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Abstract

We consider the electron transport through driven tight-binding systems. For the theoreti-

cal description, a Floquet scattering approach and a Floquet master equation approach are

derived. Both formalisms are particularly suited for the exact treatment of non-adiabatic

driving. While the scattering approach describes coherent transport exactly, the master

equation approach is suitable for a rather direct extension to the case of electron-phonon

interaction. Moreover, we derive an expression for the corresponding transport noise which

in the driven case depends on the phases of the transmission amplitudes. With these for-

malisms, we study different situations like the transport through driven molecular wires,

the dynamics of coherent quantum ratchets, and the control of current and noise by ac

fields.
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1 Introduction

During the last years, the present author has contributed to the theoretical investigation of

three types of time-dependent open quantum systems, namely split atomic Bose-Einstein

condensates in time-dependent traps, driven qubits coupled to a heat bath, and nanoscale

conductors under the influence of electromagnetic fields. A clear focus has been put on

the latter type of systems, in particular on molecular wires in laser fields and on coupled

quantum dots under the influence of microwave radiation. The aim of this survey is to

review the corresponding publications which are presented in the appendix.

Recently, considerable progress has been achieved in contacting single molecules by

nanoelectrodes. This allows to apply a transport voltage and to measure the resulting

electrical current [1–6]. For the corresponding theoretical investigations, two lines of re-

search are presently followed. The one is the ab-initio computation of the orbitals relevant

for the motion of excess charges through the molecular wire [7,8]. The other line employs

rather universal models to gain a qualitative understanding of the transport mechanisms

involved [9–14]. Two particular problems addressed within model calculations are the

conduction mechanism in the presence of electron-phonon coupling [10] and the length

dependence of the current-voltage characteristics [9, 13]. The present work also employs

rather universal models: We describe the molecules by a linear arrangement of tight-

binding levels with the terminating sites attached to leads. This model also captures the

physics of the so-called artificial molecules, i.e. coupled quantum dots and quantum dot

arrays [15, 16].

One particular question in this context is the influence of excitations by electromagnetic

fields and gates voltages on the electron transport. Such excitations bear intriguing phe-

nomena like photon-assisted tunneling [16–19] and the adiabatic [20–22] and non-adiabatic

pumping [23, 24] of electrons. From a fundamental point of view, these effects are of in-

terest because the external fields enable selective electron excitations and allow to study

their interplay with the underlying transport mechanism. In practical applications, time-

dependent effects can be used to control and steer currents in coherent conductors. How-

ever, such control schemes can be valuable only if they operate at tolerable noise levels.

Thus, the corresponding current noise is also of interest.

An intuitive description of the coherent electron transport through time-independent

mesoscopic systems is provided by the Landauer scattering formula [25] and its various gen-

eralizations. Both the average current [26–29] and the transport noise characteristics [30]

can be expressed in terms of the quantum transmission coefficients for the respective scat-

tering channels. By contrast, the theory for driven quantum transport is less developed.

Scattering of a single particle by arbitrary time-dependent potentials has been consid-

ered [31–33] without relating the resulting transmissions to a current between electron

reservoirs. Such a relation is indeed non-trivial since the driving opens inelastic transport

channels and, therefore, in contrast to the static case, an ad hoc inclusion of the Pauli

principle is no longer unique. This gave rise to a discussion about “Pauli blocking fac-

tors” [34, 35]. In order to avoid such conflicts, one should start out from a many-particle
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description. In this spirit, within a Green function approach, a formal solution for the

current through a time-dependent conductor has been presented [36, 37] without taking

advantage of the full Floquet theory for the wire and without obtaining a “scattering

form” for the current in the driven case. The spectral density of the current fluctuations

has been derived for the low-frequency ac conductance [38, 39] and the scattering by a

slowly time-dependent potential [40]. For arbitrary driving frequencies, the noise can be

characterized by its zero-frequency component. A remarkable feature of the current noise

in the presence of time-dependent fields is its dependence on the phase of the transmission

amplitudes [A5,A9, 40]. By clear contrast, both the noise in the static case [30] and the

current in the driven case depend solely on transmission probabilities.

In Chap. 2, we derive within a Floquet approach explicit expressions for both the cur-

rent and the noise properties of the electron transport through a driven nanoscale conduc-

tor under the influence of time-dependent forces [A5,A9]. This approach is applicable to

arbitrary periodically driven tight-binding systems and, in particular, is valid for arbitrary

driving strength and extends beyond the adiabatic regime. The dynamics of the electrons

is solved by integrating the Heisenberg equations of motion for the electron creation and

annihilation operators in terms of the single-particle propagator. For this propagator, in

turn, we provide a solution within a generalized Floquet approach. Such a treatment is

valid only for effectively non-interacting electrons, i.e., when no strong correlations occur.

Moreover, this Floquet scattering approach cannot be generalized straightforwardly to

the case with additional electron-vibrational coupling. Better suited for this situation is a

quantum kinetic equation formalism which, however, is perturbative in both the wire-lead

coupling and the electron-vibrational coupling [A4,A10].

An experimental starting point for the investigation of the influence of electromag-

netic fields on molecular conduction is the excitation of electrons to higher orbitals of the

contacted molecule. In molecular physics, specific excitations are usually performed with

laser fields. The resulting changes of the current through a contacted molecule due to the

influence of a laser field are studied in Chap. 3. In particular, we focus on the modification

of the length dependence of the conductivity [A2,A8].

An intriguing phenomenon in strongly driven systems is the so-termed ratchet effect

[41–44], originally discovered for overdamped classical Brownian motion in asymmetric

nonequilibrium systems. Counter-intuitively to the second law of thermodynamics, one

then observes a directed transport although none of the acting forces possesses a net

bias. This effect has been established also within the regime of dissipative, incoherent

quantum Brownian motion [45,46]. A mesoscopic device related to ratchets is an electron

pump [20–24, 47, 48] which indeed might be regarded as a localized ratchet. In Chap. 4,

we study the possibilities for molecular wires to act as coherent quantum ratchets and

also explore the crossover from pumps to ratchets. Thereby, we investigate ratchets in the

coherent quantum regime where they have not been studied previously [A1,A4,A10].

The tunneling dynamics of a particle in a bistable potential can be altered significantly

by ac fields. In particular, it is possible to bring tunneling to a standstill by the purely

coherent influence of a time-periodic driving [49]. This so-called coherent destruction

of tunneling has also been found in other systems [50–52]. In Chap. 5, we address the

question whether a related effect exists also for the electron transport through a driven
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conductor between two leads. Moreover, we study the noise properties of the resulting

transport process [A3,A5,A6,A9,A10].

Before going in medias res, however, we discuss in this chapter the experimental back-

ground and introduce our working model. Moreover, we review some relevant theoretical

approaches, namely Tien-Gordon theory, the scattering approach for static conductors,

and a master equation approach.

1.1 Experimental motivation

Coupled quantum dots

The experimental achievement of the coherent coupling of quantum dots [15] enabled

the measurement of intriguing phenomena in mesoscopic transport [16]. A remarkable

feature of coupled quantum dots—the so-called artificial molecules with the single dots

representing the atoms—is that the energy levels of each “atom” can be controlled by an

appropriate gate voltage. In particular, the highest occupied levels of neighboring dots

can be tuned into resonance. At such resonances, the conductance as a function of the

gate voltage exhibits a peak. This behavior is modified by the influence of microwave

radiation: With increasing microwave intensity, the resonance peaks become smaller and

side-peaks emerge. The distance between the central peak and the side-peaks is deter-

mined by the frequency of the radiation field which provides evidence for photon-assisted

tunneling [16–19]. Photon-assisted tunneling through quantum dots is, in comparison to

its counterpart in superconductor-insulator-superconductor junctions [53], a potentially

richer phenomenon. The reason for this is that quantum dots form a multi-barrier struc-

ture which allows for real occupation and resonant tunneling. Therefore, a theoretical

description requires to also take into account the influence of the field on the dynamics

of the electrons localized in the central region between the barriers. The quantum dot

setup used for the observation of photon-assisted tunneling can also be employed as an

implementation [54] of the theoretically suggested non-adiabatic pump [37,55,56]. Lately,

coupled quantum dots are frequently discussed in the context of quantum computation.

They offer several possibilities to implement qubits and quantum logical gates, e.g. with

the spin degree of freedom of an excess electron [57] or its position [58, 59].

Related experiments have been performed also with single quantum dots exposed to

laser pulses which resonantly couple the highest occupied orbital and the lowest unoccupied

orbital of the quantum dot [60]. Such a pulse can create an electron-hole pair which in

turn is transformed by a transport voltage into a current pulse. Depending on their

duration, pulses may not only excite an electron but also coherently de-excite the electron

and thereby reduce the resulting current [61]. In the ideal case, the electron-hole pair

is excited with probability unity and finally yields a dc current consisting of exactly one

electron per pulse. This effect might be employed for the realization of a current standard.

At present, however, the deviations from the ideal value of the current are still of the order

of a few percent.
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Molecular wires

During the last years, it became possible to adsorb organic molecules via thiol groups

to a metallic gold surface. Thereby a stable contact between the molecule and the gold

is established. This enables reproducible measurements of the current not only through

artificial but also through real molecules. Single molecule conductance can be achieved in

essentially two ways: One possible setup is an open break junction bridged by a molecule

[1, 3, 62]. This setup can be kept stable for several hours. Moreover, it provides evidence

for single molecule conductance because asymmetries in the current-voltage characteristics

reflect asymmetries of the molecule [3, 63]. Alternatively, one can use a gold substrate as

a contact and grow a self-assembled monolayer of molecules on it. The other contact is

provided by a gold cluster on top of a scanning tunneling microscope tip which contacts

one or a few molecules on the substrate [2, 64]. Naturally, the experimental effort with

such molecular wires is accompanied by a vivid theoretical interest [4, 5, 13].

Typical energy scales of molecules lie in the infrared regime where most of today’s lasers

work. Hence, lasers represent a natural possibility to excite the electrons of the molecular

wire and, thus, to study the corresponding changes of the conduction properties. At

present, such experiments are attempted, but still no clearcut effect has been reported.

The molecule-lead contacts seem stable even against relatively intense laser fields, but

a main problem is the exclusion of side effects like, e.g. heating of the break junction

which might distort the molecule-tip setup and, thus, be responsible for the observed

enhancement of the conductance [65].

1.2 Wire-lead model

As a working model, we employ the externally driven transport setup of the type sketched

in Fig. 1.1. Formally, it is described by the time-dependent wire-lead Hamiltonian

H(t) = Hwire(t) +Hleads +Hcontacts, (1.1)

where the different terms correspond to the nanoscale conductor (“wire”), the leads, and

the wire-lead couplings, respectively. We focus on the regime of coherent quantum trans-

port where the main physics at work occurs on the wire itself. In doing so, we neglect other

possible influences originating from driving induced hot electrons in the leads, dissipation

on the wire and, as well, electron-electron interaction effects. Then, the wire Hamiltonian

in a tight-binding approximation with N orbitals |n〉 reads

Hwire(t) =
∑

n,n′

Hnn′(t)c†ncn′ . (1.2)

For a molecular wire, this constitutes the so-called Hückel description where each site

corresponds to one atom. The fermion operators cn, c†n annihilate and create, respectively,

an electron in the orbital |n〉. The influence of an applied ac field with frequency Ω = 2π/T
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Figure 1.1: Level structure of a nano-conductor with N = 6 orbitals. The end sites, the so-called
donor and acceptor, are coupled to two leads with chemical potentials µL and µR = µL + eV .

results in a periodic time dependence of the wire Hamiltonian, Hnn′(t + T ) = Hnn′(t).

The leads are modeled by ideal electron gases,

Hleads =
∑

q

εq(c
†
LqcLq + c†RqcRq), (1.3)

where c†Lq (c†Rq) creates an electron in the state |Lq〉 (|Rq〉) in the left (right) lead and q

denotes to quantum numbers of the lead electrons. The tunneling Hamiltonian

Hcontacts =
∑

q

(
VLqc

†
Lqc1 + VRqc

†
RqcN

)
+ h.c. (1.4)

establishes the contact between the sites |1〉, |N〉 and the respective lead. This tunneling

coupling is described by the spectral density

Γ`(ε) = 2π
∑

q

|V`q|2δ(ε− εq) (1.5)

of lead ` = L,R which becomes a smooth function if the lead modes are dense. If the

leads are modeled by a tight-binding lattice, the Γ`(ε) assume a semi-elliptic shape, the so-

called Newns-Anderson density of states [66], which is sometimes employed in the context

of molecular conduction [9, 67, 68]. Within the present context, however, we are mainly

interested in the influence of the driving field on the conductor and not in the details of the

coupling to the leads. Therefore, we choose for Γ`(ε) a rather generic form by assuming

that in the relevant regime, it is practically energy-independent,

Γ`(ε) −→ Γ`. (1.6)

Thus, all explicit results presented herein are evaluated within this so-called wide-band

limit.

In order to fully specify the dynamics, we choose as an initial condition for the left/right

lead a grand-canonical electron ensemble at temperature T and electro-chemical potential
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µL/R, respectively. Thus, we assume at initial time t0 the density matrix

%0 ∝ e−(Hleads−µLNL−µRNR)/kBT , (1.7)

where N` =
∑

q c
†
`qc`q is the number of electrons in lead ` and kB denotes the Boltzmann

constant. An applied voltage V corresponds to a chemical potential difference µR − µL =

eV with −e being the electron charge. Then, at t0, the only nontrivial expectation values

of the wire operators read 〈c†`′q′c`q〉 = δ``′δqq′f`(εq), where f`(ε) = (1+exp[(ε−µ`)/kBT ])−1

denotes the Fermi function.

Below, we specify the wire Hamiltonian as a tight-binding model composed of N sites

as sketched in Fig. 1.1. Each orbital is coupled to its nearest neighbor by a hopping matrix

element ∆, thus, the single-particle wire Hamiltonian reads

Hwire(t) = −∆
N−1∑

n=1

(
|n〉〈n+1| + |n+1〉〈n|

)
+

∑

n

[En + xn a(t)] |n〉〈n|, (1.8)

where En denote the on-site energies of the tight-binding levels. Although the theoretical

approach derived below is valid for an arbitrary periodically driven wire Hamiltonian, we

always assume that the time dependence results from the coupling to an oscillating dipole

field that causes the time-dependent level shifts xna(t), where xn = (N+1−2n)/2 denotes

the scaled position of site |n〉. The energy a(t) = a(t+ T ) is determined by the electrical

field strength multiplied by the electron charge and the distance between two neighboring

sites.

We assume that the wire couples equally strong to both leads, thus, ΓL = ΓR ≡ Γ.

An applied transport voltage V is mapped to a symmetric shift of the leads’ chemical

potentials, µR = −µL = eV/2. Moreover, for the evaluation of the dc current and the

zero-frequency noise, we restrict ourselves to zero temperature. The zero-temperature

limit is physically well justified for molecular wires at room temperature and for quantum

dots at helium temperature since in both cases thermal electron excitations do not play a

significant role.

In a realistic wire molecule, ∆ is of the order 0.1 eV. Thus, a typical wire-lead hopping

rate Γ = 0.1∆ yields eΓ/~ = 2.56 × 10−5 Ampère and Ω ≈ 10∆/~ corresponds to a

laser frequency in the near infrared and to wavelengths of the order 1µm. For a typical

distance of 5Å between two neighboring sites, a driving amplitude A = ∆ is equivalent to

an electrical field strength of 2 × 106 V/cm. It must be emphasized that the amplitude A

is determined by the local electrical field between the contacts. The difference to the

incident field can be huge: Model calculations demonstrated that the presence of metallic

tips enhances the local field by several orders of magnitude [69, 70]. This explains the

observation that the Raman scattering intensity increases drastically once the molecules

are adsorbed to a metallic surface [71, 72]. Coupled quantum dots typically [15, 16, 18]

have a distance of less than 1µm while the coupling matrix element ∆ is of the order of

30µeV which corresponds to a wavelength of roughly 1 cm. The dipole approximation

inherent to the time-dependent part of the Hamiltonian (1.8) neglects the propagation of

the electromagnetic field and, thus, is valid only for wavelengths that are much larger than

the size of the sample [73]. This condition is indeed fulfilled for both applications we have

in mind.
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1.3 Transport theory

1.3.1 Tien-Gordon theory

In order to explain the steps in the current-voltage characteristics of microwave-irradiated

superconductor-insulator-superconductor junctions [53], Tien and Gordon [74] proposed a

heuristical theoretical treatment which is of appealing simplicity but nevertheless captures

some essential features of driven transport. The central idea of this approach is to model

the influence of the driving fields by a periodic shift of the energies in the, e.g. left lead

according to

ε̃Lq(t) = εLq +A cos(Ωt). (1.9)

Then the corresponding lead eigenstates evolve as

|Lq〉t =exp
(
− i

~
εLqt− i

A

~Ω
sin(Ωt)

)
|Lq〉 (1.10)

=

∞∑

k=−∞

Jk(A/~Ω) exp
(
− i

~
(εLq + k~Ω)t

)
|Lq〉, (1.11)

where Jk denotes the kth order Bessel function of the first kind. The interpretation of

the Fourier decomposition (1.11) is that each state consists of sidebands whose energies

are shifted by multiples of ~Ω. For the evaluation of the dc current, this is equivalent to

replacing the Fermi function of the left lead by

fL(E) −→
∑

k

J2
k (A/~Ω)fL(E + k~Ω) (1.12)

and formally treating the system as time-independent [74]. While this effective static

treatment indeed captures the photon-assisted dc current, it naturally fails to describe the

ac response.

For time-dependent wire-lead models where the driving shifts all wire levels simulta-

neously, it is possible to map the driving field by a gauge transformation to oscillating

chemical potentials. Then, the average current can be evaluated from an effective electron

distribution like the one in Eq. (1.12) [75–77]. However, generally the time-dependent

field also influences the dynamics of the electrons on the wire. In particular, this is the

case for the dipole driving (1.8). Then, a treatment beyond Tien-Gordon theory becomes

necessary. Deriving an approach which is valid in the general case is the objective of

Chap. 2.

1.3.2 Scattering approach for static conductors

In the absence of a driving field, the computation of the coherent transport through

mesoscopic structures has become a standard procedure [26–29]. The crucial idea goes back

to Landauer who postulated already in 1957 [25] that in the absence of both inelastic effects

and electron-electron interaction, conduction can be described as a coherent scattering
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process of independent electrons. Then, an infinitesimal voltage V causes the current

I = GV with the (linear) conductance

G =
e2

h
T, (1.13)

of a one-dimensional conductor, where T is the transmission probability of an electron

at the Fermi surface. Since conductors may have non-vanishing reflection probability

1 − T , the transmission does not necessarily assume an integer value. The prefactor

e2/h = (25.8 kΩ)−1 is the so-called conductance quantum.

Originally [25], the conductance (1.13) has been proposed with T replaced by T/(1−T ).

In the beginning of the 1980’s, there has been a theoretical debate [78–80] whether or

not, the reflection coefficient 1 − T has to be included. The controversy was resolved

by considering four-terminal devices where two terminals act as voltage probes and are

considered as a part of the mesoscopic conductor [81, 82]. Then, V represents the probed

voltage and the factor 1/(1 − T ) indeed is justified. In a two-terminal device, however, V

denotes the externally applied voltage and the conductance includes a contact resistance

and is given by Eq. (1.13).

With the same ideas, Landauer theory can be generalized to the case of a finite voltage

for which the current reads

I =
e

h

∫
dE

[
fR(E) − fL(E)

]
T (E), (1.14)

with T (E) the electron transmission at energy E. The electron distribution in the left

(right) lead is given by the Fermi function fL(R) with the chemical potential µL(R) whose

difference µL − µR = eV is determined by the applied voltage. Linearization for small

voltages yields the conductance (1.13). The current formula (1.14) and the conductance

(1.13) have been derived from Kubo formula [79–81, 83, 84] and non-equilibrium Green

functions [85–87] for various microscopic models. In doing so, one usually starts by defining

a current operator, e.g. as the change of the electron charge eNL in the left lead, i.e.

I = ie[H,NL]/~. Finally, one obtains the expected expression for the current together

with a relation between the transmission T (E) and the Green function of the electrons.

In order to obtain an expression for the related current noise, one considers the sym-

metrized correlation function

S(t, t′) =
1

2

〈
[∆I(t),∆I(t′)]+

〉
(1.15)

of the current fluctuation operator ∆I(t) = I(t) − 〈I(t)〉, where the anticommutator

[A,B]+ = AB+BA ensures hermiticity. For a stationary process, the correlation function

S(t, t′) = S(t− t′) is a function of only the time difference. Then, the noise strength can

be characterized by the zero-frequency component

S =

∫ ∞

−∞

dτ S(τ), (1.16)
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which obeys S ≥ 0 according to the Wiener-Khinchine theorem. In terms of the transmis-

sion function T (E), the noise strength S reads [30]

S =
e2

h

∫
dE

{
T (E)

[
fL(E)[1 − fL(E)] + fR(E)[1 − fR(E)]

]

+ T (E)
[
1 − T (E)

][
fR(E) − fL(E)

]2
}
.

(1.17)

A dimensionless measure for the relative noise strength, is the so-called Fano factor [88]

F =
S

e|I| . (1.18)

Note that in a two-terminal device, both the absolute value of the average current and

the noise strength are independent of the contact `. Historically, the zero-frequency noise

(1.16) contains a factor 2, i.e., one considers S ′ = 2S, resulting from a different definition

of the Fourier transform. Then, the Fano factor is defined as F = S ′/2e|I|. The definition

(1.18) is such that a Poisson process corresponds to F = 1.

The generalization of the noise expression (1.17) to driven systems must also account

for absorption and emission. Owing to this energy non-conserving processes, the zero-

frequency noise is no longer given solely in terms of transmission probabilities but also

depends on the phases of the transmission amplitudes [A5,A9,40]; cf. Eq. (2.19), below.

1.3.3 Master equation

A different strategy for the computation of stationary currents relies on the derivation of

a master equation for the dynamics of the wire electrons. There, the central idea is to

consider the contact Hamiltonian (1.4) as a perturbation, while the dynamics of the leads

and the wire, including the external driving, is treated exactly. From the Liouville-von

Neumann equation i~%̇(t) = [H(t), %(t)] for the total density operator %(t) one obtains by

standard techniques [89, 90] the approximate equation of motion

%̇(t) = − i

~
[Hwire(t) +Hleads, %(t)]

− 1

~2

∫ ∞

0
dτ [Hcontacts, [H̃contacts(t− τ, t), %(t)]].

(1.19)

The tilde denotes operators in the interaction picture with respect to the molecule and the

lead Hamiltonian without the molecule-lead coupling, X̃(t, t′) = U †
0(t, t′)X U0(t, t

′), where

U0 is the propagator without the coupling. For the evaluation of Eq. (1.19) it is essential

to use an exact expression for the zeroth-order time evolution operator U0(t, t
′). The use

of any approximation bears the danger of generating artifacts, which, for instance, may

lead to a violation of fundamental equilibrium properties [91,92] as discussed in Sec. 2.1.2.

In order to make practical use of equation (1.19), one has to trace over the lead degrees

of freedom and thereby obtains a master equation for the reduced density operator of

the wire electrons. Subsequently, the reduced density operator is decomposed into the

eigenstates of the wire Hamiltonian Hwire—or the corresponding Floquet states (2.2) if
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the system is driven. As a further simplification, one might neglect off-diagonal matrix

elements and, thus, obtain a master equation of the Pauli type, i.e., a closed equation

for the occupation probabilities of the eigenstates [56, 93, 94]. For driven systems close to

degeneracies of the quasienergies, however, such a Pauli master equation is not reliable as

has been exemplified in Ref. [A10].



2 Floquet transport theory

Floquet theory represents a proper tool for the treatment of periodically driven systems.

Originally developed for ordinary differential equations [95], it has been adapted to the

case of purely coherent quantum dynamics [96–98], scattering theory [32, 33], dissipative

quantum mechanics [99–102], and also classical Brownian motion [103]. Of specific inter-

est in the present context are methods that combine Floquet theory with the established

transport theories presented in the introduction [56, 104]. This chapter reviews contribu-

tions by the present author to these approaches. In particular, a Floquet master equation

approach [A4,A10], a Floquet scattering theory [A9], and a high-frequency approximation

scheme [A6,A9] are discussed.

2.1 Floquet master equation approach

For a perturbative treatment of the wire-lead coupling in a transport problem, one con-

veniently starts from the master equation (1.19) which depends implicitly via the inter-

action picture operator with respect to the uncoupled subsystems on the dynamics of the

electrons on the isolated wire. Therefore, the solution of the master equation requires

knowledge of the electron dynamics in the driven wire in the absence of the leads. This

will be calculated with the help of Floquet theory. A clear advantage of this approach is

the possibility to directly include phonon damping. A drawback is its restriction to weak

and intermediate wire-lead couplings. The master equation presented below goes beyond

the one of Ref. [94] in two respects: Firstly, it contains also off-diagonal elements of the

reduced density matrix which in some cases are essential [A10]. Secondly, in a further

step, the master equation is extended to the case of phonon damping. This brings about

an effective electron-electron interaction and renders the master equation non-linear.

2.1.1 Coherent transport

At a first stage, we focus on coherent1 transport and derive an expression for the ac current

defined as the net (incoming minus outgoing) electrical current through the left contact.

It is given by minus the time-derivative of the electron number in the left lead multiplied

by the electron charge −e, IL(t) = e(d/dt)〈NL〉. From the master equation (1.19) follows

in the wide-band limit the expression

IL(t) = e tr[%̇(t)NL]

=
e

~
ΓL

〈
c†1c1

〉
− e

ΓL

π~2
Re

∫ ∞

0
dτ

∫
dε ei(ε+µL)τ/~f(ε)

〈
[c1, c̃

†
1(t− τ, t)]+

〉
. (2.1)

1In this context, the term “coherent” refers to the dynamics of single electrons in the entire wire-lead

setup in the absence of phonon damping.
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and mutatis mutandis for the net current through the right contact. Equation (2.1) ex-

presses the current by the expectation values 〈[cn, c̃n(t−τ, t)]+〉 and 〈c†1c1〉. We emphasize

that these quantities depend on the dynamics of the isolated wire and are thus influenced

by the driving via the interaction picture operator c†1(t− τ, t).

Floquet decomposition

In order to gain an explicit expression for c̃1, we focus on the driven molecule decoupled

from the leads. Since its Hamiltonian is periodic in time, Hnn′(t) = Hnn′(t+T ), T = 2π/Ω,

we can solve the time-dependent Schrödinger equation within a Floquet approach, i.e., we

make use of the fact that there exists a complete set of solutions of the form

|ψα(t)〉 = e−iεαt/~|φα(t)〉 (2.2)

with the quasi-energies εα. The so-called Floquet states |φα(t)〉 obey the time-periodicity

of the driving field and, thus, can be decomposed into a Fourier series,

|φα(t)〉 =
∞∑

k=−∞

e−ikΩt|φα,k〉. (2.3)

Moreover, the Floquet states fulfill the quasienergy equation [96, 97, 101, 102, 105]

(
H(t) − i~

d

dt

)
|φα(t)〉 = εα|φα(t)〉, (2.4)

where H(t) =
∑

n,n′ |n〉Hnn′(t)〈n′| denotes the single-particle Hamiltonian (1.8) of the wire

electrons. A wealth of methods for the solution of this eigenvalue problem can be found

in the literature [101,105]. Among them are the numerical diagonalization of the operator

on left-hand side of eigenvalue equation (2.4), propagation schemes [106], perturbation

theory [50, 97, 107], and matrix-continued fraction schemes [105, 108].

To make use of the knowledge about the driven molecule that we obtain from Floquet

theory, we define the Floquet representation of the fermionic creation and annihilation

operators by the time-dependent transformation

cα(t) =
∑

n

〈φα(t)|n〉 cn, (2.5)

cn =
∑

α

〈n|φα(t)〉 cα(t). (2.6)

The back transformation (2.6) follows from the mutual orthogonality and the completeness

of the Floquet states at equal times [101]. It is now straightforward to prove that c̃α(t −
τ, t) = cα(t) exp(iεατ/~). Technically, the separation of the times t and τ is crucial because

it enables the evaluation of the corresponding time and energy integrations. Averaging

IL(t) over the driving period yields the dc current

Ī = −eΓL

~

∑

αk

[
〈φα,k|1〉〈1|φα,k〉fL(εα + k~Ω) −

∑

βk′

〈φα,k′+k|1〉〈1|φβ,k′〉Rαβ,k

]
, (2.7)
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where Rαβ(t) = 〈c†β(t)cα(t)〉 =
∑

k e−ikΩtRαβ,k denotes the single-particle density operator

in the Floquet basis. We have used the fact that the Rαβ(t) are expectation values of a

dissipative, periodically driven system. Therefore, in the long-time limit, they share the

time-periodicity of the driving field and, consequently, the long-time limit of Rαβ(t) can

be represented by a Fourier series.

Reduced master equation in Floquet basis

The remaining task in computing the stationary current is to find the Fourier coefficients

Rαβ,k at asymptotic times. For that purpose, we derive a master equation for the Rαβ(t)

from Eq. (1.19) by tracing out the leads’ degrees of freedom followed by inserting the

Floquet decomposition (2.6) for the wire operators. Since all coefficients of this master

equation as well as its asymptotic solution are T -periodic, we can split it into its Fourier

components. Finally, we obtain for the Rαβ,k the inhomogeneous set of equations

i(εα − εβ + k~Ω)Rαβ,k =
ΓL

2

∑

k′

{ ∑

β′k′′

〈φβ,k′′+k′ |1〉〈1|φβ′ ,k′′+k〉Rαβ′,k′

+
∑

α′k′′

〈φα′,k′′+k′ |1〉〈1|φα,k′′+k〉Rα′β,k′

− fL(εα + k′~Ω)〈φβ,k′−k|1〉〈1|φα,k′ 〉

− fL(εβ + k′~Ω)〈φβ,k′ |1〉〈1|φα,k′+k〉
}

+ same terms with the replacement (L, 1) ↔ (R,N).

(2.8)

For the typical parameter values used below, a large number of sidebands contributes

significantly to the Fourier decomposition of the Floquet modes |φα(t)〉. Numerical con-

vergence for the solution of the master equation (2.8), however, is already obtained by

using a few sidebands for the decomposition of Rαβ(t). This keeps the numerical effort

relatively small and justifies the use of the Floquet representation (2.6). It enables to

treat the problem beyond the usual rotating-wave-approximation [94]. In certain parame-

ter regimes, avoiding a rotating-wave approximation indeed turns out to be crucial [A10].

2.1.2 Phonon damping

In order to describe the electron transport under the influence of phonon damping, com-

monly a bosonic heat bath is coupled to each wire site, which renders the on-site energies

fluctuating with quantum noise [10–12, 109–119]. This can be considered as an extension

of the spin-boson model to more than two sites and the presence of leads. For the master

equation (1.19), one then has in the first line in addition the Hamiltonian of the phonon

bath, while the electron-phonon coupling enters as a further dissipative contribution to

the second line. Note that this leaves the current (2.1) formally unchanged.

When evaluating the master equation, however, it turns out that in addition to the

terms containing the single-electron density matrix Rαβ(t), two-electron expectation values

of the form 〈c†δ c
†
γ cβ cα〉t appear. By iteration, one thus generates a hierarchy of equations
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up to N -electron expectation values. To obtain a description in terms of only the single-

electron expectation values, we employ the Hartree-Fock decoupling scheme defined by

the approximation

〈c†δ c†γ cβ cα〉 ≈ 〈c†δ cα〉〈c†γ cβ〉 − 〈c†δ cβ〉〈c†γ cα〉 = RαδRβγ −RβδRαγ . (2.9)

Clearly, such a mean-field approximation only covers certain aspects of the full many-

particle problem. Nevertheless, it offers a feasible and consistent description. As a most

striking consequence, the Hartree-Fock decoupling (2.9) makes the master equation non-

linear.

Thermal equilibrium

A potential problem of quantum master equations has been pointed out in Refs. [91,120],

namely that they might not be consistent with the second law of thermodynamics—in

particular, that they might not predict zero current even in the absence of both transport

voltage and driving. This apparent lack of a proper equilibrium limit, however, is not

inherent to master equations of the form (1.19) themselves, but results from an inconsistent

treatment at a later stage: It is crucial to employ in the second line of Eq. (1.19) the

exact interaction picture operators of the uncoupled subsystems. Using any approximation

indeed bears the danger of inconsistencies. Master equations whose equilibrium limit suffer

from the mentioned problems, have, e.g. been derived in Ref. [121] and applied to non-

equilibrium situations with a finite transport voltage [54, 55] and with time-dependent

fields [112, 122] where no contradiction occurs.

Therefore, an important consistency check for quantum master equations is an equi-

librium situation, where Hnn′ is time-independent and where no external bias is present

(µ` = µ for all `). It can be demonstrated [A10] that our final reduced master equation

(2.8) in the absence of both driving and voltage has the solution Rαβ = δαβfα, with the

population fα = f(Eα−µ) , determined by the Fermi distribution and the energy Eα of the

eigenstates |φα〉 which represent the undriven limit of the Floquet states. Consequently,

the current (2.7) vanishes in accordance with elementary principles of statistical physics.

2.2 Floquet scattering approach

Since the Hamiltonian (1.1) is bilinear in the creation and the annihilation operators,

the Heisenberg equations for these operators are linear. Thus, in the absence of phonon

damping, the transport problem can be solved exactly. Here, we present such an exact

solution which also makes use of a Floquet ansatz. However, then the Floquet equation

(2.4) becomes non-hermitian due to the presence of an imaginary self-energy contribution.

As a drawback, this exact Floquet treatment cannot be extended directly to situations

that include strong electron-electron correlations or phonon damping. We derive explicit

expressions for the current and the noise strength only for the wide-band limit (1.6). For a

formulation beyond this limit and for the details of the calculation, the reader is referred to

Ref. [A9]. Related approaches have been presented which, however, are perturbative in the

driving Hamiltonian, [123–125] or do not obtain a “scattering form” for the current [36,37].



2.2 Floquet scattering approach 15

Floquet ansatz for the propagator

For the retarded Green function of the wire electrons, one finds, after eliminating the

leads, the equation of motion [A5]

(
i~

d

dt
−H(t) + iΣ

)
G(t, t′) = δ(t− t′), (2.10)

where H(t) =
∑

n,n′ |n〉Hnn′(t)〈n′| and 2Σ = |1〉ΓL〈1|+ |N〉ΓR〈N | is the self-energy which

results from the coupling to the leads. For the current which is again defined as the

change of the charge in the, e.g. left lead, IL = e(d/dt)〈NL〉, we find after some algebra

that it assumes the commonly expected “scattering form” [27] but with periodically time-

dependent transmission probabilities. In addition, we obtain a contribution that accounts

for a T -periodic charging and discharging of the wire [A5,A9] which vanishes in the average

over one driving period. Here, we restrict ourselves to the time-averaged current

Ī =
e

h

∞∑

k=−∞

∫
dε

{
T

(k)
LR(ε)fR(ε) − T

(k)
RL(ε)fL(ε)

}
. (2.11)

T
(k)
LR(ε) = ΓLΓR|G(k)

1N (ε)|2 denotes the transmission of an electron with energy ε from the

right lead to the left lead under the absorption (emission) of |k| photons if k > 0 (k < 0) and

T
(k)
RL(ε) accordingly. G

(k)
1N (ε) denotes the relevant matrix elements of the Fourier transform

of the retarded Green function

G(k)(ε) =
1

T

∫ T

0
dt eikΩt

∫ +∞

−∞

dτ eiετ/~ G(t, t− τ). (2.12)

Note that, consistent with Ref. [34], no “Pauli blocking factors” 1 − f` appear in the

current formula (2.11). In contrast to a static situation, this is of relevance here since for

a driven system T
(k)
LR(ε) and T

(k)
RL(ε) are in general unrelated. Since the coefficients of the

equation of motion (2.10) are T -periodic, a complete solution can be constructed with the

help of the Floquet ansatz

|ψα(t)〉 = exp[(−iεα/~ − γα) t] |uα(t)〉 (2.13)

which differs from (2.2) by the imaginary part −i~γα of the quasienergies. Like in the

coherent case, the Floquet states

|uα(t)〉 =
∑

k

|uαk〉 exp(−ikΩt) (2.14)

obey the time-periodicity of the Hamiltonian. In a Hilbert space that is extended by a

periodic time coordinate, they fulfill the Floquet eigenvalue equation

(
H(t) − iΣ − i~

d

dt

)
|uα(t)〉 = (εα − i~γα)|uα(t)〉. (2.15)

Since the eigenvalue equation (2.15) is non-hermitian, its eigenvalues εα−i~γα are generally

complex valued and the (right) eigenvectors are not mutually orthogonal. Therefore, we
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need to solve also the adjoint Floquet equation yielding again the same eigenvalues but

providing the adjoint eigenvectors |u+
α (t)〉. Thus, we find the retarded Green function

G(t, t− τ) = − i

~

∑

α

|ψα(t)〉〈ψ+
α (t− τ)|Θ(τ) = G(t+ T , t+ T − τ) (2.16)

and, consequently,

G
(k)
nn′(ε) =

∑

α,k′

〈n|uα,k′+k〉〈u+
α,k′ |n′〉

ε− (εα + k′~Ω − i~γα)
. (2.17)

The current noise is given by the symmetrized auto-correlation function (1.15) of the

current fluctuation operator ∆I(t) = I(t) − 〈IL(t)〉. It can be shown that after the decay

of all transients, S(t, t′) = S(t + T , t′ + T ). Therefore, it is possible to characterize the

noise level by the time-averaged zero-frequency noise,

S̄ =
1

T

∫ T

0
dt

∫ ∞

−∞

dτ SL(t, t− τ) (2.18)

which differs from the static case by a time average, cf. Eq. (1.15). Since the total charge

is conserved, the noise strength is independent of whether the current is defined via the

electron number in the left lead or in the right lead. After some algebra, one obtains

[A5,A9]

S̄ =
e2

h
ΓLΓR

∑

k

∫
dε

{
ΓLΓR

∣∣∑

k′

G
(k′−k)
N1 (εk)[G

(k′)
N1 (ε)]∗

∣∣2fL(ε)f̄L(εk)

+
∣∣ΓL

∑

k′

G
(k′−k)
1N (εk)[G

(k′)
11 (ε)]∗ − iG

(−k)
1N (εk)

∣∣2fL(ε)f̄R(εk)
}

+ same terms with the replacement (L, 1) ↔ (R,N), (2.19)

with f̄L/R = 1 − fL/R and εk = ε+ k~Ω.

Expressions (2.11) and (2.19) contain prior findings as special cases: In the absence of

any driving, the Floquet eigenvalues εα − i~γα reduce to the complex-valued eigenen-

ergies; this implies G
(k)
nn′ = 0 for all k 6= 0. Therefore, only the terms for k = 0

contribute and the the transmission probability for an electron with energy E becomes

T (E) = ΓLΓR|G(0)
N1(E)|2. Thus, the current and the noise in the static limit become the

expressions (1.14) and (1.16), respectively [30]. In order to achieve an expression for the

noise that depends only on the transmission probability T (E), we simplified the second line

of Eq. (2.19) using the relation |ΓL(ε)G11(ε)+i|2 = 1−T (ε) which is valid for undriven con-

ductors [27]. Note that in contrast to the time-dependent case, the noise expression (2.19)

cannot be brought into such a convenient form and, thus, generally depends on the phase

of the transmission amplitude.

Related expressions for the noise have also been derived for the low-frequency ac con-

ductance [38, 39] and the scattering by a slowly time-dependent potential [40]. For a

system for which the ac potential is spatially uniform in the driven region, the average

current and the noise strength follow in the low tunneling limit already from the static

conduction properties within a Tien-Gordon-like approach [126, 127].
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2.3 High-frequency approximation

Floquet theory is based on the eigenvalue equation (2.4) with the underlying structure of

an extended Hilbert space [101]. Thus, it is possible to adapt methods known from the

computation of eigenstates of a time-independent Hamiltonian, like Schrödinger pertur-

bation theory, to the driven case [96, 97]. A perturbative treatment has been applied to

driven tunneling in bistable potentials [49, 50, 128], to the motion of an electron in a su-

perlattice [51,107], and to the dynamics of two interacting electrons in a double quantum

dot [52, 129]. After a brief introduction to this perturbative approach for fully coherent

quantum systems, we describe an equivalent approach for quantum systems which are cou-

pled to external degrees of freedom and discuss its application to transport problems [A6]

and the corresponding treatment of driven dissipative quantum systems [A7].

Driven coherent quantum dynamics

Let us consider the special case of a time-dependent Hamiltonian of the form

H = H0 +H1 a(t) (2.20)

where a(t) is a T -periodic function with zero time-average. In order to derive an effective

static description, we start out by applying the unitary transformation

U0(t) = exp
(
− i

~
H1

∫ t

0
dt′a(t′)

)
(2.21)

to the Hamiltonian (2.20) followed by replacing it by its time-average

H̄0 =
1

T

∫ T

0
dt U †

0(t)H0U0(t). (2.22)

Note that U0(t) = U0(t+ T ), owing to the zero time-average of a(t). In the limit of high

driving frequencies, the static effective Hamiltonian (2.22) can be used for the description

of the time-dependent system. It has been demonstrated in the appendix of Ref. [A6] that

this heuristically introduced approximation is equivalent to a Schrödinger perturbation

theory for the Floquet Hamiltonian (2.20) with 1/Ω being a small parameter.

Electron transport through time-dependent systems

For a transport situation with the dipole driving we assign the time-dependent part of the

time-dependent wire Hamiltonian (1.8) to H1 a(t). From inserting the static part of (1.8)

into Eq. (2.22), we obtain a renormalized wire Hamiltonian as in the case of an isolated

quantum system.

A proper treatment of the wire-lead coupling Hamiltonian, however, is more involved.

This becomes clear from the following consideration: The influence of the leads on the wire

electrons can be subsumed into a Gaussian fluctuation operator with vanishing mean value

and a correlation function which is determined by the Fermi distribution [A5,A6]. How-

ever, the fluctuation operator vanishes in the average over the driving period. Therefore,
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one has to evaluate the correlation functions first and to perform a time-average at a later

stage. Then one obtains an effective electron distribution as in the case of Tien-Gordon

theory, cf. Sec. 1.3.1. The resulting static effective problem of course is much easier to

handle and can often be treated analytically.

In order to give a specific example, we anticipate the results for the transport through

a driven two-level system discussed in Ref. [A6]; cf. Chap. 5. For this example, the high-

frequency approximation scheme results in a renormalization of the tunnel matrix element

between the two sites, ∆, and an effective electron distribution, i.e.,

∆ −→ ∆eff = J0(A/~Ω)∆, (2.23)

f`(ε) −→ feff(ε) =
∑

k

J2
k (A/2~Ω)f`(ε+ k~Ω), ` = L,R (2.24)

where Jk denotes the kth order Bessel function of the first kind and A and Ω are the

driving amplitude and frequency, respectively. Note that the argument of the Bessel

function depends on the specific definition of the driving amplitude, which explains the

difference to Eq. (1.12). The effective electron distribution could have been obtained

also within a Tien-Gordon-like approach, while the renormalization of the tunnel matrix

element is (i) beyond Tien-Gordon and (ii) is essential for the agreement with the exact

numerical results [A6].

Dissipative quantum mechanics

Although we here focus on the electron transport between two leads, it is worth men-

tioning that the ideas presented in this subsection can also be applied to driven quantum

systems coupled to a (single) bosonic heat bath [A7]. Again, the driving comes into play

at two stages: First, it renormalizes the coherent dynamics and, second, the spectral

density of the bath has to be evaluated at the energies of all sidebands. The latter cor-

responds to modifying the auto-correlation function of the bath operators, similar to the

replacement (2.24).

In Ref. [A7], we studied a model whose static part of the Hamiltonian reads

H0 = −∆

2
σz + σx ξ, (2.25)

where σx,z denote Pauli spin matrices and ξ is a shorthand notation for quantum noise

due to the bath operators. As a driving, the two possibilities Ha = σxa cos(Ωt) and

Hb = σzb cos(Ωt) were considered. Since Ha commutes with the system-bath coupling, the

transformation with U0 renormalizes the system Hamiltonian while the coupling remains

unaffected. The opposite is true for Hb: It keeps the system Hamiltonian unchanged,

but modifies the coupling to the bath such that the bath correlation function now has

to be evaluated also at the sideband energies. For appropriate parameters, both kinds of

driving stabilize the coherence of the dissipative two-level system [A7]. Such effects have

been observed in nuclear magnetic resonance [130–132] and, moreover, are discussed in

the context of quantum information.
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A natural starting point for the experimental investigation of molecular conduction under

the influence of laser fields is the observation of resonant excitations of electrons from the

donor and the acceptor site to bridge levels. As a working model we consider a so-called

bridged molecular wire consisting of a donor and an acceptor site and N − 2 sites in

between (cf. Fig. 3.1). Each of the N sites is coupled to its nearest neighbors by a hopping

matrix element ∆. The dipole force (1.8) of the laser field renders each level oscillating

in time with a position-dependent amplitude. The energies of the donor and the acceptor

orbitals, |1〉 and |N〉, are assumed to be close to the chemical potentials of the attached

leads, E1 = EN ≈ µL ≈ µR. The bridge levels En, n = 2, . . . , N − 1, lie EB � ∆, eV

above the chemical potential.

Static conductor

Let us discuss first the static problem in the absence of the field, i.e., for A = 0. In the

present case where the coupling energy between two neighboring sites is much smaller

than the bridge energy, ∆ � EB , one finds two types of eigenstates: One group of

states is located on the bridge. It consists of N − 2 levels with energies in the range

[EB − 2∆, EB + 2∆]. In the absence of the driving field, these bridge states mediate the

super-exchange between the donor and the acceptor. The two remaining states form a

doublet whose states are approximately given by (|1〉 ± |N〉)/
√

2. Its splitting can be

estimated in a perturbative approach [133] and is approximately given by 2∆(∆/EB)N−2.

Thus, the wire can be reduced to a two-level system with the effective tunnel matrix

element ∆DA = ∆exp[−κ(N − 2)], where κ = ln(EB/∆). If the chemical potentials of

the leads are such that µL > ED and µR < EA, i.e., for a voltage which is larger than the

tunnel splitting but still much smaller than the bridge height, the current is dominated

by the total transmission and for Γ � ∆DA can be evaluated to read

I0 =
2e|∆|2

Γ
e−2κ(N−2). (3.1)

For the explicit calculation see, e.g. Ref. [A6]. In particular, one finds an exponentially

decaying length dependence of the current [9,13]. Moreover, in this limit, it is also possible

to evaluate explicitly the zero-frequency noise to obtain the Fano factor F = S̄/e|Ī | = 1.

This value has a direct physical interpretation: Since the transmissions of electrons across

a large barrier are rare and uncorrelated events, they obey Poisson statistics and, thus,

variance and mean value are equal which translates to a Fano factor of one [88].

Resonant excitations

The magnitude of the current changes significantly when a driving field with a frequency

Ω ≈ EB/~ is switched on. Then the resonant bridge levels merge with the donor and
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|N〉|1〉

|2〉 |N−1〉

µL
µR
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(acceptor)(donor)

∆

∆

Figure 3.1: Bridged molecular wire consisting of N = 8 sites of which the terminating sites are
coupled to leads with chemical potentials µL and µR = µL − eV .

the acceptor state to form a Floquet state. This opens a direct channel for the transport

resulting in an enhancement of the electron current.

In order to estimate the magnitude of the current through the resonantly driven wire,

we disregard all bridge levels besides the one that is in resonance with the donor and

the acceptor. Let us assume that this resonant bridge level |ψB〉 extends over the whole

bridge such that it comprises the sites |2〉, . . . , |N−1〉 with equal probability amplitude

1/
√
N − 2. Accordingly, the overlap between the bridge level and the donor/acceptor

becomes

〈1|Hmolecule|ψB〉 =
〈1|Hmolecule|2〉√

N − 2
=

∆√
N − 2

= 〈ψB |Hmolecule|N〉, (3.2)

while the resonance condition defines the energy of the bridge level as

〈ψB |Hmolecule|ψB〉 = ~Ω. (3.3)

It is now possible to apply an approximation scheme in the spirit of the high-frequency

approximation described in Sec. 2.3; for details see Ref. [A8]. Thereby one derives for the

time-dependent system the static effective Hamiltonian

Hmolecule,eff =




0 b 0

b 0 b

0 b 0


 , (3.4)

which describes a wire consisting of three levels with equal on-site energy and the tunnel

matrix element renormalized according to

∆ −→ b =
J1(A/~Ω)√
N − 2

∆, (3.5)

where J1 denotes the first-order Bessel function of the first kind.

The situation described by the Hamiltonian (3.4) is essentially the following: The

central site |ψB〉 is coupled by matrix elements b to the donor and the acceptor site. Since
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the latter couple to the external leads with a self energy Γ/2, their density of states is

%(E) =
1

π

Γ/2

E2 + Γ2/4
. (3.6)

Then, the tunneling from and to the central site is determined by the golden rule rate

w =
2π

~
|b|2%(0). (3.7)

Like in the static case, we assume that the chemical potential of the left (right) lead lies

above (below) the on-site energy of the donor (acceptor) and that therefore the donor is

always occupied while the acceptor is always empty. Then, the electron tunneling rate

from the central site to the acceptor is given by the golden rule rate (3.7) times the

occupation probability p of the state |ψB〉. Accordingly, the rate of electrons from the

donor to |ψB〉 is given by w times the probability (1 − p) to find the central site empty.

Consequently, the occupation of the resonant bridge level evolves according to the master

equation ṗ = w(1 − p) − wp with the stationary solution p = 1/2. Thus, for resonant

excitations, the dc contribution of the time-dependent current is given by

Īres = ew p = e
2A2∆2

(N − 2)~3Ω2Γ
. (3.8)

Here, we have used the approximation J1(x) ≈ x which is valid for small arguments of the

Bessel function. As a major difference to the static case, the dc current (3.8) obeys an

intriguing scaling behavior as a function of the wire length: Instead of the exponentially

decaying length dependence (3.1) that has been found for the static case, in the presence

of resonant driving, a scaling Ī ∝ 1/N emerges. In particular for longer wires, this means

that the external field enhances the conductance significantly.

Numerical results

In order to corroborate the analytical estimates presented above, we treat the transport

problem defined by the wire Hamiltonian numerically by solving the corresponding Floquet

equation (2.15) and a subsequent evaluation of the expressions (2.11) and (2.19) for the dc

current and the zero-frequency noise, respectively. For a wire with N = 5 sites, one finds

peaks in the current when the driving frequency matches the energy difference between

the donor/acceptor doublet and one of the N − 2 = 3 bridge levels, cf. the solid line

in Fig. 3.2a. The applied voltage is always chosen so small that the bridge levels lie

well below the chemical potentials of the leads. In Figure 3.2a, the scale of the abscissa

is chosen proportional to (N − 1) such that it suggests a common envelope function.

Furthermore, we find from Fig. 3.2b that the dc current is proportional to A2/Γ provided

that A is sufficiently small and Γ sufficiently large. Thus, the numerical results indicate

that the height of the current peaks obeys Īpeak ∝ A2/(N − 1)Γ [A2], which is essentially

in accordance with our analytical estimate (3.8). The main discrepancy comes from the

fact that the overlap between the resonant level and the donor/acceptor differs from the

estimate (3.2) by a numerical factor of the order one. Moreover, Fig. 3.2c demonstrates

that, at the resonances, the Fano factor assumes values considerably lower than unity,

F ≈ 1/2, as in the case of resonant tunneling through a single level [30].
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Figure 3.2: Exact numerical evaluation of the average current within Floquet formalism. (a)
Average current Ī as a function of the the driving frequency Ω for various wire length N . The
scaled amplitude is A = 0.1∆; the applied voltage µR − µL = 5∆/e. The other parameters read
Γ = 0.1∆, EB = 10∆, and kBT = 0. (b) Average current for various driving amplitudes A and
coupling strengths Γ for a wire of length N = 8. (c) Fano factor F = S̄/eĪ for the wire length
N = 8 and the wire-lead coupling Γ = 0.1∆. From Ref. [A8].



4 Non-adiabatic electron pumping

A widely studied phenomenon in driven transport is the so-termed ratchet effect: the

conversion of ac forces without a net bias into directed motion [41–44, 134, 135]. The in-

vestigation of this phenomenon has been triggered by the question whether an asymmetric

device can act as a Maxwell demon, i.e., whether it is possible to ultimately convert noise

into work. Feynman’s famous “ratchet and pawl” driven by random collisions with gas

molecules, on first sight, indeed suggests that such a Maxwell demon exists. At thermal

equilibrium, however, the whole nano-device obeys the same thermal fluctuations as the

surrounding gas molecules. Therefore, consistent with the second law of thermodynamics,

no directed motion occurs [136] and one has to conclude that the ratchet effect can be

observed only in situations far from equilibrium.

A basic model, which captures the essential physics of ratchets, is an asymmetric, pe-

riodic potential under the influence of an ac driving. In such a system, even in the absence

of any net bias, directed transport has been predicted for overdamped classical Brown-

ian motion [41, 44] and also for dissipative quantum Brownian motion in the incoherent

regime [45,46]. A related effect is found in the overdamped limit of dissipative tunneling in

driven superlattices. There, the spatial symmetry is typically preserved and the directed

transport is brought about by a driving field that includes higher harmonics of the driving

frequency [137–139].

In the context of mesoscopic conduction, it has been found that the cyclic adiabatic

change of the conductor parameters can induce a so-called pump current, where the charge

pumped per cycle is determined by the area of parameter space enclosed during the cyclic

evolution [20, 22, 140]. This relates the pump current to a Berry phase [21, 47]. Beyond

the adiabatic regime, pump effects have been investigated theoretically [24,37,48,56,104]

and also been measured in coupled quantum dots [16,54,141]. Since in the non-adiabatic

regime, the main contribution to the pump current comes from electrons considerably

below the Fermi surface, non-adiabatic electron pumping is essentially temperature inde-

pendent [23].

The studies presented in this chapter were mainly motivated by two aspects: First,

although infinitely extended “ideal” ratchets are convenient theoretical models, any ex-

perimental realization will have finite length, i.e., consist of a finite number of elementary

units; cf. Fig. 4.2, below. Thus, finite size effects become relevant and it is intriguing to

know the number of coupled wire units that are needed to mimic the behavior of a prac-

tically infinite system. Second, prior studies of quantum ratchets focussed on incoherent

tunneling [45, 46]. By contrast, the present setup allows to investigate ratchet dynamics

in the coherent quantum regime which has not been explored previously.

The results of this section, have originally [A1,A4] been computed for finite tempera-

tures within the master equation approach of Sec. 2.1. In the limit of zero temperature,

but otherwise equal parameters, the results from that perturbative treatment agree almost

perfectly with the exact solution obtained from Eq. (2.11).
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Figure 4.1: Scattering process of an electron with energy ε under the absorption of k photons
(solid line) and its symmetry related partner (dashed) for time-reversal symmetry (a), time-reversal
parity (b), and generalized parity (c). The processes depicted in each panel occur with equal
probability.

Symmetry considerations

It is known from the study of deterministically rocked periodic potentials [142] and of

driven classical Brownian particles [143] that the symmetry of the equations of motion

may rule out any non-zero average current at asymptotic times. Thus, before starting

to compute ratchet currents, let us first analyze what kind of symmetries may prevent

the effect. We consider situations, where the electron distributions in both leads are

identical—in particular, situations where both leads are in thermal equilibrium with a

common chemical potential, fL(ε) = fR(ε) ≡ f(ε) for all ε. Then, no electromotive force

acts and, consequently, in the absence of driving, all currents must vanish. An applied

driving field, however, violates the equilibrium condition and can entail a finite dc current

Ipump =
e

h

∑

k

∫
dε

[
T

(k)
LR(ε) − T

(k)
RL(ε)

]
f(ε). (4.1)

Obviously, Ipump vanishes if the condition T
(k)
LR(ε) = T

(k)
RL(ε) is fulfilled for all k and ε.

One might now ask whether this condition can be ensured by any symmetry relation.

Relevant symmetries which come to mind are time-reversal symmetry, time-reversal parity,
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Figure 4.2: Level structure of the wire ratchet with N = 8 sites, i.e., Ng = 2 asymmetric
molecular groups. The bridge levels are EB above the donor and acceptor levels and are shifted
by ±ES/2.

and generalized parity, which are defined by the operations

ST : t→ −t, (4.2)

STP : (x, t) → (−x,−t), (4.3)

SGP : (x, t) → (−x, t+ T /2), (4.4)

respectively. Note that time-reversal, in addition to t→ −t, requires to replace the transi-

tion amplitude G(t, t′) by its complex conjugate [144]. From the definition of G(k)(ε), see

Eq. (2.12), follows that, provided the wire-lead Hamiltonian (1.1) obeys the correspond-

ing symmetry, the transmissions in each panel of Fig. 4.1 occur with equal probability.

Obviously, only the generalized parity SGP directly yields T k
LR(ε) = T k

RL(ε) such that the

average current (4.1) vanishes. By contrast, the presence of time-reversal symmetry still

allows a finite Ipump. Time-reversal parity STP has some rather subtle consequence [A4]:

Expanding the transmission in powers of the wire-lead coupling Γ, one finds that un-

der this symmetry, the current vanishes to linear order. This means that for a ratchet

with time-reversal parity, we no longer find the generic behavior Ipump ∝ Γ, but rather

Ipump ∝ Γ2.

In the following, we consider two typical cases where generalized parity is broken and,

thus, a pump current emerges, namely (i) an asymmetric structure under the influence of a

harmonic dipole force, the so-called rocking ratchet, and (ii) a spatially symmetric system

for which generalized parity is broken dynamically by mixing with higher harmonics.

Spatial symmetry breaking: coherent quantum ratchets

A straightforward way to break generalized parity, is the use of a conductor with an asym-

metric level structure. Then, already a purely harmonic dipole driving a(t) = A sin(Ωt) in

the Hamiltonian (1.8) is sufficient to generate a dc current. As a tight-binding model of

such a structure, we have considered a wire consisting of a donor and an acceptor site and

Ng asymmetric groups in the ratchet-like configuration sketched in Fig. 4.2. In molecular

structures, such an asymmetry can be achieved in many ways, and was explored as a source

of molecular rectifying since the early work of Aviram and Ratner [145] and later found
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Figure 4.3: Time-averaged current as a function of the driving frequency Ω for A = 2∆ and
Ng = 1. The bridge parameters are EB = 10∆, ES = ∆, the driving frequency is Ω = 3∆/~,
the coupling to the leads is chosen as ΓL = ΓR = 0.1∆/~, and no voltage is applied, µL = µR.
The temperature is kBT = 0.25∆. The inset displays the dependence of the average current on
an externally applied static voltage V , which we assume here to drop linearly along the molecule.
The driving frequency is Ω = 3∆/~ (cf. arrow in main panel). From Ref. [A1].

experimentally [3, 63]. In general, it can be controlled by attaching different chemical

groups to the opposite sides of an otherwise symmetric molecular wire [3, 63, 146]. In our

model, the inner wire states are arranged in Ng groups of three, i.e. N − 2 = 3Ng. In each

group, the first (last) level is lowered (raised) by an energy ES/2, forming an asymmetric

saw-tooth like structure. The energies of the donor and the acceptor orbitals are assumed

to be at the level of the chemical potentials of the attached leads and since no voltage is

applied, E1 = EN = µL = µR. The bridge levels En lie at EB and EB ±ES/2.

A quantitative analysis of a tight-binding model has demonstrated that the resulting

ratchet currents lie in the range of 10−9–10−8 A [A1] and, thus, can be measured with

today’s techniques. In the limit of very weak driving, we find Ipump ∝ ESA
2 [A4]. This

behavior is expected from symmetry considerations: On one hand, the asymptotic current

must be independent of any initial phase of the driving field and therefore is an even

function of the field amplitude A. On the other hand, Ipump vanishes for zero step size

since then generalized parity is restored. This also indicates that the ratchet effect can

only be obtained from a treatment beyond linear response.

While for rather short wires (Ng . 3), even the sign of the current may depend on the

number Ng of asymmetric groups, the current becomes practically length-independent for

wires that comprise five or more wire units [A1,A4]. As a practical consequence, already

relatively short wires can mimic the behavior of an (infinitely extended) quantum ratchet.

Moreover, the fact that Ipump converges to a finite value if the number of wire units is

enlarged, demonstrates that the dissipation caused by the coupling to the leads is sufficient

to establish the ratchet effect in the limit of long wires. Figure 4.3 depicts the average

current vs. the driving frequency Ω, exhibiting resonance peaks as a striking feature.

Comparison with the quasienergy spectrum reveals that each peak corresponds to a non-
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Figure 4.4: Average current response to the harmonic mixing signal with amplitudes A1 = 2A2 =
∆, as a function of the coupling strength for different phase shifts φ. The remaining parameters are
Ω = 10∆/~, EB = 5∆, kBT = 0.25∆, N = 10. The dotted line is proportional to Γ; it represents
a current which is proportional to Γ2. From Ref. [A4].

linear resonance between the donor/acceptor and a bridge orbital. While the broader peaks

at ~Ω ≈ EB = 10∆ match the 1:1 resonance (i.e. the driving frequency equals the energy

difference), one can identify the sharp peaks for ~Ω . 7∆ as multi-photon transitions. The

appearance of these resonance peaks clearly demonstrates that the conductor in Fig. 4.2

acts as a coherent quantum ratchet. As a consequence of the broken spatial symmetry of

the wire, one expects an asymmetric current-voltage characteristic. This is indeed found

as depicted in the inset of Fig. 4.3.

Moreover, the ratchet current possesses accidental zeros, i.e., it vanishes at isolated

points of parameter space although symmetry permits a non-zero value [A1]. Such pa-

rameter values are particularly interesting for applications since there, by variation of one

parameter the current can be routed towards the one or the other direction.

Dynamical symmetry breaking: harmonic mixing

A pump effect is also found for spatially symmetric wires with the level structure sketched

in Fig. 3.1. Then, the static part of the wire Hamiltonian (1.8) obeys parity symmetry

and, thus, for purely harmonic driving, generalized parity rules out a non-zero dc current.

In order to break generalized parity in a dynamical way, we add a second harmonic, i.e., a

contribution with twice the fundamental frequency, to the driving field. Thus, we consider

a(t) = A1 sin(Ωt) +A2 sin(2Ωt+ φ). (4.5)

While now shifting the time t by half a driving period, i.e. by π/Ω, changes the sign

of the fundamental frequency contribution, the second harmonic is left unchanged. The

generalized parity is therefore no longer present and we expect to find a non-vanishing

average current.

The phase shift φ here plays a subtle role. For φ = 0 (or equivalently any multiple of π)

the dipole Hamiltonian (1.8) is invariant under the time-reversal parity (4.3). Therefore,
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as argued above, the pump current vanishes to linear order in the wire-lead coupling

Γ [A4]. Since the higher-order contributions typically remain finite, one expects a dc

current Ipump ∝ Γ2. Figure 4.4 confirms this prediction. Yet one observes that already a

small deviation from φ = 0 is sufficient to restore the usual weak coupling behavior, namely

a current which is proportional to the coupling strength Γ. For very weak coupling and

small driving amplitudes, we find a pump current proportional to sinφ; with increasing

wire-lead coupling, the phase dependence of the current shifts towards cosφ [A10]. As a

potential application, this effect bears the possibility of sensitively detecting phase lags

between the fundamental mode and the second harmonic.

Other features of the harmonic mixing current resemble the ones discussed in the

preceding section for ratchet-like wires. In particular, we again find current reversals and

also that the current becomes essentially independent of the wire length. Typically, the

current reaches convergence for a length N & 10 [A4].

Phonon damping

Including also the coupling of the wire electrons to a phononic heat bath, one can no

longer employ the scattering formula (2.11) and, thus, has to resort to the master equation

approach of Sec. 2.1 for the computation of the dc current. Here we only mention the main

findings and refer the reader to the original work, Ref. [A10]: The presence of phonon

damping, generally increases the pump current up to one order of magnitude. This means

that for quantum ratchets, noise plays a rather constructive role. Moreover, phonon

damping influences the dependence of the current on the phase lag since it provides an

additional shift towards a cosφ behavior.



5 Coherent current control

A prominent example for the control of quantum dynamics is the so-called coherent de-

struction of tunneling, i.e., the suppression of the tunneling dynamics of a particle in a

double-well potential [49] and in a two-level system [49, 50]. Recently, coherent destruc-

tion of tunneling has also been found for the dynamics of two interacting electrons in a

double quantum dot [52, 129]. A closely related phenomenon is the miniband collapse in

ac-driven superlattices which yields a suppression of quantum diffusion [51, 107, 147]. In

this chapter, we address the question whether a corresponding transport effect exists: If

two leads are attached to the ends of a driven tunneling system, is the suppression of

tunneling visible in conductance properties? Since time-dependent control schemes can

be valuable in practice only if they operate at tolerable noise levels, the question is also

whether the corresponding noise strength can be kept small or even be controlled.

Coherent destruction of tunneling

In order to introduce the reader to the essentials of coherent destruction of tunneling

in isolated quantum systems, we consider a single particle in a driven two-level system

described by the Hamiltonian

HTLS(t) = −∆

2
σx +

A

2
σz cos(Ωt). (5.1)

If the energy of the quanta ~Ω of the driving field exceeds the energy scales of the wire,

one can apply the high-frequency approximation scheme of Sec. 2.3 [A6,50] and finds that

the dynamics can be described approximately by the static effective Hamiltonian (2.22)

which in the present case becomes

H̄TLS,eff = −∆eff

2
σx, (5.2)

with the tunnel matrix element renormalized according to

∆ −→ ∆eff = J0(A/~Ω)∆. (5.3)

Again, J0 denotes the zeroth order Bessel function of the first kind. If the ratio A/~Ω

equals a zero of the Bessel function J0 (i.e., for the values 2.405.., 5.520.., 8.654.., . . . ), the

effective tunnel matrix vanishes and the tunneling is brought to a standstill.

This reasoning is readily generalized to other tight-binding systems: If neighboring

sites are coupled by a hopping matrix element ∆ and the difference of their on-site en-

ergies oscillates with an amplitude A, one finds that the physics is determined by the

renormalized matrix element (5.3), provided that ~Ω is the largest energy scale.
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Figure 5.1: Level structure of the molecular wire with N = 3 orbitals. The end sites are coupled
to two leads with chemical potentials µL and µR = µL − eV .

Current and noise suppressions

In order to investigate coherent destruction of tunneling in the context of transport, we

consider the wire-lead setup sketched in Fig. 5.1 where the wire is described by the dipole

Hamiltonian (1.8) with on-site energies En = 0. The wire is assumed to couple equally

to both leads, ΓL = ΓR = Γ, and the numerical results are computed with the Floquet

scattering approach of Sec. 2.2.

Figure 5.2a depicts the dc current and the zero-frequency noise for a wire with N = 3

sites and a relatively large applied voltage, µL − µR = 50∆. As a remarkable feature,

we find that for certain values of the field amplitude A, the current drops to a value of

some percent of the current in the absence of the field [A3,A5] with a suppression factor

which is fairly independent of the wire-lead coupling Γ [A10]. The corresponding noise

strength S̄ exhibits similar suppressions and, in addition, has some small plateaus in the

vicinity of the minima. The role of the plateaus is elucidated by the relative noise strength

characterized by the Fano factor (1.18) which is shown in Fig. 5.2b. Interestingly enough,

we find that the Fano factor as a function of the driving amplitude A possesses both a

sharp maximum at each current suppression and two pronounced minima nearby. For a

sufficiently large voltage, the Fano factor at the maximum assumes the value F ≈ 1/2.

Once the driving amplitude is of the order of the applied voltage, however, the Fano factor

becomes much larger. The relative noise minima are distinct and provide a typical Fano

factor of F ≈ 0.15. Reducing the coupling to the leads renders these phenomena even

more pronounced since then the suppressions occur in a smaller interval of the driving

amplitude, cf. Fig. 5.2b. The overall behavior is robust in the sense that approximately

the same values for the minima and the maximum are also found for larger wires, different

driving frequencies, different coupling strengths, and slightly modified on-site energies,

provided that ∆,Γ, En � ~Ω and that the applied voltage is sufficiently large [A9].

The behavior of the current and the noise can be understood within the high-frequency

approximation discussed in Sec. 2.3 where, one replaces the tunneling matrix element ∆

and the Fermi functions fL,R(ε) by the corresponding effective quantities, cf. Eqs. (2.23)

and (2.24). Then, current and noise are computed from the static expressions (1.14)

and (1.17), respectively. In the limit of very large voltages, eV & A we employ the

relation Jk(x) ≈ 0 for k > x [148] and find that the effective electron distributions in



Coherent current control 31

0
0

0

10 20 30

A [∆]

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

F
=

S̄
/e
|Ī
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Figure 5.2: Time-averaged current Ī and zero-frequency noise S̄ (a) as a function of the driving
amplitude A for a wire with N = 3 sites with on-site energies En = 0 and chemical potentials
µR = −µL = 25∆. The other parameters read Ω = 5∆/~, Γ = 0.5∆, and kBT = 0. Panel
(b) displays the Fano F factor for these parameters (full line) and for smaller wire-lead coupling
(dash-dotted line). From Ref. [A5].

the left and the right lead, in the relevant energy range, become practically one or zero,

respectively. As a consequence, the current and the noise are determined by the total

transmission which is proportional to |∆eff |2. In particular, the transmission vanishes if

the condition J0(A/~Ω) = 0 is fulfilled. The behavior of the Fano factor is determined

by the crossover from |∆eff | � Γ to |∆eff | � Γ. Both limits correspond to the transport

through a symmetric double barrier with either the wire-lead coupling or the intra-wire

coupling being the bottleneck. Thus, both limits are characterized by F ≈ 1/2 [30]. At

the crossover |∆eff | ≈ Γ the effective barriers vanish and, consequently, the Fano factor

assumes its minimum. Note that the quenching of transmission observed in Ref. [149,150]

does not result from a renormalized inter-well tunnel matrix element, but rather originates

from the appearance of the Bessel function J0 in the effective electron distribution (2.24).

For lower voltages, eV . A, the effective electron distributions can no longer be ap-

proximated by zero or one. The modification can be captured by a correction factor which

is given by a sum over squares of Bessel functions [A6,A9]. Still the comparison between

the high-frequency approximation and the exact solution shows excellent agreement, as

has been demonstrated explicitly for the transport through a driven two-level system [A6].

For a much lower driving frequency of the order of the wire excitations, Ω = ∆/~, the

high-frequency approximation is no longer applicable. Nevertheless, the average current

exhibits clear minima with a suppression factor of the order of 1/2. Compared to the
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high-frequency case, these minima are shifted towards smaller driving amplitudes, i.e.,

they occur for ratios A/~Ω slightly below the zeros of the Bessel function J0. At the

minima of the current, the Fano factor still assumes a maximum with a value close to

F ≈ 1/2. Although the sharp minima close to the current suppressions have vanished,

in-between the maxima the Fano factor assumes remarkably low values of F ≈ 0.2; cf.

Fig. 3 of Ref. [A9].

In a realistic experimental setup, the on-site energies of the wire might be distorted by

the applied transport voltage which rearranges the charge distribution in the conductor

and thereby causes an internal potential profile [151–153]. For quantum dots, this influence

can be counterbalanced by gate voltages. Still, it is desirable to investigate the influence

of an internal bias. Surprisingly, the behavior of the average current is fairly stable even

against a large bias. In particular, we still find pronounced current suppressions [A3,A9].

By contrast, the minima of the Fano factor fade out: Once the energy difference between

two neighboring sites becomes of the order of the wire-lead coupling, the structure in the

Fano factor vanishes and one finds F ≈ 1/2, unless the driving amplitude is so large that

finite-voltage effects start to play a role; cf. Fig. 5 of Ref. [A9].

Phonon damping

A further question to be addressed is the robustness of the current suppressions against

dissipation. In the corresponding tunneling problem, the driving alters both the coher-

ent and the dissipative time scale by the same factor [A7]. Thus, one might speculate

that a vibrational coupling leaves the effect of the driving on the current qualitatively

unchanged. This, however, is not the case: With increasing dissipation strength, the char-

acteristic current suppressions become washed out until they finally disappear when the

damping strength becomes of the order of the tunnel coupling ∆ [A10]. This detracting

influence underlines the importance of quantum coherence for the observation of those

current suppressions. Moreover, for the model employed in Ref. [A10], we do not find

the analogue of the effect of a stabilization of coherent destruction of tunneling within a

certain temperature range [154–156] or, likewise, with increasing external noise [157], as

it has been reported for driven, dissipative symmetric bistable systems.



6 Summary and outlook

We have studied various aspects of the electron transport through time-dependent tight-

binding systems. For the theoretical description, two formalisms have been employed

which both take advantage of the Floquet theorem. A Floquet scattering approach pro-

vides an exact solution of the time-dependent transport problem and, moreover, yields

an expression for the noise power. Interestingly, unlike in the time-independent case, the

noise depends also on the phases of the transmission amplitudes. As a drawback, this

approach is limited to the case of purely coherent transport in the absence of electron-

electron interactions. As soon as other degrees of freedom like, e.g. a phonon bath, come

into play, it is advantageous to resort to other formalisms like a Floquet master equation

approach which, however, is perturbative in the wire-lead coupling.

Of foremost interest in view of ongoing experiments, is the enhancement of molecular

conduction by resonant excitations. We have derived an analytical expression for the

current enhancement factor and, moreover, have found that the shot noise is reduced

approximately by a factor of one half.

Both molecular wires and quantum dot arrays can act as coherent quantum ratchets

and thereby operate in a regime where ratchet dynamics has not been studied previously.

Of particular practical relevance is the fact that already relatively short wires or arrays

behave like infinite systems. A symmetry analysis revealed that a ratchet or pump effect

in a wire-lead setting can only be observed in the absence of generalized parity. This leads

to the idea of pumping in a entirely symmetric system by harmonic mixing.

Coherent destruction of tunneling has a corresponding transport effect which exhibits

an even richer variety of phenomena. For driving parameters where the tunneling in

isolated unbiased systems is suppressed, the dc current drops to a small residual value.

This effect is found to be stable against a static bias. Moreover, investigation of the

corresponding noise level characterized by the Fano factor, has revealed that the current

suppressions are accompanied by a noise maximum and two remarkably low minima. This

allows to selectively control both the current and its noise by ac fields.

Many more intriguing phenomena await being unraveled or are at present under study.

Of interest for potential applications are the noise properties of non-adiabatic pumps. For

resonant excitations, these can be treated analytically within an approximation scheme in

the spirit of the one applied in Ref. [A6]. Moreover, there is experimental evidence that

the coupling of the electrons to single vibrational modes of the molecule is relevant for

molecular conductance. Thus, the wire-lead model should be extended by single phonon

modes. Even in the absence of driving, the influence of an applied voltage to the asymptotic

state of such a single phonon mode is still an unanswered question.



34



Acknowledgements

First, I would like to express my gratitude to Peter Hänggi and Gert-Ludwig Ingold for

their continued support and their interest in my research during the last years. Their

ideas were of great influence on this work.

For the fruitful collaboration during the course of this work, I like to thank Sébastien
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[39] M. H. Pedersen and M. Büttiker, Phys. Rev. B 58, 12993 (1998).

[40] G. B. Lesovik and L. S. Levitov, Phys. Rev. Lett. 72, 538 (1994).

[41] P. Hänggi and R. Bartussek, in Nonlinear Physics of Complex Systems—Current

Status and Future Trends, Vol. 476 of Lecture Notes in Physics, edited by J. Parisi,

S. C. Müller, and W. W. Zimmermann (Springer, Berlin, 1996), pp. 294–308.

[42] R. D. Astumian, Science 276, 917 (1997).
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