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A recently developed methdd\. Shelankov and M. Ozana, Phys. Rev6B 7077 (2000] is applied to
investigated-wave superconductors in the vicinity @bugh surfaces. While this method allows the incorpo-
ration of arbitrary interfaces into the quasiclassical technique, we discuss, as examples, diffusive surfaces and
boundaries with small tilted mirrordacets. The properties of the surface enter via the scattering matrix in the
boundary condition for the quasiclassical Green’s function. The diffusive surface is described by an ensemble
of random scattering matrices. We find that the fluctuations of the density of states around the average are
small; the zero bias conductance peak broadens with increasing disorder. The faceted surface is described in
the model where the scattering matrix couptes- andm out-trajectories ifni=2). No zero bias conductance
peak is found for{100] surfaces; the relation to the model of Fogelstret al. [Phys. Rev. Lett79, 281
(1997)] is discussed.
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[. INTRODUCTION tion on four trajectories must match at the interface, which
leads to quite complicated nonlinear boundary conditions.
Thed,2_,2 symmetry of the order paramet@P) in high As surface roughness is present in experiments, models
temperaturghigh-T,) superconductors is nowadays well es- were developed to include disorder in the theory. One possi-
tablished by various phase-sensitive experiments, the mobility, first suggested by OvchinnikoV,is to use the bound-
striking being the observation of a half flux quantum in a@'y conditions for the specular situation and cover the sur-
tricrystal geometry by Tstét al® Also the zero-bias conduc- face with a thin dirty layer where equations for the dirty case
tance peakZBCP) found in different tunnel experimert$ must be appl_led. In numerical lsgtudles of bound_ary prob_lems
on[110]-oriented boundaries of YB&EW,O,_ ; gave a strong similar technlq_ues_ were usédi’® Also a scattering matrix
hint for d-wave symmetry as was first pointed out by Hu. approach, which is related to the randomly rippled wall

20 ; ; ;
However, in more recent experiments, several puzzling que@c’del.’ was applied _to d|sorde_red ;urfac’és{he solution
was given in a Born-like approximation. Except for models

tions arose. For example a splitting of the ZBCP was . . : .
. with unitary scatterer& all calculations show a broadenin
observefiand ZBCP’s were reported even {di00]-oriented y 9

. ionsB® Disorder eff ined I of the ZBCP due to disorder.
Jun(_:tlons. Isorder e_ects Were examined as Well IN X~ often the surface roughness is only present on scales
periments where the disorder of the junctions was increaseg,

L SNET . . uch smaller than the coherence length. In this case, the
by ion irradiation.” A decreasing height of the ZBCP was poyndary conditions for the quasiclassical Green’s function
observed, whereas the width remained constant.

) can be formulated in terms of the scattering mati$«nfa-

The most successful approach to treat such inhomoggrix), as it has been recently suggested in Ref. 23. A rough
neous pﬁ)bllgms is the theory of quasiclassical Green'yterface does not conserve the momentum parallel to the
functions.”™™ The properties of surfaces or interfaces aresyrface and, therefore, it couples waves., quasiclassical
included by the effective boundary condition. For a speculagrajectorie$ with different propagation direction. The micro-

surface the Green’s function has to be continuous on a clagcopic structure of the interface enters the theory viaShe
sical trajectory(see Fig. L In this most simple model the

pair-breaking effect of surfaces as well as the existence of ¢
ZBCP can be explained: If quasiparticles are scattered tq
branches with a different OPa(*0) the pairing is sup-
pressed and bound states can occur due to Andreev scatte
ing. If a quasiparticle is scattered with a sign change of the”
OP the ZBCP exists, too. In this framework it was also | °
showrt*1® that the splitting of the ZBCP is in agreement

Pin

with the existence of a subdominant order parameter
(dy2_y2+id,y/s) in the vicinity of the surface. The generali-
zation of the boundary conditions to a specular interface was
carried out by ZaitseW In this situation the Green’s func-
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FIG. 1. Surface effect in real spadeft) ank space(right).
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where}i represent the Pauli matrices and

A(RK ° 4
Rke)=| _ (v o (3)
Additionally a normalization condition is needed to obtain
FIG. 2. Effect of roughness on smaléft) and large(right). the physical solution of the equation
~y A
matrix. In the absence of detailed knowledge about the mi- 9°(w,Rkg)=1. S

croscopic structure of the surface, tBematrix has to be The OP must obey the self-consistency equation
taken as a phenomenological input.

Due to the very short in-plane coherence length in high- N oc dw rAK ,
superconductorsé~20 A) structures on larger scales occur A(Rkg)=— fw T<V(kF Ke)g (“’*R’kF»k;- )
as well. Then the translational invariance parallel to the sur- ¢
face is lost on this length scale and a full two-dimensionalHere . . .>k; indicates the average over the Fermi surface.
treatment of the problem is necessary, in which the trajecto
ries are considered individualligee Fig. 2 For example, in
cuprates facets wg typical dimensions of 10—-100 nm ar
present at interfaces.This leads to the existence of a ZBCP -~ AR~ L ARIA. .
even for[100] tunnel junctions as was pointed out by Fogel- g“=(g"-gMtanhw/2keT) with g¥*: w—w*io, .
strom, Rainer, and SaulS. 6)

In our study we use the scattering matrix approach preFor simplicity we make some further assumptions concern-
sented in Ref. 23 to describe surfaces with microscopiéng the microscopic properties: For the interaction we choose
roughness. We will discuss two kinds of surfaces: First, weV (kg ki) =V cog2(¢—a)lcog2(¢’ — a)],?® which generates
study a microscopically disordered surface, which is deqa d-wave OP with orientation (see Fig. 1
scribed by random matrices. In contrast to earlier calcula-
tions we are able to consider individual realizations of the A(Rkp)=A(R)cog2(¢—a)]. )

disorder; we examine averaged quantities as well as fluctu% addition we assume an isotropic two-dimensional model

23;}2‘(::%&{;\'3[%% V|\~Irﬁr:grcsusw?1r:arzsaﬂgw);r;h:étgﬁzgrgr?cin-With a spherical Fermi surface. After the determination of the
' J OP all physical properties can be calculated from the quasi-
nected at the surface.

In the following section we will briefly introduce the qua- classical Green’s function. For example, the angle-resolved

siclassical theory for superconductors. Subsequently we WiIIIOCaI density of state¢DOS) reads

present the boundgry conditions in the form most suitable for Mao,R kg) =Ny REGR(w, R, ke, (8)

our purpose and discuss the general properties. In Sec. Il we

derive theS matrices for different situations and present thewhere\j is the normal state DOS. In many cases the knowl-
related results. We conclude with a discussion of our resultgdge of the angle-averaged DOS is sulfficient

and compare them to other approaches.

n thermal equilibrium the Keldysh propagat(:)F is given
Py the advanced and retarded propagatR

Me,R)=(Mw,RKe) i 9)
Il. METHOD The DOS at the surface can directly be measured via the
A. Theory of quasiclassical Green’s functions differential conductance G=dI/dV for normal-metal-

) ) insulator-superconductor tunnel junctions. Fb~0 it is
In our studies of boundary effects of unconventional S“'given by8

perconductors we use the theory of quasiclassical Green's

functions introduced by Eilenbergb]r?l'his approximation of G(V)=e2A<vF XT(kF)N(eV,XZO,kF))(k ~0), (10
Gorkov’s theory is valid in the quasiclassical limit £2kg ' P

<¢). Several review articles have been written on this subwhere the transmission probability is chosen as

ject, e.g., by Schmi# or Larkin and Ovchinniko#? The

2
guasiclassical propagator in Nambu space Te)=t*sir(¢) <1, 1D
g f andA is the area of the contact. The current density can be
- calculated from the Keldysh Green'’s function via
g(va'kF):<fT T) (1 ) y
. w nn
is determined by the Eilenberger equation j(R)= —ej\/of T(vp Tr r3gK(w,R,k,:)])kF. (12

It has been shown that the decomposition introduced by
Maki and SchopofF is suitable for the numerical integration

A of the Eilenberger equation as well as for analytical consid-
+if(ve-V)g(w,Rkg)=0, 2 erations(see Sec. Il B

w+§vF-A(R))}S—A(R,kF),g(w,R,kF)
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.1 (1+ab  -2a A(B)=def1—SaS'bf], (19
991 ab| 2b  —(1+ab)) a3

— ot
Considering the physical meaning, the functi@f®,R,kg) Bi(a)=def{1-Sai'S'b] (20
andb(w,R,kg) are closely related to the particle and hole wjth the diagonahx n matrices
amplitudes in the Andreev equation as was discussed in de-
tail in Ref. 23. With this construction the normalization con- a=diaga,, ... a.}
dition is obeyed automatically. By putting in this decompo-
sition in EQ.(2) it can be seen that the functioasandb are

given by the equations ai=diagay, ... a1, @81, -},
if(ve-V)a=A*a?—2wa+A, (14) b=diagb,,....b,}
—ih(vF-V)b=Ab2—2wb+A*. (15 6F=diag{b1,...,b|_1,,8,b|+1,...}, (22)

These equations can be solved on classical trajectories Ig;, g
beled by the Fermi wave vectds-. For each directiorvg
one has to integrate two ordinary differential equations in ai=a(w,X=0,kiFni), bi=b(w,x=0,k§f‘{ _
order to construct the full propagator.
The Matsubara technique can be used as well to calculatehe solutions ofA;(8) =0 andB,(«) =0 provide the bound-

the OP ary conditions
2 . Iz , 1
A(R,kF)z—kBTml J <V(kp,k,:)fM(wn,R,k,:)>ké Al(ﬁo)=o=>a(w,x=o,kg“f)=B—, (22)
Wnp|=0¢ ' 0
(16)
. : 1
and the current density Bi(arg) =0 = b(w,x=0k" )= - 23)
J(R)=—eNokgTi ; (Ve T 730M (@n R Ke) i As the determinant is a linear function of each of the matrix

(17) elements the function&,(B) andB(«) are linear ing and
a. We can solve the boundary condition by calculati(g)
The energy integrals turn to sums over discrete Matsubargn B(a) for two arbitrary values of3 and «; for =0,1
frequenciesw,=kgT7(2n+ 1) and the Matsubara propaga- anda«=0,1 we obtain
tor g™ is determined by the relation
Al(1)

~ ~ _ outy _q _

VA0 Rke) =M@ RKE) iy o, (18) a(0x=0ke)=1- 75 249
One crucial point for investigating the effects of boundaries B/(1)
is still missing. As the quasiclassical condition does not ap- b(w,x=0kI)=1— L (25)
ply in the vicinity of surfaces and interfaces we have to treat ’ Bi(0)

t_he scattering of q_ua5|part|cles by effective boundary COnd'With the boundary condition the Green’s function can be
tions. The properties of the boundary enter the calculations lculated: At first the i . f he i 4 of
only at this point. Calculated: At first the integration of E¢L4) on the in and o

Eq. (15) on the out trajectories is performed starting from the

B known bulk value$’
B. Boundary conditions

In our work we use the general theory recently derived in Ax(kiF”)

Ref. 23. The starting point is the Andreev-like equation for a(w,x—%,kf)= Vo | A KD (26)
the particle- and hole-like amplitudes, which factorize the @TNO =\F
Eilenberger Green’s function in E(Ll) (see Ref. 23 for de- . out
- - . . . . A k
tails). In this approach, it is possible to consider roughness b, X0, K2 — % (k™) 27

that occurs on length scales much smaller than the coherence

length. All information on the microscopic shape of the

boundary is provided by the scattering amplitudes from theoward the boundaryX..: bulk OP. Then the boundary

in trajectories k¢ ,<0) to the out trajectoriesk@f‘;>0); conditions must be applied to get th&s on the out and the

they are gathered in the scattering matix b’s on the in trajectories at the boundary and the succeeding
For simplicity we consider only a finite numbarof dis-  integration on these trajectories provides the missisgand

crete in and out trajectoridg” ™ k™, i=1,2. .. pwith  b’s.

equidistant angles. Following Ref. 23 the boundary condi- The properties of the boundaries enter only via $maa-

tions are determined using the functions trix. The vaIue|S”- |2 is the probability of scattering frortnE‘yj

o+ \o?—|A (k22
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FIG. 3. Two trajectoriegsolid and dashed lineare plotted
which are connected via symmetry transformation for micteft) 0.2
and time-reversal symmetiyight).

0 ] ] ] ] 1
0.5 1 1.5 2 2.5 3 3.5 4

0
to kcF’f‘it. We choose the numbering of the trajectories so that T
S=1 reproduces the specular case. Due to current conserva-

tion S must be unitary FIG. 5. Specular scattering weight as a functionrofThe dif-

fusive limit is reached for=2.

SS=1. 28 :
28) In the subsequent sections Il A and Il B we pres8mha-

With a suitable choice o8 arbitrary physical situations can trices for random surfaces as well as for surfaces with small

be treated by this technique. Some examples are presentedtif{ed mirrors and physical properties such as the OP and the

Sec. lIl. DOS in the vicinity of a surface. The retarded Green'’s func-
We are also able to connect basic symmetries of thdion should be evaluated ai— w+i6; for numerical pur-

physical situation with transformation properties of the scatPoses we keep finite. For the calculation of the DOS we

tering matrix. The symmetry operations for the mirror andchooses=0.0XgT. andn=200; we checked that the results

the time-reversal symmetry are illustrated in Fig. 3. The mir-do not change for larger.

ror symmetry of the surfacey(~ —vy) is given by the trans-

formation A. Random surface

In this section we search for a scattering matrix that can
describe random surfaces. To take into account the statistical
properties of the surfaces we choose a random matrix in this
approach; therefore the Hermitian matkxis assumed to be

S'=TST, with Tij:5(n+1—i),j . (29)

The time-reversal symmetry operation is represented by

S =TS'T (30) a member of the Gaussian unitary ensemble as was also sug-
' gested by Yamadat al?!
Ill. RESULTS FOR DIFFERENT SURFACES <Hij>:0,
Since we are discussing different types of roughness that (32

occur in experiments we have to find adequate scattering
matrices for each situation. As the unitarity conditi(#8)

-
must be obeyed we represediby the relation (HiHij) n Sii jj -

S=exp{iH} with H=H". (31  The bracketg . ..) denote the ensemble average of the dis-
order. The roughness of the surface can be varied by the
0.7 | | I | I I | I |
2 T T T T T T
0.6 - .
05F n=100,n=14/2 T=04 — .
- 7=08 --——-- T
E 04 B 1 Q:Z
Y03 . S
02| {4 ®
0.1F ] -
-l L L L 1 L A ol L
40 -30 -20 -10 O 10 20 30 40 0 1 ] ] ] ] ]
l 0 0.2 04 0.6 0.8 1 1.2
V/Aw
FIG. 4. Mean scattering probability from the in trajectoriés (
+1) to a fixed out trajectory=n/2 for different values ofr. The FIG. 6. Conductance foix=45° and7=0.8,2; the typical fluc-
specular contribution is reduced by increasing tuations are confined by the dashed lines.
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T T T 2 T T T
T =
7=0.08 --—---
. 15 T= o
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D o064 a=0° 71=0 — - & =
= y T—o017. T=008 ----- =
= =01T 72y c 1
4 04} T=08 o - 3
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0.2k _ 0.5
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FIG. 7. Averaged order parameter forw=0° and FIG. 9. Averaged differential conductance far=0° and

7=0,0.08,0.4,0.8,2,4. 7=0,0.08,0.4,0.8,2,4.

parameterr. The factor It in the correlator ofH ensures differential conductance in Figs. 9 and 10, where the normal
that the whole procedure does not depend on the number sfate resistance is used
channels fom—oo.

The averaged scattering probabiliti€sS;|?) have a
simple behavior. For=0 only |S;|2=1 are finite and all
other elements are zero. fis increased the diagonal ele-
ments (responsible for specular reflectioare reduced to Additionally the angle-dependent DOS is presented in Fig.
(ISi1?y=]u(7)|?><1 and the off-diagonal elements become11 for the medium roughness=0.4.
finite (|Si¢j|2)=|v(r)|25 1/n (see Fig. 4 with We point out some interesting features of the model: Dis-
order leads to a suppression and broadening of the ZBCP for
a=45°. By comparison with experimental dftaealistic
results can be achieved by 6&8=<2. In our model with
Therefore, the averaged propertiesSoére fully determined  disorder, fora=0° no ZBCP occurs. In the angle-resolved
by the probability for specular reflectign|? and we can use DOS no splitting of any bound states due to disorder is seen.
it as a measure for the disorder of the surface; its relation tin the diffusive limit the OP reaches an almost universal
the parameter is shown in Fig. 5. Forr small enough, the curve independent of the surface orientatienthe conduc-
reflection is partially specular. When=2, the scattering tance becomes flat and is on the order of the normal state
becomes isotropic sinde|2~|v|?~1/n. We call this situa- value for all energies and surface orientations.
tion the diffusive limit.

We apply a random matri$ to calculate the OP and the
DOS in the vicinity of a disordered surface. We study several
(up to 50 realizations of theS matrix individually. We find With this method other roughness types can also be stud-
that the fluctuations are small as can be seen in Fig. 6. Theréed. In this section we consider surfaces which only connect
fore, it is meaningful to consider the averaged quantities @ few trajectories. For example, one can think of srtwin-
and(G). The results fow=0°, 45° and different roughness pared to the coherence lengtiirrors with distinct orienta-
values are shown in Figs. 7 and 8 for the OP and for thdions. Each of the mirrors contributes to reflection so that the

4
R§1=82AN0t2vFE. (34)

lu(7)[?+(n=1)v(7)]?=1. (33

B. Surface with small tilted mirrors

1k I I I I I I 1 2
08| . 15
g z [l vV . 21 —o-
4 o6 o = 45° ’T=80 —_— — = L.
= 7 — =008 ----- - R D M Ao e
z y T=0aT, TSP T S 1 '.
A 047y T=08 o - ) |
~ ; T=2 - L
iy =4 05F \ \ o
0.2F 7 4 T O\ N
// \\\\\
0 1 1 1 1 1 1 0 | 1 1 1 | 1
0 1 2 3 4 5 7 8 0 0.2 04 0.6 0.8 1 1.2
FIG. 8. Averaged order parameter fow=45° and FIG. 10. Averaged differential conductance far=45° and

7=0,0.08,0.4,0.8,2,4.

7=0,0.08,0.4,0.8,2,4.
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2 T I f T T
=15 —— |}
= Sl
= © . 1
= T 5= 607 o | | .
= ©="T5° ——~ :: \
S [ N
=} Ir _’,,.—r'~- =
3 - ,’I -
} -
2 ;
0.5 S -
szl FIG. 12. Form=3 each of the three in trajectoriésolid lineg
0 L L L L L L contributes to the same three out trajectofsshed lines

In this model, each incoming trajectory is split intooutgo-

ing trajectories. Altogether, there amein trajectories which

are scattered into the same out states. In the terminology of
Ref. 23, this corresponds to knot with m in and m out
surface acts as a beamsplitter. For the mirror orientatibns trajectories(see Fig. 12

=180°/m with integerl=—m+1,... m—1, this can be We study the simplest case=2 with three mirrors with
achieved by the choice orientationd=0°,*=45°, where two in and two out trajecto-
ries are coupled. Th8 matrix has the form

FIG. 11. Averaged angle-resolved DOS fer=45° and
7=0.4.

m—1

H:TH with Hij:|:21 6\i—j\,|n/m- (35) (U V)

(43)
In the further calculation we chooseto be a multiple ofm; vou

this leads to a simpler form & but has no physical impli-
cation for n>m. In this caseH considered as a block
mXxm matrix has zeros on the diagonal, and all other ele-
ments are equal t n/m) X (n/m) unity matrix). Since

qual thym ((n/m)>(n/m) unity matrb) u(r)=cosr), v(r)=isin(7). (44)

with u=ul,, andv=uv1,; the functionsu andv are given

H2=(m—-1)1+(m—-2)H (36)

the exponential representation for tBematrix in Eq. (31)
becomes

S=u(7)1+v(n)H, (37 &
where S
&)

[ul2+(m-1)|v|?=1, (38)

uv* +u*v+(m—2)|v|?=0 (39

as required by the unitarity of th® matrix. For fixedr the
value of |u|? is the probability for specular reflection,
whereas|v|? is the probability for the scattering on one of
the tilted mirrors. The scattering matrix can be calculated
explicitly and the amplitudes are given by

—iT

e . z,
u(7)=——(m—-1+eM), 409 £
v(7)= F(eimf—l). (41)

Therefore the probability for specular reflectigmirror with
0=0) is given by

|U(T)|2:i2[(m— 1)2+1+2(m—1)codmr)]. (42 FIG. 13. Differential conductance fon=2 anda=0°,45°; the
m specular scattering weight is varied.
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(G(V))Rx
(G(V))Rx

(G(V))Rx
(G(V))Rx

0 1 1 1 1 1 1 0 1 1 1 1 1 1
0 0.2 04 0.6 0.8 1 1.2 0 0.2 04 0.6 0.8 1 1.2
V/As V/As
FIG. 14. Differential conductance fon=3 anda=0°,45°; the FIG. 15. Differential conductance fon=4 anda=0°,45°; the
specular scattering weight is varied. specular scattering weight is varied.

For «=0° and|u|?<1 finite energy bound states occur; the casem=4 with seven different mirrors for the surface
their energies move to zero with decreasing weight of specuerientationsa=0°,45°.
lar reflection. Ifju|?2=0 (7= w/2), i.e., no specular reflection Summing up our observations for tlhe=45° case small
is present, the bound states reach zero energy.aFof5° mirrors reduce the spectral weight of the zero energy bound
this is reversed: nonspecular reflection leads to a splitting o$tates as a part splits to finite energies. For the surface ori-
the zero energy bound states, which grows with decreasingntationa=0° in generalexcept some particular situations
|u|? (Fig. 13, as was discussed qualitatively in Ref. 23. Thisno zero energy bound state is produced.
model is in some aspects similar to a Josephson contact with Finally we point out that a larger class 8fmatrices can
a specular interface, where a splitting of the zero energype used to describe such surfaces
bound state can also be observed. 1

The casen>2, however, is more complex and cannot be H.— E 5 (46
mapped to any studied model. We consider the cases. ] 19 =jl.In/m - )

The five mirrors have the relative orientatiors=0°, ) )
+30°,+60°, and three in and three out trajectories are cond NiS model has almost the same properties as(&s), how-

nected; theS matrix is given by ever, the scattering probabilities for each mirror differ. More-
over it is possible to combine these mirrors with disorder just
by multiplying the relatedS matrices and averaging as in

u v v
Sec. Il A
S=|v u v/, (45)
v v u IV. DISCUSSION AND CONCLUSION
with u=ul,; andv=v1,3. As can be seen in E¢42) for In the present paper, the scattering matrix approach has

m=3 it is only possible to choose the specular scatterindbeen applied to describdwave superconductors in the vi-
probability in the intervallu|?e[1/9,1]. For «=0° non-  cinity of rough surfaces. Two physical situations are exam-
specular scattering leads to finite energy bound states whidhed: (i) a surface with partially diffusive reflection described
are moving to lower energies with decreas|ot?; but here by random scattering matrice$i;) a surface with small tilted
zero energy is not reached. In the caseasf45° for |u|2 mirrors (facetg where the reflected wave is a coherent mix-
<1 one part of the zero energy bound state splits to finitdure of waves propagating in several directions.

energies, whereas another part remains at zero energy with First, for the diffusive surface it appears that our results
reduced spectral weigliFig. 14). In Fig. 15 we also present are very similar to those found in other approaches such as

064510-7
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the randomly rippled wall mod@! or the thin dirty layer8 In In experiments on high-, materials, it cannot be ex-
contrast to those calculations we treated the disorder by dieluded that roughness on a scale of the coherence length or
rect sampling. We find that the deviation of the DOS from|arger occurs, which is beyond the model used in the current
the average is rather small. Therefore, our calculations compaper. This might be the case in the experiment described in
firm the validity of the averaging procedures used in theref. 10, where the width of the ZBCP is constant with vary-
aforementioned papers. In particular the broadening of thgg disorder. In some experimefifsa ZBCP for @=0 is

ZBCP due to _increasing disorder is no artifact of the apprOXi'observed, too, consistent with the model for large fatets.
mate averaging(Other models exist that show no such

broadening??)

Second, we studied a surface with tilted mirrors. In con-
trast to the model for large facets examined in Ref. 15, our
model describes a surface where faceting occurs on a scale ] )
small compared to the coherence length. These two models We would like to thank Y. Barash, M. Dzierzawa, M.
provide qualitatively different results: our model in generalFogelstran, and J. Mannhart for helpful discussions. This
shows no ZBCP fora=0, whereas large facets lead to a work was supported in part by the DAAD, the BMBF
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