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Abstract. In the one-dimensional Anderson model the eigenstates are localized for arbitrarily small
amounts of disorder. In contrast, the Aubry-André model with its quasiperiodic potential shows a transition
from extended to localized states. The difference between the two models becomes particularly apparent in
phase space where Heisenberg’s uncertainty relation imposes a finite resolution. Our analysis points to the
relevance of the coupling between momentum eigenstates at weak potential strength for the delocalization
of a quantum particle.

                                                                       

1 Introduction

The behaviour of a quantum particle in a one-dimensional
extended potential depends strongly on the nature of the
potential as well as on the potential strength. While in
the absence of a potential, the particle moves ballistically
and is described by a plane wave, disordered potentials or
certain quasiperiodic potentials of sufficient strength will
lead to localized states. For a disordered potential, the
transition from ballistic to localized states is smooth and
the crossover shifts to ever smaller potential strength as
the system size is increased [1]. In contrast, there exist
quasiperiodic potentials like in the Aubry-André model
where one observes a localization transition in the limit
of large system sizes [2,3]. It is this qualitative difference
between the Anderson model and the Aubry-André model
which has stimulated the following study.

As an example for disordered systems, the analysis of
the wave functions of the Anderson model either in real
or in momentum space shows that position and momen-
tum interchange their role as the potential strength is in-
verted [4]. In the Aubry-André model with its quasiperi-
odic potential, there even exists a strict duality between
weak and strong potential connected with an interchange
of position and momentum [2]. Therefore, one would not
expect qualitative differences between the two models
quite in contrast to the existence of a phase transition
in the Aubry-André model.

In this paper, we will demonstrate that it is only a
phase space analysis which reveals the significant differ-
ences between a disordered and a quasiperiodic potential.
The existence of a localization transition in the Aubry-
André model will be traced back to the nature of the cou-
pling between plane waves by a weak potential, thereby
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giving insight into the mechanism of this transition. Fur-
thermore, we will point out why phase space studies of
quantum systems allow to extract more information than
considerations of real or momentum space alone.

2 Random and quasiperiodic potential

The Hamiltonian of the Anderson model is given by [5]

H = −
∑

n

(|n〉〈n+ 1| + |n+ 1〉〈n|) +W
∑

n

vn|n〉〈n|
(1)

where the Wannier states |n〉 are localized at the sites
n = 1, . . . , L of a ring with periodic boundary condi-
tions. The first term on the right-hand side describes the
kinetic energy which defines the energy scale. The ran-
dom potential of strength W is expressed by the second
term. The distribution of on-site energies is determined
by the coefficients vn distributed uniformly on the inter-
val [−1/2; 1/2]. In the limit L→ ∞ the eigenstates of the
Anderson model are known to localize for any nonvanish-
ing potential strength W [5,6].

The second model of interest, the Aubry-André model,
is defined by the Hamiltonian [2,7]

H =
∑

n

(|n〉〈n+ 1| + |n+ 1〉〈n|)

+ λ
∑

n

cos (2πβn) |n〉〈n| (2)

where the random potential in (1) has been replaced by
a quasiperiodic potential if the parameter β assumes an
irrational value in the limit L→ ∞. This model was orig-
inally considered by Harper [7] with λ = 2 and variable β.
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In the present context, we are interested in the version due
to Aubry and André where a transition from extended to
localized states occurs with increasing potential strength
at λ = 2 for a so-called diophantic irrational β [3] which
is kept fixed.

For finite size systems, it is convenient to choose β =
Fi−1/Fi where Fi−1 and Fi are two successive Fibonacci
numbers [8]. In the limit of large systems, β approaches
the inverse of the golden mean, (

√
5 − 1)/2. With this

choice of β the system contains L = Fi lattice sites with
Fi−1 periods of the potential.

The Aubry-André model possesses an interesting du-
ality property [2] which becomes evident by transforming
Wannier states |n〉 into new states

|k〉 = L−1/2
∑

n

exp(i2πkβn)|n〉

= L−1/2
∑

n

exp
(

i2π
kFi−1

L
n

)
|n〉 · (3)

These are eigenstates of the momentum operator to eigen-
values kFi−1 modFi. Neighbouring values of k therefore
do not imply neighbouring momentum eigenvalues.

With the transformation (3) one obtains the dual
Hamiltonian

H =
λ

2

[∑
k

(|k〉〈k + 1| + |k + 1〉〈k|)

+
4
λ

∑
k

cos (2πβk) |k〉〈k|
]
. (4)

By this transformation real and momentum space are
interchanged and the original potential strength λ be-
comes inverted into 4/λ. Comparison of (2) and (4) yields
the self-dual point λ = 2 which separates the parameter
regimes of extended and localized states. In contrast to the
nearest neighbour coupling in real space in (2), the new
Hamiltonian does not couple nearest neighbour momenta.
The physical reason is that scattering by the incommen-
surate potential may change the momentum by a large
amount. This coupling to quite different momentum val-
ues will be of central importance for our reasoning below.

3 Real and momentum space

After this discussion, the question arises why these two
archetypical models behave so differently. In particular,
what is the physical reason which allows a localization
transition at finite value λ = 2 in the Aubry-André model?
In order to answer this question, we first take a look at the
structure of the wave function |ψ〉 =

∑
n cn|n〉 expressed

in terms of the Wannier states |n〉, which will provide in-
formation about the spatial extension of the state. An of-
ten used quantity is the inverse participation ratio in real
space [9–12]

Px =
∑

n

|cn|4 . (5)

Fig. 1. The inverse participation ratio in real space (full line)
and momentum space (dashed line) is shown (a) for the Ander-
son model with L = 2048 and (b) for the Aubry-André model
with L = 10946. The curves represent averages over an ensem-
ble of eigenstates of the respective Hamiltonian as explained
in the text.

Provided that
∑

n |cn|2 = 1, the inverse of this quantity
indicates the number of lattice sites over which the wave
function is distributed. A corresponding quantity

Pk =
∑

n

|dn|4 (6)

can be defined in momentum space, where

dn = L−1/2
∑

l

exp
(

i2π
nl

L

)
cl . (7)

The two quantities are depicted as full lines (real
space) and dashed lines (momentum space) in Figure 1a
for the Anderson model of length L = 2048 and Figure 1b
for the Aubry-André model of length L = 10 946. For
the Anderson model, the curves represent an average over
50 disorder realizations with L/2 states around the band
center each. For the Aubry-André model, an average over
all symmetric eigenstates has been taken [13].

For both models one observes a monotonically increas-
ing inverse participation ratio in real space which corre-
sponds to an increasing localization of the eigenfunctions
as the potential strength is increased. Correspondingly,
the inverse participation ratio in momentum space de-
creases with increasing potential strength, indicating a de-
localization in momentum. The different limiting values of
Px for strong potential reflect the fact that in the Ander-
son model the eigenfunctions localize at one site while in
the Aubry-André model two sites are occupied because we
consider here symmetric eigenstates.

While the overall picture is qualitatively the same for
both models, we note an important difference which be-
comes apparent when the system size is changed. In the
Anderson model, the transition from extended to localized
states is smooth and notably shifts to lower values of W
as L is increased. As a consequence, in the limit of infi-
nite system size all states are localized if finite disorder
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Fig. 2. The inverse participation ratio in phase space is shown
(a) for the Anderson model with L = 2048 and (b) for the
Aubry-André model with L = 10946. The averages have been
taken with respect to the same states as in Figure 1.

is present. In contrast, for the Aubry-André model one
observes a sharp transition at λ = 2 for sufficiently large
system sizes.

4 Phase space approach

The differences between the two models become much
more distinct in phase space. This approach has the ad-
vantage of providing a consistent description for arbitrary
potential strength [14]. The inverse participation ratio in
phase space [4,15,16]

P =
∫

dxdk
2π

[�(x, k)]2 (8)

is based on the positive definite phase space density pro-
vided by the Husimi function [17] or Q function [18]

�(x0, k0) = |〈x0, k0|ψ〉|2. (9)

Here, the state |ψ〉 is projected onto a minimal uncertainty
state centered around position x0 and momentum k0. In
order to ensure equal resolution in the two directions of
phase space, we choose the width of the Gaussian as σ =
∆x =

√
L/4π = 1/2∆k.

In Figure 2 we present the inverse participation ratio
in phase space scaled with L1/2 which is appropriate in
the absence of a potential as well as for very strong poten-
tials [4]. For the Anderson model (Fig. 2a), one obtains an
increased inverse participation ratio at intermediate po-
tential strengths implying that the eigenstates contract in
phase space. As we will demonstrate below, the behaviour
to the left of the peak is dominated by a contraction in
real space corresponding to the increase of Px (cf. Fig. 1a)
while to the right of the peak the decrease is dominated
by the decrease of Pk.

The qualitative agreement between the inverse partic-
ipation ratios in real and momentum space for the An-
derson and Aubry-André models suggests that the same
should hold true for the inverse participation ratio in phase
space. This is even more so since the scenario just de-
scribed for the Anderson model is consistent with the du-

ality property of the Aubry-André model where an inver-
sion of the potential strength is accompanied by a trans-
formation between real and momentum space. However,
the results depicted in Figure 2b tell a different story.

In contrast to the Anderson model, the inverse par-
ticipation ratio P shown in Figure 2b initially decreases
with increasing potential strength up to λ = 2. In this
regime, the eigenstates therefore become more and more
delocalized in phase space. Then, at λ = 2, the phase space
distribution contracts and starts to become delocalized in
momentum as λ is increased further. Therefore, for almost
all values of λ, the phase space behaviour is dominated by
the momentum component except for the transition which
is dominated by the real space behaviour.

The two curves shown in Figure 2 result from the
same averaging procedure as was employed to obtain the
Figures 1a and b. It is important to note that the vari-
ance of the inverse participation ratio at a given potential
strength is so small that the peak in Figure 2a and the
jump in Figure 2b represent genuine features. In particu-
lar, for the Anderson model the inverse participation ratio
for a given state displays a maximum at intermediate dis-
order strength [4]. On the other hand, in the Aubry-André
model the jump of the inverse participation ratio at λ = 2
is found for all states. Furthermore, the dependence on
system size shows the expected behavior. In the Anderson
model, the curves scale to smaller disorder with increas-
ing system size [19], while in the Aubry-André model, the
jump remains at the critical value of λ = 2 [20].

The question now arises, why for weak potential the
Anderson and Aubry-André models behave so differently
while for strong potentials they behave in the same way.
The mechanism at work for weak potential can be con-
sidered to be responsible for the localization transition
in the Aubry-André models because the jump found in
Figure 2b can only occur if the phase space distribution
broadens as λ is increased from zero.

5 Uncertainty in phase space

Before addressing this question in detail, we recall the
Gaussian smearing arising from the projection onto mini-
mal uncertainty states which is inevitable if a positive defi-
nite phase space density is required. As a consequence, the
Husimi function only provides limited resolution which, as
discussed above, we have chosen to be equal for the spa-
tial and momentum components. The resolution is of the
order of

√
L sites which in the thermodynamic limit be-

comes small compared to the number L of sites in real
as well as momentum space. It should be kept in mind,
however, that for large L a phenomenon occurring on a
fixed and finite number of sites cannot be resolved. These
considerations would still hold, if we chose ∆x and 1/∆k
to scale according to Lα with 0 < α < 1. In contrast, an
entirely different situation arises, if we keep the resolution
fixed in one of the two phase space directions as is the case
for the inverse participation ratios in real and momentum
space, (5) and (6). Then, even in the thermodynamic limit
no effects occurring in the other direction can be resolved.
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6 Limit of strong potential

We are now in a position to answer the question raised
above. It is useful to start by considering the limit of
strong potential where the phase space behaviour of the
Anderson and the Aubry-André models agree. For in-
finitely strong potential, the eigenstates of the Anderson
model are localized at one site while for the Aubry-André
model it is sufficient to restrict the discussion to one of the
two sites occupied by a symmetric eigenstate. The kinetic
energy may now be considered as a perturbation coupling
in lowest order to the two neighbouring sites. The dom-
inant contribution will be due to the neighbouring site
closer in energy so that the problem reduces to the solu-
tion of a two-level system [19].

The energy eigenstates at very large but finite poten-
tial strength will be delocalized over two sites. While this
will reduce the inverse participation ratio Px in real space,
it will not directly affect the inverse participation ratio P
in phase space which can only resolve spatial structures
of size

√
L and larger. We recall, that this argument is

independent of our particular choice of σ since the abso-
lute width of the minimal uncertainty state has to increase
with increasing system size even though its relative width
decreases to ensure a proper classical limit.

The increase in P observed in Figure 2 with decreas-
ing potential strength therefore has to be explained in mo-
mentum space. The spatially localized states occurring for
infinite potential strength are fully delocalized in momen-
tum space. Now, a coupling of states due to the kinetic
energy leads to a contraction of the momentum distri-
bution. This can readily be verified by considering as an
example the superpositions (|n〉 ± |n + 1〉)/√2 which in
momentum space exhibit large scale density oscillations
of period L. By means of the Fourier transformation the
effect of the coupling on short real space distances, too
small to be resolved in phase space, is turned into a large
scale phenomenon in momentum space. Therefore, in the
momentum component the coupling is easily detected even
with the finite resolution of the Husimi function. As a con-
sequence, the behaviour of the inverse participation ratio
in phase space is dominated by momentum which allows to
understand the increase of the inverse participation ratio
with decreasing potential strength depicted in Figure 2.

7 Limit of weak potential

We now apply a similar perturbative reasoning to the
regime of weak potential by starting from momentum
eigenstates, i.e. states well localized in momentum analo-
gous to the localized states in real space considered before.
In the Anderson model the random potential will lead to
a coupling among all momentum eigenstates. However, as
before, the coupling between states close in energy, and
therefore close in momentum, will be most effective. As
a consequence, the role of position and momentum are
interchanged and with the same arguments as above, we
find an increase of the inverse participation ratio in phase
space with increasing potential strength, albeit now due

to the behaviour in real space. Within this perturbative
treatment, we can readily understand the behaviour of P
depicted in Figure 2a.

The situation is quite different for the Aubry-André
model where we may consider the dual model (4) for small
λ. The perturbation is now represented by the first term
on the right-hand side of (4) which couples to well-defined
momentum eigenstates. However, as remarked below (4),
due to the scattering by the incommensurate potential
these eigenstates in general do not correspond to nearest
neighbour momenta. For most of the energy eigenstates,
the momentum eigenstates to which the coupling occurs
are far away on the scale of the resolution of the Husimi
function. The resulting broadening of the momentum dis-
tribution leads to a reduction of the inverse participation
ratio. In real space, on the other hand, the coupling will
lead to short scale oscillations which are not resolved be-
cause of the finite resolution σ in phase space. Therefore,
the influence of the momentum component dominates and
the inverse participation ratio decreases with increasing
potential strength.

It follows from this discussion that, in contrast to the
Anderson model, the Aubry-André model for both weak
and strong potential is dominated by the momentum prop-
erties. It is only around λ = 2 that real space becomes
important. From the comparison of the Anderson and
the Aubry-André models we conclude, that the form of
the coupling between the momentum eigenstates due to
a weak potential plays a decisive role for the structure of
the eigenstates in phase space and for the appearance of
a delocalization-localization transition.

As a further example we briefly comment on the
Anderson model in two and three dimensions where the in-
verse participation ratio in phase space behaves very much
like in the case of the Aubry-André model (cf. Fig. 2b) [4].
In the marginal case of two dimensions, the tendency to-
wards a transition is therefore clearly visible for finite sys-
tem size, even though the critical disorder strength van-
ishes in the thermodynamic limit [19] and no true phase
transition occurs. In contrast, in three dimensions the
Anderson transition is recovered [21,22]. The main dif-
ference between the Anderson model in one dimension on
the one hand and in two and three dimensions on the other
hand lies again in the coupling of momentum eigenstates
by a weak random potential. In the one-dimensional case,
eigenstates close in energy are necessarily close in momen-
tum. In contrast, in higher dimensions there may exist
even energetically degenerate states far away in momen-
tum, so that they can be resolved in phase space.

8 Conclusions

A crucial aspect of our discussion was the finite resolution
available in phase space. This is in strong contrast to the
ideal resolution available with the inverse participation ra-
tio in real or momentum space, albeit only in one direction
of phase space. As a consequence, there is no possibility
to resolve the other direction even in the limit of large
system size. Accepting Heisenberg’s uncertainty relation
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and thus the finite resolution in phase space allows one
to analyze the structure of the eigenstates in real as well
as momentum space and, as was demonstrated above, to
obtain valuable information about the model of interest.

This is corroborated by a recent observation by Varga
et al. [23], that instead of a full-fledged phase space cal-
culation, one can alternatively make use of marginal dis-
tributions in real and momentum space. Even though the
inverse participation ratios deduced from them resemble
those defined in equations (5) and (6) a Gaussian smearing
is again crucial.

We therefore conclude that for the understanding of
the localization properties of a quantum particle, where
both position and momentum are relevant, the smearing
in phase space called for by the uncertainty relation is not
only necessary but also represents an essential ingredient
of the physical argumentation.
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