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1. Introduction

The development of techniques to contact molecules

and to drive a current through them [1–3] has opened
the new and promising field of molecular electronics

[4,5]. In order to construct useful devices, however, it is

not sufficient to have a current flowing through a mol-

ecule but one also needs to have the ability to control

this current. This can be achieved in principle by means

of the so-called single electron transistor setup where a

gate electrode is placed close to the molecule. Applying a

gate voltage then allows to influence the current across
the molecule. In more complex circuits, the need for a

large number of contacts or electrodes close to the

molecule may constitute a major obstacle. In fact, al-

ready the implementation of a single gate electrode

which creates a sufficiently strong field at the molecule is
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a demanding task [6–8]. Therefore, other means of

controlling the current through a nanosystem should be

explored. One possibility is to replace the static field of a

gate electrode by a suitable external ac field. Recent
theoretical work [9] has demonstrated that, by using a

coherent monochromatic field, one should indeed be

able to control the electrical current flowing through a

nanosystem connected to several leads. In an extension

[10] of this work, it was demonstrated that even the

noise level can be suppressed by an appropriate driving

field.

In the present paper, we represent the molecule by a
two-site system under the influence of an external high-

frequency field and coupled to leads. Such a model is not

limited to describe electrical transport through mole-

cules but may also be applied to other situations like

coherently coupled quantum dot systems [11] irradiated

by microwaves.

In [10], a Floquet approach was employed to derive

exact expressions for both, the current and the associated
noise for the transport through a non-interacting nano-

system in the presence of an arbitrary time-periodic field.

A study of the Fano factor [12], i.e. the ratio between
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noise and current, revealed a suppression at certain val-

ues of driving amplitude and frequency. To achieve a

better physical understanding of this phenomenon, we

here consider the problem within the high-frequency re-

gime, which allows us to approximate the driven system
by a static one with renormalised parameters. The

structure observed for the Fano factor can then be un-

derstood in terms of three different scenarios. For small

effective intramolecular hopping matrix elements, the

system itself acts as a bottleneck, while in the opposite

limit, the two contacts form a two-barrier setup. In be-

tween, when the hopping matrix element is of the order

of the system–lead coupling strength, the barriers effec-
tively disappear, leading to a suppression of the Fano

factor.

In the next section, we introduce our model, con-

sisting of two sites subject to an external oscillating field

and coupled to two leads. We then discuss this model in

the static case, deriving explicit expressions for both the

current and its noise. In Section 4, expressions for the

effective hopping matrix element and the electron dis-
tribution functions in the leads are determined within

the high-frequency approximation. These results are

used in Section 5 to compute current, noise and the

corresponding Fano factor. A comparison with results

based on the exact expressions of [10] demonstrates the

validity of the high-frequency approximation for not too

low frequencies. This allows a physical interpretation of

the observed features in terms of a static model.
2. The model

In the following, we consider the setup depicted

in Fig. 1, which we describe by the time-dependent

Hamiltonian

HðtÞ ¼ HsystemðtÞ þ Hleads þ Hcontacts: ð1Þ
The first term on the right-hand side
Fig. 1. Level structure of the nanoscale conductor with two sites. Each

site is coupled to the respective lead with chemical potentials lL and

lR ¼ lL þ eV .
HsystemðtÞ ¼ �Dðcy1c2 þ cy2c1Þ

þ A
2
ðcy1c1 � cy2c2Þ cosðXtÞ ð2Þ

represents the driven two-site system, where electron–

electron and electron–phonon interactions have been

disregarded. The fermion operators cn and cyn, n ¼ 1; 2,
annihilate and create, respectively, an electron at site n.
Both sites are coupled by a hopping matrix element D.
The applied ac field with frequency X ¼ 2p=T results in

a dipole force given by the second term in the Hamil-

tonian (2). The amplitude A is proportional to the

component of the electric field strength parallel to the

system axis.

The electrons in the leads are described by the

Hamiltonian

Hleads ¼
X
q

ð�LqcyLqcLq þ �Rqc
y
RqcRqÞ; ð3Þ

where cyLq (cyRq) creates a spinless electron in the left

(right) lead with momentum q. The electron distribution

in the leads is assumed to be grand canonical with
inverse temperature b ¼ 1=kBT and electro-chemical

potential lL=R. An applied voltage V corresponds to

lR � lL ¼ eV , where �e is the electron charge.

The tunnelling Hamiltonian

Hcontacts ¼
X
q

VLqc
y
Lqc1

�
þ VRqc

y
Rqc2

�
þ h:c: ð4Þ

establishes the contact between the sites and the leads, as

sketched in Fig. 1. The system–lead coupling is specified

by the spectral density

C‘ðEÞ ¼ 2p
X
q

jV‘qj2dðE � �‘qÞ ð5Þ

with ‘ ¼ L;R. Below, we shall assume within a so-called

wide-band limit that these spectral densities are energy

independent, C‘ðEÞ ¼ C‘.
3. Transport through a static two-site system

We start by deriving expressions for current and noise

for a static two-site system coupled to two leads, setting

A ¼ 0 in the Hamiltonian (2). Solving the Heisenberg

equations of motion for the lead operators, we obtain

cLqðtÞ ¼ cLqðt0Þe�i�Lqðt�t0Þ=�h

� iVLq
�h

Z t

t0

dt0 e�i�Lqðt�t0Þ=�hc1ðt0Þ ð6Þ

and a corresponding expression for cRqðtÞ with L re-

placed by R and c1 by c2. Inserting (6) into the Hei-

senberg equations of motion of the two-site system and
exploiting the wide-band limit, one arrives at

_cc1 ¼
i

�h
Dc2 �

CL

2�h
c1 þ nLðtÞ; ð7Þ



                                                
_cc2 ¼
i

�h
Dc1 �

CR

2�h
c2 þ nRðtÞ: ð8Þ

For a grand canonical ensemble, the operator-valued

Gaussian noise

n‘ðtÞ ¼ � i

�h

X
q

V �
‘q exp

�
� i

�h
�‘qðt � t0Þ

�
c‘qðt0Þ ð9Þ

obeys

hn‘ðtÞi ¼ 0; ð10Þ

hny‘ðtÞn‘0ðt0Þi ¼ d‘‘0
C‘

2p�h2

Z
d�ei�ðt�t0Þ=�hf‘ð�Þ; ð11Þ

where f‘ð�Þ ¼ 1þ exp½bð�� l‘Þ�f g�1
denotes the Fermi

function with chemical potential l‘, ‘ ¼ L;R. In the

asymptotic limit t0 ! �1, the solutions of Eqs. (7) and

(8) read with n ¼ 1; 2:

cnðtÞ ¼
Z 1

0

ds Gn1ðsÞnLðtf � sÞ þ Gn2ðsÞnRðt � sÞg:

ð12Þ
In the wide-band limit and for equal system–lead cou-

pling, C‘ ¼ C, the propagator is given by

GðsÞ ¼ e�Cs=2�h cosðDs=�hÞ i sinðDs=�hÞ
i sinðDs=�hÞ cosðDs=�hÞ

� �
HðsÞ; ð13Þ

where HðsÞ is the Heaviside step function.

The operators corresponding to the currents across

the contacts ‘ ¼ L;R are given by the negative time

derivative of the electron number N‘ ¼
P

q c
y
‘qc‘q in the

respective lead, multiplied by the electron charge �e.
For the current through the left contact one finds

ILðtÞ ¼
ie
�h

X
q

V �
Lqc

y
1cLq

�
� h:c:

�

¼ e
�h
CLc

y
1ðtÞc1ðtÞ � e cy1ðtÞnLðtÞ

�
þ nyLðtÞc1ðtÞ

�
ð14Þ

with a corresponding expression for IRðtÞ. In the sta-

tionary limit, t0 ! �1, the mean values of the currents
across the two contacts agree and we obtain

I ¼ hILi ¼
e

2p�h

Z
dE fRðEÞ½ � fLðEÞ�T ðEÞ: ð15Þ

In the wide-band limit, the transmission T ðEÞ can be

expressed in terms of G12ðEÞ, i.e. the Fourier transform

of the propagator G12ðsÞ, as

T ðEÞ ¼ CLCRjG12ðEÞj2: ð16Þ
Making use of the propagator (13), the transmission for
C‘ ¼ C becomes [13]

T ðEÞ ¼ C2D2

jðE � iC=2Þ2 � D2j2
: ð17Þ

The noise of the current through contact ‘ is given by

the symmetric auto-correlation function of the current
fluctuation operator DI‘ðtÞ ¼ I‘ðtÞ � hI‘ðtÞi. It is possible
to characterise the noise strength by its zero frequency

component

S ¼ 1

2

Z þ1

�1
dthDI‘ðtÞDI‘ð0Þ þ DI‘ð0ÞDI‘ðtÞi; ð18Þ

which is independent of the contact ‘. The quantity S
may be expressed in terms of the transmission function

T ðEÞ as [14]

S ¼ e2

2p�h

Z
dEfT ðEÞ½fLðEÞ½1� fLðEÞ�

þ fRðEÞ½1� fRðEÞ��
þ T ðEÞ½1� T ðEÞ�½fRðEÞ � fLðEÞ�2g: ð19Þ

Two contributions to the zero-frequency noise S have to

be distinguished: the first term is a temperature-depen-

dent equilibrium noise according to the dissipation-

fluctuation theorem [15] and dominates for beV � 1. In

contrast, for large voltages beV � 1, the main contri-

bution to the noise stems from the second term. This

so-called shot noise has its physical origin in the dis-

creteness of the charge carriers.
We now consider voltages larger than all other energy

scales in the problem. As a consequence, the current

noise will entirely be due to shot noise. Furthermore, in

this limit, the results for current and noise will not de-

pend on temperature. In expression (15) for the current,

the difference of the Fermi distributions then practically

equals one for energies where the transmission is non-

vanishing. The current thus reads

I1 ¼ e
2p�h

T ¼ eC
2�h

D2

D2 þ ðC=2Þ2
; ð20Þ

where T ¼
R
dET ðEÞ is the total transmission. With the

same argument we find from (19) for the current noise

S1 ¼ e2C
�h

2D2ðC4 � 2C2D2 þ 8D4Þ
ð4D2 þ C2Þ3

: ð21Þ

The relative noise strength can be characterised by the

so-called Fano factor F ¼ S=eI [12] which, in the infinite

voltage limit, becomes

F1 ¼ C4 � 2C2D2 þ 8D4

ð4D2 þ C2Þ2
: ð22Þ

In Fig. 2, the Fano factor F1 is depicted as a function of

the ratio of the tunnelling matrix element D and the level
width C. For weak system–lead coupling C � D, the two
contacts between the two-site system and the leads form

the limiting step of the transport process. We effectively

arrive at transport through a double-barrier system with

a Fano factor F1 ¼ 1=2 [16]. On the other hand, for

C � D the two sites hybridise with the adjacent lead and

effectively only a single barrier remains. This yields

a Fano factor F1 ¼ 1. At the crossover between these
two regimes, the channel is optimally transparent and,



Fig. 2. Fano factor F1 ¼ S1=eI1 as a function of D=C. For D � C, the
bottleneck of the transport is the tunnelling process between the two

sites yielding a Fano factor F1 ¼ 1. In the opposite limit D � C, we
obtain transport through a double-barrier structure with a corre-

sponding Fano factor F1 ¼ 1=2. In the intermediate regime the Fano

factor assumes a minimum at the position indicated in the plot.

                                                
consequently, the Fano factor assumes a minimum.

From expression (22), we find the optimal hopping
matrix element D ¼

ffiffiffiffiffiffiffiffiffiffi
5=12

p
C yielding a minimal Fano

factor of F1 ¼ 7=32. We remark that the minimum de-

creases further if the number of sites in the system is

increased [10].
4. High-frequency approximation

Let us now turn back to the original time-dependent

problem. We will compute within a high-frequency ap-

proximation [17] the current through this driven system

and the corresponding current noise. Results valid for

arbitrary driving amplitudes A can be obtained by the

following procedure which is justified in the Appendix

on the basis of Floquet theory.

First, we introduce the interaction picture with re-
spect to the driving which for the problem at hand is

obtained by means of the unitary transformation

U0ðtÞ ¼ exp

�
� i

A
2�hX

ðcy1c1 � cy2c2Þ sinðXtÞ
�
: ð23Þ

This yields the new system operators

~cc1;2ðtÞ ¼ U y
0ðtÞc1;2U0ðtÞ

¼ c1;2 exp
�
� i

A
2�hX

sinðXtÞ
�
; ð24Þ

where the upper sign corresponds to site 1. To a good

approximation, the dynamics can then be described by

the time-averaged system Hamiltonian

�HHsystem ¼ �Deffðcy1c2 þ cy2c1Þ: ð25Þ
Thus, within a high-frequency approximation, the dri-

ven two-site system acts as a static system with the ef-

fective hopping matrix element

Deff ¼ J0ðA=�hXÞD; ð26Þ
where J0 is the zeroth-order Bessel function of the first

kind. The driving amplitude A and frequency X can now

be chosen such that Deff vanishes and consequently

tunnelling between the two central sites then no longer

occurs [17–19].
Proceeding as in Section 3, the influence of the leads

after the transformation (23) can be described by fluc-

tuation operators. For the left lead one finds

gLðtÞ ¼ � i

�h

X
q

V �
Lq exp

�
� i

�h
�Lqðt
�

� t0Þ

þ A
2X

sinðXtÞ
��

cLqðt0Þ ð27Þ

with the correlation function

hgyLðt þ sÞgLðtÞi ¼
CL

2p�h2

Z
d�
X
k;k0

ei�s=�hfLð�þ k�hXÞ

� JkðA=2�hXÞJk0ðA=2�hXÞe�iðk�k0ÞXt

ð28Þ
and corresponding expressions for the right lead. Since

we are interested in the average current and the zero-
frequency noise, i.e. low-frequency transport properties,

we can neglect the T-periodic contribution to the cor-

relation function (28) and, thus, average its t-depen-
dence over the driving period. Then, the correlation

function assumes the form (11) like in the static case but

with the Fermi function replaced by the effective distri-

bution function

f‘;effðEÞ ¼
X1
k¼�1

J 2
k ðA=2�hXÞf‘ðE þ k�hXÞ: ð29Þ

The different terms in this sum describe processes where

an electron of energy E is transferred from lead ‘ to the

system under absorption (emission) of jkj photons for

k < 0 (k > 0). These processes are weighted by the

square of the kth-order Bessel function of the first kind.

Having approximated the originally time-dependent

problem by a static one with an effective hopping matrix
element and an effective distribution function, we can

calculate the transmission, the current, and the zero

frequency noise of the driven system with the formulae

derived in Section 3 for a static situation.

In the limit of very large voltages and for energies

where the transmission is nonvanishing, the effective

distribution functions in the left and right lead become

again zero or one, respectively. As a consequence, the
time-averaged current and the zero-frequency noise are

given by the expressions (20) and (21) with the re-

placement D ! Deff . We denote the current and the

noise in this limit by �II1 and �SS1, respectively. As pointed

out above, there exist driving parameters where the ef-

fective hopping matrix element (26) vanishes. As a

consequence, no current can flow through the system

under these circumstances [9,10].



Fig. 3. Typical energy dependence of transmission T ðEÞ (solid line) and

effective distribution function f‘;eff ðEÞ (dashed line) which allows to

replace the distribution function by (30) in the expressions for current

and noise.

(a)

(b)

(c)

(d)

Fig. 4. (a) Effective hopping matrix element jDeff j, (b) time-averaged

current �II, (c) zero-frequency noise �SS, and (d) Fano factor F ¼ �SS=e�II as a
function of the driving amplitude A. Shown are the numerically exact

results (solid lines), the approximate results (31) and (32) for finite

voltage (dashed lines), and the infinite voltage results (20) and (21) with

D replaced by Deff (dotted lines). The coupling strength is C ¼ 0:5D, the
driving frequency is X ¼ 5D=�h, and the voltage reads V ¼ 48D=e. The
dotted line in (a) marks the value

ffiffiffiffiffiffiffiffiffiffi
5=12

p
C for which the Fano factor

assumes its minimum.

                                                
The case of a finite voltage requires a more detailed

inspection of the distribution functions f‘;eff and the
effective transmission T ðEÞ sketched in Fig. 3. In the

high-frequency regime under study here, the width W of

the transmission function is much smaller than �hX.
Furthermore, the effective distribution function f‘;eff is

nearly constant for energies E separated by at least 1=b
from the steps at E ¼ l‘ þ k�hX. Therefore, unless a step

in f‘;eff occurs close to E ¼ 0, the effective distribution

functions in the current and noise expressions can be
replaced by their value at E ¼ 0, i.e.

f‘;eff ¼
X

k<l‘=�hX

J 2
k ðA=2�hXÞ: ð30Þ

Thus, the time-averaged current and the zero-frequency

noise are given by

�II ¼ �II1 J 2
0 ðA=2�hXÞ þ 2

XKðV Þ
k¼1

J 2
k ðA=2�hXÞ

!
; ð31Þ

�SS ¼ e
2
�II1 þ J 2

0 ðA=2�hXÞ þ 2
XKðV Þ
k¼1

J 2
k ðA=2�hXÞ

!2

� �SS1
�

� e
2
�II1
�
; ð32Þ

where KðV Þ denotes the largest integer not exceeding

eV =2�hX. Note that the Fano factor F ¼ �SS=e�II for fixed

A=X reaches its minimal value in the infinite voltage

limit. Since JkðxÞ � 0 for k > x and
P

k J
2
k ðxÞ ¼ 1, the dc

current and the zero frequency noise are well approxi-

mated for A < eV by their asymptotic values for infinite

voltage, �II � �II1 and �SS � �SS1. We remark that, in contrast

to the static case, the result (32) contains contributions
stemming from the first term in the noise expression (19)

even in the zero-temperature limit.
5. Comparison with exact results

Figs. 4(b), (c) and (d) depict by solid lines the time-

averaged current, the zero-frequency noise and the Fano
factor at zero temperature obtained numerically within
the Floquet approach of [10] for the relatively large

voltage V ¼ 48D=e. This particular value of the voltage

has been selected to avoid the chemical potentials to lie

close to multiples of �hX. A comparison of these nu-

merically exact results for current and noise with the

approximate expressions (31) and (32) depicted by da-

shed lines shows a good agreement for the parameters

chosen. The agreement improves with increasing fre-
quency: already for X ¼ 10D=�h, it is found that the exact



                                                
and approximate results can practically no longer be

distinguished.

The exact numerical results show strong suppressions

of both, the current and the noise for certain driving

amplitudes. This behavior can be explained within the
high-frequency approximation presented in Section 4:

Whenever the ratio A=�hX corresponds to a zero of the

Bessel function J0, the effective hopping matrix element

Deff vanishes (cf. Fig. 4(a)) and consequently the current

and the noise become zero. Note that the exact result

exhibits still a residual current and noise. The sup-

pressions of the current and noise lead to peaks of the

Fano factor F . For sufficiently small driving ampli-
tudes, these peaks are accompanied by minima which

correspond to jDeff j ’
ffiffiffiffiffiffiffiffiffiffi
5=12

p
C indicated by the dotted

line in Fig. 4(a).

For driving amplitudes AK eV , the finite voltage

results (31) and (32) for the current �II and the noise �SS
are well described by the results (20) and (21) for infi-

nite voltage with D replaced by Deff . In this regime, the

Fano factor reaches maxima F ¼ 1. In contrast, for
larger driving amplitudes A > eV , we find a Fano factor

larger than that predicted by (22), as discussed below

(32). In particular, the Fano factor can assume values

F > 1.

Finally, we consider in Fig. 5 the case of intermediate

voltages such that D;C < eV < 2�hX. Then, only the zero

photon channel contributes and hence the current
�II ¼ �II1J20 ðA=2�hXÞ is considerably lower than for large
voltages. Now, in addition, a new type of suppression

appears at twice the amplitude compared to the sup-

pressions discussed above. The physical reason for this

new kind of suppression lies in the fact that the effective

distribution functions in the two leads are equal at the

relevant energies and therefore no dc current can flow.

Nevertheless, the noise remains finite and, consequently,

the Fano factor diverges.
Fig. 5. Time-averaged current �II as a function of the driving amplitude

A. Shown are the numerically exact result (solid line), the approximate

result (31) for finite voltage (dashed line) and the infinite voltage result

(dotted line). The coupling strength is C ¼ 0:5D, the driving frequency

is X ¼ 5D=�h, and the voltage reads V ¼ 5D=e.
6. Conclusions

We have presented a high-frequency approximation

for the charge transport through a driven two-site sys-

tem. Within this scheme, the time-dependent Hamilto-
nian and the lead correlation functions are transformed

to an appropriate interaction picture and subsequently

time-averaged over the driving period. In the resulting

equations, the hopping matrix element of the two-site

system and the electron distributions of the attached

leads are replaced by effective ones which depend on the

driving parameters.

This static picture allows to gain profound physical
insight into the structure present in current and noise as

a function of the driving parameters. For small effective

hopping matrix elements, the barrier between the two

sites of the system dominates, leading to shot noise with

F ¼ 1. In the opposite limit, the contacts form a double-

barrier system corresponding to a Fano factor F ¼ 1=2.
Between these two situations, effectively no barrier exists

in the transport path and the Fano factor is further re-
duced to a minimal value of F ¼ 7=32.

The results of this work demonstrate that the control

of a current through a molecule by means of a time-

periodic driving provides a viable alternative to the

traditional single electron transistor setup based on a

gate electrode. Our approach allows to minimise the

number of electrodes close to the molecule. Further-

more, a suitable choice of the transistor�s working point
permits to operate in a low noise regime with a small

Fano factor. These features inherent to the driven setup

may prove useful for the development of novel molec-

ular electronics devices.
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Appendix A. Driven quantum systems in high-frequency

approximation

In this Appendix, we review a common perturbative

approach for the treatment of periodically time-depen-

dent quantum systems and thereby justify the high-

frequency approximation employed in Section 4.

A standard technique for the study of periodically

time-dependent Hamiltonians HðtÞ ¼ Hðt þTÞ is the

so-called Floquet approach [20–22]. It starts out from the

fact that a complete set of solutions of the corresponding



                                                
Schr€oodinger equation is of the form jwaðtÞi ¼
e�i�at=�hj/aðtÞi where the Floquet states j/aðtÞi ¼ j/aðtþ
TÞi obey the time-periodicity of the Hamiltonian. The

Floquet states and the quasi-energies �a are eigenstates

and eigenvalues, respectively, of the Hermitian operator
H ¼ HðtÞ � i�hd=dt defined in a Hilbert space extended

by a periodic time coordinate. We emphasise that already

the Floquet states from a single Brillouin zone

��hX=26 �a < �hX=2 form a complete set of solutions. A

Floquet ansatz essentially maps the time-dependent

problem to an eigenvalue problem and, thus, it is possi-

ble to employ all approximation schemes known from

time-independent quantum mechanics, in particular
perturbative schemes for the computation of eigenstates.

Here, we consider the special case of a time-depen-

dent Hamiltonian of the form

H ¼ H0f ðtÞ þ H1; ðA:1Þ
where f ðtÞ is a T-periodic function with zero time-

average. If �hX is much larger than all energy differences

in the spectrum of H1, the following Schr€oodinger per-

turbation theory can be employed for the computation

of the Floquet states [20,21]: it is assumed that for H0 all

eigenstates juai and eigenenergies Ea are known. Then,
the unperturbed Floquet Hamiltonian H0 ¼ H0f ðtÞ�
i�hd=dt has the eigensolutions

j/k
aðtÞi ¼ exp

�
� i

�h
EaF ðtÞ þ ikXt

�
juai ðA:2Þ

with eigenvalue k�hX. Here, dF ðtÞ=dt ¼ f ðtÞ and k is an

arbitrary integer. Note that F ðtÞ satisfies the T-period-

icity of the field since the time average of f ðtÞ vanishes.
Thus, k defines a degenerate subspace of the extended

Hilbert space. In each degenerate subspace, the matrix

elements of the perturbation read

ðH1Þab ¼
1

T

Z T

0

dt h/k
aðtÞjH1j/k

bðtÞi: ðA:3Þ

Therefore, to first order in H1=�hX, the Floquet states

and the quasienergies for the Hamiltonian (A.1) are

obtained by diagonalising the perturbation matrix (A.3).

Following (A.2), the basis states j uai and j /k
aðtÞi are

related by the unitary transformation

U0ðtÞ ¼ exp

�
� i

�h
H0F ðtÞ

�
ðA:4Þ

as expð�ikXtÞ j /k
aðtÞi ¼ U0ðtÞ j uai. For the Hamiltonian

(2), (A.4) corresponds to the unitary transformation (23).

Within the regime of validity of the perturbative ap-

proach, the problem is therefore described by the static
Hamiltonian

�HH1 ¼
1

T

Z T

dtU y
0ðtÞH1U0ðtÞ: ðA:5Þ
0

Note that after the transformation with (A.4), the am-

plitude of the oscillating part of the new Hamiltonian

U y
0ðtÞH1U0ðtÞ is no longer governed by H0, but rather by

H1. Thus, a perturbative treatment of the oscillating part

is (almost) independent of the original driving amplitude
in H0.

A particular example for a high-frequency ap-

proach along these lines is a particle moving in a one-

dimensional continuous potential under the influence of

a dipole field, i.e. H1 ¼ p2=2mþ V ðxÞ and H0 ¼ lx.
Then, (A.4) constitutes a gauge transformation and re-

sults in a Hamiltonian which is again of the form (A.1).

A second transformation of the type (A.4) yields a pe-
riodically accelerated potential and defines the so-called

Kramers–Henneberger frame [23,24].
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