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Conductance through a one-dimensional correlated system:
Relation to persistent currents and the role of the contacts
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Based on a recent propodd.P. Sushkov, Phys. Rev. 8, 155319(2001)], we relate the quantum con-
ductance through a sample in which electrons are strongly correlated to the persistent current of a large ring,
composed of the sample and a noninteracting lead. A scaling law in the lead length allows to extrapolate to a
well-defined value of the conductance, depending only on intrinsic properties of the sample and the nature of
the contacts between the sample and the lead. For strongly disordered samples, the conductance is found to be
enhanced by the interaction.
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Viewing quantum transport as a scattering probtégen-  Interactions play an important role fdy and it is generally
erated a new understanding of the electronic conductancaccepted that they account for the large difference between
This approach is able to explain a wealth of experimentabxperiments and one-particle calculatidhhere have been
results in mesoscopic systems when electron-electeie)  various attempfs'® to link J and g for an interacting ring.
correlations are not important. To include these correlationglowever, the ring built from the sample itself does not con-
is nontrivial and remains one of the major challenges in thedain any reservoirs in which energy relaxation can take place.
field (see, e.g., Ref.)4 While none of the proposals to cal- Negative zero-frequency conductivities octlnlike in the
culate the conductance for a correlated system is well suitedissipative case in which we are interested here.
for numerical calculation® or free of certain assumptiols,  As pointed out in Refs. 5 and 10, at zero temperature, not
such an issue becomes crucial in present day’s research esmly for the noninteracting case, but also for correlated
ploring electronic transport through nanosystefoarbon  samplesg is given by|t(Eg)|?, the probability for an elec-
nanotube§, molecules, and point contactd), where the tron at the Fermi energfr to be elastically transmitted
Coulomb repulsion leads to important correlations. through the sample. Moreover, if one replaces the massive

Reservoirs and leads are key elements in the scatteringlectrodes(with negligible e-e correlation$ used in a real
approach, and possess very clear physical meanings since theasurement by very long noninteracting one-dimensional
measurement is made with electrodes that behave as electrimads, one can expect that they have a similar eff&uish-
reservoirs. In a good electrode, the electron densityis  kov recently proposéd that|t(Eg)|? can be extracted from
large, the ratiorg between the Coulomb and the Fermi en-the persistent current of a much larger ring, composed of the
ergy is small, and hence theee interaction is negligible. In sample itself, together with a long lead closing the system.
contrast,n, in a nanosample can be very small, yielding aThis has the considerable advantage that a ground-state prop-
large ratior and importanie-e correlations. erty (J) suffices to determing. However, one needs thleof

The dimensionless conductangedoes not only depend the combined systertsample plus legd and not the one of
on the intrinsic properties of the sample, but also on the wayhe system alone as in previous wofks:#1¢
it is connected to the electrodes. The quality of the contacts In the following, we adapt the approach of Ref. 10 to
is particularly important for correlated electrons. For a clearcalculateg for one-dimensional interacting electrons using
Luttinger liquid attached to noninteracting leads through rethe  density-matrix ~ renormalization-group (DMRG)
flectionless contacts, it has been folinithat the interactions algorithm&°We check that a scaling law allows to extrapo-
do not influenceg. In the other extreme, if the contacts are late to an infinite lead, yielding as a property of the sample
tunnel barriers, the interactions lead to the Coulomband the way it is connected to the lead. The nature of the
blockade'? thereby dominating. In carbon nanotubes, vari- contacts turns out to play a major role. Then, we extend our
ous transport regimes are observed depending on the natumealysis to disordered samples, where we find that, similarly
of the contact§. to the case of persistent curreftsrepulsive interactions

As shown by Koht® and Thoules$? g is also related to may increase for strong disorder.
the sensitivity of the sample’s eigenstates to a change of the We first present an alternative derivation of Sushkov’s
boundary conditions. This sensitivity can be tested by closresult'® pointing out the main assumptions, for the noninter-
ing a system to a ring and measuring the persistent current @ting case. As depicted in the upper inset of Fig. 1, we
the response to an enclosed magnetic #uxAt zero tem- consider a sampleS| hashed regionclosed to a ring by a
perature, the persistent current is given by — JE/d ¢, noninteracting and disorder-free ledd)( and threaded by a
whereE is the ground-state energy of the many-body systemflux ¢. The total lengthL=Lg+L, consists of the sample
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The persistent current A noninteracting spinless fermi-

4 ons (for simplicity we takeN even is given by!
1! eh
A®=m12)= _keltlke)] @
< oa ~— Ls mL
% Therewith, the conductance may be related to the ratio of
Q 00 J(®=m/2) to the persistent curred® of a clean ring of
= lengthL.1° This relation becomes exact in the limit of infinite
lead length when the above assumptions hold, and one gets
0.1
004 ~ Iwl2) |
0.0 0.05 0.1 0.15 g= lim 5 . (5)
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With interaction?? assumptionsi) and (i) always hold in
FIG. 1. Scaling of IrD with the total lengthL of the system, the largel. I'r_mt' Moreover, the use of Eq(S) implies that.
showing a linear increase of B with 1/ for evenLs=12 [U f[he one-particle states of the correlate(_j system can_st_lll be
=1 (@), U=2 (M), U=3 (A), U=4 (#)], and a decrease for |r!dexed _by the !ead wave vec.td.{sThat is, ad.d|_nglan infi-
oddLs=13[U=1 (O) andU=2 (0J)]. Lower inset: scaling for Nité noninteracting lead to a finite non-Fermi-liquid sample
unpolarized electrons within the Hubbard modek€2, U=1).  restores the Fermi-liquid behavior. This assumption, which
Upper inset: sketch of a ring consisting of the sampplashed re- has been used in the perturbative calculation of transport
gion) and a noninteracting lead threaded by a fibix through Hubbard chains connected to reserv?éin?.aquires
that the interactions areompletelyswitched off in the one-
|ength LS and the |ead |engt"]_L_ The One-partic'e eigen_ dimensional |ead. OtherWise the Luttinger |IC]UId beha%ﬁor

states of the total system satisfy sets in, and one cannot obtain a result that is independent of
the length of the auxiliary lead. In this, our approach differs
detfl—MgM)=0, (1) from Sushkov’s, where the interactions in the lead are kept

(within the Hartree-Fock approximatinn
Equation(5) allows to calculateg from the ground-state
energies. We do this for spinless fermiofmolarized elec-

with the transfer matrices of the sample and the lead,

'9/si —icotf+ A : M
MS:_L _ e/sing ICO_ b _COS(p trons in a ring described by the Hamiltonian
sing | i cotf+ cose e '%sing |’
ikL - + + s 1 1
L o H=-> (clc; ;+cl cp+> U =l N5,
ML=e —ikL , (2) i=1 1=2
0 ek (6

respectively. Herep =27 ¢/ g where ¢ is the flux quan-
tum. The scattering is characterized by the arfjlthe phase
shift @, and the angle» (equal tow/2 if right-left symmetry
is respected These angles are functions lkofthe wave vec-
tor in the lead. The transmission amplitude is given tby
=e'“sinfsing. With Eq. (2), the quantizing conditior{1)
can then be written as

wherec; (ciT) is the annihilationcreation) operator at site,
nichci is the number operator, and the flux-dependent
boundary condition enters through=exp{®)c, . The inter-
action is restricted to nearest neighbors and effective in the
sample, but vanishing in the lead. It is equilibrated by a
compensating potential that prevents the particles from emp-
tying the interacting region. The form of the Hamiltonian
1 allows to have particle-hole symmetry at half filling. We
cos® = —cogkL+ Sa), (3  work with a number of fermionsl=L/2, such that the mean
1t density is always 1/2 independently o§ andL, .
with the relative phase shiffa=a—kLs. The persistent Using the DMRG algorithm as described in Ref. 19, we
current carried by a one-particle statwith energye) is ~ calculate the ground-state energieéd) at =0 and ®
J(d’): —((9€/r7k)((9¢/(9k)_1. We work at®=#/2 and es- : 7, to obtain the stlffnesﬁ)z(L/2)|E(O)—E(7-r)| (which
tablish two crucial assumptiongi) |d(da)/ok|<L, (i) IS @measure fod and simpler to calculaje
delgk=12k/m. The first one states that the Wigner time = AN obvious requirement for E5) to be useful is that the
associated with the scattering region is negligible comparefmit Li— of the computed quantities is well defined.
with the time spent in the leads. Notice that we work with a ' herefore, the first numerical step is to compitefor in-
relative Wigner timery, = (m/%2k)(5a)/k, that is, the dif- ~ créasingL with givenLs and U (Fig. 1). We find a very
ference between the delay time of the scattering region angl€ar asymptotic behavior, described by the scaling law
that of a potential-free region having the same length. The
second assumption implies that the dispersion relation is es- D(U,Lo.L)=D.(U.L )exp( C(U,Ls)) @
sentially unaffected by the scattering potential. S LT e S L ’
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FIG. 2. Conductancg as a function of the interaction strength
U for different values of the sample lengtth.

FIG. 3. Conductancg as a function of the interaction strength
U, for a fixedL.=12, and increasing smoothing of the contacts,
defined by the length , (see inset All data correspond to eveng
with L,=0 (H), Lo,=4 (@), andL,=10 (A). Using the same
where theintrinsic value D, is independenbf the length of ~ Smoothing length ,=10) but improving in the shapga tanh
the auxiliary lead. The sign & depends on the parity of the function (thick solid line instead of a linear increasa(] helpsg
number of sited s in the sampleC>0 for evenLg (filled ~ © @pproach the perfect value.
symbol3g andC<0 for oddLg (open symbols®®

From the flux dependence d{®) for a long clean chain
containing a weak link> one gets the relation between a fast process withr,<0, consistent withC>0. In addi-
J(m/2) and D. The asymptotic valud., is then used to tion, increasind.g reducegy linearly for smallU, and expo-
determine conductancé5) as g=sir(m/2)(D../D2)], nentially for U>2, consistent with the Mott-insulating
whereD? corresponds to the clean noninteracting ring. behavior.

The method also works for nonpolarized electrdtize The even-odd asymmetry and the perfect transmission for
Hubbard model with on-site interactiprand the size scaling the odd case point to the importance of the contacts. In order
again allows to obtain intrinsic valué®wer inset in Fig. .~ to investigate their role, we introduce a position-dependent
In the sequel we concentrate on the spinless ¢llsail-  interaction strengthJ; which increases linearly from O to its
tonian (6)], which contains the main features we are inter-maximum valueU, inside the “contacts” of lengthL, (see
ested in, and allows to reach larger samples. inset of Fig. 3. As shown in Fig. 3, in the case of evén

Having verified the consistency of our approach, we nowthese smooth contacts increagat constant effective length
study the systems of interest. In Fig. 2, we present the corl.=Ls—L 4 of the sample, and the conductance approaches
ductance, as a function &f, for various sample lengthss. the ideal situation of perfect transmission expected for reflec-
One observes a very clear even-odd asymmetry according tonless contacts when we improve the smootHirighe per-
the parity ofLg. Samples with oddl 5 exhibit almost perfect fect transmission at oddlg persists when the form of the
transmission up to the largest values Wffor which the contacts preserves the right-left symmetry, but it is destroyed
numerically reachable, allows for a reliable scaling to the by asymmetric contacts. The strong influence of the contacts
limit L, — o0, while an everlgresults in a decrease g{U) is crucial when describing experiments since it seems impos-
already at weak interaction. For odd,, particle-hole sym- sible to connect a nanosample via reflectionless contacts. It
metry leads to degenerate sample configurations witlalso shows the limitation of other approaches relating the
(Ls*1)/2 particles in the interacting region. This is similar conductance of an interacting sample to its intrinsic proper-
to a Coulomb blockade resonance. The traveling particle cafies, without taking into account the way it is connected to
thus become trapped for a long time,(>0), consistent the electrodes.
with negativeC.?® Since the two configurations are coupled ~ While clean interacting systems are of physical interest
by processes which transfer particles through the interactinge.g., carbon nanotubgst is also important to consider the
sample, one obtains perfect transmission. A similar effecgeneric case of disordered systems. To this end, we add the
was found in the perturbative treatment of clean HubbardermWE,_,"sv;n; to Hamiltonian(6), whereW is the disor-
chains?® The recovery of this limiting case is another con-der strength and thev; are distributed equally in
sistency check of our method. [—1/2,1/2). We have checked th&t scales withL as before

On the other hand, an even number of sites implies thaltEq. (7)], ensuring a well-defined limiting value f@. The
the transport of one particle through the sample takes placeven-odd dependence gidisappears when disorder is intro-
via a virtual state with an energy of the orderlbfabove the duced. The combined effect of disorder and interactiong on
ground state. Thus, no resonance can be expected and tiseshown in Fig. 4. In the ballistic regimat W=1 the mean
transmission, which is suppressed already by modéfate  free path exceedkg), the effect ofW is weak at small,
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0 analogy to the persistent current calculated without the
lead?” Very remarkably, the ensemble average af is in-
creasedby a moderate repulsivel, showing the nontrivial
interplay of disorder and interactions in a transport problem.

In conclusion, starting from a recent proposalye have
provided a well-defined procedure for calculating the con-
ductancey of interacting one-dimensional wires, and used it
to investigate correlation and disorder effects. While the in-
teraction reduceg for spinless fermions in the presence of
weak or moderate disorder, a moderate repulsive interaction
increaseg at strong disorder. We also determined the crucial
role of the sample-to-lead contacts on the conductance.

After submission of our manuscript, a preprint by V.
Meden and U. Schollwek [published as Phys. Rev. 87,
193303(2003] appeared which uses an approach similar to
U ours. Their comparison with a numerical many-body Green-
function technique for the conductance at not too strong in-
teraction supports the validity of our results.

(In(g))

FIG. 4. Ensemble averages ofdras a function of the interac-
tion atLg=8, in the presence of disordevé=1 (A), 5 (@), and
9 (#). The statistical errors are smaller than the symbol size. The We thank O. Sushkov and C. Stafford for useful discus-
dash.-do.tt.ed line represents the clean case, the dotted lines represgmns, P. Schmitteckert and Ph. Brune for their DMRG pro-
four individual samples at/=39. grams, and V. Meden and U. Schollalofor helpful com-

ments. R.A.M. acknowledges the financial support from the
and it becomes more pronounced at strondefwhen the  European Union’s Human Potential Progré@ontract No.
disorder pins the Mott insulator, reinforcing the localizajion HPRN-CT-2000-0014%4 R.A.J. and D.W. thank the INT at
At large W, g for individual samples exhibits peaks as athe University of Washington for its hospitality and support
function of U whenever a charge reorganization occurs, induring completion of this work.

1R. Landauer, IBM J. Res. Det, 223 (1957. 14D.J. Thouless, Phys. Rev. Le®9, 1167(1977).
2M. Blttiker, Phys. Rev. Lett57, 1761(1986). 15U. Eckern and P. Schwab, Adv. Phy®l, 387 (1995.
3Y. Imry, Introduction to Mesoscopic Physi¢®xford University  1°B.S. Shastry and B. Sutherland, Phys. Rev. L&%f.243(1990.
Press, New York, 1997 TR.M. Fye, M.J. Martins, D.J. Scalapino, J. Wagner, and W.
4P. Prelovsek and X. Zotos, cond-mat/0203308publishedl Hanke, Phys. Rev. B4, 6909(1991).
5Y. Meir and N.S. Wingreen, Phys. Rev. Lef8, 2512(1992. 183 R. White, Phys. Rev. B8, 10 345(1993.
5H.M. Pastawski, Phys. Rev. B4, 6329 (1991). 19p schmitteckert, Ph.D. thesis, Universifaigsburg, 1996.
"R. Berkovits and Y. Avishai, Phys. Rev. Lefts, 291 (1996. 20p schmitteckert, R.A. Jalabert, D. Weinmann, and J.-L. Pichard,
8p.L. McEuen, M.S. Fuhrer, and H. Park, IEEE Trans. Nanot&ch. Phys. Rev. Lett81, 2308(1998.
78 (2002, and references therein. 24 -F, Cheung, Y. Gefen, E.K. Riedel, and W.-H. Shih, Phys. Rev.

9See, e.g., Chem. Phy281, 111-487(2002, special issue on B 37, 6050(1988.
Transport in Molecular Wiresedited by P. Haggi, M. Ratner,  ??For a quantum dot in the Coulomb blockade regifi@A.

and S. Yaliraki. Stafford, R. Kotlyar, and S. Das Sarma, Phys. Rebs837091
100.P. Sushkov, Phys. Rev. &, 155319(2001). (19981, one obtaingycJ?(7/2) andgx=D?.
1. safi and H.J. Schulz, Phys. Rev.32, R17 040(1995. 23N, Oguri, Phys. Rev. B59, 12 240(1999.

12| p. Kouwenhoven, C. M. Marcus, P. L. McEuen, S. Tarucha, R2*C.L. Kane and M.P.A. Fisher, Phys. Rev. Lé&8 1220(1992.
M. Westervelt, and N. S. Wingreen, iNesoscopic Electron 2°A.0. Gogolin and N.V. Prokof'ev, Phys. Rev. 5, 4921(1994.
Transport edited by L. L. Sohn, L. P. Kouwenhoven, and G. ?6In the noninteracting derivation of E¢p), the first corrections in
Schm (Kluwer Academic, Dordrecht, 1997 1/L and ry, have opposite sign. A potential well accelerates the
Bw. Kohn, Phys. Rev133 A171 (1964). particles leading ta,<0, andC>0.

235306-4



