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Mündliche Prüfung 4. Dezember 2014



Preface

The title of this thesis corresponds to a project within the priority pro-
gram 1506, organized and financed by the German Science Foundation, the
support of which has made this research possible. Within this project we in-
vestigated the dynamics and formation of differently ordered phases in lipid
layers, as well as the separation of chiral objects. This thesis is therefore
separated into two parts, presenting results of research in these two fields of
interest developed under my participation.

My special thanks go to Prof. Dr. Ronald H. W. Hoppe and Prof. Dr.
Malte Peter for their constant support and encouragement in research. I
was in the rare and fortunate position of having two advisors giving me help
and guidance including discussions and beneficial hints. Not least, I thank
them for proof-reading this dissertation. In particular, I want to thank Prof.
Dr. Ronald H. W. Hoppe for introducing me to the field of adaptive finite
elements and PDE constrained optimization. I am utterly grateful for all
this.

Further, I say thanks to our cooperation partners at the chair of Exper-
imental Physics I, namely Prof. Dr. Achim Wixforth, Dr. Thomas Franke
(now at the University of Glasgow) and Stefan Burger for the long and
fruitful interdisciplinary discussions.

In addition to this I want to thank Prof. Dr. Dietrich Braess for our
joint work in the field of adaptive finite elements not reported here.

I thank my collegues at the Institute of Mathematics, who directly or
indirectly contributed to the realization of this thesis and in particular to
my office mate Dr. Christopher Linsenmann for the kind and pleasant at-
mosphere.

Last but not least I want to express my deepest gratitude to my beloved
Michaela for always standing by my side over all the years.

Augsburg, October 2014 Thomas Fraunholz

iii



iv



Notation

For standard notation concerning Lebesgue and Sobolev space theory we
refer to [Tar07]. Additional notations and definitions are given in place
whenever possible for convenience. However, the inner product and norm
on L2(Ω) are denoted by (·, ·)0,Ω and ‖·‖0,Ω, respectively. We further refer
to Hk

0 (Ω) as the closure of C∞0 (Ω) with respect to the topology induced by
‖ · ‖k,Ω. In general Hk(Ω), k ∈ N, denotes the Sobolev space equipped with
the norm ‖·‖k,Ω and the seminorm | · |k,Ω.

We use different notations for scalar valued variables or functions and
operators mapping into scalar valued spaces, sets or spaces consisting of such
objects, and their vector- or matrix-valued counterparts which are denoted
by bold symbols. Consequently, we write A ∈ R, but A ∈ R2×2. However,
we treat multidimensional spatial coordinates as scalar variables by habit,
i.e. x ∈ Ω with Ω ⊂ R2. As an exception to the general rule, we use the non-
bolded ∇-operator which actually returns vector- and matrix-valued results
applied to multidimensional objects.

Besides the Euclidean product (·, ·)2 for vector-valued objects and the
induced Euclidean norm ‖·‖2, we further use the generalized inner product
for matrix-valued variables A,B ∈ Rn×n which is defined by A : B =∑
ij AijBij . In case of vector-valued variables the generalized product equals

the standard vector product, such that for a, b ∈ Rn there holds a : b =
(a, b)2.

In addition to this we denote the equality of A and B up to terms of
certain order by A ' B. When we give the value A up to certain precision
as numerical value B, we write A ≈ B. We further write A . B, if there
exists a constant C > 0 not depending on a given triangulation such that
A ≤ CB.

Finally, physical constants, parameters and quantities are given in SI
units, referred to by its French name système international d’unités. The
system was originally introduced by the Académie des sciences at the end
of the 18th century in Paris.
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Chapter 1

Introduction

We address phenomena of phase separation in lipid membranes in this first
part. The problem is investigated using a C0-Interior Penalty Discontin-
uous Galerkin (C0-IPDG) formulation of the Cahn–Hilliard equation. In
this context we provide a residual-type a posteriori error estimator for the
biharmonic problem including convergence analysis. Subsequently we will
introduce our field of research in section 1.1 of this first chapter. In section
1.2, we present biophysical properties of phase separation in lipid mem-
branes. Finally, in section 1.3, we describe our methods of choice and give
an outline of the following chapters.

1.1 Issue and Motivation

We follow our introductory discussions in [BFL+13] to give a short in-
troduction to our topic of research. Phospholipids are built from nutri-
tion by organisms. Their general availability makes them attractive to
nature as a key building block of life. When exposed to water, phos-
pholipids spontaneously form double layers. These immediately re-group
into vesicles of certain size (1 − 100 µm). This dynamic plays an essen-
tial role in our life, because vesicles serve organisms as hulls for their eu-
karyotic cells. Membranes consisting of different lipids are non-trivial sys-
tems. This is especially true when we have to take into account inter-
actions with additional components, e.g. cholesterol. Giant Unilamellar
Vesicles (GUVs) are simplified systems. Their membrane consists of fewer
types of lipids, without loosing characteristic behaviors. In this part we
are especially interested in systems built of 1,2-Dipalmitoyl-sn-glycero-3-
phosphocholine (DPPC), 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC)
and Cholesterol. Depending on certain circumstances, lipids show differ-
ent states or phases. Experiments show that these phases separate into
distinct domains [VK02, VK05, BHW03b, BG00]. This phenomenon is an
important subject of research, not least since [SI97, JMA07] suggested an
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4 CHAPTER 1. INTRODUCTION

influence of the described phases on drug delivery into cells. Further exper-
iments were conducted with multiple lipid compositions [VK03]. Thereby
two qualitatively different forms of separation were observed: nucleation
and spinodal decomposition. Research on phase separation has been a vivid
topic over the past few years, not only in experiments but also in simula-
tions [Möh95]. For a better understanding of this process numerical com-
putations were performed both for mono- and bilayers. Electrostatic line
integrals [MM88], Monte Carlo methods [MV97] or kinetic modeling [Ste09]
were used for monolayers. For bilayers, Monte Carlo methods [JM95] or
molecular dynamics simulations [BMVBT13] were chosen. However, all of
these methods are of qualitative nature and lack quantitative comparisons.
Only Krüger and Lösche [KL00] used Minkowski measures for this purpose.
But they required rather restrictive assumptions. There are limitations in
either the dimension or size; interaction between different lipid domains were
accounted for in one-dimensional computations or two-dimensional compu-
tations were performed for isolated lipid domains. Their work provided new
insights into this field of research. But their simulations do not cover real life
experiments. We avoid these problems and decided to use the Cahn–Hilliard
equation for our simulations. This is not a completely new approach. It was
already suggested by [For05] and [FHH10] but with the afore-mentioned
drawbacks in quantitative measurement. In contrast to the methods pre-
viously discussed, we perform long-time numerical studies for comparably
large two-dimensional settings. Thereby our model allows interactions of dif-
ferent lipid domains including topological changes. Furthermore, we present
a method for measuring domain sizes with a minimum effort. This allows
us to perform not only qualitative but also quantitative comparisons of sim-
ulations and experiments.

1.2 Phase Separation in Vesicles

We give a short introduction to the basic biophysical properties of lipid
molecules and lipid membranes. Our interest lies in a group of amphiphilic
phospholipids, more precisely, phosphatidyl cholines (PC or lecithin). They
consist of a hydrophilic phosphoric head and a hydrophobic hydrocarbon
tail, as shown in Figure 1.1.

Figure 1.1: Phospholopid with hydrophilic head (red) and hydrophobic tail
(black).
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Figure 1.2: Phospholipids surrounded by water form liposomes.

The hydrophobic lipid tails avoid contact to water, due to their am-
phiphilic character. Once a system of lipid molecules is exposed to water,
it shows spontaneous dynamics. The lipids hide their tails from water and
form a double layer or bilayer. Then this bilayer further develops into vesi-
cles as shown in Figure 1.2. This way the lipid tails are perfectly protected
from contact with water. A special class of vesicles consisting of a small
number of different types of lipids are Giant Unilamellar Vesicles (GUVs)
which have diameters of up to 200 µm.

Lipids occur in different states, i.e. phases, in membranes. The states are
characterized by the lateral mobility of the molecules and the orientation
of the lipid tail. A survey of lipid phases is given in Figure 1.3. There
are temperature-induced phase transitions. At very low temperatures, i.e.
below approximately 21 ◦C, lipids show a crystalline order. The lipid layer
is then in a so-called crystalline phase (Lc) and the molecules are in fixed
positions. At higher temperatures lipid molecules show lateral diffusion
on the membrane with diffusion rates depending on the given phases and
temperatures. When the temperature is raised, a gel phase (Lβ′) forms. The
name is due to the glass-like behavior. Lipid tails are tilted but still have
lateral order. A compound of lipid molecules in gel phase is rather rigid
but ductile. At higher temperatures this gel phase evolves into a disordered
phase (Lα) and the lipid tails lose their lateral order. The behavior of a
compound of lipid molecules in liquid state is comparable to the behavior of
liquids. Experiments suggest membranes of pure phases as special cases. In
lipid membranes phases coexist, form structures and change in time. The
described properties hold true for pressure induced phase transition. Here,
the influence of pressure is inversely proportional to temperature. More
details on this topic are given in section 6.1.

We want to analyze temperature-induced phase transition. A system rel-
evant for biological processes [Edi03, Pik03, TPEMJ03, DLP02] consists of
DOPC (1,2-Dioleoyl-sn-glycero-3-phosphocholine), DPPC (1,2-Dipalmitoyl-
sn-glycero-3-phosphocholine) and cholesterol. Cholesterol attaches to sat-
urated phospholipids (DPPC). Similar to the gel phase the tails are or-
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Figure 1.3: Phospholipids in crystalline phase Lc (left) gel phase Lβ′ (mid-
dle) and disordered phase Lα (right).

dered but the cholesterol inhibits the tails from forming out lateral order.
This is called liquid ordered phase. Unsaturated phospholipids (DOPC)
attain a liquid disordered phase. Hence, GUVs consisting of DOPC and
DPPC show liquid-gel-coexistence phases. For technical reasons electrically
charged DPPG (1,2-Dipalmitoyl-sn-glycero-3-phospho-rac-(1-glycerol)) has
to be added. Up to a certain concentration its influence can be neglected.
Thus we use measurements from such systems in section 5.3 for validation.
Non-negligible amounts of DPPG are discussed in section 6.2.

Now we begin with a homogeneous mixture of lipid components at a
given temperature T that is above a characteristic temperature Tc. As
the temperature exceeds this point the system has perfectly mixed binary
phases in the beginning as described above. These phases start to sepa-
rate into immiscible structures. This phase separation is observed on GUVs
by fluorescence microscopy [DBV+01, SMC01, VK02, VK03, BHW03a]. In
practice, GUVs get supercooled above Tc and afterwards unfreezed by ap-
plying the heat of a microscope lamp. This way homogeneous mixtures are
guaranteed in the beginning of the observation. In experiment, domains of
saturated phospholipids (DPPC) appear dark, because cholesterol replaces
the fluorescence marker. Examples for qualitatively different forms of phase
separation are given in Figure 1.4. On one hand, we can see binodal de-
composition. Here, lipid domains of circular shape grow by nucleation. On
the other hand, we see spinodal decomposition. This process is character-
ized by its interconnected domains that grow by contraction in time. The
qualitative differences are determined by lipid mixtures and temperatures
indicated in Figure 1.5. Further details concerning possible causes of binodal
and spinodal decomposition are given in section 2.1.

Phase separation results in domains of pure phases. The domains possess
lateral mobility within the membrane. Both phases show diffusion rates
different from their lipid molecules at corresponding liquid ordered and liquid
disordered state. These domains relax over time, reduce their surface and
take circular shape or try to reduce the surface line between the different
phases. After phase separation the lipid domains still grow either by collision
or contraction. In case of binodal decomposition collision of lipid domains is
the main factor of growth. Here, two collided domains immediately relax into
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Figure 1.4: Binodal (left) and spinodal phase separation (right)

Tc

c

T

binodal spinodal

instable metastable

phase coexistence

single phase

Figure 1.5: Phase diagram of a binary mixture.
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a circular shape. By contrast in case of spinodal decomposition contraction
is dominant which eventually results in domains of circular shape. Both
processes tend to minimize phase boundaries. This suggests line tension as
driving force of the system after separation. More information on phase
separation in lipid membranes with respect to biophysics and experiments
is given in [Lei08].

1.3 Methods and Outline

This thesis investigates phase separation in a qualitative and quantitative
manner. Thereby we have to address several problems described below.

In the following chapter 2, we present a physical model for our problem.
To this end we interpret the lipid membrane with its coexistent phases as
a binary mixture. This allows us to adapt a physical model known for bi-
nary alloys. This model was developed by Cahn and Hilliard [CH58, Cah59,
Cah61]. Their phase field model describes phase separation and allows topo-
logical changes in time. Following [MP96, EZ86, EG96] we give a mathe-
matical formulation of the model, with focus on its boundary condition, and
state results on existence and uniqueness of a solution.

Chapter 3 introduces the C0-Interior Penalty Discontinuous Galerkin
(C0-IPDG) method for the biharmonic problem. This method was discussed
for fourth order problems by [BS05, GH09]. We give a general DG approach
for the biharmonic equation using the Hellan–Herrmann–Johnson (HHJ)
method. So far this had been done for DG methods for second order elliptic
problems by [ABCM02]. In this context we derive the C0-IPDG method by
opting for numerical fluxes. Afterwards we present a residual-type a posteri-
ori error estimator for this method as we developed in [FHP14]. Adaptivity
for C0-IPDG methods and with special focus to the biharmonic problem has
already been discussed in [BGS10, GHV11]. However, compared to [BGS10]
we provide a convergence analysis for any polynomial order. In the spirit
of [BN10] we show a contraction property for a weighted sum of the C0-
IPDG energy norm of the global discretization error and the estimator. The
contraction property is demonstrated with the help of the reliability of the
estimator, a quasi-orthogonality result, and an estimator reduction property.
We give numerical results for high order approximations of the biharmonic
problem. Thereby we achieve theoretically predicted quasi-optimal conver-
gence rates. Later on, we apply the C0-IPDG method for the biharmonic
operator to the Cahn–Hilliard equation derived in chapter 2, in the spirit
of [WKG06]. We discretize the nonlinear problem in space and time and
formulate a Newton method for the resulting equation. Here, we discuss
convergence with respect to the temporal resolution. Finally, we give an
outlook on the further development of adaptive methods in space and time.

For a quantitative comparison of simulation and experiment we have
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to analyze numerous images in an efficient way. Therefore, we present a
structure factor method in chapter 4 which is motivated from crystallogra-
phy. Here, interference patterns resulting from X-ray scattering are analyzed
[Gui63]. We explain this method and show how to use it to measure domain
sizes. Issues of application are discussed in a series of exemplary images.
This proves the method to be an appropriate tool for automatic quantita-
tive data evaluation.

We present our results in simulation and experiment from [BFL+13] in
chapter 5. Here, we focus on the evolution of the mean domain size in time.
We investigate the sensitivity of the Cahn–Hilliard equation with respect
to its parameters, i.e. diffusion, line tension and free energy for a physical
range of parameters. Based on these results we evaluate experimental data
on GUVs and compare it to simulations for a certain set of parameters.
We make out intrinsic similarities in qualitative and quantitative manner
in time. In this way we achieve fairly good results reflecting the nature of
lipid membranes. Thus we found a numerically efficient way to simulate and
evaluate phase separation in lipid membranes.

In chapter 6 we draw a final conclusion reflecting our results and give
an outlook on possible future research. Thereby we show possibilities to
extend our model in order to describe systems with charged lipids or lipid
membranes on a Langmuir-Blodgett trough. Such extensions may lead to
the simulation of chiral lipid domains.
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Chapter 2

The Cahn–Hilliard Equation

In order to perform numerical simulations we have to derive a model first.
Experimental observation described in section 1.2 suggests a model that
reproduces phase decomposition and allows topological changes in time. We
choose a phase field model for this purpose in section 2.1. We conduct
mathematical analyses for the resulting nonlinear fourth order problem in
section 2.2 with special attention to the boundary conditions. Furthermore
we give basic results about existence and uniqueness of a solution of our
problem.

2.1 Phase Field Model

Cahn and Hilliard introduced a phase field model for binary alloys [CH58,
Cah59, Cah61]. Since then the method has successfully been used for var-
ious applications, amongst others, in astronomy [Tre03], image process-
ing [BEG07] and simulation of microstructures [Che02]. The method is
a promising candidate for us, because experiments suggest lipid phases to
be a binary mixture as described in section 1.2. Following the ideas of Cahn
and Hilliard we derive a model for our problem as we presented in [BFL+13].

We define an order parameter c reflecting the mole fraction c of a cer-
tain lipid phase. This means c = 0 and c = 1 denote pure phases. This
corresponds to the black and white regions shown in Figure 1.4. In order
to gain regularity the gradient of the concentration |∇c| has to be of the
same order as the inverse of the distance between two lipid molecules. This
guarantees continuous changes of c from one lipid phase to the other. The
relation between the gradient of the concentration and the line tension is
discussed later on.

Each lipid molecule belongs to a certain phase. Its free energy depends
on its surroundings. Lipid molecules feel most comfortable with neighboring
lipid molecules of the same phase which is why they accumulate with those.
We introduce a local free energy f per area. It depends on the local phase

11
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concentration c and its derivatives. In each instance the local free energy
penalizes mixtures of phases. This corresponds to the afore-mentioned prop-
erties of lipid molecules. The local free energy f makes local concentrations
of pure phases to be energetically favorable. Hence, it is the driving force of
phase decomposition in regions with homogeneous mixtures.

Similar to the assumptions on the concentration c before, we assume f
to be a continuous function with respect to its variables. Additionally, we
assume c and its derivatives to be independent of each other. This allows
us to apply Taylor series expansion and approximate f at the homogeneous
concentration c0. This leads to

f(c,∇c,∇2c, . . .) = f(c0) +
∑
i

Li(∂c/∂xi) +
∑
ij

κ
(1)
ij (∂2c/(∂xi∂xj))

+ 1
2
∑
ij

κ
(2)
ij (∂c/∂xi)(∂c/∂xj) + . . . ,

(2.1)

with coefficients given by

Li = ∂f(c)
∂(∂c/∂xi)

∣∣∣∣
c0

,(2.2)

κ
(1)
ij = ∂f(c)

∂(∂2c/(∂xi∂xj)

∣∣∣∣
c0

,(2.3)

κ
(2)
ij = ∂f(c)

∂(∂c/∂xi)∂(∂c/∂xj)

∣∣∣∣
c0

.(2.4)

For symmetry reasons f does not depend on the orientation of ∇c. Hence,
we only count even powers of the gradient such that the Taylor series (2.1)
reduces to

f(c,∇c,∇2c, . . .) = f(c0) + κ1∇2c+ κ2(∇c)2 + . . . ,(2.5)

with κ1 = (∂f(c)/∂∇2c)|c0 and κ2 = (∂2f(c)/(∂|∇c|)2)|c0 . Then the approx-
imated total free energy F of a given domain Ω is given by the integration
of (2.5), i.e.

F (c0) '
∫

Ω

(
f(c0) + κ1∇2c+ κ2(∇c)2) dx.(2.6)

Integration by parts for the second term results in∫
Ω
κ1∇2c dx = −

∫
Ω

dκ1
dc (∇c)2 dx+

∫
∂Ω

(κ1∇c · n) ds.(2.7)

Here, mass conservation motivates us to impose

∇c · n = 0 on ∂Ω.(2.8)
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By substituting (2.7) into (2.6) there holds

F (c0) '
∫

Ω

(ε2
2 (∇c0)2 + f(c0)

)
dx,(2.9)

where

ε2

2 := −dκ1
dc

+ κ2 = − ∂2f

∂c ∂∇2c

∣∣∣∣
c0

+ ∂2f

∂(|∇c|)2

∣∣∣∣
c0

.(2.10)

We now extend the total free energy F (c0) by simply re-defining the local
free energy f(c0) for inhomogeneous concentrations c. Therefore we intro-
duce a double well potential, e.g. f(c) := ϕc2(c−1)2, depending only on the
concentration c as a simple choice for our local free energy. Here, the param-
eter ϕ serves as a physical scaling parameter. More sophisticated versions
are possible with respect to a given phase diagram as sketched in Figure 2.1.

We further discuss our approximated total free energy given by (2.9). Its
first term ε2

2 (∇c)2 vanishes on regions with constant concentration whereas
regions with phase boundaries give contributions to the total free energy. It
is rather difficult to give a physical interpretation of the parameter ε2. In
connection to the total free energy F it can be interpreted as line tension.
But this interpretation is only valid in a variational sense, see [RW82]. From
a microscopic point of view it reflects the interaction of lipids of different
phases. The second term connected to the local free energy f(c) which is a
double well potential in our case, is minimal at regions of pure lipid phases.

Nature tends to minimize its free energy. We analyse how this influences
a lipid mixture over time. We start from a homogeneous mixture of lipid
phases. In absence of phase boundaries, the local free energy is the driving
force of our system in the beginning. Consequently, lipid phases separate
and regions of pure phases occur. After a certain amount of time, lipid
phases have separated completely. Now, the term connected to the line
tension is dominant. This influences the domain structures, because lipid
domains fuse and reduce their boundaries. We see that the behavior of our
model is in agreement with experimental observations described in section
1.2.

Let us formalize this process in time by physical arguments. The chem-
ical potential µchem can be defined by the variational derivative of the total
free energy F , i.e.

µchem(c) = δF

δc
.(2.11)

We further introduce a dynamical system using Fick’s first law, such that
the mass flow is prescribed by

J = −M(c)∇µchem,(2.12)
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Figure 2.1: Local free energy f(c) as double well potential (left) and matched
to a binary mixture (right). [BFL+13]

where M(c) denotes the mobility of the lipids depending on their local con-
centration c. Again, mass conservation motivates us to imply the boundary
condition

J · n = 0 on ∂Ω.(2.13)

Then the change of concentration in time is given by

∂c

∂t
= −∇ · J(c),(2.14)

so that conservation of mass is guaranteed. Altogether, we get the Cahn–
Hilliard equation

∂c

∂t
= ∇ · (M(c)∇[f ′(c)− ε2∆c]),(2.15)

with previously described boundary conditions. An exemplary choice for
the mobility would be a linear combination of the diffusion constants D0
and D1 of the pure lipid phases at concentration c = 0 and c = 1, e.g.
M(c) = D0(1− c) +D1(c). This may lead to degenerated mobilities which
means the mobility vanishes for certain concentrations. However, in our
case we use constant mobility MD = D, assuming the phases to possess
the same diffusion rates D, see [OWL05]. This leads to a simplified Cahn–
Hilliard equation with three physical parameters D [m2/s], ϕ [J/m2] and ε2
[J]. For further information on the resulting Cahn–Hilliard equation itself,
its properties and its practical impact we refer to [Ell89] and [NC98].

2.2 Existence and Uniqueness

Following [MP96] we give a mathematical formulation for the Cahn–Hilliard
equation (2.15) . For simplicity we assume a constant mobilityMD = D with
positive diffusion coefficient D ∈ R+. This is sufficient for our simulations
in section 5.
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So far we derived the Cahn–Hilliard equation (2.15) by physical argu-
ments. This equation describes the change of concentration in time in a
given domain Ω. By contrast, we present a mathematical approach with
special focus on the boundary conditions here. To do so we go back to the
total free energy (2.9) and derive the Cahn–Hilliard equation (2.15) from a
mathematical point of view. However, once more we utilize the fact that
nature tends to take energetically favorable states. In order to minimize
the total free energy of our system depending on our concentration c, the
concentration changes in time according to

dc
dt (t) = −∇F (c).(2.16)

In doing so, we have to be aware to allow only mass conserving gradients
of the total free energy with respect to our concentration c. Previously, we
fulfilled this restriction by physical arguments. In this case conservation of
mass allows only those gradients ∇F with∫

Ω
∇F dx = 0.(2.17)

Consequently, the total concentration over the domain Ω is constant, since
substituting our restriction (2.17) into (2.16) leads to∫

Ω

dc
dt (t) dx = 0.(2.18)

From this we can see that there is a constant Cmean ∈ R+ meaning that at
any time t in the time interval [0, T ] there holds∫

Ω
c(t) dx = Cmean.(2.19)

In this case, the constant Cmean denotes the mean concentration over time.
Now the gradient of the total free energy ∇F for a given concentration c at
time t ∈ [0, T ] is connected to the change in time of the total free energy in
the sense that

dF
dt (c(t)) =

(
∇F (c), dc

dt (t)
)
H ,(2.20)

where we have to appropriately choose H regarding mass conservation of
our concentration c. Nevertheless, by substituting (2.16) into (2.20) we get

dF
dt (c(t)) = −‖dc

dt (t)‖
2
H ≤ 0.(2.21)

Thus the total free energy F minimizes over time once more. However, we
still have to look for an appropriate Hilbert space H in order to guarantee
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the afore-mentioned mass conservation of the concentration c. Therefore,
we define

H̄−1(Ω) := {v ∈ L2(Ω) |
∫

Ω
v dx = 0} ⊂ H−1(Ω).(2.22)

Accordingly we receive the following result for elements in H̄−1(Ω) [MP96].

Lemma 2.1. v ∈ H̄−1 if and only if the Neumann boundary value problem

−∇ ·MD∇Φv = v, in Ω,(2.23)
∂Φv

∂n
= 0, on Γ,(2.24)

has a unique solution Φv(x) satisfying
∫

Ω Φv(x) dx = 0.

Here we introduce the constant mobility MD in equation (2.23). This
makes sense, as the equation represents the diffusion of our concentration on
Ω. We therefore call it gradient flow in H̄−1(Ω). Using equation (2.24) we
also impose the normal derivatives of our concentration c to vanish on the
boundary Γ := ∂Ω. This way we avoid an additional entry of concentration
from the boundary. Let v1, v2 ∈ H̄−1, and Φv1 ,Φv2 their corresponding
solutions according to Lemma 2.1. Thus we define

(v1, v2)H̄−1 := (MD∇Φv1 ,∇Φv2)0,Ω.(2.25)

Consequently H̄−1 combined with the scalar product (2.25) is a scalar prod-
uct space and for v ∈ H̄−1. Furthermore, we have equivalent norms ‖v‖H−1

and ‖v‖H̄−1 on H̄−1 [MP96]. Overall, we can guarantee mass conservation
for ∇F ∈ H̄−1. For v ∈ H̄−1 the mass conservative directional derivative in
time of the total free energy is given by

dF
dt (c+ tv)|t=0 = (∇F (c), v)0,Ω.(2.26)

For our total free energy (2.9) there holds

∇F (c) = f ′(c)− ε2∆c.(2.27)

By substituting (2.27) into (2.26) we obtain

dF
dt (c+ tv)|t=0 = (f ′(c)− ε2∆c, v)0,Ω, ∀v ∈ H̄−1.(2.28)

According to Lemma 2.1 there exists a solution Φv for v ∈ H̄−1 such that

−∇ ·MD∇Φv = v.(2.29)
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Thus for (2.28) there holds
dF
dt (c+ tv)|t=0 = (f ′(c)− ε2∆c,−∇ ·MD∇Φv)0,Ω.(2.30)

Then integration by parts yields
dF
dt (c+ tv)|t=0 = (MD∇(f ′(c)− ε2∆c),∇Φv)0,Ω.(2.31)

Here, we assume on our boundary Γ that
∂

∂n
(f ′(c)− ε2∆c) = 0,(2.32)

and we find a ṽ ∈ H̄−1 according to Lemma 2.1 such that

ṽ := −∇ ·MD∇Φṽ = −∇ ·MD∇(f ′(c)− ε2∆c).(2.33)

Using the equivalence of scalar products (2.25), (2.31) reads as follows
dF
dt (c+ tv)|t=0 = (MD∇Φṽ,∇Φv)0,Ω = (ṽ, v)H̄−1 .(2.34)

When we compare (2.31) to (2.26) we see that

∇H̄−1F (c) := −∇ ·MD∇(f ′(c)− ε2∆c).(2.35)

Finally, we substitute (2.35) into (2.16) and obtain the Cahn–Hilliard equa-
tion with mass preserving boundary conditions:

∂c

∂t
= ∇ ·MD∇(f ′(c)− ε2∆c), in Ω,(2.36)

∂c

∂n
= ∂

∂n
(f ′(c)− ε2∆c) = 0, on Γ.(2.37)

Considering existence and uniqueness we cite the following result according
to [EZ86].
Theorem 2.2. Let Ω ⊂ Rn, n ≤ 3 be a domain with sufficiently smooth
boundary Γ = ∂Ω, ε2, MD ∈ R+ and f ′(c) = c − γ1c

2 − γ2c
3, with γ1 ∈ R,

γ2 ∈ R+. Then for any initial data c0 ∈ H2
E(Ω), with

H2
E(Ω) := {v ∈ H2(Ω) | ∂v

∂n
= 0 on Γ},(2.38)

there exists a unique solution c = c(t, x) of the Cahn–Hilliard equation (2.36)
with mass preserving boundary conditions (2.37) for a given time interval
(0, T ), T ∈ R+ in

H4,1(Ω× (0, T )) = {v(t, x) | v ∈ L2((0, T ), H4(Ω)),
∂v

∂t
∈ L2((0, T ), L2(Ω))}.

(2.39)

This result covers our set of application. For further information, for
example on degenerated mobilities and different forms of local free energies
f , we refer to [EG96].
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Chapter 3

C0-Interior Penalty
Discontinuous Galerkin
Methods

First in section 3.1 we introduce continuous/discontinuous Galerkin (CDG)
methods with special focus on fourth order problems. In particular, we de-
rive a C0-interior penalty discontinuous Galerkin (C0-IPDG) method for the
biharmonic problem known from [BS05]. Further, in section 3.2 we develop
an adaptive finite element method for this formulation and provide a conver-
gence analysis as we presented in [FHP14]. Using this C0-IPDG formulation
for the biharmonic problem, in section 3.3 we derive a C0-IPDG method of
the Cahn–Hilliard equation (2.36) – (2.37), in the spirit of [WKG06].

3.1 Continuous/Discontinuous Galerkin Methods

Continuous Galerkin (CG) methods for fourth order problems require C1

elements [AFS68, BFS65, DJDPS79]. These conforming approximations of
the Cahn–Hilliard equation (2.36) – (2.37) are computationally expensive.
We therefore look for a nonconforming approach. Reed and Hill [RH73]
introduced a Discontinuous Galerkin (DG) method for solving hyperbolic
equations. Since then, various DG methods have been developed for different
types of problems. A unified analysis of discontinuous Galerkin methods for
elliptic problems is given in [ABCM02]. We refer to this source as a general
introduction to DG methods. Regarding fourth-order problems there are
nonconforming approaches, for example [Bak77]. A convenient approach is
to use standard C0 or Lagrange elements known from CG methods for second
order elliptic problems. The development of such continuous/discontinuous
Galerkin (CDG) methods for two-dimensional problems goes back to [BZ73].
It can be seen as a hybrid approach combining CG and DG methods. CDG
methods for fourth order problems methods were proposed by [EGH+02]

19
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and [WGM04]. In the spirit of the unified analysis of DG methods for
second order elliptic equations presented in [ABCM02], we present a unified
approach for the biharmonic equation, an exemplary fourth order problem.
In this context, the C0-IPDG method suggested in [BS05] turns out to be
a symmetric interior penalty DG method characterized by the choice of
numerical fluxes. We follow our work presented in [FHP14] to show this
result and introduce the C0-IPDG method to the biharmonic equation by the
Hellan-Herrmann-Johnson (HHJ) approach [Hel67, Her67, Vis69, Joh73].

Let Ω ⊂ R2 be a bounded polygonal domain with boundary Γ = ∂Ω and
f ∈ L2(Ω). The biharmonic problem is given by

∆2u = f in Ω,(3.1)

u = ∂u

∂n
= 0 on Γ.(3.2)

A weak formulation of (3.1) – (3.2) is to find a solution u ∈ V := H2
0 (Ω)

such that

a(u, v) = (f, v)0,Ω, v ∈ V,(3.3)

where the bilinear form a(·, ·) is defined by

a(v, w) := (D2v,D2w)0,Ω :=
∑
|β|=2

(Dβv,Dβw)0,Ω, v, w ∈ V.(3.4)

The bilinear form is bounded and V-elliptic. Thus, the Lax–Milgram lemma
guarantees the existence and uniqueness of a weak solution.

The regularity requires us to use C1 elements rather than C0 elements
in order to get a conforming numerical approximation. Instead we apply the
Hellan–Herrmann–Johnson (HHJ) method and reformulate the biharmonic
problem (3.1) – (3.2) into a system of second order equations, such that

p−D2u = 0,(3.5)
∇ · (∇ · p) = f.(3.6)

We further define the matrix-valued function space

Q(div; Ω) := {p = (p1,p2)T |pi ∈H(div; Ω), 1 ≤ i ≤ 2,
∇ · p ∈H(div; Ω)}.

(3.7)

Here, we used (∇ · p)i :=
∑2
j=1 ∂pij/∂xj , 1 ≤ i ≤ 2, together with the

vector-valued space

H(div; Ω) := {v = (v1, v2)T | vi ∈ L2(Ω), 1 ≤ i ≤ 2,
∇ · v ∈ L2(Ω)}.

(3.8)
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Now, we use the fact that D2u = ∇ · (∇u) and apply integration by parts.
Then the weak formulation of (3.5) – (3.6) is to find a pair (p, u) ∈ Q(div; Ω)×
H2

0 (Ω), such that∫
Ω
p : q dx+

∫
Ω
∇u · ∇ · q dx = 0 , q ∈ Q(div; Ω),(3.9) ∫
Ω
p : D2v dx =

∫
Ω
fv dx, v ∈ H2

0 (Ω).(3.10)

Let us discretize our system of equations (3.9) – (3.10) and introduce
a geometrically conforming simplicial triangulation Th of Ω. Let further
Pk(T ), k ∈ N, k ≥ 2, be the linear space of polynomials of degree less
or equal k on a triangle T ∈ Th. The lower restriction on the polynomial
degree is due to the second order derivatives in (3.10). This guarantees
nonzero polynomials after differentiation. According to [BS08], the space of
Lagrangian finite elements of type k is given by

Vh := {vh ∈ C0
0 (Ω) | vh|T ∈ Pk(T ), T ∈ Th}.(3.11)

Furthermore, we define the matrix-valued function space Qh by

Qh := {qh ∈ C0(Ω)2×2 | qh = (qij)2
i,j=1, 1 ≤ i, j ≤ 2,

qij |T ∈ Pk(T ), T ∈ Th}.
(3.12)

Then the discretized version of our weak formulation (3.9) – (3.10) is to find
a pair (ph, uh) ∈ Qh × Vh, such that for qh ∈ Qh and vh ∈ Vh there holds∑

T∈Th

∫
T
ph : qh dx+

∑
T∈Th

∫
T
∇uh · ∇ · qh dx

−
∑
T∈Th

∫
∂T
ûh · qhn∂T ds = 0,

(3.13)

∑
T∈Th

∫
T
ph : D2vh dx−

∑
T∈Th

∫
∂T
p̂h · ∇vh ds =

∑
T∈Th

∫
T
fvh dx.(3.14)

Here, ûh and p̂h denote numerical fluxes over the edges of our triangulation
Th. The fluxes can be seen as numerical approximations of the normal
derivatives of u and p arising from the integration by parts per element
T ∈ Th of the system of equations (3.5) – (3.6). However, these derivatives
do not exist for uh and ph in a global context. The derivatives are not-well
defined on the edges of the triangulation T ∈ Th. Here we remember that
Vh and Qh are C0 element spaces. The specific choice of the fluxes will
be discussed later. For now, we mention that they influence the stability
and the accuracy of the resulting method. For the moment it is enough
to know that the fluxes ûh and p̂h are defined by jumps and averages of
normal derivatives of uh and ph on the edges of our triangulation Th. We
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remark that the normal derivatives of ph are directly related to the normal
derivatives of uh by the equation (3.5). Here, we have nonzero jumps of
the normal derivatives of both uh and ph, because despite our restriction to
polynomial degrees, the discretized spaces Vh andQh consist of C0 elements.
Unlike for C1 elements the normal derivatives are not continuous over edges.
Consequently, we cannot expect vanishing jumps of any normal derivatives.
Thus we have a nonconforming approximation (3.13) – (3.14) of our weak
formulation (3.3) because Vh 6⊂ H2

0 (Ω).
Nevertheless we use the occurring jumps for our purpose. To do so in

our nonconforming approximation (3.13) – (3.14) we transform sums over
triangles into sums over edges for those terms where the boundary integral
of a triangle T is evaluated. It is clear that every boundary integral is
evaluated twice on every interior edge, because every interior edge E ∈ EΩ

h

belongs to two triangles. Thus we define averages and jumps over edges
and introduce a fixed numbering to our triangles T ∈ Th. This allows us
to introduce unique jumps and averages. Now an interior edge E ∈ EΩ

h is
defined by E := Ti ∩ Tj , i > j, and the associated triangles are uniquely
defined as T+

E := Ti, T−E := Tj . The set of boundary edges is denoted by EΓ
h .

Then the total set of edges is defined by Eh := EΩ
h ∪ EΓ

h . The unit normal
vector n on E ∈ EΩ

h points from T−E to T+
E . For E ∈ EΓ

h , E = T` ∩ Γ, we
set TE := T` and refer to n as the exterior unit normal vector for E ∈ EΓ

h .
Further, we refer to t as the unit tangential vector for E ∈ Eh defined by
the π/2 counterclockwise rotation of n. Finally, for first and second order
derivatives, 1 ≤ ν ≤ 2, averages and jumps are uniquely determined by

{{∂
νvh
∂nν

}} :=
{ 1

2
∂νvh
∂nν |E∩T+

E
+ 1

2
∂νvh
∂nν |E∩T−E , E ∈ EΩ

h ,
∂νvh
∂nν |E∩TE , E ∈ EΓ

h ,
(3.15)

[[∂
νvh
∂nν

]] :=
{

∂νvh
∂nν |E∩T+

E
− ∂νvh

∂nν |E∩T−E , E ∈ EΩ
h ,

∂νvh
∂nν |E∩TE , E ∈ EΓ

h .
(3.16)

Let us choose the numerical fluxes over E ∈ Eh according to

ûh := {{∂uh
∂n
}}n+ {{∂uh

∂t
}}t,(3.17)

p̂h := {{∂
2uh
∂n2 }}n∂T + α

hE
[[∂uh
∂n

]]n∂T ,(3.18)

where hE denotes the length of the edge E and α ∈ R, α > 1, is an appropri-
ately chosen penalty parameter. On one hand, we want to penalize occurring
jumps and on the other hand, we want to have a symmetric formulation re-
garding jumps and averages of trial and test functions. It is essential that
due to the choice of the numerical fluxes (3.17), (3.18) the dual variable ph
can be eliminated from the system (3.13) – (3.14). By substituting (3.13)
into (3.14), transforming the sums over triangles into sums over edges and
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using our previously chosen numerical fluxes (3.17) and (3.18), we get the
C0-IPDG method for our biharmonic problem (3.3). Altogether we have to
find a solution uh ∈ Vh, such that

aIPh (uh, vh) = (f, vh)0,Ω, vh ∈ Vh,(3.19)

where the mesh-dependent bilinear form aIPh (·, ·) : Vh× Vh → R, is given by

aIPh (uh, vh) :=
∑
T∈Th

(D2uh, D
2vh)0,T +

∑
E∈EΩ̄

h

({{∂
2uh
∂n2 }}, [[

∂vh
∂n

]])0,E

+
∑
E∈EΩ̄

h

([[∂uh
∂n

]], {{∂
2vh
∂n2 }})0,E + α

∑
E∈EΩ̄

h

h−1
E ([[∂uh

∂n
]], [[∂vh

∂n
]])0,E .

(3.20)

Now, we have a nonconforming method for our biharmonic problem (3.3)
using C0 elements instead of C1 elements required for conforming approx-
imations of fourth order problems. We already mentioned the occurring
jumps over edges using C0 elements due to their reduced regularity. The
jumps and averages are part of the numerical fluxes. Their choice was ac-
tually free but however motivated by the afore-mentioned goals. In fact,
we defined the fluxes similarly to the fluxes used for the symmetric inte-
rior penalty method for second order elliptic equations shown in [ABCM02].
Therein the choice of fluxes was motivated by the same goals. This analogy
suggests that other fourth order formulations can be derived using similar
fluxes known from other DG methods for second order elliptic problems.

A closer look at the bilinear form (3.20), especially its terms related to
the edges, reveals its improper definition for v, w ∈ V . We fix this problem
by introducing a lifting operator L : L2(Eh)2 → Qh. This operator is known
from DG approximations of second order problems [HSW04, HSW07] or
for IPDG approximations of the biharmonic problem [GHV11]. The lifting
operator is defined by

(L(v), qh)0,Ω :=
∑
E∈Eh

([[n · v]]E , {{n · qhn}}E)0,E , qh ∈ Qh.(3.21)

Using this, we define our bilinear form aIPh (·, ·) for elements of V + Vh by

aIPh (v, w) :=
∑
T∈Th

(D2v,D2w)0,T +
∑
T∈Th

(L(∇w), D2v)0,T

+
∑
T∈Th

(L(∇v), D2w)0,T + α
∑
E∈Eh

h−1
E ([[ ∂v

∂n
]]E , [[

∂w

∂n
]]E)0,E .

(3.22)

In doing so, we have to mention that we reused the notation of our original
bilinear form aIPh (·, ·) : Vh×Vh → R. We further define the mesh-dependent
C0-IPDG norm on V + Vh by

‖v‖22,h,Ω :=
∑
T∈Th

|v|22,T +
∑
E∈Eh

α

hE
‖[[ ∂v
∂n

]]E‖20,E , v ∈ V + Vh,(3.23)
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with

| · |22,T :=
∑
|β|=2
‖Dβ·‖20,T , T ∈ Th.(3.24)

This allows us to give some a priori estimates proved in [BS05], showing
our bilinear form aIPh (·, ·) to be elliptic and bounded. Firstly, for sufficiently
large penalty parameter α there exists a positive constant γ < 1, such that

aIPh (v, v) ≥ γ‖v‖22,h,Ω, v ∈ V + Vh.(3.25)

Moreover, there exists a constant C1 > 1 such that for any penalty parameter
α ≥ 1 there holds

aIPh (v, v) ≤ C1‖v‖22,h,Ω, v ∈ V + Vh.(3.26)

Finally, from the ellipticity (3.25) and the boundedness (3.26) of our bilinear
form aIPh (·, ·) we deduce the existence and uniqueness of a solution uh ∈ Vh
for our C0-IPDG method (3.19). Further details including an a priori error
analysis are given in [BS05].

3.2 Convergence Analysis of an Adaptive Method

In this section, we derive an adaptive finite element method (AFEM) based
on a residual-type a posteriori error estimator for our previously presented
C0-IPDG method (3.19) for the biharmonic problem (3.1) – (3.2). Further,
we present results on a convergence analysis for any polynomial order. The
results presented are excerpts from our work published in [FHP14]. As an
introductory source to this field of interest we refer to literature on AFEMs
for second order elliptic boundary value problems, e.g. [AO00, BS01, BR03,
EEHJ95, NR04, Ver96].

3.2.1 A Residual-type A Posteriori Error Estimator

An a posteriori error analysis considering the C0-IPDG method (3.19) in
case k = 2 was first given in [BGS10]. For k ≥ 2, we introduce the residual-
type a posteriori error estimator

ηh :=
( ∑
T∈Th

η2
T +

∑
E∈EΩ

h

η2
E

)1/2
,(3.27)

with element residuals ηT and edge residuals ηE defined by

η2
T := h4

T ‖f −∆2uh‖20,T , T ∈ Th,(3.28)

η2
E := hE‖[[

∂2uh
∂n2 ]]E‖20,E + h3

E‖[[
∂

∂n
∆uh]]E‖20,E , E ∈ EΩ

h .(3.29)
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The consistency error is given by

inf
vh∈V ch

aIPh (uh − vh, uh − vh).(3.30)

Here, V c
h ⊂ H2

0 (Ω) denotes a C1 conforming finite element space used for
conforming approximations as mentioned in section 3.1. Such a space can
be built using the so-called Argyris elements described in [AFS68]. Another
possibility is to construct a posteriori a conforming approximation using the
enrichment operator Eh : Vh → V c

h presented in [BS05]. Let p be a nodal
point of V c

h and let us further define the associated patch of triangles ωph,

ωph :=
⋃{

T ∈ Th(Ω) | {p} ∩ Nh(T ) 6= ∅
}
.(3.31)

Now, the value N(Ehvh) of any nodal variable of Ehvh at the nodal point p
is defined by averaging over the patch ωph, i.e.

N(Ehvh) := |ωph|
−1 ∑

T∈ωp
h

(|T | N(vh|T )), vh ∈ Vh.(3.32)

According to the mapping properties of Eh shown in [BS05], there exists a
constant Cnc > 0 depending only on the local geometry of Th such that

inf
vh∈V ch

aIPh (uh − vh, uh − vh) ≤ aIPh (uh − Eh(uh), uh − Eh(uh))

≤ Cncη2
h,c,

(3.33)

where the consistency error related estimator ηh,c is given by

ηh,c :=
( ∑
E∈Eh

η2
E,c

)1/2
, η2

E,c := h−1
E ‖[[

∂uh
∂n

]]E‖20,E .(3.34)

Together with our previously defined estimators (3.27) – (3.29) we get the
following reliability result [FHP14]:

Theorem 3.1. Let u ∈ V and uh ∈ Vh be the unique solution of (3.3) and
(3.19), and let ηh and ηh,c be given by (3.27) – (3.29) and (3.34). Then,
there exists a constant Cr > 0, depending only on the local geometry of Th
and on k, such that

aIPh (u− uh, u− uh) ≤ Cr
(
η2
h + αη2

h,c

)
.(3.35)

For sufficiently large penalty parameter α it can be shown that αη2
h,c is

bounded by η2
h [FHP14].

Theorem 3.2. Let ηh and ηh,c be given by (3.27) – (3.29) and (3.34). Then,
there exists a constant CJ > 0, depending only on the shape regularity of Th
and on k, such that for α ≥ 2CJ/γ there holds

αη2
h,c ≤ 2CJ

γ
η2
h.(3.36)
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Finally, this results in the improved reliability [FHP14]:

Corollary 3.3. Let u ∈ V and uh ∈ Vh be the unique solution of (3.3) and
(3.19), and let ηh be the residual error estimator as given by (3.27) – (3.29).
Then, there holds

aIPh (u− uh, u− uh) ≤ CRη2
h,(3.37)

where CR := Cr(1 + 2γ−1CJ).

3.2.2 Contraction Property

A convergence analysis for conforming discretizations of the Poisson equa-
tion was first performed by [Dör96]. In this context, we also have to men-
tion the salient achievements shown by [CKNS08]. For nonconforming dis-
cretizations based on the lowest order Crouzeix–Raviart elements we refer
to [CH06]. In the spirit of the results on a convergence analysis for Interior
Penalty Discontinuous Galerkin (IPDG) methods presented by [BN10], our
goal is to demonstrate a contraction property. More precisely, we show that
the discretization error in the aIPh (·, ·)-induced norm together with its esti-
mator on a fine mesh Th can be bounded from above by their values on the
antecedent and coarser mesh TH .

For adaptive mesh refinement we use Dörfler marking, see [Dör96] using
the error estimator ηh

ηh =
( ∑
T∈Th(Ω)

η̂2
T

)1/2
,(3.38)

with element residuals η̂T

η̂2
T := h4

T ‖f −∆2uh‖20,T + 1
2

∑
E∈Eh(∂T∩Ω)

(
hE‖[[

∂2uh
∂n2 ]]E‖20,E

+h3
E‖[[

∂

∂n
∆uh]]E‖20,E

)
.

(3.39)

For a constant 0 < Θ < 1, we put the worst elements T ∈ Th, i.e. the
triangles T with highest values of η̂T , into the set M until there holds

Θ η2
h ≤

∑
T∈M

η̂2
T .(3.40)

Once we have chosen such a setM the elements therein are refined by newest
vertex bisection. In doing so, we have to guarantee certain conditions given
in [CKNS08, BN10].

As a first step, we show quasi-orthogonality of our C0-IPDG method
using the following mesh perturbation result [FHP14].
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Lemma 3.4. Let Th be a simplicial triangulation obtained by the afore-
mentioned refinement of TH . Then, there exists a constant CP > 0, depend-
ing only on the local geometry of the triangulations and on k, such that for
any ε > 0 and v ∈ V + VH there holds

aIPh (v, v) ≤ (1 + ε) aIPH (v, v) + CP
γε

(
η2
h,c + η2

H,c

)
.(3.41)

Such mesh perturbation results play an essential role in the convergence
analysis to derive quasi-orthogonality results, e.g. [BN10, HKW09, KP07].
To get quasi-orthogonality in our case, we further have to use the following
result demonstrated in [FHP14] for the conforming approximations ucH ∈
V c
H , u

c
h ∈ V c

h of (3.3) given by

a(ucH , vcH) = (f, vcH), vcH ∈ V c
H ,(3.42)

a(uch, vch) = (f, vch), vch ∈ V c
h .(3.43)

Lemma 3.5. Let Th be a simplicial triangulation obtained by the afore-
mentioned refinement of TH , and let uh ∈ Vh, uH ∈ VH and ηh, ηH be the C0-
IPDG solutions of (3.19) and error estimators, respectively. Moreover, let
uch ∈ V c

h and ucH ∈ V c
H be the conforming approximations of (3.3) according

to (3.42) – (3.43). Then, for unch := uh−uch and uncH := uH −ucH there holds

‖unch − uncH ‖22,h,Ω ≤
4 CJCnc
γ2α

(
η2
h + η2

H

)
,(3.44)

where Cnc and CJ are the constants from (3.33) and (3.36).

Using this result, we get quasi-orthogonality [FHP14].

Theorem 3.6. Let Th be a simplicial triangulation obtained by the afore-
mentioned refinement of TH , and let uh ∈ Vh, uH ∈ VH and ηh, ηH be the
associated C0-IPDG solutions of (3.19) and error estimators, respectively.
Further, let eh := u − uh and eH := u − uH be the fine and coarse mesh
errors. Then, for any 0 < ε < 1 there exists a constant CQ > 0, depending
on γ,C1, CJ , Cnc, CP , such that there holds

aIPh (eh, eh) ≤ (1 + ε) aIPH (eH , eH)− γ

2‖uh − uH‖
2
2,h,Ω

+CQ
αε

(
η2
h + η2

H

)
.

(3.45)

As a final element for the contraction property we have to state an
estimator reduction property [FHP14].

Lemma 3.7. Let Th be a simplicial triangulation obtained by the afore-
mentioned refinement of TH , let uh ∈ Vh, uH ∈ VH , and ηh, ηH be the asso-
ciated C0-IPDG solutions and error estimators, respectively, and let Θ > 0
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be the universal constant from (3.40). Then, for any τ > 0 there exists a
constant Cτ > 1, depending only on the local geometry of the triangulations
and on k, such that for κ(Θ) := (1 + τ)(1− 2−1/2)Θ there holds

η2
h ≤ κ(Θ) η2

H + Cτ‖uh − uH‖22,h,Ω.(3.46)

Then the contraction property is derived by combining the estimator
reduction property (3.46), the quasi-orthogonality (3.45), and the reliability
(3.37), see [FHP14].

Theorem 3.8. Let u ∈ H2
0 (Ω) be the unique weak solution of (3.3). Fur-

ther, let Th be a simplicial triangulation obtained by the afore-mentioned
refinement of TH , and let uh ∈ Vh, uH ∈ VH and ηh, ηH be the C0-IPDG
solutions of (3.19) and error estimators, respectively. Then, there exist con-
stants 0 < δ < 1 and ρ > 0, depending only on the local geometry of the
triangulations, the parameter Θ from the Dörfler marking, and on k, such
that for sufficiently large penalty parameter α the fine mesh and coarse mesh
discretization errors eh := u− uh and eH = u− uH satisfy

aIPh (eh, eh) + ρ η2
h ≤ δ

(
aIPH (eH , eH) + ρ η2

H

)
.(3.47)

3.2.3 Numerical Results

We implemented the presented C0-IPDG AFEM using the programming
language Python [vRdB91] and different libraries, particularly NumPy and
SciPy [Oli07], FEniCS [LMWea12] and matplotlib [Hun07]. The numerical
performance of the improved adaptive C0-IPDG method is demonstrated
for polynomial degrees 2 ≤ k ≤ 6 using the following example taken from
[BGS10]:

Let Ω := (−1,+1)2 \ ([0, 1) × (−1, 0]) be a bounded L-shaped domain
and let further f be the right hand-side of the biharmonic problem (3.1) –
(3.2) such that u(r, ϕ) is the exact solution (in polar coordinates) given by

u(r, ϕ) =
(
r2 cos2 ϕ− 1

)2(
r2 sin2 ϕ− 1

)2
r1+zg(ϕ),(3.48)

with

g(ϕ) :=
( 1
z − 1 sin(3(z − 1)π

2 )− 1
z + 1 sin(3(z + 1)π

2 )
)

·
(

cos((z − 1)ϕ)− cos((z + 1)ϕ)
)

−
( 1
z − 1 sin((z − 1)ϕ)− 1

z + 1 sin((z + 1)ϕ)
)

·
(

cos(3(z − 1)π
2 )− cos(3(z − 1)π

2 )
)
,

(3.49)
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where z ≈ 0.54448 is a non-characteristic root of

sin2(3zπ
2 ) = z2 sin2(3π

2 ).(3.50)

In this context we note that the computation of the residuals is delicate for
elements having the origin, the singularity of the problem, as a vertex. The
numerical integration is not trivial for such elements. However, the collapsed
Gauss–Jacobian-type quadrature formula from [KS99] provides good results.

The penalty parameter α directly influences the numerical solution of
our problem. This is a standard observation for IPDG methods. However,
the rule α = 2.5(k+1)2 provides stability, and the descent slopes of the error
shows optimal convergence rates for any polynomial degree. Concerning a
priori optimal convergence rates suggested by [BS05] for hT := diam(T ),
T ∈ Th, there holds

aIPh (u− uh, u− uh)1/2 .
( ∑
T∈Th

h
2 min(α(T ),k−1)
T |u|22+α(T ),T

)1/2
,(3.51)

where α(T ), T ∈ Th, is the local index of elliptic regularity. Now for elements
T having a vertex at the origin we get min(α(T ), k − 1) = z ≈ 0.544 and
for elements elsewhere, we get min(α(T ), k − 1) = k − 1. Thus, the optimal
convergence rates for k = 2, 4 and 6 are slightly below 0.5, 1.5 and 2.5.
In Figure 3.1, the convergence histories show these optimal convergence
rates to be asymptotically achieved by the adaptive algorithm. In addition
to this, we see that the Dörfler marking related parameter Θ influences
the convergence rates, just as it does in the case of other IPDG methods
for second order elliptic boundary value problems [HKW09] and H-IPDG
methods for Maxwell’s equations [CHSW11]. The increased convergence
rates for higher polynomial degrees are reflected in the enhanced resolution
of the singularity located at the reentrant corner of the domain Ω by the
adaptively refined meshes shown in Figure 3.2.

Further, in Figure 3.3 we can see the reduction of the estimator as pro-
posed by Lemma 3.7. However, we see in Figure 3.4 that the computed
effectivity indices increase for higher polynomial degrees.
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Figure 3.1: Convergence histories in terms of the bilinear form aIPh (·, ·) in-
duced norm of the error aIPh (u − uh, u − uh)1/2 as a function of the total
number of degrees of freedom (DOF) on a double logarithmic scale for uni-
form refinement and adaptive refinement with Θ = 0.7 and Θ = 0.3 in the
Dörfler marking for k = 2 (top), 4 (middle) and 6 (bottom). [FHP14]
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Figure 3.2: Adaptive refined meshes after 10 cycles with Θ = 0.3 in the
Dörfler marking for k = 2 (top), 4 (middle) and 6 (bottom). [FHP14]
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Figure 3.3: Estimator reduction as a function of the total number of degrees
of freedom (DOF) on a double logarithmic scale for uniform refinement and
adaptive refinement with Θ = 0.7 and Θ = 0.3 in the Dörfler marking for
k = 2 (top), 4 (middle) and 6 (bottom). [FHP14]
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Figure 3.4: Effectivity indices ηh/aIPh (u − uh, u − uh)1/2 as a function of
the total number of degrees of freedom (DOF) on a logarithmic scale for
uniform refinement and adaptive refinement with Θ = 0.7 and Θ = 0.3 in
the Dörfler marking for k = 2 (top), 4 (middle) and 6 (bottom). [FHP14]
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3.3 Application to the Cahn–Hilliard Equation

The biharmonic problem (3.1) – (3.2) and the Cahn–Hilliard equation (2.36)
– (2.37) have fourth order derivatives. Analogous to the biharmonic prob-
lem in section 3.1, there exist conforming approximations using C1 finite el-
ements [EZ86, EF89] or, respectively, mixed finite element methods [BF91]
for discretization with corresponding drawbacks. Consequently, we intro-
duce a C0-IPDG method for the Cahn–Hilliard equation (2.36) – (2.37) in
the spirit of [WKG06]. Let us recall the biharmonic problem,

∆2u =f in Ω,(3.52)

u = ∂u

∂n
=0 on Γ.(3.53)

Further, we defined the standard C0 Lagrange finite element space Vh ac-
cording to

Vh := {vh ∈ C0
0 (Ω) | vh|T ∈ Pk(T ), T ∈ Th}.(3.54)

Using the mesh-dependent bilinear form aIPh (·, ·) : Vh × Vh → R defined by

aIPh (uh, vh) :=
∑
T∈Th

(D2uh, D
2vh)0,T +

∑
E∈EΩ̄

h

({{∂
2uh
∂n2 }}, [[

∂vh
∂n

]])0,E

+
∑
E∈EΩ̄

h

([[∂uh
∂n

]], {{∂
2vh
∂n2 }})0,E + α

∑
E∈EΩ̄

h

h−1
E ([[∂uh

∂n
]], [[∂vh

∂n
]])0,E .

(3.55)

the C0-IPDG approximation of the biharmonic problem (3.52) – (3.53) is to
find a uh ∈ Vh such that

aIPh (uh, vh) = (f, vh)0,Ω, vh ∈ Vh.(3.56)

Now we adapt this result to the Cahn–Hilliard equation (2.36) – (2.37),

∂c

∂t
= ∇ ·MD∇(f ′(c)− ε2∆c) in Ω,(3.57)

∂c

∂n
= ∂

∂n
(f ′(c)− ε2∆c) = 0 on Γ.(3.58)

Here we also assume constant mobility MD = D. Different from the bi-
harmonic problem (3.52) – (3.53), we have boundary conditions allowing
nonzero concentrations. Therefore we introduce a modified C0 Lagrange
finite element space Wh

Wh := {vh ∈ C0(Ω) | vh|T ∈ Pk(T ), T ∈ Th}.(3.59)
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We discretize the fourth order terms of the Cahn–Hilliard equation (3.57)
– (3.58) by the bilinear form aIPh (·, ·) : Wh ×Wh → R defined by (3.55).
Further, we define a nonlinear form bh(·, ·) : Wh ×Wh → R,

bh(ch, wh) := (∇f ′(ch),∇wh)0,Ω.(3.60)

The C0-IPDG approximation is to find a solution ch ∈Wh, such that

−M−1
D (dch

dt
, wh)0,Ω = ε2aIPh (ch, wh) + bh(ch, wh), wh ∈Wh.(3.61)

Assuming constant mobility note that the bilinear form is the same even for
the different boundary conditions.

We discretize the resulting C0-IPDG approximation (3.61) in time using
the backward Euler scheme. Let [0, T ], T ∈ R+, be the time interval and
let us introduce a time step size τ := T/Nτ , Nτ ∈ N. The concentration at
time t = nττ , 0 ≤ nτ ≤ Nτ , is denoted by cnτh ∈Wh. Given a concentration
cnτh , 0 ≤ nτ ≤ Nτ − 1, we compute the concentration cnτ+1

h by solving the
nonlinear equation

−(MDτ)−1(cnτ+1
h − cnτh , wh)0,Ω = ε2aIPh (cnτ+1

h , wh) + bh(cnτ+1
h , wh)(3.62)

for all wh ∈Wh.
Further, we introduce an algebraic version of the nonlinear approxima-

tion (3.62). Let Vh be spanned by the standard Lagrange basis functions
φnhh , 1 ≤ nh ≤ Nh, where Nh ∈ N denotes the number of degrees of freedom
of Wh. Then the linear mass and stiffness matrices M(τ),A ∈ RNh×Nh are
defined by

M(τ)ij := −(MDτ)−1(φih, φ
j
h)0,Ω, 1 ≤ i, j ≤ Nh,(3.63)

A(ε)ij := ε2aIPh (φih, φ
j
h), 1 ≤ i, j ≤ Nh,(3.64)

with corresponding vector cnτ ∈ RNh for the concentration cnτh . Thereby,
the entry cnτnh is connected to φnhh , 1 ≤ nh ≤ Nh, such that

cnτh =
Nh∑
nh=1

cnτnhφ
nh
h .(3.65)

In addition to this, we define the nonlinear mapping B : RNh → RNh , such
that

Bi(cnτ ) := bh(cnτh , φih) = (∇f ′(cnτh ),∇φih)0,Ω, 1 ≤ i ≤ Nh.(3.66)

Then the algebraic form of the nonlinear equation (3.62) is given by

M(τ)cnτ+1 −
(
A(ε)cnτ+1 +B(cnτ+1)

)
= M(τ)cnτ .(3.67)
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Aiming at a Newton method, we introduce the nonlinear function Gnτ+1 :
RNh → RNh depending on a given concentration cnτh such that

Gnτ+1(c) = M(τ)c−
(
A(ε)c+B(c)

)
−M(τ)cnτ .(3.68)

Now solving the nonlinear algebraic system (3.67) for cnτ+1 corresponds to
finding a root c ∈ RNh of Gnτ+1. Therefore we have to solve the nonlinear
algebraic system

Gnτ+1(c) = 0.(3.69)

This system is solved by an ordinary Newton method. We denote the New-
ton iterates by c(k) ∈ RNh , k ∈ N0, and take the previous solution c(0) = cnτ
as an initial guess. Then the solution cnτ+1 of the nonlinear system (3.67)
is given by iteration according to

G′(c(k))∆c(k) = −Gnτ+1(c(k), τ),(3.70)
c(k+1) = c(k) + ∆c(k).(3.71)

The Jacobian G′(c(k)) ∈ RNh×Nh is given by

G′(c(k)) = M(τ)−
(
A(ε) +B′(c(k))

)
,(3.72)

where B′(c(k)) denotes the Jacobian of B(c(k)). The resulting iteration is
performed until a given tolerance is reached. Thereby, the Jacobian (3.72)
is computed automatically by a computer algebra system. Details about the
software used for this task are given in section 5.1.

The choice of the initial guess c(0) and of the time step size τ is important
for the convergence of the Newton method (3.70) – (3.71). This especially
holds true in the very beginning of the simulation, when nonlinear terms of
the local free energy dominate the Cahn–Hilliard equation (3.57) – (3.58).
This behavior is discussed in section 2.1. However, similarly to [HL12], we
expect the existence of upper bounds for the time step size τ , so that our
previously derived Newton method (3.70) – (3.71) converges. Such a result
would allow us to set maximum time step sizes without loss of stability.
Furthermore, we already presented an adaptive C0-IPDG method in space
for the biharmonic problem (3.52) – (3.53) in section 3.2. We use the same
bilinear form aIPh (·, ·) for fourth order terms in the Cahn–Hilliard equation
(3.57) – (3.58). These terms are connected to the lipid phases boundaries as
described in section 2.1. An adaptive method with respect to the boundaries
would reduce computational efforts, because the boundaries reduce over
time. For this purpose the additional nonlinear terms have to be taken into
account. This complex analysis goes beyond the scope of this thesis and is
left for future research.



Chapter 4

Image Processing

We have to find methods that allow us to compare experiments and simu-
lations not only in a qualitative but also in a quantitative sense. Therefore,
in section 4.1 we begin by discussing relevant properties of phase separation
and possibilities for their measurement. Afterwards, in section 4.2 we ex-
plain the most promising attempt, the structure factor method. Using this
method, we address practical issues in section 4.3.

4.1 Quantitative Measurements

Data from experiments and simulation are given as series of images. At
first glance, we see obvious qualitatively different processes of phase sep-
aration, like binodal and spinodal decomposition, as described in section
1.2. Such qualitative differences can be determined by the observer. But
for further details, we have to evaluate images not only in a qualitative but
also in a quantitative sense. For this purpose, we discuss an exemplary set
of gray value images, shown in Figure 4.1, to determine interesting details
and possibilities for their quantitative measurements. This series starts with
an almost homogeneous grey image, indicating virtually mixed phases. Af-
terwards, we observe decomposition of the initial distribution into distinct
black and white regions. At the same time, the structures initially appear
to be of a certain size and form. In the next images, we see how these
structures further coarsen over time by collision and diffusion.

Figure 4.1: Series of images showing spinodal decomposition.

37
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Figure 4.2: Histograms of grey values (0/1 equals black/white) related to
the series of images as displayed in Figure 4.1.

Throughout this process, we are interested in the development of struc-
tures. Here, we are especially interested in how long the formation of initial
structures takes and how fast the resulting domains grow in time. Therefore,
we discuss two methods used in [Lei08] for exemplary series of experimental
images. Our method of choice for image processing underlies certain restric-
tions. On one hand, it has to be numerically efficient, but on the other hand,
it has to give interpretable results. Only such a method is able to evaluate
extensive amounts of image data in a time-efficient and user-friendly way.

One possibility for quantitative measurement is to observe the develop-
ment of the grey values over time. Therefore, we perform histograms of
image pixel values as shown for the afore-mentioned exemplary series of im-
ages in Figure 4.2. Starting from an almost homogeneous mixture, we only
have contributions from a small range of grey value. When separation sets
in, we see different forms of distributions over time until there are almost
exclusively black and white pixels left in the image. After separation, only
smooth phase transitions give contributions to intermediate values. This
method can automatically be applied to a series of images at a reason-
able numerical effort. But we have to ensure certain quality standards for
experimental image series, especially when we compare different series of
experimental images. Here, the camera may not perform auto corrections
regarding brightness and contrast. Ideally, brightness and contrast are fixed
and normalized over time for all experiments, in order to prevent shifts or
jumps in the histogram. In practice, however, this can not be guaranteed
due to various technical difficulties. Even if this was possible, the method
would only give us reliable information until the phases separated and would
lack to measure domain sizes.

When we consider domain sizes as another possibility for measurement,
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we have to specify this quantity. In case of binodal decomposition, as de-
scribed in section 1.2, the domains size is obviously given by the diameter
of the circular shape. Their manual measurement may be acceptable for
a small number of images and domains. However, manual measurements
are influenced by subjective criteria, for example, where to draw the phase
boundary due to the smooth phase transitions. Even if this problem was
solved there still would be the case of spinodal decomposition. Here it is hard
to define a practicable value for the size of interconnected domains. Conse-
quently, we look for a method performing automatic, objective, comparable
measurements of domain sizes for lipid decomposition in experiments and
simulations under the restriction of numerical efficiency. For this purpose,
we present the structure factor method in the following section. The method
analyses images with regard to their mean structure size reflecting the actual
domain sizes. Issues of application are described later in section 4.3.

4.2 Structure Factor

The structure factor is a common method for measurements of structures in
X-ray scattering experiments. As a general source of information we refer
to [Gui63]. The method needs Fourier transformed image data. The Fourier
transformation f̂ at point ξ ∈ R of a continuous scalar function f is defined
by

f̂(ξ) :=
∫ +∞

−∞
f(x)e−2πixξ dx,(4.1)

whereas its backward transformation is given by

f(x) := 1
2π

∫ +∞

−∞
f̂(ξ)e−2πixξ dξ.(4.2)

From here on until the end of this section i denotes the imaginary unit.
However, in our case we have digital images in experiments and simula-

tion, which means the images consist of discrete points called pixels. There-
fore, we have to apply a discrete Fourier transformation (DFT) in order
to apply this method. DFT is a demanding task concerning computational
costs. Consequently, we have to reduce these costs when analyzing a series
of images. Therefore, we use the Fast Fourier Transformation (FFT), an
optimized version of the DFT regarding numerical efforts. For simplicity we
describe the structure factor method using DFT. For more details on DFT
and FFT we refer to [BH95]. Despite this fact, our description is close to
our implementation used for evaluation of images resulting from experiment
and simulation presented in the subsequent chapter 5.

Let Ω be a square domain of given side length l representing a subset of
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Figure 4.3: Exemplary image showing spinodal decomposition with scale
bar (white) and its mean wavelength (red).

the lipid membrane either in experiment or simulation, such that

Ω := {(x1, x2) ∈ R2 | − l

2 ≤ xj ≤ + l

2 , 1≤ j ≤2}.(4.3)

Here, we neglect the absolute position of the domain, because we assume
the process of decomposition to be uniform in the membrane. Further,
we assume our domain Ω to be flat even for experimental images. This is
a simplification regarding lipid vesicles described in section 1.2. But their
curvature can be neglected in our case when we assume the evaluated domain
Ω to be small compared to the vesicles surface. An exemplary mixture of
lipid phases showing spinodal decomposition is given in Figure 4.3. This
image will be further used for demonstration purposes of the following steps.

Optoelectronical observation or simulation of the given domain Ω results
in digital image data. This data is a discrete set of grey values representing a
certain mixture of lipid phases. More precisely, we introduce a discretization
of our domain Ω. Here, we assume our image to have equal spatial resolution.
Thus, we define a uniform grid spacing ∆x = l/n, n = 2N , N ∈ N, and get
the following set of grid points:

Ωh := {(xl1 , xl2) ∈ R2 |xlj = lj∆x, lj ∈ Z,

−n2 + 1 ≤ lj ≤
n

2 , j = 1, 2}.
(4.4)

This defines a chessboard structure in our domain Ω illustrated in the image
of Figure 4.4. The resulting chess squares are called pixels pl1l2 , −n/2 + 1 ≤
l1, l2 ≤ n/2. Their number is a power of 2, because we have chosen n = 2N .
The area σl1l2 of the domain Ω covered by the pixel pl1l2 is defined by

σl1l2 := {(x1, x2) ∈ R2 | 0 ≤ xj − xlj ≤ ∆x, j = 1, 2}.(4.5)
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Figure 4.4: Enlarged selection of the exemplary image shown in Figure 4.3
revealing the discrete nature of the digital image.

Our defined pixels pl1l2 admit 8-bit grey values which means 0 ≤ pl1l2 ≤ 255,
pl1l2 ∈ N0. Here, the values 0 and 255 represent black and white, i.e. pure
lipid phases. Consequently, we define a digital image P as an ordered two-
dimensional set of n× n pixels, such that

P := (pl1l2)n/2l1,l2=−n/2+1.(4.6)

A corresponding discretization of our exemplary image shown in Figure 4.3
is given in Figure 4.4. Here, we have to point out subtle differences regarding
pixels resulting from experiment and simulation. In experimental images,
pixel values are condensed information about the lipid mixture within the
pixel area, because it was taken by a CCD camera collecting emitted photons
from this area. In images of simulation, pixel values represent the lipid
mixture at a certain point, e.g. we take the lower left corner of each pixel
square. In addition to this, the computational data has to be interpolated
to the discrete 8-bit set of grey values.

Using this discrete setting we apply a DFT to our image P. To this end,
we define a frequency grid spacing ∆ω = 1/l and introduce a set of spatial
frequencies

Λh := {(ωk1 , ωk2) ∈ R2 |ωkj = kj∆ω, kj ∈ Z,

−n2 + 1 ≤ kj ≤
n

2 , j = 1, 2}.
(4.7)

We use this set for the DFT and thus get the spatial frequency weights

qk1k2 := l2

n2

n/2∑
l1,l2=−n/2+1

pl1l2e
−2πi (xl1ωk1+xl2ωk2 ).(4.8)
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Figure 4.5: DFT of the image shown in Figure 4.3 (left) and enlarged center
(right) with red marked frequencies related to the mean structure factor
marked in Figure 4.6.

Consequently, we define the DFT of our image P as two dimensional set

Q := (qk1k2)n/2k1,k2=−n/2+1.(4.9)

The DFT of our exemplary image shown in Figure 4.3 is given in Figure
4.5. According to our definition of the set of spatial frequencies Λh, the
frequency weights related to lower frequencies are centered in Q now.

Let us now reveal the link between the Fourier transformed image Q
and the structure sizes of the lipid domains in our original image P. The
frequencies belonging to a given frequency weight qk1k2 are interpreted as a
combined vector of frequencies

ωk1k2 :=
(
ωk1

ωk2

)
, kj ∈ Z, −n2 + 1 ≤ kj ≤

n

2 , j = 1, 2.(4.10)

We define spatial vectors of grid points in the same fashion

xl1l2 :=
(
xl1
xl2

)
, lj ∈ Z, −n2 + 1 ≤ kj ≤

n

2 , j = 1, 2,(4.11)

where we used bold notation for spatial coordinates. This allows us to
rewrite our frequency weights qk1k2 , −n/2 + 1 ≤ kj ≤ n/2, j = 1, 2, see
(4.8), according to

qk1k2 = l2

n2

n/2∑
l1,l2=−n/2+1

pl1l2e
−2πixl1l2 ·ωk1k2 .(4.12)



4.2. STRUCTURE FACTOR 43

Figure 4.6: The power spectrum of the DFT image shown in Figure 4.5 with
red marked condensed frequencies related to the mean structure factor.

Consequently, we interpret qk1k2 as a measure for periodic patterns of wave-
length 1/‖ωk1k2‖2 in the direction of ωk1k2 . When we want to measure all
periodicities of a certain wavelength in our original image P, we have to
define a reduced set of frequencies for our Fourier transformed image Q by

λh := {ωk ∈ R | ωk = k∆ω, k ∈ Z, 0 ≤ k ≤ n

2 }.(4.13)

Hence, we condense frequency weights of similar wavelength and thus define
the structure factor sk, 0 ≤ k ≤ n/2, by

sk :=
∑

ωk≤‖ωk1k2‖≤ωk+1

qk1k2 , kj ∈ Z, −n2 + 1 ≤ kj ≤
n

2 , j = 1, 2.(4.14)

Consequently, the structure factor measures periodic patterns of similar
wavelength independent of its direction. The red marked frequency weights
of our DFT in the right image of Figure 4.5 belong to the exemplary struc-
ture factor marked in Figure 4.6. The complete set of structure factors define
the power spectrum S of our original image P by

S := (sk)
n/2
k=0.(4.15)

The power spectrum of our exemplary image shown in Figure 4.3 is given
in Figure 4.6.

The power spectrum reveals detailed information about structure sizes
of images. However, it is impractical to evaluate series of images from exper-
iment and simulation in such detail , see Figure 4.7. Instead, it is sufficient
to know their dominant wavelengths, reflecting the dominant size of lipid
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Figure 4.7: Series of power spectrums of an exemplary spinodal decomposi-
tion as 3D (top) and 2D plot (bottom) showing the characteristic evolution
in time.

domains. Hence, we define the mean structure factor s̄ by

s̄ :=
∑
sk∈S

(skqk)/
∑
sk∈S

sk.(4.16)

In practice, the mean structure factor is computed for a subset Ŝ of S. We
address this issue in section 4.3. Now, the mean structure factor s̄ and the
structure size, respectively, the mean wavelength 1/s̄, represent the mean
size of structures in our original image P. The resulting mean wavelength
1/s̄ is demonstrated in our exemplary image shown in Figure 4.3. The
resulting mean structure factor is marked in its power spectrum shown in
Figure 4.6. Further, we marked the related DFT frequencies in Figure 4.5.
All in all, we finally derived a measurement method for the domain sizes
observed in experiments and simulations.
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4.3 Application Issues

In the previous section 4.2, we proposed the structure factor as a measure
for structure sizes of a given image. In this section, we further discuss the
method in application and address non-obvious problems. We are especially
interested in establishing whether this method allows comparison of different
series of images and whether the mean structure size reflects the actual
domain sizes.

We mentioned in the previous section that the Fourier transformation
and its discrete counterpart reveal periodic structures. For this purpose we
extend bounded finite domains by tiling in theory. But this procedure results
in intrinsic problems at image boundaries. Unlike in simulation, where we
can enforce periodicity by boundary conditions, this is not possible in our
experiments. Here, we see jumps at the image border as shown in Figure 4.8.
This results in very high frequency weights for frequencies connected to the
image size, because the DFT tries to capture these jumps as shown in Figure
4.8. We solved this problem by using a method described by [Moi11] which
smoothes image boundaries. This way we remove disturbing effects without
changing the characteristic distribution of relevant frequency weights. The
method works fine for nonperiodic data sets as shown in Figure 4.9.

Another influencing factor is the choice of the spatial frequencies Λh and
its reduced set of frequencies λh. As described in the previous section we
used a uniform grid of frequencies, more precisely n×n frequencies resulting
in the frequency spacing ∆w = 1/l, where n is the number of pixels in x- or
y-direction and l the physical size of the image domain. Consequently, our
spatial frequencies Λh are determined by the original image P and its physi-
cal length l. In order to get a sufficient number of frequencies or wavelengths
of interest, we have to guarantee a minimum image resolution. If this is not
achieved, it is impossible to reveal certain structure sizes and their change
in time. Moreover, when we compare series of images produced in exper-
iment and simulation, their resolution and physical length l should ideally
match. This way we guarantee equal frequency weights and thus identically
weighted information of structure sizes. This especially holds true when
we use low numbers of frequencies. Nevertheless, the mean structure factor
shows to be stable using different image resolutions using the same evaluated
wavelengths, as shown in Figure 4.10.

At last, we address the mean structure factor s̄ and the resulting mean
wavelength 1/s̄. It was said to be a practicable measure, however, it dif-
fers from the actual mean domain size. This is a direct consequence of its
definition (4.16). It averages over all frequencies and thus shifts s̄ from its
maximum, even or especially when we compute the mean structure factor
for a subset Ŝ of S. This phenomenon is illustrated in Figure 4.11. How-
ever, we can still use the mean structure factor 1/s̄ as a measure for the
quantitative development of the structure size in time as long as we evalu-
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Figure 4.8: Exemplary image with nonperiodic boundaries (left), together
with its tiling (middle) and DFT image (right).
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Figure 4.9: Exemplary image shown in Figure 4.8 with smoothed boundaries
(left), together with its tiling (middle) and DFT image (right).
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Figure 4.10: Power spectrum with mean structure factor — evaluated wave-
lengths 8.79 · 10+4 − 3.77 · 10+5 m — using the exemplary image shown
in Figure 4.5 with following resolutions: 512x512 (red), 256x256 (green),
128x128 (blue), 64x64 (magenta). The virtually identical lines are plotted
separately to allow a graphic representation.
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Figure 4.11: Power spectrum of the DFT image shown in Figure 4.5 with the
mean structure factor for different sets of evaluated wavelengths: 8.8 ·10+4−
2.1 · 10+5 m (red), 8.8 · 10+4 − 2.8 · 10+5 m (green), 8.8 · 10+4 − 4.4 · 10+5 m
(blue), 8.8 · 10+4 − 7.5 · 10+5 m (magenta)

ate matching sets of wavelengths for the computation of the mean structure
factor. Otherwise, we experience shifts of the the mean structure factor 1/s̄.

Despite the problems addressed, we found an efficient quantitative mea-
surement method for domain sizes which allows us to evaluate and compare
series of images from experiment or simulation.
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Chapter 5

Simulation Results

In section 5.1, we simulate lipid decomposition using the C0-IPDG approxi-
mation of the Cahn–Hilliard equation. Subsequently, we study the sensitiv-
ity of the Cahn–Hilliard equation to its parameters in section 5.2. In section
5.3, we compare series of images taken in simulation and experiment using
a physical set of parameters. Most of the results have been published in
[BFL+13].

5.1 Implementation Issues

We implemented the afore-mentioned C0-IPDG finite element method for
the Cahn–Hilliard equation with constant mobility using the programming
language Python [vRdB91] and different libraries, particularly the mathe-
matical libraries NumPy and SciPy [Oli07], the finite element library FEn-
iCS [LMWea12], the Python Imaging Library (PIL), and the plotting library
matplotlib [Hun07].

We discretized our computational domain Ω := (−l/2,+l/2)2, with do-
main length l, by a uniform spatial discretization. This is based upon a
uniform grid with square cells of side length h. These cells are further split
into triangles. We used crossed cells, i.e. a cell is split into four triangles
induced by its diagonals, in order to avoid artificial effects of broken sym-
metry as shown in Figure 5.1. We further used standard Lagrange elements
with polynomial degree p = 2 and the backward Euler scheme in time with
constant time step size τ . The resulting nonlinear equation was solved by a
Newton method described in section 3.3.

For numerical reasons we used a dimensionless form of the Cahn–Hilliard
equation (2.15). This has shown to be sufficiently stable for the set of
physical parameters chosen in section 5.2 and section 5.3. Given a physical
length L we introduce dimensionless spatial coordinates x̂ = x/L where
x denotes the original spatial coordinates. Thus we get the dimensionless
operator ∇̂ = L∇ and the dimensionless Cahn–Hilliard equation is then

51



52 CHAPTER 5. SIMULATION RESULTS

Figure 5.1: Spinodal decomposition (top) using identical initial conditions
but different FEniCS’s grid structure options of square cells (bottom): left
(left), crossed (middle) and right (right).

given by

∂c

∂t
= ∇̂ · MD

L2 ∇̂
(
f ′(c)− ε2

L2 ∆̂c
)
.(5.1)

We further use the notation from section 3.3 and omit the hats assuming
non-dimensional operators. Using the backward Euler scheme in time, the
resulting C0-IPDG formulation of the dimensionless Cahn–Hilliard equation
(5.1) is to find a solution c

nτ+1
h ∈ Wh for a given concentration cnτh ∈ Wh

such that for any wh ∈Wh there holds

−
( ∑
T∈Th

(
wh, c

nτ+1
h

)
0,T −

∑
T∈Th

(
wh, c

nτ
h

)
0,T

)
= τ̂

∑
T∈Th

(
∇wh,∇f ′(cnτ+1

h )
)
0,T + ε̂2

( ∑
T∈Th

(
D2wh, D

2c
nτ+1
h

)
0,T

+
∑
E∈EΩ̄

h

(
[[∂wh
∂n

]], {{∂
2c
nτ+1
h

∂n2 }}
)
0,E +

∑
E∈EΩ̄

h

(
{{∂

2wh
∂n2 }}, [[

∂c
nτ+1
h

∂n
]]
)
0,E

+α
∑
E∈EΩ̄

h

h−1
E

(
[[∂wh
∂n

]], [[∂c
nτ+1
h

∂n
]]
)
0,E

)
,

(5.2)

with the dimensionless time step size τ̂ = τ MD/L
2 and the dimension-

less line tension related parameter ε̂2 = τε2/L2. Numerical constants and
parameters used for simulations are given in Table 5.1.
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Name Symbol Unit Value
Length Scaling L m 1.0 · 10−4

Length l m 8.0 · 10−5

Grid Size h m 1.2 · 10−6

Time Step Size τ s 5.0 · 10−2

Penalty Parameter α 1.2 · 10+1

Table 5.1: Constants and parameters for Cahn–Hilliard simulations.

We implemented the described dimensionless C0-IPDG method for the
dimensionless Cahn–Hilliard equation (5.2) for the afore-mentioned domain
using periodic boundary conditions. This differs from our setting described
in section 2.2 and makes considerations concerning boundary conditions ob-
solete. The choice of flat domains with periodic boundary conditions is
motivated by experimental data where only parts of the vesicle surface are
observed and evaluated. Thus we can neglect the vesicles curvature de-
scribed in section 1.2, because the evaluated domain is small compared to
the total vesicle surface. Furthermore, experiments suggest homogeneous
phase separation on the entire membrane. Thus we can expect information
passing the boundary at one side of the domain to be replaced by corre-
sponding information on the opposite boundary. In this case, information
means lipid mixture in equal state of decomposition as described in section
1.2. Hence, the choice of periodic boundary conditions is justified. The con-
dition is implemented by identifying the degrees of freedom lying on opposite
sides of the boundary in x- and y-direction.

5.2 Parameter Study

Using the previously described dimensionless Cahn–Hilliard equation (5.2),
we perform simulations of phase separation in order to pursue studies related
to the relevant parameters of the model. When we assume constant mobility
MD = D, the Cahn–Hilliard equation reads

∂c

∂t
= ∇ ·MD∇(f ′(c)− ε2∆c).(5.3)

Consequently, it depends on the diffusion rate D, the free energy parameter
ϕ scaling the double well potential, and the line tension related parameter
ε2. Further details about these parameters are given in section 2.1. In
short, the free energy is the dominant part of the Cahn–Hilliard equation
at the beginning of the decomposition whereas line tension is dominant at
the end. So far we have not discussed the influence of the diffusion rate.
We can expect that higher values accelerate the phase separation in time.
For a detailed quantitative analysis, we present a parameter study that
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we published in [BFL+13]. This study shows the sensitivity of the Cahn–
Hilliard equation (5.3) with respect to its parameters. Thereby we used a
set of physically reasonable parameters.

As reference system we take the following set of parameters for lipid
membranes:

D = 1.0 µm2

s , ϕ = 4.0 J
m2 , ε2 = 1.0 · 10−12 J.(5.4)

In all simulations we start at homogeneous lipid mixtures and vary our
parameters separately by an appropriate value. Then the series of images is
evaluated using the structure factor method presented in section 4.2. The
resulting mean structure sizes are given in Figure 5.2. As already suggested,
the diffusion parameter D scales the resulting curves in time. The higher
the diffusion, the faster the decomposition takes place. Other characteristics
are unaffected, especially the resulting mean structure size after separation.
This property is changed by the line tension related parameter ε2. Here,
higher values results in larger domains. A view on the total free energy
explains this behavior, because larger domains form out less boundaries
compared to its lipid phase volume. This parameter also influences the
onset of phase decomposition in time. The lower ε2, the sooner the phase
separation begins. An equivalent effect is achieved by changing the free
energy parameter ϕ. Here, higher values of ϕ shift phase separation into an
earlier point in time. This is in accordance with our argumentation in section
2.1. The parameter determines the inner height of the double well potential
and thus makes homogeneous mixtures even more unattractive when it is
augmented. Consequently, the system decomposes earlier for higher values
of ϕ in order to reduce its total free energy sooner.
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Figure 5.2: Parameter study of the Cahn–Hilliard equation. The blue graph
shows the reference case with unchanged parameters. [BFL+13]
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5.3 Comparison to Experiments

We validate our model by experimental data of phase separation in GUVs,
as presented in [BFL+13]. The vesicles consist of DOPC:DPPC:DPPG in
a mixture of 5:4:1 enriched with cholesterol. Here, charged DPPG lipids
are used for electroformation of GUVs as described in [ASM+92] and not
relevant in this experimental setting as previously explained in section 1.2.
The resulting vesicles show diameters of up to 200µm. For details concerning
lipids, fluorescent markers and fabrication we refer to [BFL+13].

After assembly the GUVs are supercooled and show stable homogeneous
mixtures. Then phase separation is induced by light. Using a microscope
lamp, the cooled GUVs are re-heated to temperatures at a certain level
which allows phase separation but still are below the critical temperatures of
separation. A series of images of a typical experiment is given in Figure 5.3.
We observe three different stages of phase separation that can be compared
to other experiments of phase separation in GUVs. The top image shows
blurred phases at the beginning of the decomposition. The next stage shown
in the middle reveals first interconnected domains. At the bottom image, we
see the final stage during which domains further form into sharply bounded
separated phases of circular shape. Here, the domain growth is driven by
coalescence and fused domains further relax to circular shape. The series of
images from this experiment is evaluated for their mean structure sizes using
the structure factor method explained in section 4.2. The resulting curve is
shown in Figure 5.4. Parts of the curve belonging to the afore-mentioned
three qualitatively different stages are separately marked by straight lines.
Their gradient corresponds to the average slope of the curve.

We performed numerical simulations to match characteristic properties
of the experiment, for example the mean structure sizes over time with
special respect to the last stage. For that purpose we used our previously
chosen reference set of parameters for the Cahn–Hilliard equation (5.3):

D = 1.0 µm2

s , ϕ = 4.0 J
m2 , ε2 = 1.0 · 10−12 J.(5.5)

This reference set from our parameter study in section 5.2 fulfills our afore-
mentioned requirements and the simulation shows good agreement to the
experiment in quality and quantity. The diffusion rate D is at the lower limit
suggested for lipid bilayers. Here, diffusion rates of 1−20 µm2/s are proposed
in [KS06]. This guess is supported by multiple measurements with different
techniques for comparable systems [DBV+01, FOL04, OWL05, KSB+03,
KS06]. However, not all parameters can be physically motivated. Regarding
our choice of the additional parameters ϕ and ε2, we are free to some extent.
For instance, ε2 is connected to the line tension only in a variational sense
as mentioned in section 2.1.

Let us now compare simulation and experiment in detail. Again we
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1.7s 1.7s

3.6s 3.3s

6.8s 6.6s

Figure 5.3: Evolution in time of phase separation in simulation (left) and
experiment (right). The bar represents 10 µm. [BFL+13]
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Figure 5.4: Comparison of mean domain size over time in experiment and
simulation according to [BFL+13].

divide the evolution of the mean structure sizes in simulation into three
different stages marked by straight lines with averaged slopes as we did for
the experimental curve shown in Figure 5.4.

At the initial stage, both the simulation (0.0−2.0 s) and the experiment
(0.0−1.5 s) start from a rather homogeneous concentration and qualitatively
show the same decomposition in the top images of Figure 5.3. However, their
measured absolute mean structure sizes differ. The size in the simulation is
higher than it is in the actual experiment. Furthermore, the slope obtained
by simulation (0.24 µm/s) is steeper than the one obtained by experiment
(0.06 µm/s). The cause for this offset may be due to imperfect initial mixture
of phases at the beginning of the experiment. Such perturbations of regular
comparable big size structures shift the mean structure size to higher values.
More physical arguments including technical details are given in [BFL+13].
As described by our parameter study in section 5.2, simulations show no
parameters that influence the initial mean domain size. Fortunately the
offset vanishes in time and thus supports our argumentation.

The second stage of the experiment (1.5 − 4.5 s) and the simulation
(2.0−4.0 s) is characterized by an accelerated growth of the mean structure
sizes shown in Figure 5.3. The slope obtained in the simulation is 1.2 µm/s
and 0.6 µm/s in the experiments. When we compare the images in the
middle of Figure 5.3, we observe qualitatively similar patterns of coalescence.
While this form of growth is dominant in the experiment, it does not show
in the simulation at this stage. Here, further decomposition takes place at
the same time.

During the last stage starting at 4.5 s in the simulation and the exper-
iment we see identical mean structure sizes and slopes (0.2 µm/s). Now,
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domain growth decelerates and lipid domains form circular shapes. This is
shown in the lower images of Figure 5.3. Coalescence is the dominant factor
of growth in both the experiment and the simulation. However, this is less
likely with incresing time, because the distance between the domains grows.

We made out three different stages in the experiment and the simula-
tion. At all stages, we see good agreement of their characteristics supported
by a qualitative discussion of the images and a quantitative evaluation of
the mean structure sizes. Consequently, the Cahn–Hilliard equation has
shown to be an appropriate model for phase separation in lipid membranes
reflecting physical properties.
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Chapter 6

Conclusion and Outlook

In the first part of this thesis, we introduced an adaptive C0-IPDG method
for the biharmonic problem based on a residual-type a-posteriori error es-
timator. Furthermore, we presented a contraction property in form of a
weighted sum of the C0-IPDG energy norm of the global discretization er-
ror and the estimator for any polynomial order.

In addition to this we implemented a C0-IPDG method for the Cahn–
Hilliard equation and introduced the structure factor method as a measure
of structure sizes. This method has shown to be a competitive method for
model validation and enables us to analyze numerous series of images. We
further discussed the sensitivity of the Cahn–Hilliard equation to its intrin-
sic parameters. Consequently, we simulated phase separation in GUV and
our results show good agreement to experiments in qualitative, i.e. phe-
nomenological, and quantitative manner. These results were achieved either
by directly comparing images or analyzing their structure factor. Overall,
we proved the Cahn–Hilliard equation to be an appropriate model for lipid
systems and derived a numerically efficient way to simulate and evaluate
phase separation in vesicles using the C0-IPDG formulation of the Cahn–
Hilliard equation and the structure factor method. Nevertheless, we address
fields of possible future research in the following sections.

6.1 Mechanical Forces

Langmuir–Blodgett troughs induce phase separation in lipid monolayers by
means of the pressure. A schematic description of this setting is given in Fig-
ure 6.1. Phase separation induced by compression on a Langmuir–Blodgett
trough differs from the phase separation in vesicles described in section 1.2.
An exemplary series of images is given in Figure 6.2. This problem goes
beyond the scope of this thesis. However, it is the main topic of the second
funding period of the priority program 1506. Therefore, the model pre-
sented in section 2.1 has to be extended such that mechanical forces can
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Figure 6.1: Schematic illustration of a Langmuir–Blodgett trough with a
lipid monolayer. In typical experiments the thickness of the lipid monolayer
is about 5 nm, whereas the height of the water volume is about 1 mm.

be taken into account. Mechanical stress influences the surface tension of
the membrane over time. This is caused by the compression rate of the
trough barrier acting on the membrane. Hence, viscoelasticity has to be
incorporated. The resulting equations feature an additional strain energy
function. When Maxwell viscoelasticity is assumed, as proposed in our re-
newal proposal for the SPP 1506, a strain energy density function W (c, ε(u))
consisting of elastic and viscous parts has to be used, depending on the local
phase concentration c and the linearized strain tensor ε. The tensor itself
depends on the mechanical displacement u of the membrane. Assuming
quasistatic elasticity when the mechanical effects influence lipid phases im-
mediately, i.e. when we observe spontaneous relaxation with respect to the
diffusion rate, the following parabolic–elliptic system of equations has to be
solved:

∂c

∂t
+∇ ·M(c)∇

(ε2
2 ∆c− µ(c)−∇ ·Wc(c, ε(u))

)
= 0,(6.1)

∇ ·Wε(c, ε(u)) = 0.(6.2)

Here Wc and Wε denote the derivatives of W (c, ε(u)) with respect to c and ε,
respectively. Cahn–Hilliard equations incorporating elasticity are discussed
in [Gar03, Gar05, GW05, LLJ98, Mir00], whereas viscoelastic contributions
are presented in [PZ08a]. In contrast, nonstationary elasticity has to be
assumed when relaxation occurs on diffusion time scales which leads to the
parabolic–hyperbolic system of equations

∂c

∂t
+∇ ·M(c)∇

(ε2
2 ∆c− µ(c)−Wc(c, ε(u))

)
= 0,(6.3)

∂2u

∂t2
−∇ ·Wε(c, ε(u)) = f ,(6.4)

where f denotes an external force density. Such systems are of Cahn–
Hilliard–Gurtin type [BP05, Mir01, PZ08b].
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Figure 6.2: Temporal relaxation of lipids domains in a lipid monolayer on a
Langmuir-Blodgett trough provided by T. Franke.

6.2 Fluidics and Electric Charges

Experiments investigating droplet coalescence of lipid domains suggest flu-
idic properties of lipid membranes [KG07, MRMDN01, ALG+05]. In ad-
dition, the existence of concentration driven velocity fields is proposed in
[Lei08]. Once more, the presented model has to be modified in order to
incorporate such velocity fields to the phase field model presented in sec-
tion 2.1. A Cahn–Hilliard equation combined with fluid dynamics was first
described in [HH77]. The Cahn–Hilliard equation consequently has to be
extended by an advection term v · ∇c. Therefore, mass transfer or trans-
fer of concentration is included which is driven by a velocity field v. The
velocity field is described by a Navier–Stokes equation. An additional force
term µ(c)∇c arising from the concentration and the chemical potential is
added to the right-hand side of the fluidic equation and the resulting Cahn–
Hilliard–Navier-Stokes system is given by

∂v

∂t
−∇ · (ν(c)T (v)) +∇p = µ(c)∇c,(6.5)

∇ · v = 0,(6.6)
∂c

∂t
+ v · ∇c−∇ ·M(c)∇µ(c) = 0,(6.7)

where T (v) denotes the velocity strain tensor and ν(c) the viscosity with
respect to the phase concentration. Promising numerical investigations of
this system were performed within a master thesis [Rei13] co-supervised by
the author.

So far, the influence of charged lipids, e.g. DPPG, has been neglected.
This holds true up to certain concentrations, for example, charged lipids
used for GUV production as described in section 5.3. Higher rates of charged
lipids induce electric forces and thus further phenomena. From a theoretical
point of view, hexagonal alignment of lipid structures has been predicted,
forced by an elastic coupling to the membrane [KSA06]. This has been ver-
ified in experiments [BHW03a, RKG05]. However, [Lei08] suggests hexago-
nal alignments of lipid domains to be of pure electrostatic origin in systems
with electric charged lipids. Validation by simulations using an appropri-
ate model could support this experimental finding. Therefore, electrostatic
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Figure 6.3: Experimental images showing chiral lipid domains forming kid-
ney like shapes provided by S. Burger.

forces have to be coupled to the previously presented Cahn–Hilliard–Stokes
system (6.5) – (6.7). Following [EFG+07, FGJ11, CFGK12], forces of elec-
trostatic nature are added as additional term ρ(c)∇V to the right-hand side
of the Stokes equation (6.5). Here, V denotes the electric potential which is
computed by the Poisson equation

−εd∆V = ρ(c),(6.8)

where εd denotes the dielectric constant and ρ(c) the charge density. In
doing so, the charges are fixed to the lipids. The concentration is then
directly related to the charge density ρ. Finally, the coupled system is given
by

∂v

∂t
−∇ · (ν(c)T (v)) +∇p = µ(c)∇c− ρ(c)∇(V ),(6.9)

∇ · v = 0,(6.10)
∂c

∂t
+ v · ∇c−∇ ·M(c)∇µ(c) = 0,(6.11)

−∇ · (εd∇V ) = ρ(c),(6.12)

where T (v) denotes the velocity strain tensor, M(c) denotes the mobility
and ν(c) the viscosity depending on the concentration. Numerical stud-
ies performed by [Rei13] so far have not shown the mentioned hexagonal
alignment. But the results give first evidence for even more complex lipid
domains. Electrostatic forces have already been discussed as the origin of
complex lipid structures [KL96, KL00]. The understanding of the electro-
static influences would give new insights, for example, on the formation of
chiral lipid domains as shown in [MW84, WM85] and Figure 6.3. Such
formations motivate the following second part of this thesis.
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Enantiomer Separation
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Chapter 7

Introduction

The second part of this thesis investigates separation of chiral objects (enan-
tiomers) by surface acoustic wave (SAW) generated fluid vorticity patterns.
The problem can be formulated as a fluid–structure interaction problem for
which we use the fictitious domain Lagrange multiplier (FDLM) method. In
section 7.1 we expose our field of research, and motivate it by examples of
application. In section 7.2 we present the experimental setup for which the
possibility of enantiomer separation shall be discussed. In section 7.3 we
finally give the outline of this second part.

7.1 Separation of Chiral Objects

According to the Oxford Dictionary a chiral object is asymmetric in such
a way that the structure and its mirror image are not superimposable. In
a mathematical sense a chiral object cannot be mapped to its mirror im-
age by rotations and translations. The word chiral is derived from Greek
and means hand. The left and right human hand are indeed chiral objects
and thus define left- and right-handedness as shown in Figure 7.1. We use
these simplified terms and avoid other technical naming conventions. This is
sufficient for our purpose. Nevertheless we introduce enantiomers, another
word derived from Greek which denotes objects of opposite form. Our left
and right hand, for instance, are chiral objects of opposite form and there-
fore enantiomers. A compound consisting of one sort of enantiomers, i.e.
objects of the same chirality, is said to be enantiopure or unichiral; other
compounds are called racemic.

Looking beyond the scope of human hands, enantiomers on even smaller
scales exist in nature. Louis Pasteur first demonstrated the existence of chi-
ral molecules in 1848. Later Joseph Le Bel and Jacobus Van’t Hoff achieved
major advances in stereochemistry published in 1874. The period that fol-
lowed this discovery vividly influenced physics and inspired, among other
things, the concept of parity.
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Figure 7.1: Human hands illustrating chirality.

In order to investigate the significance of enantiomers in applications we
repeat our argumentation in [BFH+15] and look at molecular scales. Here
enantiomers or chiral molecules show different physical, chemical and bio-
logical properties, depending on their handedness. Enantiomers show the
same chemical makeup, i.e. the molecules consist of identical chemicals,
but show different shapes. Often this difference is crucial to the molecule
properties, e.g. in being a substance tasty or disgusting, medicative or
toxic. Realizing that chemical fabrication often results in racemic com-
pounds, it is clear that enantiomer separation is a decisive technique for agro-
chemical, electronical, pharmaceutical, food, flavor, and fragrance industries
[Bes03, CSCe93, CSCe98, FLe06, KMe98]. So far, enantiomer separation is
performed using gas or high pressure liquid chromatography [BBe06, Wel09],
capillary electrophoresis [Scr08], and nuclear magnetic resonance [Wen07].
These techniques are slow, cost-intensive or both.

The afore-mentioned drawbacks of existing techniques suggest the de-
velopment of new ones. A new technology is based on SAW generated
vorticity patterns. Enantiomers get separated on the surface of a fluid using
counter-rotating vortices. The resulting method is expected to be fast and
cost-effective. From a theoretical point of view it has already been shown
that enantiomers exhibit different propagation properties in microflows due
to their chirality [KSTH06, BBe06, Li06, RFPS09]. In addition to this, pre-
liminary experiments performed by [Kon08] showed left- and right-handed
L-shaped objects to be attracted by vortices rotating clockwise and coun-
terclockwise, respectively.

7.2 Experimental Setup

In what follows we give a brief description of the major components of the
experimental setup adapted to our purposes; for a comprehensive version
including technical details of the setup and the particle fabrication we refer
to [Bur13]. Further details about the relevant processes are provided in later
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Figure 7.2: Side-view of the experimental setting (top), together with its
illustration (bottom). The setup is mounted on a circuit board (yellow)
consisting of the fluid container (brown), the water bulk (blue) and the IDT
with substrate layer (red) in the middle on the bottom of the water bulk.

chapters.
The experimental setup is mounted on a circuit board illustrated in

Figure 7.2. Its core consists of an interdigital transducer (IDT) which is
placed on top of a substrate layer. This setup is placed in the bottom
middle of a fluid container filled with water.

When we apply a radio frequency signal to the IDT, the electronic signal
is converted into acoustic waves, exploiting the piezoelectric effect of the
underlying substrate layer. These surface acoustic waves (SAWs) spread out
in a certain direction on the substrate layer. The energy of the waves couples
into the fluid and causes pressure waves on a time scale of nanoseconds
(∼ 10−9 s). These pressure waves induce fluid streaming which generates a
stationary flow field within milliseconds (∼ 10−3 s). The multiscale process
in time leads to pairwise counter-rotating vortices on top of the water surface
as shown in Figure 7.3.

Geometric objects like circles, squares, and L-shaped enantiomers are
placed on top of the water surface into the SAW generated vorticity pattern
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Figure 7.3: SAW induced vorticity pattern (top view) with propagating
L-shaped enantiomers.

as shown in Figure 7.3. The thin particles float on top of the water surface
undergoing translation and rotation. Their depth of penetration of the water
bulk is negligible compared to their size. Both properties are guaranteed
by a hydrophobic coating. After placement, the particles mainly follow the
streamlines of the vorticity pattern which is related to the flow field on top of
the fluid volume. In experiment the particles show characteristic properties
of propagation related to their shape which can be recorded.

7.3 Resulting Problems and Outline

In the beginning we mentioned the fluid–structure interaction problem to
be solved by a FDLM method. However the computation of the previously
described fluid-structure interaction problem in total would exceed the nu-
merical resources available, in particular the update of the fluid volume.
Consequently we reduce the numerical complexity by decoupling the com-
putation of the SAW generated vorticity pattern on top of the water bulk
from the fluid–structure interaction problem.

In chapter 8 the SAW actuated fluid flow inside the fluid volume is
modeled by the compressible Navier–Stokes equations. We further exploit
the multiscale nature of the problem in time and apply a homogenization
approach which was originally developed by [Bra96]. Thereby we separate
the propagation of the pressure waves into the fluid which takes place on time
scales of nanoseconds, and the fluid streaming occurring on time scales of
milliseconds. The simulation results using this method correspond well with
experimental data, as shown in [GHK+07, Kös07]. However, the simulations
conducted so far were either on 2D domains or 3D domains of low spatial
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resolution. In contrast to this we perform 3D computations which allows
us to simulate a reduced setup and compare the results with experimental
data. Thus we gain information of the internal flow field of the setup which
has not yet been measured in experiments.

In chapter 9 we present a FDLM method for particles in fluid flows.
The method was proposed in [GPH+01] and has been successfully applied
to problems of sedimentation [PJG05] and rheology of red blood cells in
microvessels [WPXG09]. The fact that the particles float on top of the water
volume with minimal depth of penetration allows us to model the fluid–
structure interaction problem as a single 2D problem. Thereby the fluid flow
in the top layer of the water volume is now taken as a stationary velocity field
of the resulting domain. Here, we use the fluid vorticity pattern suggested
by [KSTH06] for which enantiomer separation was predicted at least from a
theoretical point of view. We make out differences of the vorticity patterns
and compare again simulation results to experimental data and show specific
cases of enantiomer separation.

In chapter 10 we draw a final conclusion for this second part and show
possibilities for future research.
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Chapter 8

Surface Acoustic Waves

We give a short introduction to surface acoustic wave (SAW) driven mi-
crofluidics in section 8.1. Further, we present a model for this problem in
section 8.2 and its implementation in section 8.3 following [Kös06, GHK+07].
Using this implementation we perform reduced numerical simulations for ex-
perimental settings in section 8.4. This way we investigate the SAW induced
flow field and compare the computed vorticity pattern to experimental data.

8.1 Surface Acoustic Wave driven Microfluidics

In this section, we describe the basic physical background of surface acous-
tic wave driven microfluidics. Further detailed physical insights have been
provided by T. Frommelt [Fro07] and S. Burger [Bur13], collaboration part-
ners related to surface acoustic waves (SAWs) experiments conducted at the
Chair of Experimental Physics I at the University of Augsburg. The specific
experimental setting is described in detail in [Bur13].

SAWs were first predicted by Lord Rayleigh in 1885 [Ray85]. Using a
model incorporating longitudinal and shear waves, he was able to explain
the propagation of earthquakes. Mechanical waves travel along the surface
of a solid material and decrease exponentially in amplitude. These waves
are now called Rayleigh waves. Another ingredient was the discovery of
piezoelectricity by the brothers Pierre and Paul-Jacques Curie in 1880. They
described the mechanical deformation of materials like quartz crystals using
electromagnetic fields. The first device producing surface acoustic waves was
invented by White and Voltmer in 1965 [WV65]. Since then such electronic
devices show a wide spectrum of applications, for example as actuators in
common rail diesel engines.

A core component of such devices is the interdigital transducer (IDT)
consisting of a series of interleaved electrodes placed on a substrate layer as
shown in Figure 8.1. The electrodes are coated by conducting metals and
the substrate layer is made from piezoelectric materials like quartz, lithium
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Figure 8.1: Illustration of a tapered IDT on a substrate layer.

niobate, or zinc oxide. The width of the electrodes determines the optimal
radio frequency signal at which maximal conversion of an electrical to a
mechanical signal is guaranteed. The optimal frequency is then called the
center or synchronous frequency of the device. Typical frequencies range
from 106 Hz to 109 Hz, i.e. from MHz to GHz. The substrate layer in the
relevant experimental setting consists of lithium niobate and the IDT per-
forms at frequencies about 1.0 · 108 Hz . The resulting electromagnetic field
of the electrodes couples into the substrate layer and induces a mechanical
displacement. The displacement propagates like sinusoidal waves of a given
amplitude, wavelength and decay as described by [GHK+07]. The mechani-
cal displacement is about 1 nm, i.e. 10 Å. The waves propagate in the lithium
niobate substrate layer with signal sound speed about cs = 3.9 ·103 m/s (we
use temperature dependent material constants at 25 ◦C in this part). Con-
sequently, the resulting wavelength λ is given by λ = cs/f ≈ 3.9 · 10−5 m.
The displacement is therefore small compared to wavelength and we can
neglect the displacement in our model.

The spatial propagation of the surface acoustic waves in the substrate
layer is determined by the geometry of the interleaved electrodes of the
IDT and its position on the substrate layer. A schematic illustration of the
propagated waves in our setting is shown in Figure 8.2. Here, a tapered
IDT on a 128◦ rot Y-Cut substrate layer is used and the waves propagate
in X direction of the crystal, see [Fro07]. Resonance effects inside the ta-
pered IDT determine the waves to admit a constant width about λ/2, i.e.
≈ 15 µm. After emission, the waves decay exponentially. Here, we are es-
pecially interested in the 1/e decay length of the amplitude, the distance
at which the original amplitude is reduced by a factor of 1/e. This value is
computed by means of formula (4.41) given in [Fro07]. Using the fluid and
substrate densities ρf = 1.0 g/cm3 and ρs = 2.4 g/cm3 in combination with
the signal sound speed in the fluid cf = 1.5 · 103 m/s and in the substrate
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Figure 8.2: Propagation of the SAWs on the substrate layer.

cs = 3.9 · 103 m/s, the 1/e decay length of the intensity is given by

le,I = 0.45 ρscs
ρfcf

λ = 1.1 · 10−4m.(8.1)

Consequently the 1/e decay length of the intensity is about 110µm. The 1/e
decay length of the amplitude is twice as long, because I ∝ A2, and we get

I = I0e
− x
le,I ⇒ A =

√
I0e
− x
le,I =

√
I0e
− x

2le,I .(8.2)

Thus, the 1/e decay length of the amplitude is given by le,A = 2.2 · 10−4 m,
i.e. about 220 µm. When we compare experiments and simulations, it
would be helpful to directly connect the input signal, measured in dB, to
the amplitude. However, this is only possible in a relative sense, because
there is no information about the energetic losses on the distance between
the power supply and the substrate layer.

The prescribed acoustic waves on the substrate layer further couple into
the fluid. This process is highly efficient, because most of the wave energy is
located within a depth about one wavelength of the substrate layer. There-
fore, almost the complete wave energy is available for this purpose. There
further exists a characteristic angle of radiation θ which determines how the
pressure waves are sent into the fluid as shown in Figure 8.3. This angle is
determined by different signal sound speeds of the fluid cf = 1.5 · 103 m/s
and the substrate layer cs = 3.9 · 103 m/s. The Snellius law of refraction
gives

sin θ = cf
cs
≈ 22.6◦.(8.3)

After short relaxation times of up to 10−8 s a stationary pressure field
establishes. This stationary pressure field induces acoustic streaming or
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Figure 8.3: Pressure waves (green) propagating inside the water bulk with
predicted angle of radiation (magenta)

Rayleigh streaming. Thus a fluid velocity field is excited by the stationary
pressure field as shown in Figure 8.4. The relaxation time for such velocity
fields is about 10−3 s. Hence, we see two processes in our setting occur-
ring on different time scales which need to be reflected in our model for
simulation. In addition to this we make out influencing parameters of the
problem despite physical constants. The position and the frequency of the
IDT together with the shape and the size of the fluid container influences
the resulting velocity field and ultimately the setting. Concerning existing
experimental data for this setting, varying fluid heights and signal powers
are relevant.

8.2 Modeling the Fluidics Problem

In this section, we present a model for the problem described in section 8.1
which was originally developed in [Bra96].

Let Ω ⊂ R3 be a bounded three-dimensional domain corresponding to the
water volume inside the container presented before with boundary Γ := ∂Ω.
Further, we introduce X-, Y - and Z-direction such that a spatial point
x ∈ R3 is defined by

x := (xX , xY , xZ) = (x1, x2, x3).(8.4)

We further use this convention of directions and numeration for different
variables without explicit definition. For a given length lX , width lY , and
height lZ the domain Ω reads as follows

Ω := (− lX2 ,+
lX
2 )× (− lY2 ,+

lY
2 )× (0, lZ).(8.5)
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Figure 8.4: SAWs-induced streaming (blue) in the water bulk.

We assume the center of the IDT on top of the substrate layer to be at the
origin (0, 0, 0) of our setting. Thus the IDT related boundary region Γu is
defined by

Γu := [− lX2 ,+
lX
2 ]× [−w,+w]× {0},(8.6)

where w ∈ R+, w � lY , denotes the width of the emitted pressure wave
on the substrate layer. The condition at this boundary is prescribed later.
Before, we define the top boundary of the domain by

Γs := [− lX2 ,+
lX
2 ]× [− lY2 ,+

lY
2 ]× {lZ}.(8.7)

At this boundary free flow is possible in X- and Y - but not in Z-direction,
this means no mass transfer out of the domain is possible. Thus, we assume
zero normal components of the velocity here. Later this choice allows us to
compare simulated vorticity patterns at the upper boundary to experimen-
tal data. At this point we should mention that we introduced a geometric
simplification of the boundary Γs by the definition of our domain Ω. Ex-
perimental observations suggest minimum curvature of the boundary near
the point of maximum velocity of the vorticity pattern. This issue will be
discussed later in section 8.4 using simulation results and experimental data.
Finally, the remaining surfaces of the fluid are given by

Γn := Γ \ {Γu ∪ Γs}.(8.8)

Here, we naturally assume no-slip boundary conditions. The resulting setup
and different boundaries are summarized in Figure 8.5.

Let us now consider the boundary condition on Γu. We have to look
for a mathematical formulation of the mechanical displacement induced by
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Figure 8.5: Computational domain Ω with boundary regions Γu (red), Γn
(green) and Γs (blue).

the surface acoustic waves. There are linearized equations of piezoelec-
tricity described in [GHK+07]. However, we use the simplified excitation
from [FHLW11] showing good results. In particular, we define the function
u(x, t) : R3 × R+ → R3,

u(x, t) := (u1(x, t), u2(x, t), u3(x, t))T(8.9)

where ui(x, t) : R3 × R+ → R, 1 ≤ i ≤ 3, is defined by

u1(x, t) := 0.6 u0 exp(−Cdx1) sin(2π(−kx1 + ft)),(8.10)
u2(x, t) := 0,(8.11)
u3(x, t) := − u0 exp(−Cdx1) cos(2π(−kx1 + ft)),(8.12)

with maximum displacement u0 from equilibrium, damping parameter Cd =
(le,A)−1 = 4.5 · 103 m−1, IDT frequency f , and wavenumber k = f/cs where
cs denotes the small signal sound speed inside the substrate layer.

We already mentioned the pressure waves occurring on a short time
scale. In order to capture the associated compressible effects in a mathe-
matical sense we have to choose the compressible Navier–Stokes equations.
Let ρ denote the density, η the dynamic viscosity, and ξ the bulk viscosity
of the fluid. We introduce the stress tensor σ depending on the velocity
v(x, t) : R3×R+ → R3, the pressure p(x, t) : R3×R+ → R, and the density
ρ(x, t) : R3×R+ → R of the fluid. By n we denote the exterior normal unit
vector and by τ i , 1 ≤ i ≤ 2, the unit tangential vectors on Γ = ∂Ω. The
computational domain Ω is actually time dependent, i.e. we have Ω(t) due
to the time dependent boundary

Γu(t) := {y ∈ R3 | y = x+ u(x, t), x ∈ Γu}.(8.13)
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The boundary condition on Γu for the velocity of the fluid is given by

v(x+ u(x, t), t) = ∂u

∂t
(·, t), on Γu(t), t ∈ (0, T ), T ∈ R+.(8.14)

The compressible Navier–Stokes equations are to find a triple of velocity,
pressure, and density (v, p, ρ) such that

ρ
(∂v
∂t

+ v · ∇v
)
−∇ · σ(v, p) = 0 in Ω,(8.15)

∂ρ

∂t
+∇ · (ρv) = 0 in Ω,(8.16)

p(·, t) = c2
fρ(·, t) in Ω,(8.17)

v(x+ u(x, t), t) = ∂u

∂t
(·, t) on Γu(t),(8.18)

v(·, t) = 0 on Γn,(8.19)
v(·, t) · n = 0 on Γs,(8.20)

n · σ(v, p)τ i = 0, 1 ≤ i ≤ 2, on Γs,(8.21)
v(·, 0) = 0, p(·, 0) = 0 in Ω,(8.22)

where the constitutive equation for the stress tensor
σ(v, p) =

(
σ(v, p)ij

)3
i,j=1 is given by

σij(v, p) := −p δij + 2ηDij(v) + δij(ξ − 2η/3)∇ · v.(8.23)

Here, D(v) denotes the rate of deformation tensorD(v) := (∇v+(∇v)T )/2.
The relation between pressure and density is established by the physical
property p = c2

fρ, where cf denotes the small signal sound speed inside the
fluid.

We already mentioned the multiscale character of this problem in section
8.1. Thus we separate our problem into an acoustic subproblem at a short
time scale (nanoseconds, ∼ 10−3 s) and a streaming subproblem at a longer
time scale (milliseconds, ∼ 10−3 s). This homogenization approach is used
for example in [AGH+08, AGH+10] and was first suggested in [Bra96]. The
method is based on an asymptotic expansion in time with scale parameter
ε ∈ R, 0 < ε � 1. A natural choice is ε ≈ u0/cs to reflect the appropriate
time scales of the problem. The resulting physical dimension of the order
parameter ε is [s]. This dimension makes perfectly sense when we look at
the resulting expansion for the density ρ, the velocity v, and the pressure p,
given by

ρ = ρ(0) + ερ′ + ε2ρ′′ +O(ε3),(8.24)
v = v(0) + εv′ + ε2v′′ +O(ε3),(8.25)
p = p(0) + εp′ + ε2p′′ +O(ε3),(8.26)
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where the prime ′ denotes the temporal derivative and ρ(0), v(0), p(0) the
initial equilibrium states of the density, the velocity, and the pressure. The
scale parameter conserves the dimensions. Further, it allows us to separate
contributions on different time scales because the order parameter is much
less than one as we see in the following lines. At first we collect terms of the
same order. The first order terms, this means O(ε),

ρ(1) := ερ′, v(1) := εv′, p(1) := εp′,(8.27)

are relevant on the short time scale up to relaxation. Furthermore, the terms
of second order, or O(ε2),

ρ(2) := ε2ρ′′, v(2) := ε2v′′, p(2) := ε2p′′,(8.28)

are relevant on the longer time scale.
Now, we want to adapt the expansion to the Navier–Stokes system (8.15)

– (8.22). For this purpose we apply Taylor expansion to the left-hand side
of the boundary condition on Γu which gives

v(x+ u, t) = v(x, t)︸ ︷︷ ︸
O(ε)

+ (∇v)u︸ ︷︷ ︸
O(ε2)

+O(ε3).(8.29)

The order of the terms is motivated by the choice of the initial equilibrium
state of the velocity v(0) which vanishes, i.e. v(0) ≡ 0. Consequently, the
nonvanishing velocity v(x, t) has to be of first order and thus (∇v)u of
second order. This is in accordance with the argumentation in [Bra96].
We further assume the initial equilibrium of the velocity u(0) to vanish, i.e.
u(0) ≡ 0. Then the Taylor expansion applied on the right-hand side of the
boundary condition on Γu is given by

u(t) = u(0)︸︷︷︸
≡0

+ ∂u

∂t︸︷︷︸
O(ε)

+O(ε2).(8.30)

Thus the first order approximation of the boundary condition on Γu is given
by

v(1) = ∂u

∂t
.(8.31)

In doing so we neglect the deflection of Γu and return to a time independent
domain Ω. This is an appropriate simplification because the deflection at
length scales of nanometers (∼ 10−9 m) is very small compared to the length
scales of millimeters (∼ 10−3 m) of the domain.
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Finally, collecting all terms of first order of the Navier–Stokes system
(8.15) – (8.22), results in the time-periodic compressible Stokes equations

ρ(0)∂v
(1)

∂t
−∇ · σ(v(1), p(1)) = f (1)

v , in Ω,(8.32)

∂ρ(1)

∂t
+ ρ(0)∇ · v(1) = f (1)

p , in Ω,(8.33)

p(1)(·, t) = c2
fρ

(1)(·, t) in Ω,(8.34)
v(1)(·, t) = g(1)(·, t), on Γu.(8.35)
v(1)(·, t) = 0, on Γn,(8.36)

v(1)(·, t) · n = 0 on Γs,(8.37)
n · σ(v(1), p(1))τ i = 0, 1 ≤ i ≤ 2, on Γs,(8.38)

v(1)(·, 0) = v(1)(·, Tf ), p(1)(·, 0) = p(1)(·, Tf ) in Ω,(8.39)

with periodicity Tf := 1/f , where f denotes the IDT frequency, and

f (1)
v = 0, f (1)

p = 0, g(1)(·, t) = ∂u

∂t
(·, t).(8.40)

This system is called acoustic subproblem and incorporates IDT actuated
effects on a short time scale. The corresponding initial value problem quickly
reaches a quasi-equilibrium solution due to the harmonic surface acoustic
wave oscillation which is modeled at the boundary Γu using the time periodic
function u. Therefore, in practice it is convenient to start with zero initial
condition, i.e.

v(1)(·, 0) = 0, p(1)(·, 0) = 0 in Ω,(8.41)

and to propagate in time until relaxation sets in which means the equilibrium
solution is nearly reached. A measure for relaxation at a given time tr is
the averaged difference between the current and the prior pressure field over
one period Tf . The simulation stops when the difference is below a given
tolerance εtol ∈ R, εtol > 0, such that

1
Tf‖p(1)(Tf )‖0,Ω

( ∫ tr

tr−Tf

(
p(1)(t)− p(1)(t− Tf )

)2 dt
)1/2

≤ εtol.(8.42)

We refer to [Kös06] for more details concerning this procedure.
After relaxation of the acoustic subproblem (8.32) – (8.39) at time tr

we use the resulting first order terms to derive the known terms at second
order which serve as right-hand side of the system of equations related to
the second order terms. For this purpose, we define the averaging operator

〈·〉 := T−1
f

∫ tr

tr−Tf
· dt,(8.43)
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such that

f (2)
v =

〈
−ρ(1)∂v

(1)

∂t
− ρ(0)(∇v(1))v(1)

〉
=
〈

+∂ρ(1)

∂t
v(1) − ρ(0)(∇v(1))v(1)

〉
=
〈
−ρ(0)(∇ · v(1))v(1) − ρ(0)(∇v(1))v(1)

〉
,

(8.44)

f (2)
p =

〈
−∇·(ρ(1)v(1))

〉
,(8.45)

g(2) =
〈
−(∇v(1))u

〉
.(8.46)

As a next step we collect all unknown terms of second order of the Navier–
Stokes system (8.15) – (8.22) which are relevant for long time effects, the
acoustic streaming. The resulting instationary compressible Stokes equa-
tions which are called streaming subproblem, reads

ρ(0)∂v
(2)

∂t
−∇ · σ(v(2), p(2)) = f (2)

v in Ω,(8.47)

∂ρ(2)

∂t
+ ρ(0)∇ · v(2) = f (2)

p in Ω,(8.48)

p(2)(·, t) = c2
fρ

(2)(·, t) in Ω,(8.49)
v(2)(·, t) = g(2)(·, t) on Γu,(8.50)
v(2)(·, t) = 0 on Γn,(8.51)

v(2)(·, t) · n = 0 on Γs,(8.52)
n · σ(v(2), p(2))τ i = 0, 1 ≤ i ≤ 2, on Γs,(8.53)

v(2)(·, 0) = 0, p(2)(·, 0) = 0, in Ω.(8.54)

Concerning existence and uniqueness, we refer to [Kös07] and focus on
the details of the implementation in the following section.

8.3 Implementation Issues

In the following lines we present details of implementation for the previously
presented fluid model in section 8.2. For simplicity, we skip the initial con-
ditions and the slip, respectively no-slip boundary conditions on Γs and Γn
for the moment. The acoustic subproblem (8.32) – (8.39) and the streaming
subproblem (8.32) – (8.39) is to find a velocity and pressure pair (v(i), p(i))
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such that

ρ(0)∂v
(i)

∂t
−∇ · σ(v(i), p(i)) = f (i)

v in Ω,(8.55)

1
c2
f

∂p(i)

∂t
+ ρ(0)∇ · v(i) = f (i)

p in Ω,(8.56)

v(i)(·, t) = g(i) on Γu,(8.57)

for 1 ≤ i ≤ 2, where we used p(i) = c2
fρ

(i) (cf. (8.34) and (8.49)). Further,
we resolve the stress tensor σ,

∇ · σ(v(i), p(i)) = η∇2v(i) + (ξ − 2η/3)∇(∇ · v(i))−∇p,(8.58)

and use the kinematic viscosities ν1 := η/ρ(0), ν2 := (ξ − 2η/3)/ρ(0). Ap-
plying the relative pressure p̃(i) := p(i)/ρ(0) to (8.55) – (8.57) we have to
compute (v(i), p̃(i)) such that

∂v(i)

∂t
− ν1∇2v(i) − ν2∇(∇ · v(i)) +∇p̃(i) = 1

ρ(0)f
(i)
v in Ω,(8.59)

1
c2
f

∂p̃(i)

∂t
+∇ · v(i) = 1

ρ(0) f
(i)
p in Ω,(8.60)

v(i)(·, t) = g(i) on Γu,(8.61)

for 1 ≤ i ≤ 2, where the appropriate right-hand sides are given by

1
ρ(0)f

(1)
v = 0, 1

ρ(0) f
(1)
p = 0, g(1) = ∂u

∂t
(·, t),(8.62)

and
1
ρ(0)f

(2)
v =

〈
−(∇ · v(1))v(1) − (∇v(1))v(1)

〉
,(8.63)

1
ρ(0) f

(2)
p =

〈
− 1
c2
f

∇·(p̃(1)v(1))
〉
,(8.64)

g(2) =
〈
−(∇v(1))u

〉
.(8.65)

For reasons of stability we further use a dimensionless formulation sug-
gested in [Kös07] and introduce scaling dimensions for space and time, L and
T . The procedure was deferred to this section because it is closely connected
to the numerical stability of the resulting system of equations rather than
the method itself. This allowed us to reduce the technical complexity in the
previous section. Consequently, we introduce dimensionless coordinates in
space and time such that

x→ Lx̂, t→ T t̂,(8.66)
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and we thus get the dimensionless operators and variables

∇ = 1
L
∇̂, ∂

∂t
= 1
T

∂

∂t̂
, p̃ = L2

T 2 p̂, u = Lû.(8.67)

Furthermore, we define V := L/T which is important to preserve the di-
mensions, and introduce the dimensionless velocity

v → V v̂.(8.68)

Subsequently, our simplified acoustic subproblem is to find a dimensionless
velocity and pressure pair (v̂(1), p̂(1)) such that

V T

L

∂v̂(1)

∂t
− V T 2

L3

(
ν1∇̂2v̂(1) + ν2∇̂(∇̂ · v̂(1))

)
+ ∇̂p̂(1) = 0 in Ω,(8.69)

L3

c2
fV T

3
∂p̂(1)

∂t
+ ∇̂ · v̂(1) = 0 in Ω,(8.70)

V T

L
v̂(1)(·, t) = ∂û

∂t̂
on Γu.(8.71)

Analogously, our simplified acoustic subproblem is to find a pair (v̂(2), p̂(2))
such that

V T

L

∂v̂(2)

∂t
− V T 2

L3

(
ν1∇̂2v̂(2) + ν2∇̂(∇̂ · v̂(2))

)
+ ∇̂p̂(2) =

T 2V 2

L2

〈
−(∇̂ · v(1))v(1) − (∇̂v(1))v(1)

〉
in Ω,

(8.72)

L3

c2
fV T

3
∂p̂(2)

∂t
+ ∇̂ · v̂(2) = L2

c2
fT

2

〈
−∇̂·(p̂(1)v̂(1))

〉
in Ω,(8.73)

v̂(2)(·, t) =
〈
−(∇̂v̂(1))û

〉
on Γu.(8.74)

For both subproblems we use the dimensionless deflection function û(x, t) :
R3 × R+ → R3,

û(x̂, t̂) := (û1(x̂, t̂), (û2(x̂, t̂), (û3(x̂, t̂))T ,(8.75)

with ûi(x̂, t̂) : R3 × R+ → R,

û1(x̂, t̂) := 0.6 û0 exp(−LCdx̂1) sin
(
2π(−Lkx̂1 + Tft̂ )

)
,(8.76)

û2(x̂, t̂) := 0,(8.77)
û3(x̂, t̂) := −û0 exp(−LCdx̂1) cos

(
2π(−Lkx̂1 + Tft̂ )

)
(8.78)

with dimensionless deflection parameter û0 = u0/L and wavenumber k =
f/cs.
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The problems are discretized using Taylor-Hood P2/P1 elements [BF91].
Let Th(Ω) be a conforming simplicial triangulation of Ω. Then, the finite
element spaces V h for the velocity and Qh for the pressure are given by

V h :={vh ∈ C(Ω̄) | vh|K ∈ P2(K)2,K ∈ Th(Ω), vh|Γn = 0},(8.79)

Qh :={qh ∈ C(Ω̄) | qh|K ∈ P1(K),K ∈ Th(Ω),
∫

Ω
qh dx = 0},(8.80)

where Pk(K), k ∈ N, denotes the set of polynomials of degree less or equal
k for elements K ∈ Th(Ω). Using these definitions the semi-discrete weak
formulation of the Stokes equations (8.55) – (8.57) at time t ∈ (0, T ), T ∈
R+, is to find a pair (v(i)

h , p
(i)
h ) ∈ V h ×Qh, 1 ≤ i ≤ 2, such that there holds

ρ(0)
∫

Ω

∂v
(i)
h

∂t
wh dx+ ν1

∫
Ω
∇v(i)

h : ∇wh dx

+ν2

∫
Ω
∇ · v(i)

h ∇ ·wh dx−
∫

Ω
ph ∇ ·wh dx =

∫
Ω
f (i)
v wh dx, wh ∈ V h,

(8.81)

1
c2
f

∫
Ω

∂p
(i)
h

∂t
qh dx+ ρ(0)

∫
Ω
∇ · v(i)

h qh dx =
∫

Ω
f (i)
p qh dx, qh ∈ Qh,(8.82)

where we omitted the boundary conditions on v(i)
h for simplicity. The system

is further discretized in time using the backward Euler or Crank–Nicolson
scheme.

The resulting algebraic system is solved by a generalized minimal residual
(GMRES) method supported by the Portable, Extensible Toolkit for Scien-
tific computation (PETSc), where we used the provided algebraic multigrid
(AMG) preconditioner.

Here, we have to mention the decisive role of the triangulation. We
observed that the pressure wave radiation angle described in section 8.1
depends on the triangulation of our domain, e.g. [Lin14]. The usage of
unstructured meshes, so-called jiggled meshes, see Figure 8.6, solves this
problem. In this case the fineness of the triangulation Th(Ω) is specified
by the maximum length hmax, such that for all edges ∂K of an element
K ∈ Th(Ω), there holds ∂K ≤ hmax.

We implemented the method using the programming language Python
[vRdB91] and different libraries, particularly the mathematical libraries
NumPy and SciPy [Oli07], and the finite element library FEniCS [LMWea12].
The resulting data was further analyzed and visualized using ParaView
[Hen12]. Additional development of the code, e.g. enabling large scale
computations for large domains on parallel systems, was performed by Felix
Linder [Lin14].
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Figure 8.6: Jiggled mesh (left) and structured mesh (right) of a unit square
domain using a comparable number of vortices and cells.

8.4 Simulation Results

A major advantage using the FEniCS library is that the resulting code is
dimension-independent, i.e. it can be used for two- or three-dimensional sim-
ulations only depending on the given geometry of the problem. This allows
us to validate the implementation with existing two-dimensional results from
[Kös07], see [Lin14]. The code was originally developed for two-dimensional
problems by the present author. Based on this version the implementation
for parallel systems and the computation of three-dimensional setups was
the topic of a master thesis [Lin14] co-supervised by the present author. The
current code is a maintained and extended version developed by the present
author.

We performed three-dimensional simulations using the constants and
parameters given in table 8.1 for simulation. The resolution of the surface
acoustic waves demands dense meshes, and thus requires large amounts of
physical memory for the necessary degrees of freedom. Consequently we
show results for a geometric setting with reduced proportions. A possible
resort is to compute the acoustic subproblem on a subdomain with a fine
mesh which is given by the direction of the pressure waves and the damping
parameter. The resulting force field can be used for the acoustic streaming
on a larger domain with a coarse mesh.

The numerical results of the three-dimensional acoustic subproblem and
the acoustic streaming are illustrated in Figure 8.7. As we previously de-
scribed in Figure 8.3 and Figure 8.4 the pressure waves propagate into the
water bulk and the acoustic streaming causes fluid flow which leads to two
mirrored circular vortices. These transport fluid from above the IDT to
the water surface and vice versa. Here, the fluid flow is determined by the
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Category/Name Symbol Unit Value
Scaling
Space L m 1.0 · 10−7

Time T s 1.0 · 10−8

Velocity V m/s 1.0 · 10−1

Discretization
Maximum Grid Size hmax m 7.4 · 10−6

Time Step Sizes
acoustic subproblem ∆ta s 6.1 · 10−10

streaming subproblem ∆ts s 1.0 · 10−4

Domain
Length lX m 1.0 · 10−4

Width lY m 1.0 · 10−4

Height lZ m 3.0 · 10−5

IDT/Substrate Layer
Deflection u0 m 1.0 · 10−9

Signal Sound Speed cs m/s 3.8 · 10+3

Damping (1
e ) Cd 1/m 4.5 · 10+3

Emission Width w m 1.5 · 10−5

Frequency f Hz 1.0 · 10+8

Wavenumber k 1/m 2.6 · 10+4

Fluid (Water 25◦C)
Density ρ(0) kg/m3 1.0 · 10+3

Signal Sound Speed cf m/s 1.5 · 10+3

Dynamic Viscosity η Pa · s 1.0 · 10−3

Bulk Viscosity ξ Pa · s 2.5 · 10−3

Kinematic Viscosities ν1 m2/s 1.0 · 10−6

ν2 m2/s 1.8 · 10−6

Table 8.1: Constants and parameters for SAW-generated fluid flow.
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Figure 8.7: Stationary pressure wave pattern of the acoustic subproblem
(left) and stationary velocity field of the acoustic streaming (right). The
water bulk is cut in the X-Z-plane, see section 8.2, incorporating the origin
of the domain. [Lin14]

direction of propagation of the pressure waves.
The main interest of the numerical investigation is dedicated to the vor-

ticity pattern on top of the water bulk which was previously defined as
Γs in section 8.2. The numerical results are illustrated in Figure 8.9 to-
gether with experimental data which was obtained by S. Burger [Bur13].
Both experiment and simulation show four counter-rotating vortices which
qualitatively match in orientation and the out-going streamlines show the
highest velocity flow whereas the in-going streamlines are much slower. Be-
sides this qualitative matching the experimental vortices are more elliptic
compared to the simulated streamlines. This difference may be caused by
the afore-mentioned reduced computational setting. However, the qualita-
tive agreement suggests that the model and the implementation can be used
for further investigations.

A question arising from experiments is whether the experimental veloc-
ity field is divergence-free. This property cannot be computed directly using
the experimental data. The available data was measured using a lipid mono-
layer on top of the water bulk. The idea was to use the lipid domains inside
the monolayer as velocity tracers but a disadvantage of this method is that
the monolayer shades properties of the underlying fluid flow field. However,
knowledge about the divergence of the vorticity pattern of the fluid flow
field in the absence of a lipid monolayer is relevant for the understanding
why particles propagate towards the center of a vortex while rotating in it.
Consequently we analyzed the numerical results because the direct measure-
ment of the inner flow field in experiments is a demanding, work-intensive
task. Thereby we revealed indeed that fluid is transported at the center of
the vortices to the ground of the water bulk and back to the IDT again,
see Figure 8.8. Once it has arrived at the bottom the fluid is lifted to the
top again following the pressure waves. On the basis of this information we
have to expect the same phenomena in the experimental setup. This ex-
plains the experimentally observed minimal deflection at the water surface
in this region. Consequently the SAW-generated vorticity pattern on top
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Figure 8.8: Trajectories starting on top of the water bulk and descending to
the ground while rotating closer to the center of the vortices. [Lin14].

of the water bulk is not divergence free. In the following chapter 9 we as-
sume the two-dimensional velocity field at the water surface to be divergence
free for the fictitious domain Lagrange multiplier method. Thus, we cannot
simply use the experimental and simulated velocity field for this purpose.
Consequently, we take a different approach using a velocity field generated
by a quadrupolar force density described later in subsection 9.4.2. On one
hand, the resulting vorticity pattern reflects the characteristic streamlines of
the experimental velocity field. On the other hand, enantiomer separation is
predicted for such patterns from a theoretical point of view, see [KSTH06].
These properties makes the quadrupolar force density look like a promising
candidate for the following investigation of enantiomer separation.
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Figure 8.9: Vorticity pattern on top of the water bulk in experiment [Bur13]
(top) and simulation [Lin14] (bottom).



Chapter 9

Fictitious Domain Lagrange
Multiplier Method

Fictitious domain (FD) methods have been known for quite a while and
we give a brief introduction to this concept in section 9.1. Subsequently,
we present the fictitious domain Lagrange multiplier (FDLM) method de-
scribed in [GPH+01] for rigid body motion in fluids. The model is derived
in section 9.2 and the resulting numerical method is presented in section
9.3. Afterwards we perform numerical simulations of particle propagation
in fluid microflows in section 9.4, discuss the influence of different vorticity
patterns and compare the simulation results to experimental data. Thereby
our special focus lies on the separation of enantiomers.

9.1 Fictitious Domains

Let us first give a brief historical introduction to fictitious domains (FD)
inspired by [GPHJ99]. A FD method was first proposed in [Hym52] for
“. . . numerical solution of boundary-value problems . . . applicable to arbi-
trary regions . . .“. The term itself was introduced in [Sau63]. The method
was motivated to solve a problem on geometrically complex or even time-
dependent domains on larger and much simpler fictitious domains. Thus,
the method is also called domain embedding method. The idea was to use
existing fast solution methods on regular meshes or to use fixed meshes for
time-dependent domains. Consequently, mesh generation is simplified and
even remeshing and reassembling of matrices is avoided for time-dependent
domains. However, the boundary conditions of the original problem have to
be enforced, for example using Lagrangian multipliers.

We derive a fictitious domain Lagrangian multiplier method for the Pois-
son equation. The example is taken from [GPP94] and serves as an outline
for the problem described in the following section. It demonstrates the ba-
sic ingredients of the method without getting lost in technical details. Let

91
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Figure 9.1: Fictitious domain Ω (green) with boundary Γ (dark green) and
embedded domain ω (red) with boundary γ (dark red).

ω ⊂ R2 be a bounded domain with Lipschitz-continuous boundary γ := ∂ω.
For f ∈ L2(ω) and g ∈ H

1
2 (γ) the Dirichlet problem is finding a solution u,

such that

−∆u = f in ω,(9.1)
u = g on γ.(9.2)

There exists a unique solution u ∈ Vg := {v ∈ H1(ω) | v = g on γ} of the
resulting variational formulation∫

ω
∇u ∇v dx =

∫
ω
fv dx, ∀v ∈ H1

0 (ω).(9.3)

We further introduce a surrounding fictitious domain Ω ⊂ R2 of simple
regular geometry, e.g. a square, such that ω ⊂⊂ Ω. An example of such
a setting is given in Figure 9.1. Let f̃ ⊂ L2(Ω) be an arbitrary extension
of f such that f̃ |ω = f . We define the Lagrangian functional L : H1

0 (Ω) ×
H−

1
2 (γ)→ R,

L(v, λ) = 1
2

∫
Ω
|∇v|2 dx−

∫
Ω
f̃v dx−

∫
γ
λ(v − g) ds.(9.4)

Using this functional we observe that the variational problem (9.3) is equiv-
alent to finding a solution (ũ, λ) ∈ H1

0 (Ω)×H−
1
2 (γ) of the following saddle-

point problem:∫
Ω
∇ũ ∇v dx =

∫
Ω
f̃v dx+

∫
γ
λv ds, ∀v ∈ H1

0 (Ω),(9.5) ∫
γ
µ(ũ− g) ds = 0, ∀µ ∈ H−

1
2 (γ).(9.6)
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The resulting solution fulfills ũ|ω = u in ω and u = g on γ. We solve the
resulting saddle-point problem by a general conjugate gradient algorithm
described in [GLT89]. We start with an arbitrary initial Lagrangian λ0 ∈
L2(γ) and arrive at an initial solution ũ0 ∈ H1

0 (Ω) such that∫
Ω
∇ũ0 ∇v dx =

∫
Ω
f̃v dx+

∫
γ
λ0v ds, ∀v ∈ H1

0 (Ω).(9.7)

Subsequently, we have to find g0 ∈ L2(γ) such that∫
γ
g0µ ds =

∫
γ
(u0 − g)µ ds, ∀µ ∈ L2(γ).(9.8)

Finally, we set w0 = g0 and begin with the iteration. Now, for n ≥ 0 we
proceed with the step n→ n+ 1. First, we solve for ūn ∈ H1

0 (Ω)∫
Ω
∇ūn ∇v dx =

∫
γ
wnv ds,(9.9)

and compute ρn according to

ρn =
∫
γ |gn|2 ds∫
γ ū

nwn ds.(9.10)

We thus get the iterates

λn+1 = λn − ρnwn,(9.11)
ũn+1 = un − ρnūn,(9.12)

and further have to find gn+1 ∈ L2(γ) such that∫
γ
gn+1µ ds =

∫
γ
gnµ ds− ρn

∫
γ
ūnµ ds, ∀µ ∈ L2(γ).(9.13)

If for a given tolerance ε ∈ R+

‖gn+1‖L2(γ)/‖g0‖L2(γ) ≤ ε,(9.14)

we stop the iteration with the solution λ = λn and ũ = ũn. If not, we
compute

γn =
‖gn+1‖2L2(γ)
‖gn‖2L2(γ)

,(9.15)

wn+1 = gn+1 + γnwn,(9.16)

and start above, proceeding with n→ n+ 1.
A straightforward discretization is given in [GLT89]. We basically see

how the FDLM method is applied to a simple problem using a CG algorithm.
In the following section, we apply this method to a more complex setting,
i.e. the problem of fluid–particle interaction presented in section 7.2.
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9.2 Modeling Rigid Body Motion in Fluids

Fictitious domain methods for incompressible viscous unsteady flow around
moving rigid particles have been developed in a series of papers in the 90s,
for example [GPP98, GPHJ99]. These methods allow the efficient simula-
tion of large numbers of particles in fluid flow, like in case of sedimentation.
We have already considered some major advantages of this method in the
previous section. It allows us computations on a fixed mesh by imposing the
particle properties to the fluid using distributed Lagrange multipliers. How-
ever, we have to mention the existence of other methods for this purpose.
The immersed boundary (IB) method for the simulation of deformable, vis-
coelastic objects in incompressible viscous flow was introduced by [Pes77].
Thereby the fluid motion is prescribed by the incompressible Navier–Stokes
equations using an Eulerian coordinate system. By contrast the material
elasticity equations related to the deformable object inside the fluid and
its change of total elastic energy is written in a Lagrangian coordinate sys-
tem. A third equation couples the afore-mentioned Eulerian and Lagrangian
quantities. This method was successfully applied to the motion of red blood
cells in microfluidic flows [FHL+11]. However, the IB method has not been
developed for rigid body motion. A comparison between the IB and FDLM
method for particle motion inside quadrupolar vorticity patterns is given by
[Hac14]. For detailed historical information and comparison to other meth-
ods of direct simulations, i.e. front tracking methods, and methods based on
moving unstructured grids, such as arbitrary Lagrangian–Eulerian moving
mesh techniques, we refer to [GPHJ99].

The fluid/particle interaction problem is formulated on the previously
defined two-dimensional domain

Γs := [− lX2 ,+
lX
2 ]× [− lY2 ,+

lY
2 ]× {lZ},(9.17)

where lX and lY denote the length of the domain in X- and Y -direction.
This domain represents the surface of the water in the experimental setting
described in section 7.2. We neglect its possible curvature as described in
section 8.2.

Let us apply the fictitious domain Lagrange multiplier method presented
in [GPH+01] as we suggested in [BFH+15]. We consider N ∈ N rigid bodies,
covering distinct subdomains Bj(t) ⊂ Γs, 1 ≤ j ≤ N , t ∈ [0, T ], where T
denotes the end of the computational time, such that

Bj(t) ∩Bk(t) = ∅, 1 ≤ j 6= k ≤ N.(9.18)

The motion within the fluid-filled domain Γs of each particle is described by
the Newton–Euler equations. The motion of the j-th particle, 1 ≤ j ≤ N ,
is described by its density ρj , mass Mj , center of mass cj , velocity vj , angle
Θj , angular velocity ωj , and the inertia tensor Ij , hydrodynamic force FH

j ,
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repulsive forces FR
j , and the resulting torque THj of the hydrodynamic forces

acting on it. Then the Newton–Euler equations determining the motion of
the j-th particle, 1 ≤ j ≤ N , read as follows

Mj
dvj
dt =FH

j + FR
j ,

dcj
dt = vj(t),

dΘj

dt = dωj
dt ,(9.19)

Ij
dωj
dt =THj +−→cjx× FR

j ,(9.20)

with initial conditions

vj(0) = v0
j , ωj(0) = ω0

j , cj(0) = c0
j .(9.21)

We have to note, that in the original work from [GPH+01], an artificial
repulsive force is defined which guarantees smooth repulsion of spherically
shaped objects. However, this does not cover real life problems where hard
collision in water of arbitrarily shaped particles take place. As a first step, we
improved the particle-particle and particle-boundary repulsion model which
allows arbitrary shaped particles as described below. For this purpose P j
and P ∂Γs denote the sets of repulsion points pi ∈ Pj belonging to the j-
th particle and the domain boundary. The repulsion points are uniformly
distributed over the boundary of the particle with special respect to the
reentrant and salient corners, rising out of the regular shape. In our case,
the combined repulsive force FR

j (pi) acting on the repulsion point pi of the
j-th particle, 1 ≤ j ≤ N , is given by

FR
j (pi) = F ∂Γs

j (pi) +
∑
k 6=j

F Pk
j (pi),(9.22)

where F Pk
j is the repulsive force between the j-th particle and the k-th

particle and F ∂Γs
j is the repulsive force between the j-th particle and the

boundary ∂Γs defined by

F ∂Γs
j (pi) :=

∑
pl∈P∂Γs

FR(pi, pl),(9.23)

F Pk
j (pi) :=

∑
pl∈Pk

FR(pi, pl).(9.24)

The basic repulsive force FR is given by

FR(pi, pl) :=
{

0, ‖pi − pl‖ ≥ r,
ε−1(pi − pl)/‖pi − pl‖, ‖pi − pl‖ < r.

(9.25)

We use the scaling factor ε and the repulsion length r > 0. The repulsion
length r is defined with respect to the finite element discretization of our do-
main Γs described in section 9.3. A practical value is one half of the uniform
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mesh width. Based on the presented implementation, further improvements
have been suggested in the master thesis [Hac14].

In chapter 8 we discussed the nature of the compressible effects of the
surface acoustic waves acting at short time scales of nanoseconds (10−9 s).
By contrast, the particles propagate at time scales of seconds where the
compressible effects of the surface acoustic waves can be neglected. In ad-
dition to this the particles show steady flow allowing the fluid to relax at
this time scale. Consequently, the fluid inside the time-dependent domain
Γs(t) := Γs\

⋃N
j=1Bj(t), t ∈ (0, T ), is modeled by the incompressible Navier–

Stokes equations such that for a given fluid density ρf , dynamic viscosity η,
stress tensor σ, force field f s, and initial velocity field vs there holds

ρf
(∂v
∂t

+ (v · ∇)v
)
−∇ · σ(v) = f s in Γs(t),(9.26)

∇ · v = 0 in Γs(t),(9.27)

with boundary conditions

v(x, t) =
{

vs(x) , x ∈ ∂Γs(t),
vj(t) + ωj(t)×

−−−→
cj(t)x , x ∈ ∂Bj(t),

(9.28)

and initial condition

v(x, 0) = vs(x), x ∈ Γs(0).(9.29)

where the expression
−−−→
cj(t)x in (9.28) denotes the vector joining cj(t) and

x. The subscripts of the initial velocity field vs and the force field f s are
motivated by the relation

(vs · ∇)vs −∇ · σ(vs) = f s.(9.30)

This means the force field f s is derived from a given stationary velocity field
vs. Thus, it makes perfect sense that the initial and boundary conditions
are defined with respect to the stationary velocity field. A concrete exam-
ple using the quadupolar force density suggested by [KSTH06] is given in
subsection 9.4.2 .

Now, we introduce a combined weak formulation of fluid and particle
motion using distributed Lagrange multipliers λj(t) ∈ Λj(t), with

Λj(t) := H1(Bj(t)), 1 ≤ j ≤ N.(9.31)

The FDLM method is then to find v(t) ∈ V ,

V := {H1(Γs) | v|∂Γs = vs},(9.32)
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p(t) ∈ L2
0(Γs), vj(t), cj(t) ∈ R2, ωj(t) ∈ R, λj(t) ∈ Λj(t), 1 ≤ j ≤ N ,

such that for all w ∈ H1
0(Γs), q ∈ L2

0(Γs), Y ∈ R2, τ ∈ R, µj ∈ Λj(t),
1 ≤ j ≤ N , there holds

ρf

∫
Γs

(∂v
∂t

+ (v · ∇)v
)
·w dx−

∫
Γs

p∇ ·w dx

+η
∫
Γs

∇v : ∇w dx+
N∑
j=1

(1− ρf
ρj

)
(
Mj

dvj
dt · Y + Ij

dωj
dt · τ

)

=
N∑
j=1

∫
Bj(t)

λj · (w − Y − τ ×−→cjx) dx+
∫
Γs

f ·w dx

+
N∑
j=1

( ∑
pi∈Pj

FR
j (pi) · Y +

∑
pi∈Pj

(−−→cjpi × FR
j (pi)

)
· τ
)
,

(9.33)

∫
Γs

q∇ · v dx = 0,(9.34)

∫
Bj(t)

(
µj · (v − vj − ωj ×−→cjx)

)
dx = 0,(9.35)

for a.e. t with initial conditions

v(x, 0) =
{

vs, x ∈ Γs(0) \Bj(0),
v0
j + ω0

j ×
−→
c0
jx, x ∈ Bj(0),

(9.36)

vj(0) = v0
j , cj(0) = c0

j , ωj(0) = ω0
j .(9.37)

Despite the scalar nature of the angular velocity ωj(t) ∈ R we use bold
notation due to its vectorial roots. The term ωj ×−→cjx in equation (9.35) is
well defined in R3. For this purpose ωj and −→cjx are appropriately extended
by zero components such that

ωj ×−→cjx =

 0
0
ωj

×
 (−→cjx)1

(−→cjx)2
0

 =

 −ωj(
−→cjx)2

ωj(−→cjx)1
0

 ,(9.38)

where we used −→cjx :=
(
(−→cjx)1, (−→cjx)2

)T .
Finally we motivate the presented combined weak formulation of the

FDLM method from a physical point of view. The extension of the fluid
domain Γs(t) := Γs \

⋃N
j=1Bj(t), t ∈ (0, T ), can be interpreted as filling

the particle domains with fluid. In doing so the rigid body motion in the
particle domains and the no-slip particle boundary conditions are imposed
using distributed Lagrange multipliers.
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9.3 Numerical Methods

Following [GPH+01] and [BFH+15], we discretize the FDLM method (9.33)
– (9.37) in space and time. In order to do so, we introduce a uniform sim-
plicial triangulation Th(Γs) of Γs. The incompressible Navier–Stokes equa-
tions are discretized using standard Taylor–Hood P2/P1 elements [BF91].
For implementations using adaptive grids at particle boundaries we refer to
[Hac14]. Next, the finite element spaces V h for the velocity and Qh for the
pressure are given by

V h :={vh ∈ C(Γ̄s) | vh|K ∈ P2(K)2,K ∈ Th(Γs),vh|∂Γs = vs,h},(9.39)

Qh :={qh ∈ C(Γ̄s) | qh|K ∈ P1(K),K ∈ Th(Γs),
∫

Γs
qh dx = 0},(9.40)

where Pk(K), k ∈ N, denotes the set of polynomials of degree less or equal
k for elements K ∈ Th(Γs) and vs,h denotes the L2-projection of the initial
velocity vs onto the space of piecewise polynomials of degree 2 on ∂Γs. The
velocity test space V 0,h is further defined by

V 0,h := {vh ∈ C(Γ̄s) | vh|K ∈ P2(K)2,K ∈ Th(Γs),vh|∂Γs = 0}.(9.41)

We already mentioned that there is no need to define triangulations Th(Bj(t))
of the domains occupied by the particles, 1 ≤ j ≤ N . Instead we define the
finite element spaces Λj,h(t) for the distributed Lagrange multiplier of the
j-th particle based on the existing triangulation Th(Γs), such that

Λj,h(t) :={λh ∈ C(Bj,h(t)) | λh|K ∈ P2(K)2,K ∈ Bj,h(t)},(9.42)

for 1 ≤ j ≤ N , where the discrete particle domain Bj,h(t) is defined by

Bj,h(t) := {K ∈ Th(Γs) | K ⊂ Bj(t)}.(9.43)

Then the discretized version in space of the FDLM method (9.33) – (9.37) is
to find vh(t) ∈ V h, ph(t) ∈ Qh, vj(t) ∈ R2, cj(t) ∈ R2, ωj(t) ∈ R, λj,h(t) ∈
Λj,h(t), such that for all wh ∈ V 0,h, qh ∈ Qh, Y ∈ R2, τ ∈ R,µj,h ∈ Λj,h(t),
there holds

ρf

∫
Γs

(∂vh
∂t

+ (vh · ∇)vh
)
·wh dx−

∫
Γs

p∇ ·wh dx

+η
∫
Γs

∇vh : ∇wh dx+
N∑
j=1

(1− ρf
ρj

)
(
Mj

dvj
dt
· Y + Ij

dωj,h
dt
· τ
)

=
N∑
j=1

∫
Bj,h(t)

λh,j · (wh − Y − τ ×−→cjx) dx+
∫
Γs

f ·wh dx

+
N∑
j=1

( ∑
pi∈Pj

FR
j (pi) · Y +

∑
pi∈Pj

(−−→cjpi × FR
j (pi)

)
· τ
)
,

(9.44)
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∫
Γs

qh∇ · vh dx = 0,(9.45)

∫
Bj,h(t)

(
µj,h · (vh − vj − ωj ×−→cjx)

)
dx = 0,(9.46)

for a.e. t and 1 ≤ j ≤ N , with initial conditions

vh(x, 0) =
{

vs,h, x ∈ Γs(0) \Bj,h(0),
v0
j + ω0

j ×
−→
c0
jx, x ∈ Bj,h(0),

(9.47)

vj(0) = v0
j , cj(0) = c0

j , ωj(0) = ω0
j ,(9.48)

where vs,h denotes the L2-projection of the initial velocity vs onto V h. We
remark that in the discretized version we distinguish between the actual
particle domain Bj(t) which is updated at every time step, and the mesh
dependent particle domain Bj,h(t) which is derived from Bj(t) according to
the definition (9.43).

The temporal discretization is performed by a Yanenko–Marchuk frac-
tional step method [Mar90] as suggested in [GPH+01]. This way we get a
series of different subproblems which can be solved separately. Let us intro-
duce the uniform discretization of the time interval [0, T ] using the time step
size ∆t := T/NT , NT ∈ N, and denote for example by vn an approximation
of v at time tn, with tn := n∆t, n ∈ N, 0 ≤ n ≤ NT .

When we proceed in time from tn−1 to tn we begin solving the fluid
motion of the discretized FDLM method (9.44) – (9.48). For this purpose, we
use the splitting method proposed by Chorin and Temam [Cho97, Tem68].
This is done by computing an auxiliary velocity ṽh ∈ V h such that for all
wh ∈ V 0,h there holds

ρf

∫
Γs

ṽh − vn−1
h

∆tn
·wh dx+ ρf

∫
Γs

(∇vn−1
h · vn−1

h )wh dx

+η
∫
Γs

∇vn−1
h · ∇wh dx =

∫
Γs

f ·wh dx.
(9.49)

In order to get an intermediate solution vn−1/2
h ∈ V h and pressure pnh ∈ Qh,

we finalize this step by projecting the previously computed velocity ṽh onto
the space of divergence free vector fields by solving the equations

∆t
∫
Γs

∇pnh · ∇qh dx = −
∫
Γs

(∇ · ṽ qh),(9.50)

∫
Γs

v
n−1/2
h wh dx =

∫
Γs

ṽh ·wh dx−∆t
∫
Γs

∇pnh ·wh dx,(9.51)
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for all wh ∈ V 0,h and qh ∈ Qh.
As the second step of the Yanenko–Marchuk fractional step method,

we solve the fluid–particle interaction subproblem of the discretized FDLM
method (9.44) – (9.48) which is finding vh(t) ∈ V h, vj(t) ∈ R2, ωj(t) ∈ R,
λj,h(t) ∈ Λj,h(t) such that for all wh ∈ V 0,h, Y ∈ R2, τ ∈ R, µj,h ∈ Λj,h(t)
there holds

ρf

∫
Γs

∂vh
∂t

dx+
N∑
j=1

(1− ρf
ρj

)
(
Mj

dvj
dt · Y + Ij

dωj
dt · τ

)
=

=
N∑
j=1

∫
Bj,h(t)

λj,h · (wh − Y − τ ×−→cjx) dx,
(9.52)

∫
Bj,h(t)

µj,h · (vh − vj − ωj ×−→cjx) dx = 0,(9.53)

for a.e. t ∈ [tn−1, tn] and 1 ≤ j ≤ N . This task is performed using a
conjugate gradient algorithm proposed in [GPH+01], where subscripts in
brackets refer to the conjugate gradient step. The initial step k = 0 is
finding the initial variables v(0)

h ∈ V h, v(0)
j ∈ R2, ω(0)

j ∈ R, 1 ≤ j ≤ N , for
given initial Lagrangians λ(0)

h,j ∈ Λn−1
j,h , such that for all wh ∈ V 0,h, Y ∈ R2,

τ ∈ R there holds

ρf

∫
Γs

v
(0)
h − v

n−1/2
h

∆t ·wh dx =
N∑
j=1

∫
Bn−1
j,h

λ
(0)
j,h ·wh dx,(9.54)

(1− ρf
ρj

)Mj

v
(0)
j − v

n−1
j

∆t · Y = −
∫

Bn−1
j,h

λ
(0)
j,h · Y dx,(9.55)

(1− ρf
ρj

)Ij
ω

(0)
j − ω

n−1
j

∆t · τ = −
∫

Bn−1
j,h

λ
(0)
j,h · τ ×

−−−→
cn−1
j x dx,(9.56)

and we further compute the initial variables g(0)
j,h ∈ Λn−1

j,h , 1 ≤ j ≤ N , such
that for all µj,h ∈ Λn−1

j,h there holds∫
Bn−1
j,h

µj,h · g
(0)
j,h dx =

∫
Bn−1
j,h

µj,h · (v
(0)
h − v

(0)
j − ω

(0)
j ×

−−−→
cn−1
j x) dx,(9.57)

and we finally set z(0)
j,h = g

(0)
j,h. Now, the step k − 1 → k, k ∈ N, k ≥ 1,

is given by the computation of the auxiliary descent variables vdh ∈ V h,
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vdj ∈ R2, ωdj ∈ R, 1 ≤ j ≤ N , such that for all wh ∈ V 0,h, Y ∈ R2, τ ∈ R
there holds

ρf

∫
Γs

vdh
∆t ·wh dx =

N∑
j=1

∫
Bn−1
j,h

z
(k−1)
j,h ·wh dx,(9.58)

(1− ρf
ρj

)Mj

vdj
∆t · Y = −

∫
Bn−1
j,h

z
(k−1)
j,h · Y dx,(9.59)

(1− ρf
ρj

)Ij
ωdj
∆t · τ = −

∫
Bn−1
j,h

z
(k−1)
j,h · τ ×

−−−→
cn−1
j x dx,(9.60)

and we further compute the auxiliary descent variables gdj,h ∈ Λn−1
j,h , 1 ≤

j ≤ N , such that for all µj,h ∈ Λn−1
j,h there holds∫

Bn−1
j,h

µj,h · gdj,h dx =
∫

Bn−1
j,h

µj,h · (vdh − vdj − ωdj ×
−−−→
cn−1
j x) dx.(9.61)

For 1 ≤ j ≤ N , we compute the steplengths

ρ
(k−1)
j =

∫
Bn−1
j,h

g
(k−1)
j,h · g(k−1)

j,h dx

∫
Bn−1
j,h

z
(k−1)
j,h · (vdh − vdj − ωdj ×

−−−→
cn−1
j x) dx

(9.62)

which are used to get the updated variables

λ
(k)
j,h = λ

(k−1)
j,h − ρ(k−1)

j z
(k−1)
j,h ,(9.63)

v
(k)
h = v

(k−1)
h − ρ(k−1)

j vdh,(9.64)

v
(k)
j = v

(k−1)
j − ρ(k−1)

j vdj ,(9.65)

ω
(k)
j = ω

(k−1)
j − ρ(k−1)

j ωdj ,(9.66)

g
(k)
j,h = g

(k−1)
j,h − ρ(k−1)

j gdj,h,(9.67)

z
(k)
j,h = g

(k−1)
j − γ(k−1)

j z
(k−1)
j,h ,(9.68)

with

γ
(k−1)
j =

∫
Bn−1
j,h

g
(k)
j,h , g

(k)
j,h dx

∫
Bn−1
j,h

g
(k−1)
j,h , g

(k−1)
j,h dx

.(9.69)
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Now, if for a given tolerance εtol ∈ R, εtol > 0, there holds∫
Bn−1
j,h

g
(k)
j,h , g

(k)
j,h dx

∫
Bn−1
j,h

gdj,h, g
d
j,h dx

≤ εtol, 1 ≤ j ≤ N,(9.70)

we stop the conjugate gradient algorithm and set for 1 ≤ j ≤ N

λnj,h = λ
(k)
j,h ,(9.71)

vnh = v
(k)
h ,(9.72)

v
n−1/2
j = v

(k)
j ,(9.73)

ω
n−1/2
j = ω

(k)
j .(9.74)

Otherwise, we proceed with k → k + 1.
The third and last step of the Yanenko-Marchuk fractional step method

to proceed in time from tn−1 to tn is updating the remaining particle prop-
erties such that for 1 ≤ j ≤ N

cnj = cn−1
j + ∆t vnj ,(9.75)

Θn
j = Θn−1

j + ∆t ωnj ,(9.76)

vnj = v
n−1/2
j + ∆t M−1

j

∑
pi∈Pj

FR
j (pi),(9.77)

ωnj = ω
n−1/2
j + ∆t I−1

j

∑
pi∈Pj

(−−→cjpi × FR
j (pi)

)
.(9.78)

9.4 Simulation Results

9.4.1 Implementation Issues

We implemented the discretized FDLM method presented in the previous
section 9.3 using the programming language Python [vRdB91] and different
libraries, particularly the mathematical libraries NumPy and SciPy [Oli07],
the finite element library FEniCS [LMWea12], and the plotting library mat-
plotlib [Hun07].

In simulation, we use the square domain Γs ⊂ R2 defined by

Γs := (− lΓs2 ,+ lΓs
2 )2,(9.79)

for a given length lΓs . This domain is further discretized by the uniform,
simplicial triangulation Th(Γs) with grid size h. Relevant parameters for a
set of implemented particles are described in Figure 9.2. These parameters
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Figure 9.2: Definition of length (magenta), center of mass (red), and repul-
sion points (blue) for a set of particles showing zero angle of rotation.

are further used to specify the subsequent simulation together with the fluid
and particle constants contained in the FDLM method (9.33) – (9.37).

For the set of parameters the method proved to be stable and we did
not introduce a dimensionless formulation. However, for particle densities
close to the fluid density, the presented conjugate gradient algorithm tends
to diverge before the given tolerance εtol is reached.

9.4.2 Quadrupolar Force Density

Here, we present simulation results from [BFL+13], showing enantiomer
separation using quadrupolar force densities. From a theoretical point of
view, enantiomer separation has been predicted for particles of simplicial
shape in [KSTH06] using a quadrupolar vorticity pattern. This pattern
consists of pairwise counter-rotating vortices, such that for x = (x1, x2) ∈ Γs
the velocity vQ is defined by

vQ(x) :=
(∂ψ(x)
∂x1

,−∂ψ(x)
∂x2

)T
,(9.80)

with a stream function ψ(x1, x2) given by

ψ(x1, x2) := vmax
lΓs
√

3
π

sin(πx1/lΓs) sin(πx2/lΓs)
(2− cos(πx1/lΓs))(2− cos(πx2/lΓs))

,(9.81)

where vmax ∈ R, vmax > 0, denotes the maximum velocity. The corre-
sponding right-hand side fQ which is called quadrupolar force density, of
the discretized FDLM method (9.44) – (9.48) is then given by∫

Γs

fQ ·w dx = ρf

∫
Γs

(vQ · ∇)vQ ·w dx

+ η

∫
Γs

∇vQ : ∇w dx, wh ∈ V 0,h.
(9.82)

Consequently, we set the initial and boundary velocity vs = vQ.
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Figure 9.3: Experimental vorticity pattern (left) and quadrupolar vorticity
pattern (right). [BFL+13]

Figure 9.4: Experimental (left) and computational (right) trajectories.
[BFL+13]

The quadrupolar vorticity pattern qualitatively matches the vorticity
patterns occurring in the experiments, as can be see in Figure 9.3. Never-
theless we have to adapt the size and the maximum velocity of the quadrupo-
lar vorticity pattern to the experimental setup for validation. We therefore
used the parameters and constants given in Table 9.1. Again the qualitative
comparison of particle trajectories in simulation and experiments in figure
9.4 shows good agreement. In addition to this, we compared the angle of
rotation of a given particle in experiment and simulation in a quantitative
manner, and the resulting plot shows virtually perfect agreement as shown
in Figure 9.5. Consequently, the quadrupolar vorticity pattern is a good
approximation for the SAW-actuated vorticity pattern.

The question is now whether the theoretically predicted enantiomer sep-
aration is possible in experiment using SAW-actuated velocity fields. Ex-
perimental measurements indeed suggest the existence of such effects for
L-shaped enantiomers [Kon08]. Once dropped onto the fluid surface, right-
handed and left-handed L-shaped particles show trajectories leading to vor-
tices rotating clockwise and counterclockwise. We performed simulations
using the quadrupolar velocity field together with the parameters and con-
stants given in Table 9.2 and found two characteristic phenomena of separa-
tion for L-shaped enantiomers which reflect the experiments regarding the
sorting. In Figure 9.6 we see the separation at the end of the outgoing veloc-
ity stream for particles placed slightly next to the central incoming stream-
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Figure 9.5: Angle of rotation of the particles as a function of time in exper-
iment (red) and simulation (green). [BFL+13]

Category/Name Symbol Unit Value
Domain and Discretization
Length lΓs m 8.4 · 10−3

Grid Size h m 2.1 · 10−5

Time Step Size ∆ t s 1.0 · 10−2

Fluid (Water 25◦C)
Density ρ kg/m3 1.0 · 10+3

Dynamic Viscosity η Pa · s 1.0 · 10−3

Maximum Velocity vmax m/s 2.0 · 10−3

Square Particle
Length lS m 1.0 · 10−4

Density ρS kg/m3 2.0 · 10+3

Center of Mass cS m (8.6, 2.8)T · 10−4

Velocity vS m/s (−1.8,−3.5)T · 10−4

Angle of Rotation ΘS rad 2.0
Angular Velocity ωS rad/s 0.0
L-Shaped Particle
Length lL m 2.3 · 10−4

Density ρL kg/m3 2.0 · 10+3

Center of Mass cL m (4.0, 2.3)T · 10−4

Velocity vL m/s (−1.3,−4.4)T · 10−4

Angle of Rotation ΘL rad 5.3
Angular Velocity ωL rad/s 0.0

Table 9.1: Domain, discretization, fluid and particle related constants and
parameters for simulations validating the quadrupolar force density.
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Category/Name Symbol Unit Value
Domain and Discretization
Length lΓs m 2.0
Grid Size h m 1.1 · 10−2

Time Step Size ∆ t s 1.0 · 10−2

Fluid (Water 25◦C)
Density ρ kg/m3 1.0 · 10+3

Dynamic Viscosity η Pa · s 1.0 · 10−3

Maximum Velocity vmax m/s 9.1 · 10−1

L-Shaped Enantiomers
Length lLL/R m 1.2 · 10−1

Density ρLL/R kg/m3 2.0 · 10+3

Center of Mass
Figure 9.6 cLL/R m (−0.5,−6.0)T · 10−1

Figure 9.7 cLL/R m (0.0,−0.7)T
Velocity vLL/R ms (0.0, 0.0)T
Angle of Rotation ΘLL/R rad 0.0
Angular Velocity ωLL/R rad/s 0.0

Table 9.2: Domain, discretization, fluid and particle related constants
and parameters for simulations showing enantiomer separation using the
quadrupolar force density.

lines. Furthermore, the enantiomers are separated at the center when the
particles are placed in the center of the incoming vorticity stream, as shown
in Figure 9.7. In both cases the L-shaped enantiomers follow streamlines
to the experimentally predicted vortex, see [Kon08]. The finite element im-
mersed boundary method shows comparable results for slightly deformable
L-shaped enantiomers [FHLBM15].
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Figure 9.6: Enantiomer separation of a right-handed (left) and left-handed
(right) L-shaped enantiomer at the outgoing velocity streamlines. The right-
handed L-shaped particle follows the vortex rotating counterclockwise in the
lower left quadrant whereas the left-handed L-shaped particle follows the
vortex rotating clockwise in the upper left quadrant. [BFL+13]

Figure 9.7: Enantiomer separation of a right-handed (left) and left-handed
(right) L-shaped enantiomer at the central streamlines. The right-handed
L-shaped particle follows the vortex rotating counterclockwise in the upper
right quadrant whereas the left-handed L-shaped particle follows the vortex
rotating clockwise in the upper left quadrant. [BFL+13]
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Chapter 10

Conclusion and Outlook

In the beginning of this second part we presented a model for surface acous-
tic wave-generated fluid flow in three-dimensional domains. The validated
implementation of this model shows good qualitative agreement to experi-
mental data even for the simulation of a setup with reduced spatial dimen-
sions. Using these numerical results we further showed that the vorticity
pattern occurring at the top of the water bulk is not divergence-free at the
center of the vortices which was not yet possible to measure in experiments
but conjectured. The implemented version of the code is able to take ad-
vantage of parallel systems with large amounts of physical memory. This
allows us to simulate complete setups in the near future and to compare the
simulations with experimental data also in a quantitative manner.

Regarding enantiomer separation we implemented a fictitious domain
Lagrange multiplier method to simulate the motion of rigid bodies in two-
dimensional fluids. The mentioned non-divergence free velocity fields ob-
tained in experiment and simulation forced us to look for alternatives. Thus,
we decided to use the quadrupolar force density proposed by [KSTH06]
which resembles an idealized surface acoustic wave-generated vorticity pat-
tern on top of the water bulk. For the former, enantiomer separation was
predicted from a theoretical point of view. Indeed, we found possible set-
tings for enantiomer separation of L-shaped particles which confirms the
theoretically predicted separation for simple chiral particles in [KSTH06].
Furthermore, we were able to reproduce in simulation specific properties
of particle propagation observed in experiments [Kon08], in particular we
showed left- and right-handed L-shaped objects to be attracted by vortices
rotating clockwise and counterclockwise, respectively. However, enantiomer
separation has not been reproduced in experiments with the previously de-
scribed setup so far [Bur13]. Here, numerical simulations may help to find
possible conditions for enantiomer separation which would considerably re-
duce the number of necessary experiments. For example, from the current
point of view, it is not clear whether an optimal ratio of the particle size
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to the vortex size exists for which separation takes place. In this context
we also have to consider refined force densities with respect to the exper-
imental vorticity pattern. Finally, a detailed understanding of the current
experimental setup is an essential step towards enantiomer separation on a
molecular level relevant in industrial applications.
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[KL00] P. Krüger and M. Lösche, Molecular chirality and domain
shapes in lipid monolayers on aqueous surfaces, Phys. Rev.
E 62 (2000), no. 5, 7031–7043.

[KMe98] N. Kurihara and J. Miyamoto (eds.), Chirality in agrochemi-
cals, Wiley, 1998.

[Kon08] M. Konrad, Trennung chiraler Objekte in Mikroströmung,
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