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d-wave superconductors near surfaces and interfaces: A scattering matrix approach
within the quasiclassical technique
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A recently developed method@A. Shelankov and M. Ozana, Phys. Rev. B61, 7077 ~2000!# is applied to
investigated-wave superconductors in the vicinity of~rough! surfaces. While this method allows the incorpo-
ration of arbitrary interfaces into the quasiclassical technique, we discuss, as examples, diffusive surfaces and
boundaries with small tilted mirrors~facets!. The properties of the surface enter via the scattering matrix in the
boundary condition for the quasiclassical Green’s function. The diffusive surface is described by an ensemble
of random scattering matrices. We find that the fluctuations of the density of states around the average are
small; the zero bias conductance peak broadens with increasing disorder. The faceted surface is described in
the model where the scattering matrix couplesm in- andm out-trajectories (m>2). No zero bias conductance
peak is found for@100# surfaces; the relation to the model of Fogelstro¨m et al. @Phys. Rev. Lett.79, 281
~1997!# is discussed.
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I. INTRODUCTION

Thedx22y2 symmetry of the order parameter~OP! in high
temperature~high-Tc) superconductors is nowadays well e
tablished by various phase-sensitive experiments, the m
striking being the observation of a half flux quantum in
tricrystal geometry by Tsuiet al.1 Also the zero-bias conduc
tance peak~ZBCP! found in different tunnel experiments2–6

on @110#-oriented boundaries of YBa2Cu3O72d gave a strong
hint for d-wave symmetry as was first pointed out by Hu7

However, in more recent experiments, several puzzling qu
tions arose. For example a splitting of the ZBCP w
observed8 and ZBCP’s were reported even for@100#-oriented
junctions.8,9 Disorder effects were examined as well in e
periments where the disorder of the junctions was increa
by ion irradiation.10 A decreasing height of the ZBCP wa
observed, whereas the width remained constant.

The most successful approach to treat such inhomo
neous problems is the theory of quasiclassical Gree
functions.11–13 The properties of surfaces or interfaces a
included by the effective boundary condition. For a specu
surface the Green’s function has to be continuous on a c
sical trajectory~see Fig. 1!. In this most simple model the
pair-breaking effect of surfaces as well as the existence
ZBCP can be explained: If quasiparticles are scattered
branches with a different OP (aÞ0) the pairing is sup-
pressed and bound states can occur due to Andreev sc
ing. If a quasiparticle is scattered with a sign change of
OP the ZBCP exists, too. In this framework it was al
shown14,15 that the splitting of the ZBCP is in agreeme
with the existence of a subdominant order parame
(dx22y21 idxy /s) in the vicinity of the surface. The general
zation of the boundary conditions to a specular interface
carried out by Zaitsev.16 In this situation the Green’s func
0163-1829/2001/63~6!/064510~8!/$15.00 63 0645
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tion on four trajectories must match at the interface, wh
leads to quite complicated nonlinear boundary conditions

As surface roughness is present in experiments, mo
were developed to include disorder in the theory. One po
bility, first suggested by Ovchinnikov,17 is to use the bound-
ary conditions for the specular situation and cover the s
face with a thin dirty layer where equations for the dirty ca
must be applied. In numerical studies of boundary proble
similar techniques were used.18,19 Also a scattering matrix
approach, which is related to the randomly rippled w
model,20 was applied to disordered surfaces;21 the solution
was given in a Born-like approximation. Except for mode
with unitary scatterers,22 all calculations show a broadenin
of the ZBCP due to disorder.

Often the surface roughness is only present on sc
much smaller than the coherence length. In this case,
boundary conditions for the quasiclassical Green’s funct
can be formulated in terms of the scattering matrix (S ma-
trix!, as it has been recently suggested in Ref. 23. A rou
interface does not conserve the momentum parallel to
surface and, therefore, it couples waves~i.e., quasiclassica
trajectories! with different propagation direction. The micro
scopic structure of the interface enters the theory via thS

FIG. 1. Surface effect in real space~left! an k space~right!.
©2001 The American Physical Society10-1
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matrix. In the absence of detailed knowledge about the
croscopic structure of the surface, theS matrix has to be
taken as a phenomenological input.

Due to the very short in-plane coherence length in highTc
superconductors (j0'20 Å! structures on larger scales occ
as well. Then the translational invariance parallel to the s
face is lost on this length scale and a full two-dimensio
treatment of the problem is necessary, in which the traje
ries are considered individually~see Fig. 2!. For example, in
cuprates facets with typical dimensions of 10–100 nm
present at interfaces.24 This leads to the existence of a ZBC
even for@100# tunnel junctions as was pointed out by Fog
ström, Rainer, and Sauls.15

In our study we use the scattering matrix approach p
sented in Ref. 23 to describe surfaces with microsco
roughness. We will discuss two kinds of surfaces: First,
study a microscopically disordered surface, which is
scribed by random matrices. In contrast to earlier calcu
tions we are able to consider individual realizations of
disorder; we examine averaged quantities as well as fluc
tions. Afterwards we focus on anS matrix that describes a
surface with tilted mirrors, where a few trajectories are co
nected at the surface.

In the following section we will briefly introduce the qua
siclassical theory for superconductors. Subsequently we
present the boundary conditions in the form most suitable
our purpose and discuss the general properties. In Sec. II
derive theS matrices for different situations and present t
related results. We conclude with a discussion of our res
and compare them to other approaches.

II. METHOD

A. Theory of quasiclassical Green’s functions

In our studies of boundary effects of unconventional
perconductors we use the theory of quasiclassical Gre
functions introduced by Eilenberger.11 This approximation of
Gorkov’s theory is valid in the quasiclassical limit (2p/kF
!j). Several review articles have been written on this s
ject, e.g., by Schmid12 or Larkin and Ovchinnikov.13 The
quasiclassical propagator in Nambu space

ĝ~v,R,kF!5S g f

f † g†D ~1!

is determined by the Eilenberger equation

F S v1
e

c
vF•A~R! D t̂32D̂~R,kF!,ĝ~v,R,kF!G

1 i\~vF•“ !ĝ~v,R,kF!50, ~2!

FIG. 2. Effect of roughness on small~left! and large~right!.
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wheret̂ i represent the Pauli matrices and

D̂~R,kF!5S 0 D

2D* 0 D . ~3!

Additionally a normalization condition is needed to obta
the physical solution of the equation

ĝ2~v,R,kF!51̂. ~4!

The OP must obey the self-consistency equation

D̂~R,kF!52E
2vc

vc dv

4
^V~kF ,kF8 !ĝK~v,R,kF8 !&k

F8
. ~5!

Here ^ . . . &k
F8

indicates the average over the Fermi surfa

In thermal equilibrium the Keldysh propagatorĝK is given
by the advanced and retarded propagatorĝA/R

ĝK5~ ĝR2ĝA!tanh~v/2kBT! with ĝR/A: v→v6 i01 .
~6!

For simplicity we make some further assumptions conce
ing the microscopic properties: For the interaction we cho
V(kF ,kF8 )5V cos@2(w2a)#cos@2(w82a)#,25 which generates
a d-wave OP with orientationa ~see Fig. 1!

D~R,kF!5D~R!cos@2~w2a!#. ~7!

In addition we assume an isotropic two-dimensional mo
with a spherical Fermi surface. After the determination of t
OP all physical properties can be calculated from the qu
classical Green’s function. For example, the angle-resol
local density of states~DOS! reads

N~v,R,kF!5N0 Re@gR~v,R,kF!#, ~8!

whereN0 is the normal state DOS. In many cases the kno
edge of the angle-averaged DOS is sufficient

N~v,R!5^N~v,R,kF!&kF
. ~9!

The DOS at the surface can directly be measured via
differential conductance G5dI/dV for normal-metal-
insulator-superconductor tunnel junctions. ForT→0 it is
given by18

G~V!5e2A^vF,xT~kF!N~eV,x50,kF!& (kF,x.0) , ~10!

where the transmission probability is chosen as

T~w!5t2 sin2~w!!1, ~11!

andA is the area of the contact. The current density can
calculated from the Keldysh Green’s function via

j ~R!52eN0E dv

4
^vF Tr@ t̂3ĝK~v,R,kF!#&kF

. ~12!

It has been shown that the decomposition introduced
Maki and Schopohl26 is suitable for the numerical integratio
of the Eilenberger equation as well as for analytical cons
erations~see Sec. II B!
0-2
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ĝ5
1

12ab S 11ab 22a

2b 2~11ab!
D . ~13!

Considering the physical meaning, the functionsa(v,R,kF)
and b(v,R,kF) are closely related to the particle and ho
amplitudes in the Andreev equation as was discussed in
tail in Ref. 23. With this construction the normalization co
dition is obeyed automatically. By putting in this decomp
sition in Eq.~2! it can be seen that the functionsa andb are
given by the equations

i\~vF•“ !a5D* a222va1D, ~14!

2 i\~vF•“ !b5Db222vb1D* . ~15!

These equations can be solved on classical trajectorie
beled by the Fermi wave vectorkF . For each directionvF
one has to integrate two ordinary differential equations
order to construct the full propagator.

The Matsubara technique can be used as well to calcu
the OP

D̂~R,kF!52kBTp i (
uvnu,vc

^V~kF ,kF8 ! f̂ M~vn ,R,kF8 !&k
F8

~16!

and the current density

j ~R!52eN0kBTp i(
vn

^vF Tr@ t̂3ĝM~vn ,R,kF!#&kF
.

~17!

The energy integrals turn to sums over discrete Matsub
frequenciesvn5kBTp(2n11) and the Matsubara propag
tor ĝM is determined by the relation

ĝR/A~v,R,kF!5ĝM~vn ,R,kF!u ivn→v601
. ~18!

One crucial point for investigating the effects of boundar
is still missing. As the quasiclassical condition does not
ply in the vicinity of surfaces and interfaces we have to tr
the scattering of quasiparticles by effective boundary con
tions. The properties of the boundary enter the calculati
only at this point.

B. Boundary conditions

In our work we use the general theory recently derived
Ref. 23. The starting point is the Andreev-like equation
the particle- and hole-like amplitudes, which factorize t
Eilenberger Green’s function in Eq.~1! ~see Ref. 23 for de-
tails!. In this approach, it is possible to consider roughn
that occurs on length scales much smaller than the coher
length. All information on the microscopic shape of th
boundary is provided by the scattering amplitudes from
in trajectories (kF,x

in ,0) to the out trajectories (kF,x
out.0);

they are gathered in the scattering matrixS.
For simplicity we consider only a finite numbern of dis-

crete in and out trajectorieskF
in/out→kF,i

in/out, i 51,2 . . . ,n with
equidistant angles. Following Ref. 23 the boundary con
tions are determined using the functions
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Al~b!5det@12SâS†b̂l
b#, ~19!

Bl~a!5det@12Sâl
aS†b̂# ~20!

with the diagonaln3n matrices

â5diag$a1 , . . . ,an%,

âl
a5diag$a1 , . . . ,al 21 ,a,al 11 , . . . %,

b̂5diag$b1 , . . . ,bn%,

b̂l
b5diag$b1 , . . . ,bl 21 ,b,bl 11 , . . . %, ~21!

and

ai5a~v,x50,kF,i
in !, bi5b~v,x50,kF,i

out!.

The solutions ofAl(b)50 andBl(a)50 provide the bound-
ary conditions

Al~b0!50 ⇒ a~v,x50,kF,l
out!5

1

b0
, ~22!

Bl~a0!50 ⇒ b~v,x50,kF,l
in !5

1

a0
. ~23!

As the determinant is a linear function of each of the mat
elements the functionsAl(b) andBl(a) are linear inb and
a. We can solve the boundary condition by calculatingA(b)
and B(a) for two arbitrary values ofb and a; for b50,1
anda50,1 we obtain

a~v,x50,kF,l
out!512

Al~1!

Al~0!
, ~24!

b~v,x50,kF,l
in !512

Bl~1!

Bl~0!
. ~25!

With the boundary condition the Green’s function can
calculated: At first the integration of Eq.~14! on the in and of
Eq. ~15! on the out trajectories is performed starting from t
known bulk values23

a~v,x→`,kF
in!5

D`~kF
in!

v1Av22uD`~kF
in!u2

, ~26!

b~v,x→`,kF
out!5

D *̀ ~kF
out!

v1Av22uD`~kF
out!u2

~27!

toward the boundary (D` : bulk OP!. Then the boundary
conditions must be applied to get thea’s on the out and the
b’s on the in trajectories at the boundary and the succeed
integration on these trajectories provides the missinga’s and
b’s.

The properties of the boundaries enter only via theS ma-
trix. The valueuSi j u2 is the probability of scattering fromkF, j

in
0-3
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to kF,i
out . We choose the numbering of the trajectories so t

S51 reproduces the specular case. Due to current conse
tion S must be unitary

SS†51. ~28!

With a suitable choice ofS arbitrary physical situations ca
be treated by this technique. Some examples are present
Sec. III.

We are also able to connect basic symmetries of
physical situation with transformation properties of the sc
tering matrix. The symmetry operations for the mirror a
the time-reversal symmetry are illustrated in Fig. 3. The m
ror symmetry of the surface (y→2y) is given by the trans-
formation

S85TST, with Ti j 5d (n112 i ), j . ~29!

The time-reversal symmetry operation is represented by

S85TSTT. ~30!

III. RESULTS FOR DIFFERENT SURFACES

Since we are discussing different types of roughness
occur in experiments we have to find adequate scatte
matrices for each situation. As the unitarity condition~28!
must be obeyed we representS by the relation

S5exp$ iH% with H5H†. ~31!

FIG. 4. Mean scattering probability from the in trajectoriesi
1 l ) to a fixed out trajectoryi 5n/2 for different values oft. The
specular contribution is reduced by increasingt.

FIG. 3. Two trajectories~solid and dashed line! are plotted
which are connected via symmetry transformation for mirror~left!
and time-reversal symmetry~right!.
06451
t
a-

in

e
t-

-

at
g

In the subsequent sections III A and III B we presentS ma-
trices for random surfaces as well as for surfaces with sm
tilted mirrors and physical properties such as the OP and
DOS in the vicinity of a surface. The retarded Green’s fun
tion should be evaluated atv→v1 id; for numerical pur-
poses we keepd finite. For the calculation of the DOS w
choosed50.02kBTc andn5200; we checked that the resul
do not change for largern.

A. Random surface

In this section we search for a scattering matrix that c
describe random surfaces. To take into account the statis
properties of the surfaces we choose a random matrix in
approach; therefore the Hermitian matrixH is assumed to be
a member of the Gaussian unitary ensemble as was also
gested by Yamadaet al.21

^Hi j &50,

~32!

^Hi j* Hi 8 j 8&5
t

n
d i i 8d j j 8 .

The bracketŝ . . . & denote the ensemble average of the d
order. The roughness of the surface can be varied by

FIG. 5. Specular scattering weight as a function oft. The dif-
fusive limit is reached fort*2.

FIG. 6. Conductance fora545° andt50.8,2; the typical fluc-
tuations are confined by the dashed lines.
0-4
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parametert. The factor 1/n in the correlator ofH ensures
that the whole procedure does not depend on the numbe
channels forn→`.

The averaged scattering probabilities^uSi j u2& have a
simple behavior. Fort50 only uSii u251 are finite and all
other elements are zero. Ift is increased the diagonal ele
ments ~responsible for specular reflection! are reduced to
^uSii u2&5uu(t)u2,1 and the off-diagonal elements becom
finite ^uSiÞ j u2&5uv(t)u2&1/n ~see Fig. 4! with

uu~t!u21~n21!uv~t!u251. ~33!

Therefore, the averaged properties ofS are fully determined
by the probability for specular reflectionuuu2 and we can use
it as a measure for the disorder of the surface; its relatio
the parametert is shown in Fig. 5. Fort small enough, the
reflection is partially specular. Whent*2, the scattering
becomes isotropic sinceuuu2;uvu2;1/n. We call this situa-
tion the diffusive limit.

We apply a random matrixS to calculate the OP and th
DOS in the vicinity of a disordered surface. We study seve
~up to 50! realizations of theS matrix individually. We find
that the fluctuations are small as can be seen in Fig. 6. Th
fore, it is meaningful to consider the averaged quantities^D&
and^G&. The results fora50°, 45° and different roughnes
values are shown in Figs. 7 and 8 for the OP and for

FIG. 7. Averaged order parameter fora50° and
t50,0.08,0.4,0.8,2,4.

FIG. 8. Averaged order parameter fora545° and
t50,0.08,0.4,0.8,2,4.
06451
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differential conductance in Figs. 9 and 10, where the norm
state resistance is used

RN
215e2AN 0t2vF

4

3p
. ~34!

Additionally the angle-dependent DOS is presented in F
11 for the medium roughnesst50.4.

We point out some interesting features of the model: D
order leads to a suppression and broadening of the ZBCP
a545°. By comparison with experimental data10 realistic
results can be achieved by 0.8&t&2. In our model with
disorder, fora50° no ZBCP occurs. In the angle-resolve
DOS no splitting of any bound states due to disorder is se
In the diffusive limit the OP reaches an almost univer
curve independent of the surface orientationa; the conduc-
tance becomes flat and is on the order of the normal s
value for all energies and surface orientations.

B. Surface with small tilted mirrors

With this method other roughness types can also be s
ied. In this section we consider surfaces which only conn
a few trajectories. For example, one can think of small~com-
pared to the coherence length! mirrors with distinct orienta-
tions. Each of the mirrors contributes to reflection so that

FIG. 9. Averaged differential conductance fora50° and
t50,0.08,0.4,0.8,2,4.

FIG. 10. Averaged differential conductance fora545° and
t50,0.08,0.4,0.8,2,4.
0-5
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surface acts as a beamsplitter. For the mirror orientationu
5180°l /m with integer l 52m11, . . . ,m21, this can be
achieved by the choice

H5tH̃ with H̃ i j 5 (
l 51

m21

d u i 2 j u,ln/m . ~35!

In the further calculation we choosen to be a multiple ofm;
this leads to a simpler form ofS but has no physical impli-
cation for n@m. In this caseH̃ considered as a bloc
m3m matrix has zeros on the diagonal, and all other e
ments are equal to1n/m „(n/m)3(n/m) unity matrix…. Since

H̃25~m21!11~m22!H̃ ~36!

the exponential representation for theS matrix in Eq. ~31!
becomes

S5u~t!11v~t!H̃, ~37!

where

uuu21~m21!uvu251, ~38!

uv* 1u* v1~m22!uvu250 ~39!

as required by the unitarity of theS matrix. For fixedt the
value of uuu2 is the probability for specular reflection
whereasuvu2 is the probability for the scattering on one
the tilted mirrors. The scattering matrix can be calcula
explicitly and the amplitudes are given by

u~t!5
e2 i t

m
~m211eimt!, ~40!

v~t!5
e2 i t

m
~eimt21!. ~41!

Therefore the probability for specular reflection~mirror with
u50) is given by

uu~t!u25
1

m2
@~m21!21112~m21!cos~mt!#. ~42!

FIG. 11. Averaged angle-resolved DOS fora545° and
t50.4.
06451
-
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In this model, each incoming trajectory is split intom outgo-
ing trajectories. Altogether, there arem in trajectories which
are scattered into the same out states. In the terminolog
Ref. 23, this corresponds to aknot with m in and m out
trajectories~see Fig. 12!.

We study the simplest casem52 with three mirrors with
orientationu50°,645°, where two in and two out trajecto
ries are coupled. TheS matrix has the form

S5S u v

v uD , ~43!

with u5u1n/2 andv5v1n/2 ; the functionsu andv are given
by

u~t!5cos~t!, v~t!5 i sin~t!. ~44!

FIG. 13. Differential conductance form52 anda50°,45°; the
specular scattering weight is varied.

FIG. 12. Form53 each of the three in trajectories~solid lines!
contributes to the same three out trajectories~dashed lines!.
0-6
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For a50° and uuu2,1 finite energy bound states occu
their energies move to zero with decreasing weight of spe
lar reflection. Ifuuu250 (t5p/2), i.e., no specular reflectio
is present, the bound states reach zero energy. Fora545°
this is reversed: nonspecular reflection leads to a splitting
the zero energy bound states, which grows with decrea
uuu2 ~Fig. 13!, as was discussed qualitatively in Ref. 23. Th
model is in some aspects similar to a Josephson contact
a specular interface, where a splitting of the zero ene
bound state can also be observed.

The casem.2, however, is more complex and cannot
mapped to any studied model. We consider the casem53.
The five mirrors have the relative orientationsu50°,
630°,660°, and three in and three out trajectories are c
nected; theS matrix is given by

S5S u v v

v u v

v v u
D , ~45!

with u5u1n/3 andv5v1n/3 . As can be seen in Eq.~42! for
m53 it is only possible to choose the specular scatter
probability in the intervaluuu2P@1/9,1#. For a50° non-
specular scattering leads to finite energy bound states w
are moving to lower energies with decreasinguuu2; but here
zero energy is not reached. In the case ofa545° for uuu2

,1 one part of the zero energy bound state splits to fin
energies, whereas another part remains at zero energy
reduced spectral weight~Fig. 14!. In Fig. 15 we also presen

FIG. 14. Differential conductance form53 anda50°,45°; the
specular scattering weight is varied.
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the casem54 with seven different mirrors for the surfac
orientationsa50°,45°.

Summing up our observations for thea545° case small
mirrors reduce the spectral weight of the zero energy bo
states as a part splits to finite energies. For the surface
entationa50° in general~except some particular situations!
no zero energy bound state is produced.

Finally we point out that a larger class ofS matrices can
be used to describe such surfaces

Hi j 5 (
l 51

m21

t ld u i 2 j u,ln/m . ~46!

This model has almost the same properties as Eq.~35!, how-
ever, the scattering probabilities for each mirror differ. Mor
over it is possible to combine these mirrors with disorder j
by multiplying the relatedS matrices and averaging as i
Sec. III A.

IV. DISCUSSION AND CONCLUSION

In the present paper, the scattering matrix approach
been applied to described-wave superconductors in the v
cinity of rough surfaces. Two physical situations are exa
ined:~i! a surface with partially diffusive reflection describe
by random scattering matrices;~ii ! a surface with small tilted
mirrors ~facets! where the reflected wave is a coherent m
ture of waves propagating in several directions.

First, for the diffusive surface it appears that our resu
are very similar to those found in other approaches such

FIG. 15. Differential conductance form54 anda50°,45°; the
specular scattering weight is varied.
0-7
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the randomly rippled wall model21 or the thin dirty layer.18 In
contrast to those calculations we treated the disorder by
rect sampling. We find that the deviation of the DOS fro
the average is rather small. Therefore, our calculations c
firm the validity of the averaging procedures used in
aforementioned papers. In particular the broadening of
ZBCP due to increasing disorder is no artifact of the appro
mate averaging.~Other models exist that show no suc
broadening.22,27!

Second, we studied a surface with tilted mirrors. In co
trast to the model for large facets examined in Ref. 15,
model describes a surface where faceting occurs on a s
small compared to the coherence length. These two mo
provide qualitatively different results: our model in gene
shows no ZBCP fora50, whereas large facets lead to
ZBCP for each surface orientation.
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In experiments on high-Tc materials, it cannot be ex
cluded that roughness on a scale of the coherence leng
larger occurs, which is beyond the model used in the curr
paper. This might be the case in the experiment describe
Ref. 10, where the width of the ZBCP is constant with va
ing disorder. In some experiments8,9 a ZBCP for a50 is
observed, too, consistent with the model for large facets15
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