. Dialog for configuring the instance selection of an Evaluation Target. 244
8.14. Running example: MAF core output in debugger. . . . . . . . . . . . 244
8.15. Running example: Different states of the reachability dependency

chain visualized in the debugger. . . . . . . . . . . . . . . . . . . . . 245
8.16. Running example: Statistical evaluation of a test run. . . . . . . . . 246
8.17. Running example: Project Set specified using a dedicated DSL. . . . 248
8.18. Running example: Project Set DSL editor controls. . . . . . . . . . . 249

10.1. JWT Metamodel: Elements of the core and processes packages. . . . 273
10.2. JWT Metamodel: Referenceable elements Role, Application and Data 273
10.3. Reachability/liveness analysis implemented for JWT. . . . . . . . . . 277
10.4. Minimal and maximal predecessor sets for a8. . . . . . . . . . . . . . 280
10.5. Identified SCC in a JWT process. . . . . . . . . . . . . . . . . . . . 282
10.6. Identified input ports and in edges of a SCC in a JWT process. . . . 285
10.7. Approximation of the propagation of Data d3. . . . . . . . . . . . . 288
10.8. Approximation of the unused paths of Data object d3. . . . . . . . . 289
10.9. Missing Data d4 based on the minimal approximation. . . . . . . . . 291
10.10. Single Entry Single Exit decomposition of a business process [Gar08]. 293
10.11. SESE decomposition of control-flow graphs using token-flow analysis

(initial tokensets and token convergence) [Got+09]. . . . . . . . . . . 294
10.12. The metamodel used by the tokenflow attributions. . . . . . . . . . . 294
10.13. Partial token convergence [Got+09]. . . . . . . . . . . . . . . . . . . 298
10.14. Using partial token convergence to improve component detection. . . 299
10.15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
10.16. Iterative detection of maximal clones [Kra12]. . . . . . . . . . . . . . 303
10.17. Applying inlining to structured models [Kra12]. . . . . . . . . . . . . 304
10.18. Graphs containing a clone structure. . . . . . . . . . . . . . . . . . . 307
10.19. Clone detection using DFA [Kra12]. . . . . . . . . . . . . . . . . . . 308
10.20. Integrating analysis capability into JWT. . . . . . . . . . . . . . . . 310
10.21. Worst case for tokenflow analysis. . . . . . . . . . . . . . . . . . . . 311
10.22. MIDWagen example (ArchiMate representation) [MID14]. . . . . . . 317
10.23. Generic metamodel (GMM) for representing EAM (meta) data [LSB14a].318
10.24. Example for the instantiation of the generic metamodel [LSB14a]. . . 319
10.25. Derived metamodel for the MIDWagen example [LSB14a]. . . . . . . 319
10.26. Screenshot of Innovator showing performance metrics computed for

the MIDWagen example. . . . . . . . . . . . . . . . . . . . . . . . . 329
10.27. Worst case change propagation path for theMIDWagen model [LSB14b].330
10.28. Reference Scope of the SE-DSNL metamodel [FB10]. . . . . . . . . . 335

397



List of Figures

10.29. Construction Scope of the SE-DSNL metamodel [FB10]. . . . . . . . 336
10.30. The analysis configuration dialog. . . . . . . . . . . . . . . . . . . . 342
10.31. Seamless integration of problem reports in the SE-DSNL IDE. . . . . 343
10.32. Software components and runnable entities in AUTOSAR [Min12]. . 351
10.33. Runnable entities of the TIMMO breaking system [Min12]. . . . . . 352
10.34. Data dependencies in the running example [Min12]. . . . . . . . . . 353
10.35. Conflict resolution for cyclic data dependencies [Kie+14]. . . . . . . 353
10.36. Dependencies inside a task [Min12]. . . . . . . . . . . . . . . . . . . 354
10.37. Data dependency types [Min12]. . . . . . . . . . . . . . . . . . . . . 356
10.38. Obligatory successors for RE instances [Min12]. . . . . . . . . . . . . 358
10.39. Visualized results of the dependency analysis [Min12]. . . . . . . . . 359
10.40. Application of the analysis to the breaking system model [Min12]. . 361

A.1. Different representations of the quick sort algorithm [Aho+06]. . . . 404

398



List of Tables

2.1. Two examples of common global data-flow analysis frameworks. . . . 50

3.1. Comparison of different static analysis methods. . . . . . . . . . . . . 70

4.1. Abstract and concrete syntax representations of the CFL framework
as used in compiler construction. . . . . . . . . . . . . . . . . . . . . 94

4.2. Abstract and concrete syntax representations of the MOF. . . . . . . 95

6.1. Conflict detection in the case of the example from Figure 6.9. . . . . 159
6.2. Unique rule contexts for the running example. This information can

be used to generate different method signatures that incorporate the
correct datatype depending on the rule’s execution context. . . . . . . 164

6.3. The steps of the round-robin solving strategy. . . . . . . . . . . . . . 179
6.4. Initial computation of output dependencies in the worklist algorithm. 184
6.5. Worklist processing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

8.1. Parameters that configure the initialization of a MAF Core instance. . 224
8.2. Parameters required for loading an attribution. . . . . . . . . . . . . 226
8.3. Parameters required for instantiating an attribution. . . . . . . . . . 228
8.4. Solver-specific parameters. . . . . . . . . . . . . . . . . . . . . . . . . 234

10.1. Parameterization for the flowset analysis. . . . . . . . . . . . . . . . . 279
10.2. Parameterization for the port analysis. . . . . . . . . . . . . . . . . . 283
10.3. Parameterization for the available and unused data analysis. . . . . . 288
10.4. Parameterization for the missing data analysis. . . . . . . . . . . . . . 290
10.5. Shortest paths to the start node. . . . . . . . . . . . . . . . . . . . . 307
10.6. Clone group candidates containing identified shortest paths. . . . . . 308
10.7. Impact rules for the relationship classes (adapted from [LSB14b]). . . 326
10.8. Impact rules for the effect classes (adapted from [LSB14b]). . . . . . . 326
10.9. Results for all attributions. . . . . . . . . . . . . . . . . . . . . . . . . 344
10.10.Results for attribution constructions_in_hierarchy. . . . . . . . . . . . 344
10.11.Violated constraints for caseStudy1.brms and caseStudy2.brms. . . . . 345

A.1. Global data-flow analysis frameworks [Aho+06]. . . . . . . . . . . . . 405

399





List of Algorithms

1. Iterative round-robin algorithm . . . . . . . . . . . . . . . . . . . . . 51
2. Iterative worklist algorithm . . . . . . . . . . . . . . . . . . . . . . . 53

3. The attribution reachability_analysis . . . . . . . . . . . . . . . . . . . 149
4. The attribution reachability_validation . . . . . . . . . . . . . . . . . . 149
5. The attribution flow_analysis . . . . . . . . . . . . . . . . . . . . . . 150
6. Merging attributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
7. Determining available attribute occurrences for model objects . . . . 158
8. Statically enhancing attributions with inherited attributes . . . . . . 159
9. The attribution inherit_attributes . . . . . . . . . . . . . . . . . . . . 160
10. The attribution inherit_attributes_check . . . . . . . . . . . . . . . . 161
11. Round-robin algorithm for the DFA solver framework . . . . . . . . . 177
12. Worklist algorithm for the DFA solver framework . . . . . . . . . . . 182

13. Reachability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
14. Liveness analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
15. Predecessor analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
16. Predecessor analysis (alternative version) . . . . . . . . . . . . . . . . 259
17. SCC ID analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
18. SCC objects analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
19. Flow paths analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
20. Available resources analysis . . . . . . . . . . . . . . . . . . . . . . . 263
21. Unused resources analysis . . . . . . . . . . . . . . . . . . . . . . . . 264
22. Missing resources analysis . . . . . . . . . . . . . . . . . . . . . . . . 265
23. Unique root types analysis . . . . . . . . . . . . . . . . . . . . . . . . 266
24. Test for cyclic hierarchies . . . . . . . . . . . . . . . . . . . . . . . . . 267
25. Context-sensitive analysis . . . . . . . . . . . . . . . . . . . . . . . . 268

26. The attribution cfg_reachability . . . . . . . . . . . . . . . . . . . . . 276
27. Data-flow rules of the attribution cfg_flowset . . . . . . . . . . . . . . 278
28. The attribution cfg_scc . . . . . . . . . . . . . . . . . . . . . . . . . 281
29. Data-flow rules of the attribution cfg_ports . . . . . . . . . . . . . . . 284
30. Data-flow rules of the attribution cfg_ports (continued) . . . . . . . . 285
31. Data-flow rules for the attributions availableData and unusedData . . . 287
32. Data-flow rules for the attribution missingData . . . . . . . . . . . . . 290
33. The attribution tf_token . . . . . . . . . . . . . . . . . . . . . . . . . 296
34. The ConQAT algorithm [Dei+08] . . . . . . . . . . . . . . . . . . . . 304
35. Data-flow rule for computing the shortest paths . . . . . . . . . . . . 305

401



List of Algorithms

36. The attribution relevant_application_components . . . . . . . . . . . 320
37. Data-flow rules for the attribution performance_analysis . . . . . . . . 322
38. Data-flow rule for the attribution impact_analysis . . . . . . . . . . . 327
39. The attribution symbols_in_construction . . . . . . . . . . . . . . . . 339
40. The attribution circle_constructions . . . . . . . . . . . . . . . . . . . 340
41. Data-flow rule for the attribution construction_in_hierarchy . . . . . . 341
42. The attribution obligatory_successors . . . . . . . . . . . . . . . . . . 357
43. The attribution backward_dependencies . . . . . . . . . . . . . . . . . 358

44. Alternative worklist algorithm for the DFA solver framework . . . . . 408

402



Appendix A.

Basics

A.1. Intermediate and Control-flow Representation

of Programs

403



Appendix A. Basics

(a) Quick sort algorithm (b) Three-Address Code representation

(c) Control-flow graph with basic blocks

Figure A.1.: Different representations of the quick sort algorithm [Aho+06].

404



A.2. Data-flow Frameworks

A.2. Data-flow Frameworks

Available expressions Dominators

Domain Sets of expressions The power set of N

Direction Forwards Forwards

Transfer Function 𝑒_𝑔𝑒𝑛𝐵 ∪ 𝑒_𝑘𝑖𝑙𝑙𝐵 𝑓𝐵(𝑥) = 𝑥 ∪ {𝐵}
Boundary OUT[ENTRY]=∅ OUT[ENTRY]={ENTRY}
Meet (∧) ∩ ∩
Equations 𝑂𝑈𝑇 [𝐵] = 𝑓𝐵(𝐼𝑁 [𝐵]) 𝑂𝑈𝑇 [𝐵] = 𝑓𝐵(𝐼𝑁 [𝐵])

𝐼𝑁 [𝐵] =
⋀︀

𝑃,𝑝𝑟𝑒𝑑(𝐵)𝑂𝑈𝑇 [𝑃 ] 𝐼𝑁 [𝐵] =
⋀︀

𝑃,𝑝𝑟𝑒𝑑(𝐵)𝑂𝑈𝑇 [𝑃 ]

Initialize OUT[B]=U OUT[B]=N

Table A.1.: Global data-flow analysis frameworks [Aho+06].
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Appendix B.

Integrating Flow Analysis with the

Modeling Domain

B.1. Attribution Metamodel

Detailed view of the components of the packages of the attribution metamodel At-
trMM.

The Attribution package
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The Attributes package

The Semanticrules package

The Datatypes package
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B.2. Alternative Worklist Algorithm for the DFA

Solver Framework

Algorithm 44 Alternative worklist algorithm for the DFA solver framework

1: Map⟨AttrInstance, Set⟨AttrInstance⟩⟩ outputDependencies = {} ◁ dependencies

2: OrderedSet⟨AttrInstance⟩ worklist = {} ◁ the main worklist

3: Set⟨AttrInstance⟩ processedInstances = {} ◁ instances that have been invoked once

4: Stack⟨AttrInstance⟩ callStack = {} ◁ stack that records recursive invocations

1: function AnalysisEntryPoint(Set⟨AttrInstance⟩ selectedInstances)
2: worklist.addAll(selectedInstances) ◁ set up worklist with requested instances

3: repeat ◁ process worklist entries

4: AttrInstance instance = worklist.remove(0) ◁ pick and remove worklist entry

5: Object oldValue = instance.value ◁ remember old value

6: processedInstances.add(instance) ◁ mark instance as processed

7: callStack.push(instance) ◁ push instance on callstack

8: invoke(instance) ◁ invoke iteration rule

9: callStack.pop() ◁ remove instance from callstack

10: if (not oldValue == instance.value) then ◁ if value changed. . .

11: worklist.addAll(outputDependencies[instance]) ◁ . . . update worklist

12: until (worklist.size == 0) ◁ repeat until worklist is empty

1: function CallbackHandler(AttrInstance requestingInstance, requestedInstance,
boolean dynamicallyDiscovered)

2: ◁ add requesting instance to output dependency set of requested instance

3: outputDependencies[requestedInstance] += requestingInstance
4: if (callingStack.contains(requestedInstance)) then ◁ detect cyclic dependency

5: if (not requestedInstance.isInitialized()) then ◁ initialize cyclic dependency

6: init(requestedInstance)

7: worklist.addAll(outputDependencies[requestedInstance]) ◁ reevaluate

8: else if (!processedInstances.contains(requestedInstance)) then
9: processedInstances.add(requestedInstance) ◁ mark instance as processed

10: callStack.push(requestedInstance) ◁ push instance on callstack

11: invoke(requestedInstance) ◁ invoke rule

12: callStack.pop() ◁ remove instance from callstack

This is an alternative version of a worklist algorithm (Algorithm 12) for the solver
framework presented in Section 6.5. This algorithm relies on a callstack to record
recursively triggered invocations. If an instance is already on the stack [4], a cyclic
dependency has been discovered. In this case, the respective instance is initialized
[5-6] and its output dependencies are added to the worklist [7].
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Case Studies and Applications

C.1. Business Process Analysis

This section contains additional material for the case study presented in Section 10.1.

C.1.1. Rule Implementations using Imperative OCL

Control-flow Analysis

Rule implementations in Imperative OCL for the attribution cfg_flowset:
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Rule implementations in Imperative OCL for the attribution cfg_scc:

Rule implementations in Imperative OCL for the attribution cfg_ports:
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Definition/Usage of Data Objects

Rule implementation in Imperative OCL for the computation of minimal data avail-
ability at ActivityNodes:
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Token Analysis

Rule implementation in Imperative OCL for the computation of the initial tokenset
at ActivityEdges:
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Rule implementation in Imperative OCL for the computation of the final tokenset
at ActivityEdges:

413



Appendix C. Case Studies and Applications

C.1.2. IBM Fast Heuristics on Tokenflow Components

Implementation of the IBM Fast Heuristics approach. This code runs as a MAF
macro after component detection has been performed based on the DFA tokenflow
algorithm to classify the components according to their structural properties.
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C.1.3. Model Clone Detection

Model clone detection applied to improve a real world business process [Kra12].

Original process
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Optimized process
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C.2. SE-DSNL

This section contains additional material for the case study presented in Section 10.3.

C.2.1. Analysis Overview

The following analyses have been defined in the context of the SE-DSNL project.

Semantic Scope

Attribution Meta Class Description

semantic_symbol
_references_element

SemanticSymbol Checks whether all Semantic Symbols have a ref-

erencesElement value set

circle_generalizations SemanticElement An attribution that tests the Generalizations of
SemanticElements for circles

semantic_element
_in_hierarchy

SemanticElement Checks whether all SemanticElements belong to
a single hierarchy

semantic_elements
_in_hierarchy

Domain

Syntactic Scope

Attribution Meta Class Description

syntactic_category
_in_hierarchy

SyntacticCategory Ensures SyntacticCategory hierarchy does not
contain cycles

syntactic_categories
_in_hierarchy

Domain

circle_syntacticcategories SyntacticCategory An attribution that tests the generalizations of
SyntacticCategory for cycles

category_for_form Form Checks whether each Form or FormRoot has a
SyntacticCategory set

formroot_for_form Form Checks whether each Form belongs to a Form-

Root

syntactic_symbol
_references_element

SyntacticSymbol Checks whether all Syntactic/SemanticSymbols
have a referencesElement value

Construction Scope

Attribution Meta Class Description

circle_constructions Construction Ensures Construction hierarchy does not
contain cycles

construction_in_hierarchy Construction Checks whether the Construction hierarchy
is consistent

Domain

symbols_in_construction Construction Checks if a Construction contains all Sym-
bols used by its referenced mappings
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Interpretation Scope

Attribution Meta Class Description

interpretation_element
_associated_to_model

InterpretationElement Checks if InterpretationElements are asso-
ciated with a model

semantic_element
_interpretation
_is_of_semantic_type

SemanticElement-
Interpretation

Checks SemanticElementInterpretations for
their semantic type

association_interpretation
_is_of_type

AssociationInterpretation Checks whether an AssociationInterpreta-

tion has a defined type

sem_int_element
_for_association_int

AssociationInterpretation Checks whether each AssociationInterpreta-
tion references a SemanticInterpretationEle-
ment via refersSemIntElem

ident_element_identified
_elements_connected

IdentificationElement When a IdentificationElement references an
element through dentifiedBy, all referenced
elements must form a connected subgraph

abstract_pattern
_element_check

PatternElement Performs sanity checks on PatternEle-

ments, e.g. association with Patterns
PatternElement
AbstractPatternElement

Helpers

Attribution Meta Class Description

all_con_successors Construction Calculates all successors (in upper direc-
tion) of a Construction

all_syncat_successors SyntacticCategory The attribution to calculate all
(SyntacticCategory) successors for a
node

all_gen_successors
_objects

Element The attribution to calculate all
(Generalization) successors for a node

root_for_semantic
_element

SemanticElement Returns the name of the root element of a
SemanticCategory

root_for_syntactic
_category

Element Returns the name of the root element of a
SyntacticCategory

element_with_single
_parent

Element Checks whether an element has only one
parent (of the same type)

C.2.2. Attribution construction_in_hierarchy

The following section contains the information omitted in Section 10.3.3 for the use case
construction_in_hierarchy.

Attribution: construction_in_hierarchy

The attribution specification construction_in_hierarchy (cf. Algorithm 41) defines two at-
tributes: The assignment constructions_in_hierarchy_assign for the element Domain com-
putes a map that stores information about the validity of the Construction elements’ roots
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while the constraint constructions_in_hierarchy_const uses this result (amongst others) to
compute the final verdict for each Construction.

Rule: root_for_element

The rule root_for_element computes for each Element the set of root Elements accessible
through the Generalization hierarchy. This is done by evaluating the set of (transitive) par-
ent Generalization elements through the successor relationship (attribute all_gen_successors-
_objects_assign). If no successor elements exist, the local Element is a root node and added
to the result. Otherwise, the root_for_element value of the successors is recursively added
to the result.

Rule: constructions_in_hierarchy

The implementation of constructions_in_hierarchy first collects all Constructions contained
in the Domain and requests the values of the root_for_element_assign attribute for all
Constructions. This list of lists is merged into a set of unique names (uniqueRoots). The list
of Constructions is then processes, adding a map entry to failedObjects with the Construction
as key and
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∙ a list of all global root nodes if the single inheritance property is violated

∙ an empty list if the root list is empty (indicating a cycle)

as value.

Rule: element_with_single_parent

The rule element_with_single_parent, defined for Element, queries all Generalization rela-
tionships and checks whether the references class type equals the class of the local object to
ensure a consistent Generalization hierarchy. In addition, all parent Elements are collected
so that constraints on the multiple inheritance property can be defined.
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C.2.3. SE-DSNL Editor

The graphical editor of the SE-DSNL DSL:

The construction editor:
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Model Analysis Framework

D.1. Framework Core

Framework Instantiation

The class MAFCore provides several static methods for instantiating the framework.

Method createFrameWork
Description Creates a new instance of the framework corresponding to the set of parameters.

Loggers can be provided to record the initialization process.

Parameter Type Description

parameters CoreParameters parameters for initializing the core
statusLoggers Map<String, IVisualizerStatus> initial set of status loggers
repositoryLoggers Map<String, IVisualizerReposi-

tory>
initial set of repository loggers

Return type IMAFCore the instance of the framework

Method createFrameWorkInteralAccess
Description Same as previous method. The returned instance of the type MAFCore allows addi-

tional access to internal functions.

Parameter Type Description

parameters CoreParameters parameters for initializing the core
statusLoggers Map<String, IVisualizerStatus> initial set of status loggers
repositoryLoggers Map<String, IVisualizerReposi-

tory>
initial set of repository loggers

Return type MAFCore the instance of the framework

Method createFrameWorkInteralAccess
Description Same as previous method. Can additionally register debug loggers (combines status,

repository, evaluation loggers and result processor).

Parameter Type Description

parameters CoreParameters parameters for initializing the core
statusLoggers Map<String, IVisualizerStatus> initial set of status loggers
repositoryLoggers Map<String, IVisualizerReposi-

tory>
initial set of repository loggers

debugLoggers List<IVisualizerDebug> the debug loggers

Return type MAFCore the instance of the framework

Module Access

The instance of MAFCore provides internal and external access to all modules of the
framework:

Method getRepositoryFacade

Return type RepositoryFacade reference to the resource repository module (cf.
Appendix D.4)
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Method getVisualizerFacade

Return type VisualizerFacade reference to the logger/processor module (cf. Ap-
pendix D.5)

Method getEvaluatorFacade

Return type EvaluatorFacade reference to the strategy executor module (cf. Ap-
pendix D.7)

Additional Modules

The core also provides access to additional modules (mainly for internal use).

Method getJavaClassLocator

Return type JavaClassLocator MAF interface for locating and instantiating Java
classes

Method getThreadPoolExecutor

Return type MAFThreadPoolExecutor MAF interface for scheduling tasks for processing
using a parallelized working queue

Logging

The available log levels (relevant log level is defined in the set of core parameters):

Artifact type Description

DEBUG verbose debug information
INFO status information
WARNING non-critical error
ERROR critical error (usually aborts execution)

Method logStatus
Description Logs a status message using MAF’s logging facilities. Registered status loggers are

notified on each log entry.

Parameter Type Description

source Class<?> the class which generates the log entry
level int log level
message String the log message
e Exception (optional) exception that should be logged
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D.2. Artifact Adapters

Artifact adapters are used to load source artifacts into EMF resources. The adapters
represent wrappers for the resources and can be stored in MAF’s internal resource
repository (cf. Appendix D.4). The actual loading process takes place once an
adapter is stored in the repository.

Metamodel Adapter

Implemented in the MetaModelAdapter class.

Constructor

Description Constructs a new metamodel adapter by merging the provided input artifacts into a
single resource.

Parameter Type Description

metamodelSources Map<Integer, Tuple<String, Ob-
ject»

input resource map. the key represents the re-
source type while the value contains a reference to
the artifact in the respective format (e.g. a file
path).

metamodelID String the intended repository id for the adapter

Available artifact types for metamodels:

Artifact type Description

resource loads the metamodel from an EMF resource
ecore loads the metamodel from an Ecore file using a URI path
generated loads the metamodel using a EPackage class generated by EMF

Method getMetaModelResourceMap
Description Returns a map of the resources representing the loaded artifacts.

Return type HashMap<URI, Resource> a map relating the artifact URIs to the loaded re-
sources

Method getMetaModelInfo

Return type String a list of the source artifacts from which this
adapters contents were loaded

Method getMetaModelRepoID

Return type String returns the repository id of the adapter

Attribution Adapter

Implemented in the AttributionAdapter class.

Constructor

Description Constructs a new attribution adapter by merging the provided input artifacts into a
single resource.

Parameter Type Description

parameters AttributionParameters The parameter set used to configure the loading of
the attribution

attributionSources Map<URI, Object> input resource map. the key represents the URI of
the artifact while the value may contain additional
data

attributionID String the intended repository id for the adapter
metamodelID String the repository id of the corresponding metamodel

adapter
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Method getMetaModelResourceMap
Description Returns a map of the resources representing the loaded artifacts.

Return type HashMap<URI, Resource> a map relating the artifact URIs to the loaded re-
sources

Method getAttributionInfo

Return type String a list of the source artifacts from which this
adapters contents were loaded

Method getAttributionRepoID

Return type String returns the repository id of the adapter

Method getMetaModelRepoID

Return type String returns the repository id of the corresponding
metamodel adapter

Method getMergedAttribution

Return type Set<String> the list of the ids of the defined attributions

Method getMergedAttribution

Return type Attribution this object contains the loaded attribution consists
of all source attributions that have been extended
to represent the inheritance relationships

Model Adapter

Implemented in the ModelAdapter class.

Constructor

Description Constructs a new model adapter by merging the provided input artifacts into a single
resource.

Parameter Type Description

modelSources Map<Integer, Tuple<String, Ob-
ject»

input resource map. the key represents the re-
source type while the value contains a reference to
the artifact in the respective format (e.g. a file
path).

modelID String the intended repository id for the adapter
metamodelID String the intended repository id of the corresponding

metamodel adapter

Available artifact types for models:

Artifact type Description

resource loads the model from an EMF resource
xmi loads the model from an EMF XMI/Xtext file using a URI path

Method getTraceMap

Return type String returns a map that links internal EObjects to ele-
ments from the original source artifact

Method getModelResourceMap
Description Returns a map of the resources representing the loaded artifacts.

Return type HashMap<URI, Resource> a map relating the artifact URIs to the loaded re-
sources

Method getModelInfo

Return type String a list of the source artifacts from which this
adapters contents were loaded

Method getModelRepoID

Return type String returns the repository id of the adapter
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D.3. Instantiations

An Instantiation is a wrapper for attribution that has been instantiated for a model,
i.e. an attributed model. It provides the facilities for attribute instantiation and
storage as well as the necessary functions for instance access and manipulation during
the analysis. In the normal case, the presented methods are called internally by the
framework. However, it is also possible to invoke them manually by retrieving the
Instantiation object from MAF’s repository.

Initialization

Creation and initialization of the Instantiation object is usually managed by the
repository (cf. Appendix D.4).

Constructor

Description Creates a new Instantiation object representing the attributed model for the defined
resources.

Parameter Type Description

core MAFCore parent MAF Core instance.
parameters InstantiationParameters parameters configuring the Instantiation
metamodelID String repository id of the metamodel resource
modelID String repository id of the model resource
attributionID String repository id of the attribution resource

Method initInstantiation
Description sets up the internal data structures and required functionality (invokers, accessor

etc.)

Parameter Type Description

useExistingModels boolean if true, existing data structures are reused (speeds
up reinitialization in test mode)

Attribute Instantiation

The following methods provide support for the creation of attribute instances. They
are called by the Strategy Executor to collect the selected instances.

Method instantiateAttribute
Description Instantiates a specific attribute for an object

Parameter Type Description

object EObject the object at which the attribute is annotated
attrDefinition AttrDefinition the attribute definition that should be instantiated
forceInitialization boolean force initialization with init rule

Return type AttrInstance the instantiated attribute

Method instantiateAttributes
Description Instantiates all attributes for an object

Parameter Type Description

object EObject the object at which attributes are annotated
forceInitialization boolean force initialization with init rule

Return type Set<AttrInstance> the instantiated attributes

Evaluation Management

The following methods manage the lifecycle of an Evaluation Target. They are mainly
invoked by the Strategy Executor.
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Method evaluateInit
Description Initializes the internal data structures for an evaluation run. Called by the Strategy

Executor

Method evaluateAttributes
Description Starts the evaluation for the set of given attribute instances. Called by the Strategy

Executor

Parameter Type Description

attrInstances Collection<AttrInstance> the instances to evaluate

Return type Collection<AttrInstance> the evaluated instances

Method evaluateRecursiveCall
Description Handles recursive requests for attribute values from inside data-flow rules. Request

is handed on to the selected evaluator’s callback method. Called by the Attribute
Accessor

Parameter Type Description

attrInstance AttrInstance the requested instance

Method evaluateFinish
Description Wraps up an evaluation of a target by generating statistical information and collecting

the results. Called by the Strategy Executor

Parameter Type Description

startTimeCompleteNS long start time of the strategy execution
startTimeEvaluationNS long start time of the target’s evaluation
requestedResultInstances Collection<AttrInstance> the set of requested instances (without dynami-

cally discovered instances)
allResultInstances Collection<AttrInstance> all instances (including discovered)

Return type SimpleEvaluationResult the results of the current Evaluation Target

Rule Invocation

Evaluators and the accessor can use the following methods to invoke data-flow rules:

Method invokeRule
Description Invokes an attribute’s initialization or iteration rule. Triggers callback if additional

attribute values are requested

Parameter Type Description

forceExecution boolean Can override the blockStable parameter
initializationRule boolean indicates whether the initialization rule should be

executed
attrInstance AttrInstance the attribute instance which should be

(re)computed

Return type Object result of the rule’s execution

Method calculateAttributeValue
Description Invokes an attribute’s initialization or iteration rule without saving the result. Used

e.g. by the AttributeAccessor’s initialization mode where only initialization values are
returned.

Parameter Type Description

initializationRule boolean indicates whether the initialization rule should be
executed

attrInstance AttrInstance the attribute instance which should be
(re)computed

Return type Object result of the rule’s execution

Data Structures

The following methods allow access to an Instantiation’s internal data structures.

Method getTraceMapCopyOrig
Description Trace map built by model adapter relating internal to original objects

Return type Map<EObject, Object> trace map
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Method getTraceMapOrigCopy
Description Trace map built by model adapter relating original to internal objects

Return type Map<Object, EObject> trace map

Method getAttributeInstantiationModel
Description Allows access to the instantiated attribution

Return type AttributionInstantiation the attributed model

Method getStorageInstantiation
Description Static storage map that can be used by data-flow rules. Its lifecycle corresponds to

the Instantiation’s lifecycle

Return type Map<Object, Object> storage map

Method getStorageEvaluation
Description Static storage map that can be used by data-flow rules. Its lifecycle corresponds to

an evaluation run

Return type Map<Object, Object> storage map

Other Information

These methods provide access to additional information:

Method getAttributeAccessor
Description Returns the AttributeAccessor of the Instantiation

Return type IAttributeAccessor attribute accessor used by the Instantiation

Method getParameters
Description Allows read/write access to the InstantiationParameters

Return type InstantiationParameters parameters with which the Instantiation was cre-
ated

Method getMetaModelRepoID
Description Returns the id for the Instantiation’s metamodel repository entry

Return type getMetaModelRepoID metamodel repository id

Method getModelRepoID
Description Returns the id for the Instantiation’s model repository entry

Return type String model repository id

Method getAttributionRepoID
Description Returns the id for the Instantiation’s attribution repository entry

Return type String attribution repository id
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D.4. Resource Repository

The resources are managed internally through adapters. The repository in which
these adapters are stored can be accessed through the framework instance: maf-
Core.getRepositoryFacade(). There are overall four types of resources which are stored
inside the repositories: Metamodels, attributions, models and instantiations.

Metamodel Repository

Methods for managing metamodel resources.

Method loadMetaModel
Description Loads a metamodel adapter into the repository.

Parameter Type Description

mmadapter IMetaModelAdapter metamodel adapter that should be loaded

Method reloadMetaModel
Description Updates the metamodel (reloads the source artifact). May trigger reloading of de-

pending resources.

Parameter Type Description

metamodelID String repository id of the metamodel adapter to reload

Method removeMetaModel
Description Removes the metamodel from the repository. May trigger removal of depending

resources.

Parameter Type Description

metamodelID String repository id of the metamodel adapter to remove

Method lookupMetaModel
Description Retrieves a metamodel adapter based on its repository id.

Parameter Type Description

metamodelID String repository id of the metamodel adapter to locate

Return type MetaModelAdapter the metamodel adapter

Method iteratorMetaModel
Description Provides an iterator for all registered metamodel adapters.

Return type Iterator<MetaModelAdapter> iterates over the loaded adapters

Attribution Repository

Methods for managing attribution resources.

Method loadAttribution
Description Loads an attribution adapter into the repository.

Parameter Type Description

aadapter IAttributionAdapter attribution adapter that should be loaded

Method reloadAttribution
Description Updates the attribution (reloads the source artifact). May trigger reloading of de-

pending resources.

Parameter Type Description

attributionID String repository id of the attribution adapter to reload
metamodelID String repository id of the associated metamodel adapter

Method removeAttribution
Description Removes the attribution from the repository. May trigger removal of depending

resources.

Parameter Type Description

attributionID String repository id of the attribution adapter to remove
metamodelID String repository id of the associated metamodel adapter
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Method lookupAttribution
Description Retrieves an attribution adapter based on its repository id.

Parameter Type Description

attributionID String repository id of the attribution adapter to locate
metamodelID String repository id of the associated metamodel adapter

Return type AttributionAdapter the attribution adapter

Method iteratorAttribution
Description Provides an iterator for all registered attribution adapters.

Return type Iterator<AttributionAdapter> iterates over the loaded adapters

Model Repository

Methods for managing model resources.

Method loadModel
Description Loads a model adapter into the repository.

Parameter Type Description

madapter IModelAdapter model adapter that should be loaded

Method reloadModel
Description Updates the model (reloads the source artifact). May trigger reloading of depending

resources.

Parameter Type Description

modelID String repository id of the model adapter to reload
metamodelID String repository id of the associated metamodel adapter

Method removeModel
Description Removes the model from the repository. May trigger removal of depending resources.

Parameter Type Description

modelID String repository id of the model adapter to remove
metamodelID String repository id of the associated metamodel adapter

Method lookupModel
Description Retrieves a model adapter based on its repository id.

Parameter Type Description

modelID String repository id of the model adapter to locate
metamodelID String repository id of the associated metamodel adapter

Return type ModelAdapter the model adapter

Method iteratorModel
Description Provides an iterator for all registered model adapters.

Return type Iterator<ModelAdapter> iterates over the loaded adapters

Instantiation Repository

Methods for managing Instantiations.

Method instantiateAttribution
Description Instantiates an attribution for the selected resources. May trigger computation of the

instances’ results.

Parameter Type Description

parameters InstantiationParameters The parameters set that configures the instantia-
tion process

metamodelRepoID String the repository id of the metamodel adapter
modelRepoID String the repository id of the model adapter
attributionRepoID String the repository id of the attribution adapter
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Method reinstantiateAttribution
Description Resets the instantiation. May trigger computation of the instances’ results.

Parameter Type Description

metamodelRepoID String the repository id of the metamodel adapter
modelRepoID String the repository id of the model adapter
attributionRepoID String the repository id of the attribution adapter

Method removeInstantiation
Description Removes the instantiation from the repository

Parameter Type Description

metamodelRepoID String the repository id of the metamodel adapter
modelRepoID String the repository id of the model adapter
attributionRepoID String the repository id of the attribution adapter

Method lookupInstantiation
Description Retrieves an instantiation based on the repository id of its resources.

Parameter Type Description

metamodelRepoID String the repository id of the metamodel adapter
modelRepoID String the repository id of the model adapter
attributionRepoID String the repository id of the attribution adapter

Return type AttributeInstantiationWrapper the instantiation

Method iteratorInstantiation
Description Provides an iterator for all instantiated attributions.

Return type Iterator<AttributeInstantiationWrapper>iterates over the loaded instantiations

D.5. Loggers and Result Processors

Status, repository and evaluation loggers as well as Result Processors can be regis-
tered through the VisualizerFacade. They represent listeners which are notified on
status messages, changes to the internal repositories, during and after the evaluation
process. Through these concepts, one can access the status of the framework and
the results of analyses (Status Loggers and Result Processors) which is useful when
integrating MAF into existing applications. Evaluation and Repository Loggers are
especially useful if one intends to implement custom IDE’s for MAF. For conve-
nience reasons, a debug logger concept is also provided that unifies all four types
of listeners. For each type MAF includes standard implementations that e.g. write
the received information to the console or into a text file. Internally, notifications
are passed to the instance of the MAFCore class in the case of status messages and
to the VisualizerFacade for all other types of logging entries.

Status Logger

The following methods have to be provided by status logger implementations:

Method logStatus
Description Logs a standard status message

Parameter Type Description

source Class<?> the class in which the message originated
level CoreParametersLogLevel the log level
debug boolean set to true if level is debug
currentTime Date the time at which the status message was gener-

ated
timeSpan (optional) long time span in nano seconds
message1 String the message
message2 (optional) String optional second part of message
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Method parametersChanged
Description Notified on parameter change

Parameter Type Description

currentTime Date the time at which the status message was gener-
ated

parameters IParameters parameter set that has changed

Repository Logger

The repository logger messages can monitor changes to MAF’s internal repositories.

Method metaModelAdded
Description Notified when a metamodel adapter has been successfully loaded into the repository

Parameter Type Description

currentTime Date the time at which the adapter was added
mmadapter IMetaModelAdapter the added metamodel adapter
repositoryIterator Iterator<? extends IMetaMode-

lAdapter>
iterator for metamodel adapters

Method metaModelRemoved
Description Notified when a metamodel adapter has been successfully removed from the repository

Parameter Type Description

currentTime Date the time at which the adapter was removed
mmadapter IMetaModelAdapter the removed metamodel adapter
repositoryIterator Iterator<? extends IMetaMode-

lAdapter>
iterator for metamodel adapters

Method metaModelReloaded
Description Notified when a metamodel adapter has been successfully reloaded

Parameter Type Description

currentTime Date the time at which the adapter was reloaded
mmadapter IMetaModelAdapter the reloaded metamodel adapter
repositoryIterator Iterator<? extends IMetaMode-

lAdapter>
iterator for metamodel adapters

Note: Repository loggers also contain similar methods for model and attribution
adapters.

Method visualizerAdded
Description Notified when a visualizer has been added to the repository

Parameter Type Description

currentTime Date the time at which the visualizer has been added
id String the visualizer id
visualizer IVisualizer the visualizer

Method visualizerRemoved
Description Notified when a visualizer has been removed from the repository

Parameter Type Description

currentTime Date the time at which the visualizer has been removed
id String the visualizer id
visualizer IVisualizer the visualizer

Method instantiationCreated
Description Notified when a visualizer has been added to the repository

Parameter Type Description

iwrapper IAttributeInstantiationWrapper the Instantiation that has been created
repositoryIterator Iterator<? extends IAttributeInstan-

tiationWrapper>
iterator for Instantiations
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Method instantiationRemoved
Description Notified when a visualizer has been removed from the repository

Parameter Type Description

iwrapper IAttributeInstantiationWrapper the Instantiation that has been removed
repositoryIterator Iterator<? extends IAttributeInstan-

tiationWrapper>
iterator for Instantiations

Evaluation Logger

Evaluation loggers enable tracking the state of the evaluation process and the solver’s
actions.

Method startInstantiation
Description Called when an Instantiation is (re)loaded

Parameter Type Description

currentTime Date the time on which the event occurred
iwrapper IAttributeInstantiationWrapper the (re)loaded Instantiation

Method finishInstantiation
Description Called when the initialization of an Instantiation is finished

Parameter Type Description

currentTime Date the time on which the event occurred
iwrapper IAttributeInstantiationWrapper the affected Instantiation

Method startEvaluationDirective
Description Called when an Evaluation Directive is executed

Parameter Type Description

currentTime Date the time on which the event occurred
evaluationDirective IEvaluationDirective the executed Evaluation Directive

Method finishEvaluationDirective
Description Called when the execution of an Evaluation Directive is finished

Parameter Type Description

currentTime Date the time on which the event occurred
evaluationDirective IEvaluationDirective the executed Evaluation Directive

Method instantiatedAttribute
Description Called when an Attribute Instance is created

Parameter Type Description

iwrapper IAttributeInstantiationWrapper the instance’s containing Instantiation
instantiatedInstance AttrInstance the instantiated attribute

Method initializedAttribute
Description Called when an Attribute Instance is initialized

Parameter Type Description

iwrapper IAttributeInstantiationWrapper the instance’s containing Instantiation
initializedInstance AttrInstance the initialized instance

Method invokeRule
Description Called when a data-flow rule is invoked

Parameter Type Description

iwrapper IAttributeInstantiationWrapper the instance’s containing Instantiation
instance AttrInstance the affected instance
initialization boolean determines whether the initialization or iteration

rule is invoked

Method logMessage
Description Logs a status message generated by the solver

Parameter Type Description

currentTime Date the time on which the event occurred
iwrapper IAttributeInstantiationWrapper the affected Instantiation
message String the log message
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Method logAttributes
Description Logs the current state of a list of instances

Parameter Type Description

currentTime Date the time on which the event occurred
timeSpanNS long time span of the processing of the instances
iwrapper IAttributeInstantiationWrapper the affected Instantiation
evaluatedInstances Collection<AttrInstance> list of evaluated instances

Method logDependencyChain
Description Logs the current state of a dependency chain

Parameter Type Description

currentTime Date the time on which the event occurred
timeSpanNS long time span for the processing of the current chain
iwrapper IAttributeInstantiationWrapper the affected Instantiation
depChain DependencyChain the dependency chain model
depChainType DependencyChainType the type of the dependency chain
discoveredNodes Collection<InstanceNode> list of newly discovered instance nodes
discoveredEdges Collection<Tuple<InstanceNode,

InstanceNode»
list of newly discovered dependency edges

evaluatedNodes Collection<InstanceNode> nodes which have been evaluated in the current
run

Result Processor

These methods are called during and after the evaluation process:

Method processSimpleResult
Description Called with the result of a single Evaluation Target

Parameter Type Description

simpleEvaluationResult SimpleEvaluationResult

Method processAggregatedResult
Description Called with the aggregated result of a complete Evaluation Strategy

Parameter Type Description

aggregatedEvaluationResultAggregatedEvaluationResult
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D.6. Attribute Accessor

The Attribute Accessor can request attribute instance values from inside the data-
flow rules. Additionally, it provides a number of helper functions that simplify the
execution of model operations in Java code.

Attribute Access

The following methods can be used to access attribute instance values and manip-
ulate constraint messages.

Method getAttributeValueForObject
Description Requests a single attribute value and returns it

Parameter Type Description

object EObject the object at which the attribute instance is lo-
cated

attDefName String The attribute definition id

Return type Object iteration value of attribute instance

Method getAttributeValuesForObject
Description Requests all attribute values for an object

Parameter Type Description

object EObject the object at which the attribute instances are lo-
cated

Return type Map<String, Object> iteration values of attribute instances

Method getAttributeValuesForObjects
Description Requests attribute values at multiple objects for an attribute id

Parameter Type Description

objects EList<EObject> the objects at which the attribute instances are
located

attDefName String The attribute definition id

Return type List<Object> iteration value of attribute instance of the respec-
tive id at the given objects

Method getAttributeValuesForObjects
Description Requests all attribute value at the given objects

Parameter Type Description

objects EList<EObject> the objects at which the attribute instances are
located

Return type Map<String, Map<EObject, Ob-
ject»

iteration values of all attribute instances at the
given objects

Method setConstraintMessage
Description Sets the information/error message for an attribute constraint

Parameter Type Description

object EObject the objects at which the attribute instances are
located

attDefName String the objects at which the attribute instances are
located

message String the objects at which the attribute instances are
located

Method setInitializationMode
Description Puts the AttributeAccessor in initialization mode where each request results in the

attribute’s initialization value. Used by DFA solvers to build initial dependency
relationships

Parameter Type Description

initializationMode boolean initialization mode
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Additional Evaluation Functions

These functions provide additional functionality that can be useful to implement
DFA methods.

Method getBitVectorUtil
Description Returns util for managing data in bitvectors

Parameter Type Description

id String the id of a specific bitvector

Return type BitVectorSetUtil the bitvector util for the given id

Method getStorageInstantiation
Description Returns a storage map that is specific to the current instantiation

Return type Map<Object, Object> instantiation storage map

Method getStorageEvaluation
Description Returns a storage map that is shared throughout an evaluation run

Return type Map<Object, Object> evaluation storage map

Model Helper Functions

The following methods simplify model management in Java.

Method getEClassName
Description Returns the name of an object’s class

Parameter Type Description

object EObject the EObject

Return type String class name

Method collectEObjectsByClassName
Description Filters a list keeping only objects of given class names

Parameter Type Description

eobjects Collection<EObject> the set of objects to filter
classNames String[] the filter class name(s)

Return type EList<EObject> the filtered list

Method getEAttributeValue
Description Returns a class attribute value

Parameter Type Description

object EObject the EObject
attName String the name of the class attribute

Return type Object class attribute value

Method getEReferenceValue
Description Returns class reference value

Parameter Type Description

object EObject the EObject
refName String the name of the class reference

Return type Object class reference value

Method getEReferenceValues
Description Returns class reference values (for references with multiplicity greater than one)

Parameter Type Description

object EObject the EObject
refName String the name of the class reference

Return type Object class reference values
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Method createUnion
Description Creates the union of multiple elements/sets

Parameter Type Description

resolveContained boolean flattens the set(s)
objects Object... the elements/sets to unify

Return type Set<?> the unified set

Method createIntersection
Description Creates the intersection of multiple sets

Parameter Type Description

inputSets Collection<?> the sets to intersect

Return type Set<?> the intersection
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D.7. Strategy Executor

The Strategy Executor is responsible for running an evaluation consisting of Evalu-
ationDirectives. A directive is either an Evaluation Target or an Evaluation Macro. The
executor can be accessed through the framework instance: mafCore.getEvaluatorFacade().
It exposes the following methods:

Method evaluateTarget
Description Takes a single Evaluation Target and executes it

Parameter Type Description

evaluationTarget Evaluation Target the target to execute
resultVisualizers String[] ids of registered result processors

Return type SimpleEvaluationResult results of the analysis

Method evaluateDirectives
Description Takes a list of EvaluationDirectives and executes them

Parameter Type Description

evaluationDirectives List<IEvaluationDirective> the directives to execute
resultVisualizers String[] ids of registered result processors

Return type AggregatedEvaluationResult aggregated results of the analysis

Method evaluateDirectivesTest
Description Executes a list of EvaluationDirectives in test mode

Parameter Type Description

testParameters TestParameters the parameters for the test run
evaluationDirectives List<IEvaluationDirective> the directives to execute
storageObjects Map<Object, Object> global storage accessible by data-flow rules

Return type AggregatedEvaluationResult aggregated results of the analysis
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D.8. Project Set

The Project Set API allows the configuration of a MAF Core instance based on a
ProjectSet model. The class exposing the necessary methods is called MAFProject-
SetInterface.

Framework Initialization

Methods for initializing the framework using a Project Set configuration.

Method createCore
Description Initialized MAF Core with the given Project Set model.

Parameter Type Description

projectFileURI URI the URI path to the Project Set file

Return type MAFCore the initialized MAF Core instance

Method createCoreWithDebugger
Description Same as createCore but additionally registers debug listeners.

Parameter Type Description

projectFileURI URI the URI path to the Project Set file
debugVisualizers List<IVisualizerDebug> the debug visualizers that should be registered

with the framework

Return type MAFCore the initialized MAF Core instance

Execution of Evaluation Strategies

Methods for triggering the execution of defined EvaluationStrategies.

Method evaluateStrategy
Description Executes an Evaluation Strategy. The target model is located using the repository id

of the strategy (the model has to be already present in the repository).

Parameter Type Description

core IMAFCore the target framework core
strategyID String the id of the Evaluation Strategy
storageObjects Map<Object, Object> initial contents for the global storage maps which

can be accessed by the data-flow rules

Return type AggregatedEvaluationResult the aggregated result of the strategy

Method evaluateStrategy
Description Executes an Evaluation Strategy on the given model.

Parameter Type Description

core IMAFCore the target framework core
modelAdapter IModelAdapter the adapter containing the target model
loadModelAdapter boolean indicates whether the artifacts should be loaded

(otherwise its assumed, that they have already
been loaded)

strategyID String the id of the Evaluation Strategy
storageObjects Map<Object, Object> initial contents for the global storage maps which

can be accessed by the data-flow rules

Return type AggregatedEvaluationResult the aggregated result of the strategy

Execution of Evaluation Strategies in Test Model

Methods for triggering the execution of defined EvaluationStrategies in test mode.
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Method testStrategy
Description Executes an Evaluation Strategy. The target model is located using the repository id

of the strategy (the model has to be already present in the repository).

Parameter Type Description

core IMAFCore the target framework core
testParameters TestParameters the parameters configuring the test run
strategyID String the id of the Evaluation Strategy
storageObjects Map<Object, Object> initial contents for the global storage maps which

can be accessed by the data-flow rules

Return type AggregatedEvaluationResult the aggregated result of the strategy

Method testStrategy
Description Executes an Evaluation Strategy on the given model.

Parameter Type Description

core IMAFCore the target framework core
testParameters TestParameters the parameters configuring the test run
modelAdapter IModelAdapter the adapter containing the target model
loadModelAdapter boolean indicates whether the artifacts should be loaded

(otherwise its assumed, that they have already
been loaded)

strategyID String the id of the Evaluation Strategy
storageObjects Map<Object, Object> initial contents for the global storage maps which

can be accessed by the data-flow rules

Return type AggregatedEvaluationResult the aggregated result of the strategy

441



Appendix D. Model Analysis Framework

D.9. Project Set Grammar

Xtext grammar for the Project Set DSL:

Pro j ec tSe t returns projectset::ProjectSet :
’ p r o j e c t s e t ’ id=ID ( ( ’ vers ion ’ version=STRING ’ ; ’ ) ? & ( ’ de s c r i p t i on ’ description=STRING ’ ; ’ ) ? )

( coreParameters=CoreParameters ? &
( ’ logger ’ statusLoggers+=JavaLink ’ ; ’ )* &
repoMetamodels+=MetaModelEntry* &
repoAttributions+=Attr ibut ionEntry * &
repoModels+=ModelEntry* &
evaluationStrategies+=Evaluat ionStrategy * ) ;

CoreParameters returns parameters::CoreParameters :
’ core_parameters ’ ’{ ’

( ( ’ autodispose_pol icy ’ ’= ’ autodisposePolicy=CoreParametersAutodisposePol icy ’ ; ’ ) ? &
( ’ thread_count ’ ’= ’ threadCount=INT ’ ; ’ ) ? &
( ’ synchronize_resources ’ ’= ’ synchronizeResources=EBoolean ’ ; ’ ) ? &
( ’ log_leve l ’ ’= ’ logLevel=CoreParametersLogLevel ’ ; ’ ) ? &
( ’ ec l ipse_conso le_log ’ ’= ’ eclipseConsoleLog=EBoolean ’ ; ’ ) ? &
( ’ parameters_autoreset ’ ’= ’ parametersAutoreset=EBoolean ’ ; ’ ) ? ) ’} ’ ;

enum CoreParametersAutodisposePol icy returns parameters::CoreParametersAutodisposePolicy :
o f f =’ o f f ’ | adapters=’ adapters ’ | v i s u a l i z e r s =’ v i s u a l i z e r s ’ | both=’both ’ ;

enum CoreParametersLogLevel returns parameters::CoreParametersLogLevel :
a l l =’ a l l ’ | debug=’debug ’ | i n f o =’ in fo ’ | warning=’warning ’ | e r r o r =’ er ror ’ | o f f =’ o f f ’ ;

MetaModelEntry returns repository::MetaModelEntry :
’ load_metamodel ’ repoID=ID ’{ ’ (resources+=InputResourceMetaModel )* ’ } ’ ;

InputResourceMetaModel returns repository::InputResource :
( ( type=InputArtifactTypeMetaModelEcore ’ from ’ uri=STRING) |
(type=InputArtifactTypeMetaModelGenerated javaLink=JavaLink ) ) ’ ; ’ ;

enum InputArtifactTypeMetaModelEcore returns repository::InputArtifactType :
e co re=’ ecore ’ ;

enum InputArtifactTypeMetaModelGenerated returns repository::InputArtifactType :
generated=’generated ’ ;

ModelEntry returns repository::ModelEntry :
’ load_model ’ repoID=ID ’ : ’ metamodel=[ r epo s i t o r y : : MetaModelEntry ] ’{ ’

(resources+=InputResourceModel )* ’ } ’ ;

InputResourceModel returns repository::InputResource :
type=InputArti factTypeModel ’ from ’ uri=STRING ’ ; ’ ;

enum InputArti factTypeModel returns repository::InputArtifactType :
xmi=’xmi ’ ;

Attr ibut ionEntry returns repository::AttributionEntry :
’ l oad_attr ibut ion ’ repoID=ID ’ : ’ metamodel=[ r epo s i t o r y : : MetaModelEntry ] ’ { ’

(parameters=Attr ibut ionParameters ? & (resources+=InputResourceAttr ibut ionEntry )* ) ’} ’ ;

InputResourceAttr ibut ionEntry returns repository::InputResource :
type=InputArt i factTypeAttr ibut ionEntry ’ from ’ importURI=STRING ’ ; ’ ;

enum InputArt i factTypeAttr ibut ionEntry returns repository::InputArtifactType :
xmi=’attrmm ’ ;

Attr ibut ionParameters returns parameters::AttributionParameters :
’ parameters ’ ’{ ’

( ( ’ inher i tance_po l i cy ’ ’= ’ inheritancePolicy=Att r ibut i onParamete r s Inhe r i t ancePo l i cy ’ ; ’ ) ? &
( ’ mock_java_rules ’ ’= ’ mockJavaRules=EBoolean ’ ; ’ ) ? &
( ’ s ta t i c_ru l e_creat i on ’ ’= ’ staticRuleCreation=EBoolean ’ ; ’ ) ? &
( ’ j ava ru l e s ’ javaRuleClasses+=JavaLinkWithID ’ ; ’ ) * ) ’} ’ ;

enum Att r ibut i onParamete r s Inhe r i t ancePo l i cy returns parameters::AttributionParametersInheritancePolicy :
o f f =’ o f f ’ | i n h e r i t =’ i nhe r i t ’ | r e d e f i n e =’ r ede f i n e ’ ;

EBoolean returns ecore::EBoolean :
’ true ’ | ’ f a l s e ’ ;

JavaLink returns projectset::JavaLink :
( ( ’ c la s spath ’ javaClassPath=STRING) | ( ’ l ink ’ jvmLink= [ jvmTypes : : JvmType | Qualif iedName ] ) ) ;

JavaLinkWithID returns projectset::JavaLink :
id=ID ( ( ’ c la s spath ’ javaClassPath=STRING) | ( ’ l ink ’ jvmLink= [ jvmTypes : : JvmType | Qualif iedName ] ) ) ;

Eva luat ionStrategy returns evaluation::EvaluationStrategy :
’ s t rategy ’ id=ID ’{ ’ ( ( ’ d e s c r i p t i on ’ description=STRING ’ ; ’ ) ? &

( ’ r e s u l t p r o c e s s o r ’ resultProcessors+=JavaLink ’ ; ’ )* &
( instantiationParameters=Ins tant i a t i onParamete r s )? &
(directives+=Eva luat i onDi r e c t i ve )* ) ’} ’ ;

In s tant i a t i onParamete r s returns parameters::InstantiationParameters :
’ parameters ’ ’{ ’

( ( ’ autode lete_pol i cy ’ ’= ’ autoDeletePolicy=Ins tant i a t i onParamete r sAutode l e t ePo l i cy ’ ; ’ ) ? &

442



D.9. Project Set Grammar

( ’ b lock_stable ’ ’= ’ blockStable=EBoolean ’ ; ’ ) ? &
( ’ eva luator ’ ’= ’ evaluatorType=Instant iat ionParametersEvaluatorType ’ ; ’ ) ? &
( ’ evaluator_parameter ’ evaluatorParameters+=EvaluatorParameterEntry ’ ; ’ )* &
( ’ measure_performance ’ ’= ’ measurePerformance=EBoolean ’ ; ’ ) ? &
( ’ va l i da t e_re f e r ence s ’ ’= ’ validateReferences=EBoolean ’ ; ’ ) ? &
( ’ debug_mode ’ ’= ’ evaluatorDebugMode=EBoolean ’ ; ’ ) ? &
( ’ synchronize_evaluat ion ’ ’= ’ synchronizeEvaluation=EBoolean ’ ; ’ ) ? &
( ’ i n s t an t i a t i on_po l i cy ’ ’= ’ instantiationPolicy=In s t an t i a t i onPa rame t e r s I n s t an t i a t i onPo l i c y ’ ; ’ ) ? &
( ’ problemmarker_policy ’ ’= ’ problemMarkerPolicy=Instant iat ionParametersProblemmarkerPol icy ’ ; ’ ) ? &
( ’ max_rule_invoke ’ ’= ’ maxRuleInvoke=LONG ’ ; ’ ) ? ) ’} ’ ;

EvaluatorParameterEntry returns projectset::StringToStringMapEntry :
key=ID ’= ’ value=STRING ;

enum EvaluatorParameterKey returns parameters::EvaluatorParameters :
eval_depchain_bu_eliminate =’eval_depchain_bu_eliminate ’ |
eval_depchain_bu_postpone=’eval_depchain_bu_postpone ’ |
eval_depchain_bu_start=’eval_depchain_bu_start ’ | eval_depchain_phase1 =’eval_depchain_phase1 ’ |
eva l_depchain_phase1_para l le l i ze=’ eval_depchain_phase1_paral le l ize ’ |
eval_depchain_phase2=’eval_depchain_phase2 ’ |
eva l_depchain_phase2_para l le l i ze=’ eval_depchain_phase2_paral le l ize ’ |
eval_depchain_wl_adddiscovered=’eval_depchain_wl_adddiscovered ’ |
eval_roundrobin_reclookup=’eval_roundrobin_reclookup ’ | eva l_workl i s t_changesets=’ eval_workl i st_changesets ’ |
eva l_workl i s t_rec lookup=’ eval_workl i st_rec lookup ’ ;

enum In s tant i a t i onParamete r sAutode l e t ePo l i cy returns parameters::InstantiationParametersAutodeletePolicy :
o f f =’ o f f ’ | i n s t a n t i a t i o n =’ i n s t an t i a t i on ’ | a l l =’ a l l ’ ;

enum Instant iat ionParametersProblemmarkerPol icy returns parameters::InstantiationParametersProblemmarkerPolicy :
o f f =’ o f f ’ | add=’add ’ | r ep l a c e=’ rep lace ’ ;

enum I n s t an t i a t i onPa rame t e r s I n s t an t i a t i onPo l i c y returns parameters::InstantiationParametersInstantiationPolicy :
s t a t i c =’ s t a t i c ’ | s t a t i c i n i t =’ s t a t i c i n i t ’ | ondemand=’ondemand ’ ;

enum Instant iat ionParametersEvaluatorType returns parameters::InstantiationParametersEvaluatorType :
depchain=’depchain ’ | wo rk l i s t =’work l i s t ’ | roundrobin=’ roundrobin ’ ;

Eva lua t i onDi r e c t ive returns evaluation::EvaluationDirective :
Evaluat ionTarget | EvaluationMacro ;

Evaluat ionTarget returns evaluation::EvaluationTarget :
’ target ’ ’ ( ’ metamodel=[ r epo s i t o r y : : MetaModelEntry ] ’ , ’
attribution=[ r epo s i t o r y : : Attr ibut ionEntry ] ( ’ , ’ model=[ r epo s i t o r y : : ModelEntry ] ) ? ’ ) ’
( ’ a t t r i bu t i on s ’ targetAttributions+=[a t t r i bu t i o n : : At t r ibut ion ]

( ’ , ’ targetAttributions+=[a t t r i bu t i o n : : At t r ibut ion ] )* |
’ a t t r i bu t e s ’ targetAttributes+=[a t t r i b u t e s : : A t t rDe f i n i t i on ]
( ’ , ’ targetAttributes+=[a t t r i b u t e s : : A t t rDe f i n i t i on ] )* |
’ occurrences ’ targetOccurrences+=[a t t r i b u t e s : : AttrOccurrence ]
( ’ , ’ targetOccurrences+=[a t t r i b u t e s : : AttrOccurrence ] )* ) ’ ; ’ ;

EvaluationMacro returns evaluation::EvaluationMacro :
’macro ’ id=ID javaLink=JavaLink ’ ; ’ ;
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