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Chapter 1

Introduction

Because in democratic systems the electoral outcome decides on the line of future policy,
the process of voting is of great importance for society. In general, an election consists of
two parts, both influencing its result. In the first step, each voter gives his vote to one of
the parties participating in the election. The numbers of votes in favor of the competing
parties then give rise to vote proportions, which specify the share of voters supporting a
party. In the second step, almost continuous vote proportions have to be translated into
integer numbers of seats in the parliament. Translating electoral votes into specific seat
allocations, the process of apportionment, unavoidably influences the final distribution of
power, because in general it involves some kind of adjustment of the fractional seats that
would arise if literal calculation were possible. As a consequence, it is an important issue
in proportional representation systems to measure the effects of this adjustment process,
in order to judge which apportionment method is most suitable for application.

The following chapters will concentrate on some of the most popular apportionment
methods: The quota method of greatest remainders and the stationary divisor methods.
We will investigate whether these apportionment methods, on average, treat smaller and
larger parties equally or allow a systematic advantage in either direction. For measuring
the effect of the adjustment process, the concept of seat biases has been introduced. Seat
biases are defined as averages of the difference between the seats actually apportioned to
the competing parties and their ideal shares of seats. Of course, apportionment methods
should result in vanishing seat biases for legal reasons. Assuming repeated application of
these methods, we will be able to determine the seat biases affecting the various parties.
A geometric-combinatorial approach to the calculation of seat biases will be introduced,
which turns out to be highly useful in order to evaluate this expectation. It is based on
a combination of knowledge about the geometry of sets of vote proportions leading to a
specific seat allocation and of a combinatorial method of accounting for all possible seat
allocations. The political character of the problem of a violated proportionality calls for
quantitative seat bias results, which become accessible in a rigorous fashion by means of
the geometric-combinatorial approach.

The geometry of rounding polytopes, which are the sets of vote proportions rounded
to a specific seat allocation, is discussed in chapter 2. For the mentioned apportionment
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methods, the vertices and surface volumes of all rounding polytopes will be calculated.
These results are necessary in order to determine and compare average properties of the
methods, such as the seat biases. To deal with average behaviour, we assume uniformly
distributed vote proportions in the following, implying that the probability of a specific
rounding polytope is proportional to its surface volume. Chapter 2 begins with a short
survey of rounding methods, fixing several notations. Then we turn to the calculation of
vertices and volumes of rounding polytopes, seperately for the quota method of greatest
remainders and the divisor methods. To do that, we decompose the rounding polytopes
into simplices, for which the volume can be evaluated by means of their vertices.

By the assumption of uniformly distributed vote proportions, we derive the distribu-
tion of the seat allocations for the quota method of greatest remainders and stationary
divisor methods in chapter 3. Then an appropriate combinatorial method to account for
all seat allocations is presented and a formula for the calculation of seat biases is given,
based on polynomials reflecting the combinatorial structure of the problem. Via explicit
expressions for these apportionment polynomials we finally can calculate seat biases.

As an example, seat bias formulas for systems of four parties are given in chapter 4.
Furthermore, we will realize that the concept of seat biases can be extended to electoral
systems with thresholds, that is, with minimum numbers of votes a party must reach in
order to be eligible to participate in the apportionment process. All the seat biases are
found to decrease from their maxima to zero, when the threshold increases from zero to
its maximum, and that this decrease is linear. The final section of chapter 4 deals with
further criteria to decide which apportionment method is most suitable for application.
For several methods and numbers of parties, the probability of violating two important
criteria is calculated by means of the geometric-combinatorial approach.

In chapter 5 we prove a previous conjecture on asymptotic seat biases of the quota
method of greatest remainders and of the stationary divisor methods, when the size of
parliament tends to infinity. The proof relies on the general formula for calculating seat
biases from chapter 3, and on knowledge about the leading terms of the apportionment
polynomials in the size of parliament, which we derive in the second section.

Our analysis of the seat bias, which is the conditional expectation of the seat excess,
is complemented in chapter 6 by a study of the seat excess variance. For two and three
parties, the variance is determined for the quota method of greatest remainders and for
stationary divisor methods, where the derivation relies on a calculation of barycenters of
rounding polytopes, for which we use generalized apportionment polynomials. Moreover,
numerical simulations and a study of Bavarian electoral data are discussed.

In chapter 7 an alternative seat bias model is addressed and compared to the model
used for the previous studies. Instead of taking the voter’s point of view by assuming a
uniform distribution of the vote proportions, the apportionment-oriented model stresses
the importance of the rounding process for the allocation of seats. We will prove for the
stationary divisor methods that these two models reveal the same asymptotic behaviour
when the number of seats in parliament grows. For that purpose, we proceed analogous
to the calculation of seat biases in chapters 2 and 3. However, the geometrical part now
is much simpler, whereas the combinatorial part needs additional considerations.



Chapter 2

Surface Volumes of Rounding
Polytopes

Consider a vector w = (wy, ..., wy)" of £ > 2 non-negative continuous weights that sum
to one. In the following, these weights are a set of probabilities. The rounding problem
consists of rounding each weight w; to a non-negative integer m; such that the rounding
result m = (my,...,my)" sums to a given integer accuracy M, i.e. the continuous weight
w; is approximated by the rational proportion m;/M. It is well-known that rounding the
weights w; individually may leave a discrepancy between the sum of the rounding results
m; and the desired accuracy M, see [16, Section 1]. However, such a discrepancy is often
infeasible, and rounding methods are needed that yield rounding results summing to the
predetermined accuracy. An example is the apportionment of seats in a parliament with
the fixed house size M, by rounding proportions of votes. Other examples can be found
in statistics [30,31].

In this chapter new mathematical insight into traditional rounding methods is devel-
oped by characterizing the sets of weight vectors w which get rounded to a fixed integer
vector m. These sets are polytopes, for all methods considered here. As the weights are
constrained to sum to one, the rounding polytopes are of dimension ¢ — 1, where ¢ is the
number of weights to be rounded. For a given rounding method, the vertices and surface
volumes of all rounding polytopes are determined. The derivation of the results is based
on monographs by Balinski and Young [5] as well as Kopfermann [22], and original work
by Pélya [29]. The findings have been published in [11] and [12]. They are important for
the comparison of different methods in terms of their average behaviour. For such an av-
erage behaviour it is common to assume uniformly distributed weights [1-4,6,7,16,32,41],
so that the probability of a rounding polytope is proportional to its surface volume.
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2.1 Rounding Methods and Rounding Polytopes

Let the probability simplex S* be the set of non-negative vectors summing to one

¢
St = {W c[0,1]": Zwi = 1},
i=1

and let the weight vector w = (wy, ..., w,)! be uniformly distributed on S%. Rounding w
to the given integer accuracy M means to map it to a vector of non-negative integers m
with components summing to M. A rounding method therefore is a mapping

A St — GY(M),

where ,
G (M) := {meNg:Zmi:M}.
i=1

Subsequently, we will only consider accuracies M > ¢. Details on the more pathological
case M < ¢ can be found in [11].

The quota method of greatest remainders (Hamilton, Hare) is a rounding method that
operates in two stages. In the first stage, the proportions w; M are rounded down to their
integer parts m;. In the unlikely case that all w; M are integers the discrepancy

¢
§:=M->Y m; €N
i=1
vanishes and we have m := (m;, ..., my). If there is a positive discrepancy, the fractional
parts w; M — m; are ranked in the second stage (where ties are broken arbitrarily). Then
the vector m is obtained by setting m; = m; + 1 for the ¢ largest remainders and m; = m;
for the £ — ¢ smallest remainders.

A popular family of rounding methods is given by the divisor methods. Following the
definition of Balinski and Rachev [4, p. 3], a divisor method is based on a strictly isotonic
sequence s(k) of reals such that £ < s(k) < k+ 1 for all k£ € Ny and there exists no pair
of integers kq, ko with d(ki) = k1 + 1 and d(ks) = ko. This sign-post sequence defines a
rounding function

k for x € [k, s(k)),
k+1 forxe[s(k),k+1).

Ties © = s(k) may be broken in a different way than setting r(x) = k+ 1. However, since
we consider weights for which a tie appears with probability zero, this ambiguity does not
affect our results. The divisor method with sign-post sequence s(k) maps a weight vector
w into the integer vector A(w) € G*(M) such that there exists a divisor D € (0, 00) with
m; == A(w;) = r(w;/D) for all i.

Important sub-classes of the family are the g-stationary divisor methods with param-
eter g € [0, 1] based on the sequence s(k) = k + ¢, and the p-power mean divisor methods

with parameter p € R based on the sequence s(k) = [(k? + (k + 1)?)/2]*/?. They give rise
to five popular divisor methods, see [5, p. 61]:

ri[0,00) = Ny, @ 1(z) ;:{
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1.) Adams: s(k) = k (rounding up, ¢ = 0, p = —00),

2.) Webster, Sainte-Lagué: s(k) = k + 0.5 (standard rounding, ¢ = 0.5, p = 1),

4.

)
)

3.) Jefferson, D’Hondt: s(k) =k + 1 (rounding down, ¢ = 1, p = 00),
) Hill, Huntington: s(k) = \/k(k + 1) (geometric rounding, p = 0),
)

5.) Dean: s(k) = k(k+1)/(k+ 0.5) (harmonic rounding, p = —1).

Marshall, Olkin, and Pukelsheim [23] give a comparison of these five methods in terms of
majorization. An implementation of divisor methods following Dorfleitner and Klein [10]
is provided by the computer program BAZI, see http://www.uni-augsburg.de/bazi.

The stationary divisor methods with parameter ¢ € [0, 1] are defined by the rounding
function r, that rounds down if the fractional part of a nonnegative number is less than
q, and up if it is greater than q. More formally, denote the integer and fractional part of
a number > 0 by || = IntegerPart(x) and « — [z| = FractionalPart(z), respectively.

Then
ro(z) = { [x] = IntegerPart(x) +1  for FractionalPart(z) > ¢,

|z] = IntegerPart(x) for FractionalPart(x) < g¢.

Ties occur if FractionalPart(z) = ¢; in this case the definition can stipulate r,(z) = |z]
or ry(x) = [z].

All rounding methods presented above map a weight vector with permuted entries to
the permuted integer vector

A((Wo(1)s - - -, Wo(e)") = M1y, - - -, Me(@))'

for any permutation o. This property will be tacitly used in the subsequent proofs.

In the sequel we study the sets of weight vectors w rounded to a given integer vector
m € GY(M). For both the quota method of greatest remainders and the divisor methods
ties are broken arbitrarily. For example, let w = (0.5,0.5) and M = 3; then the rounding
results m; = (2,1) and my = (1,2) are possible. We define the sets, for m € G*(M),

Pi(m) :=cl{w € S": A(w) =m}

of weight vectors that can be rounded to m under A when the ties are broken arbitrarily,
where set closure is denoted by cl. We obtain

w € Py(m) <= m € A(w).

With these preparations we now are able to characterize the above rounding methods via
linear inequalities.
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m=(0,0,5)

m=(5,0,0) m=(050 m=(5,0,0 m=(0,5,0)
(a) Quota method of greatest remainders. (b) Divisor method: rounding up.

m=(0,0,5) m=(0,0,5)

LAKS
Janay

m=(5,0,0) m=(050) m=(5,0,0) m=(0,5,0)

(¢) Divisor method: standard rounding. (d) Divisor method: rounding down.

Figure 2.1: Rounding polytopes for ¢ = 3 weights and accuracy M = 5.

Lemma 2.1 (Characterization via linear inequalities)

Let m € GY(M) be a rounding result and let w € S* be a weight vector.

(a) Let A be the quota method of greatest remainders.
Then w € Pa(m) if and only if

Mw; —m; < Mw; —m; +1 foralli,j=1,... 0 withi# j. (2.1)

(b) Let A be the divisor method with sign-post sequence s.
Then w € Pa(m) if and only if

wis(m; — 1) <w;s(my)  foralli,j=1,...,0 with i # j. (2.2)
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Proof.  See [22, pp. 196, 202] and [5, p. 100]. qed

The inequalities of Lemma 2.1 describe P4(m) as a polyhedron. As Ps(m) C S* and
S is bounded, P4(m) is a polytope, which we call the rounding polytope of the rounding
result m under the method A. Figure 2.1 shows rounding polytopes for four methods in
barycentric coordinates, i.e. a point w in one of the triangles represents the vector of the
shortest distances from this point to the triangle edges. Note that a divisor method with
5(0) = 0 rounds exclusively to interior lattice points; compare the case of rounding up in
Figure 2.1.

By characterizing P4(m) in terms of its vertices, the surface volume of P4(m) can be
computed. In the special case that A is a g-stationary divisor method and that m; > 1 for
all 4, these results were already obtained by Kopfermann [22, Section 6.2]. The boundary
cases with m; = 0 for some i need particular attention, see Figure 2.1. Going beyond the
work of Kopfermann the following considerations comprise all boundary cases for divisor
methods as well as a full treatment of the quota method of greatest remainders.

We decompose the polytope P4(m) into simplices whose surface volumes can be cal-
culated by determinant formulas [40, p. 278]. A d-dimensional simplex is a d-dimensional
polytope with d+ 1 vertices vy, . .., v, and d-dimensional volume equal to 1/d! times the
modulus of the determinant of a d x d-matrix with columns v; —vg, 2 =1,...,d.

A surface volume is defined by means of a full-dimensional volume after a projection,
see [15, Section V.4]. Here, when

-1
78— {W c 0,1 Zwi < 1}, W= (wy, ..., we1),
i=1

is the projection on the first £ — 1 components, we get for any measurable set A C S*
Vol(A) = v x Vol(n(A)).

Note that the volume on the left hand side of this equation is a surface volume, whereas
the volume on the right hand side is full-dimensional. In particular, the entire simplex S*
has volume

Vi

(-1

Because in the following no confusion is possible, we will refer to surface volumes simply
as volumes.

Vol(S*) =
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2.2 Quota Method of Greatest Remainders

Consider rounding via the quota method of greatest remainders and let m € G¢(M) be a
possible rounding result. Moreover, let

R(m) :={i:m; # 0}

denote the set of indices of non-zero components of m, with cardinality r(m) := |R(m)|.
In this section, we will first study the vertices of P(m) := P4(m), and then calculate the
volume of the polytope.

By Lemma 2.1, the translation 7' : w — x = w — m/M maps any rounding polytope
P(m) that lies in the interior of S*, i.e. r(m) = ¢, into the standard polytope

¢
1
Po::{XGRZ:inzo, xingjtﬁ forallz';«éj}.

i=1

If m; = 0, then the constraint w; > 0 remains invariant under the translation T, i.e. it is
translated into the constraint z; > 0. Hence, a rounding polytope P(m) with r(m) < ¢
is translated into the restricted standard polytope

By N ﬂ {XGRZZZE,-EO}.
1ZR(m)

In particular, P(m) and P(m) are congruent whenever r(m) = r(m). Theorem 2.1 gives
the vertices of the restricted standard polytope, and adding m/M results in the vertices
of P(m). We denote the row vectors in R with all components equal to 1 or 0 by 1, and
0y, respectively.

Theorem 2.1 (Vertices of the restricted standard polytope)
The restricted standard polytope

Py N ﬂ {XERZ:@-ZO}

has 2¢ — 26770 1 yertices v(\), which are induced by vectors A € {0,1}¢\ {0y, 1,} with
A; =0 for some index j € R(m). The components of v(\) are, fori=1,... ¢,

)-
a (1= 2) =t
ﬁ

vi(\) = ¢ —L_« ( ) if \i =0 and i € R(m), (2.3)

o

if i =0 and i ¢ R(m),

where z(A) == |[{i € R(m) : \; =0} and e(A) == {1 <i<l: )\ =1}

If r(m) = 1, then v(0y) = Oy is an additional vertex and the restricted standard polytope
has 2¢ — 2¢77(™) = 2=1 yertices.

There are no other vertices than the indicated v(\).
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In order to prove Theorem 2.1 we investigate the standard polytope Py, and later the
restricted standard polytope. By the parallelotope decomposition of Fy in Lemma 2.2 we
are able to determine the vertices of the standard polytope in Lemma 2.3. Thus, let the
vector u(k) € R have component k equal to (¢ — 1)/M/ and all other components equal
to —1/M¢.

Lemma 2.2 (Parallelotope decomposition of the standard polytope)
Define the parallelotopes

L, = {Z,uku(k) Dy € [0,1]} CRY i=1,...,¢
ki

Then int(L;) and int(L;) are disjoint if i # j, and Py = \J;_, L.

Proof. A vector x € int(L;) Nint(L;) can be expressed as
x=> muk)=> su(k)
kiti kit

with all uy and 0, positive. It follows that

~

x=x-0Y ulk)=>_ (0 —d&)u(k) - du(j).
k=1 k.5

Since u(1),...,u(i —1),u(i+1),...,u(¢) form a basis of {x: Y. x; = 0}, it follows that
(; = —0;, which contradicts the fact that ;; and d; are positive.

To see Ule L; C Ry, let x = Zi:l pupu(k) with py, € [0,1]. For p # q,

iy =g = S Cuplh) = ) =y (St + 577 ) + e (<377~ 277 )

Hence, x € F,.

Conversely, let x € Py. We need to show x € L;, for some 7. As a set of £ — 1 vectors
among u(1),...,u(f) forms a basis of {x: ) . x; = 0}, we have x = Zf;_:ll uru(k). Since
Zi:l u(k) = 0y, we write x = Zi:l pru(k) with py, > 0 for all k£ and p; = 0 for some 3.
We obtain, for p # ¢,

1 > T~ %g _ Hp~ Mg &.
M~ M M — M
Thus p, < 1 for all p, which implies x € L;. qed
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Lemma 2.3 (Vertices of the standard polytope)
Every vector X € {0,1}°\ {04, 1,} induces a vertex u(\) of the standard polytope Py via

Fe i =1,
A=,

(2.4)

N

M ¢

fori=1,... ¢, with e(\) :=|{1 <i < {: X\ =1}|. There are no other vertices.

Proof.  Obviously u(\) = 335, Ayu(k), which yields that

u()\) € Lz C PQ.

The u(\) with e(\) = 1 are in fact the u(k) in the definition of the parallelotopes L;. Due
to symmetry with respect to permutations it suffices to concentrate on vectors u(\) with
the first e(A) components of A equal to 1. Such a u(A) solves

12 .. eN) e+l ...
1 -1
: 1
1 -1 1 ,
Bu(N) := 1 —1 A)=—
() | : ) =7 |
1 -1 0
11 1 1 1
Since By is a non-singular matrix, u(\) is a vertex. By Lemma 2.2, P, is the convex hull
of all 2¢ — 2 vertices u()\). Therefore, no other vertices exist. qed
Proof of Theorem 2.1.  Let x be a vertex of

PO N ﬂ {XERZICL’Z'ZO}.
t1ZR(m)

Define K :={i ¢ R(m) : z; =0} and let k := |K|. If K =0, i.e. z; > 0 for all i ¢ R(m),
then x must already be a vertex of Py and, consequently, one of the v(\) with z(A) = 0.
Otherwise, the vector consisting of the components x; of x with index i ¢ K must be a
vertex of the (£ — k)-dimensional standard polytope Py C R~ and thus x equals one of
the v(\) with z(\) = k. Conversely, every v(\) is a vertex since it fulfills

Bo_.o\ | VA
N = — .
( Loy )N =7 0.00m

Finally, we obtain v(A) # v(}) if A and X are two distinct vectors in {0, 1}*\ {0, 1,}
such that there exist indices 4, j € R(m) with A\; = A; = 0. The number of vertices hence
equals [{\ € {0,1}\ {0,,1,} : \; = 0 for some i € R(m)}| = 2¢ — 26=r(m) _ 1, qed
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Turning to the volumes of the rounding polytopes, a decomposition similar to Lemma
2.2 permits us to compute in Theorem 2.2 the volume of an arbitrary restricted standard
polytope, which equals the volume of the associated rounding polytope. To this end it is
convenient to introduce the set of 0-1 vectors in R‘~! having component sum &

{621} = {te{O,l}é_lzgti:k}.

Its cardinality is given by
=1\ (-1
k B k)

In addition, for t = (t1,...,t,;)" € {0,1}* " and j < ¢ — 1 we define
J

i=1

Theorem 2.2 (Volumes of rounding polytopes for the Hamilton method)

The volume of P(m) depends only on r := r(m) and is given by

Vol(P(m)):ZLi_l 3 ﬁ<1— J )tm. (2.5)

(r)M pe{ 1}t T+ i)

Corollary 2.1 (Volumes of special rounding polytopes)
If r(m) € {1,¢}, then the volume of P(m) is given by

Vol(P(m)) = Y1 {1/6! for r(m) =1, (2.6)

1
M1 for r(m) = (.

In order to prove Theorem 2.2, we establish in Lemma 2.4 a volume formula based on
determinants. Simplifying this formula subsequently yields the Theorem.

Lemma 2.4 (Volume of the restricted standard polytope)

Let 1 € R(m); otherwise permute the indices without changing volumes. Then

Vol [P () {z € R |2 > 0} | =r x Vol(U), (2.7)

where Uy is the convex hull of {v(\) : XA € {0,1}*,\; = 0}.
Let m be the projection onto the components with index different from 1. Then

vol(Ul):ﬂ 3 ‘det(m[v(Al(t))],...,m[v(v—l(t))])‘ (2.8)

i)y
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with _
I=tg) 26

)\j(t) = Z €i+1 + Z‘Sf—n—l-i
i=1

i=1
and €; denoting the vector of the canonical basis in RY having component i equal to 1 and
all other components 0.

Proof. Let U; be the convex hull of {v(\): A € {0,1}¢, \; = 0}. Since we can express
every v(A) with A\; = 0 as a linear combination Zfﬁ piju(y) by setting

1 fOI' >\j = 1,
pi=4{ 0 i for \; = 0 and j € R(m),
75 for Aj=0and j & R(m),

we know that U; C L;. Thus, the interior of U; NU; is empty if ¢ # j and for all i ¢ R(m)
it follows that

Vol(U;) < Vol [ Li 0[] {xeR":2; >0} | =0.

The definition of U; as convex hull of vertices leads to
Poﬁ ﬂ{XERZZIZ‘ZO}: U UZ
i¢R(m) i€R(m)

Since permuting the components ¢ and j maps U; in U; and leaves the volume invariant,
we have

Vol | Py N m {xeR :2; >0} | =r x Vol(U).
t1ZR(m)

To calculate the volume of Uy, we decompose it into simplices. Let therefore
N :=(0,1,...,1,0,...,0)
———
J l—1—j
and let X; be the group of permutations of {1,...,¢} leaving 1 fix. Then U; is the union
of the simplices A,, o € X1, that are defined as convex hull of v(a(N)), 5 =0,...,£— 1.
Note that int(A,) Nint(A,) = @ if ¢ # 7. The volume of a simplex A, is v// times the

full-dimensional volume of the projected simplex (A, ), which can be calculated by the
determinant formula.

Let o, 7 € 31, and define the equivalence relation
o~T = [0(i) ¢ Rm) <= 7(i) ¢ R(m) for all i.

Then o ~ 7 implies that A, and A, have the same volume because they can be mapped
into each other by a permutation. Since each equivalence class consists of ({ —n — 1)!n!
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permutations, we obtain the formula for Vol(U;) stated in the theorem by summing over
representatives of the equivalence classes. This is done by indexing the sum with vectors
t € {0,1}*~1 where t; = 1 means that all permutations in the corresponding equivalence
class fulfill o(i + 1) ¢ R(m) and t; = 0 signifies o(i + 1) € R(m). qed

Proof of Theorem 2.2. By definition, the vectors M (t) € {0,1}* have the form
M(t)=(0,1,...,1,0,...,0,1,...,1,0,...,0)*
S~—— S~——
) ta)

with exactly j components equal to one. Let A be the square matrix with columns equal
to the last £ — 1 components of the vectors M (t), j =1,...,¢ — 1. Since )\g(t) = 1 implies
A{ +1(t) = 1, we may transform A into an upper triangular matrix by permuting its rows.
This transformation leaves the absolute value of the determinant of A unchanged. Now,
the same permutation shall be applied to

v(A) = (m [V )], o m [V (1))])

By (2.3) and since e¢(N) = j and z(N) = £ —r — t(;), an appropriate permutation of rows
leads to

1 1 1 -1

M (1 - r—l—t(l)) M (1 - r—l—t(g,l))

1 -1
* M (1 B TWH))
Here, and in the remainder of the evaluation of the determinant, we ignore possible sign
changes due to the absolute value in (2.8). The lower triangular part (%) of the permuted
matrix v(A) corresponds to zeros in the vectors M (t), j = 1,..., £ — 1; subsequently only

the first sub-diagonal is of interest. By (2.3) and the definition of M’(t), the sub-diagonal
entry in the j-th column equals 0 if £;1; = 1 and

1 J
S ift.., = 0.
M(T“(j)) e

To simplify the determinant, we subtract the first row from all other rows. This gives

F N ST U W B ST
M r+t(1) M r+te—1)

det(v(A)) = det - 0 ,

det(v(A)) = det

* 0
where the sub-diagonal entry in column j is

1 ] 3 —
a; = { M (1 a T’+jt<j)) i =1,
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A e(N) v(\)
001 ! (b b
R T ()
01,07 1 TR
Lot 2 (ke
(1,0,0)° ! 8 (+3-5-3)
Gont oz ko)

Table 2.2: Vertices v(A) of the standard rounding polytope Py for the quota method of
greatest remainders, as determined by Theorem 2.1 (M =5, ¢ = 3).

Since by definition #,_;) = ¢ — r it follows that

-2
det(v(A)) = H@ .

which implies the result stated in Theorem 2.2. qed

In order to illustrate the previous results we consider the rounding polytope for
m = (2,2,1)

which is highlighted in Figure 2.1(a). By Theorem 2.1 with 7(m) = 3, the 23 —2° -1 =6
vertices of the polytope are determined via the v(\) given in Table 2.2. Adding m/M =
(2/5,2/5,1/5)" to the v()) leads to the vertices of P(m), which we state in the order of
appearance on a clockwise tour on the edges of the rounding polytope:

1 t 1 t 1 t 1 t 1 t 1 t
— - —(4,7,4) — — 2) — — 1) — — 2)" — —(7,4,4)".
15(57575> 15( 777 ) 15(5787 ) 15(77 77 ) 15(8757 ) 15(77 Y )

It follows from Corollary 2.1 that Vol(P(m)) = v/3/25 = 0.069.
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2.3 Divisor Methods

Consider rounding via the divisor method with sign-post sequence s(k). Set s(—1) := 0.
Again, we first address the vertices of P(m) := P4(m), and then calculate the volume of
the polytope. For ¢-stationary divisor methods we can simplify the volume formula.

Note that the cases when m; = 0 for some 7 need no separate treatment. The set
R(m) := {i: s(m; — 1) # 0}
takes over the role of R(m), and we set 7(m) := |R(m)|. The assumption M > ¢ implies

7(m) > 1, and we have R(m) = R(m) for s(0) > 0. Theorem 2.3 gives the vertices of the
rounding polytopes for divisor methods.

Theorem 2.3 (Vertices of rounding polytopes for divisor methods)

For divisor methods, a rounding polytope P(m) comprises 2¢ — 267 — 1 yertices v(\),
which are induced by vectors A € {0,1}°\ {0, 1} with A\; = 0 for some index j € R(m).
The components of v(\) are, fori=1,...,¢,
s(m;) ; -
() = { - Z,f N (2.9)
C(ZA) Zf Ai =0,

with the normalization c(X\) 1= Y, _y s(mi) + 2, g s(mi —1).
If 7(m) = 1, then v(0;) is also a verter and P(m) has 2° — 2770™) = 20=1 yertices.
There are no other vertices than the indicated v(\).

Remark 2.1 (Degenerate polytopes)

If s(0) = 0 and there exists m; = 0, then s(m;) = s(m; — 1) = 0. This implies that P(m)
is degenerate in the sense that w; =0 for all w € P(m). Hence, dim(P(m)) < ¢ — 2 and
P(m) C P(m) for some m with m; > 1 for all j.

Proof of Theorem 2.3.  Without loss of generality, assume that the components of
m are ordered from largest to smallest, i.e. m; > mg > ... > my (otherwise permute the
components appropriately). Since M > ¢ it holds that m; > 2 and s(m; — 1) > 0.

Fulfilling the inequalities (2.2) every v(\) lies in P(m). To see that v(A) is indeed a
vertex, we concentrate first on 7(m) = ¢, and without loss of generality on A having the
first k& components equal to 0 and all other components equal to 1. Now, v()) solves the
system Byv(A) = 0 with the matrix

1 2 k k+1 ¢
—5(Mpq1) s(my — 1)
—s(my) s(my — 1)
B, = —s(mga1) s(mg — 1) ,

—s(mgy1) s(mgp —1)
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for which only non-zero entries are shown. Because s(m; —1) > 0 and s(myy1) > 0, By is
of full rank ¢; thus v(A) is a vertex. If 7(m) < ¢, then every component v;(A) with value
zero fulfills the constraint w; > 0 with equality, and we can argue in analogy to the case
7(m) = ¢ by replacing the dimension ¢ by the number of non-zero components of v(\).

No other vertices exist, because the convex hull of all v(\) of form (2.9) is the whole
polytope P(m). This will be shown by establishing that

i€ R(m)
where @); is the convex hull of all v(\) with A; = 0 and int(Q;) Nint(Q;) = 0 if ¢ # j.
By definition, all (); are subsets of P(m), which implies O in the above equation. To
see C, we first show that
Qi :={w e P(m) : wis(my, — 1) < wys(m; — 1) < w;s(my)  for all k # i}

and @; coincide. Each v(A) with \; = 0 is an element of the polytope Q;, thus Q; C Q;.
Conversely, a vertex w of (; has its component wy, k # i, given as s(my)w;/s(m; — 1) or
s(my — 1)w;/s(m; — 1). The condition St wy, = 1 then implies that w = v()) for a A
with \; = 0, thus Q; € @Q;. Next, let w € P(m). Then we can choose an index i € R(m)
such that s(m; — 1) > 0 and

w; w;

for all j € R(m).

S —1) = s(m; — 1)

As w fulfills the inequalities (2.2) it follows w € @;. Finally, according to the definition
of @;, a point in int(Q;) N int(Q);) fulfills

wis(mj — 1) < sz(mi — 1) < wis(mj — 1)

Hence, int(Q;) Nint(Q;) = 0 if i # j. ged

The knowledge about the vertices now allows us to decompose the projected cuboids
(Q; into simplices whose volumes are computed by the determinant formula. This yields
the volume of P(m) given in Theorem 2.4.

Theorem 2.4 (Volumes of rounding polytopes for divisor methods)

If s(m;) > 0 for all i then
voltPm) =L 5 (stm - D[[d) T o (2.10)
ol =D ) ia ) dm s @ 0)

where ¥; is the group of permutations of {1,..., L} leaving i fix, d; := s(m;) — s(m; — 1),
co = Z§:1 s(m; — 1), and
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Remark 2.2 (Degenerate polytopes)

It follows from Remark 2.1 that if s(m;) = 0 for some i, i.e. if s(0) =0 and m; = 0, then
Vol(P(m)) = 0.

Proof of Theorem 2.4.  As permuting the components of a rounding result m does
not change the volume of P(m ) we assume without loss of generality that m has ordered
components, i.e. my > mgy > ... > my. This assumption implies R(m) = {1,...,7}.

The proof of Theorem 2.3 establishes

7(m)
Vol(P = > Vol(Q;) =) Vol(Qy).
i=1

i€ R(m)

Since all @; can be treated analogously, only the calculation of Vol(Q);) is demonstrated.
The result for ); then is obtained by interchanging indices. Adopting the notation of the
proof of Lemma 2.4 the arguments used there yield

Vol(@1) = gy 2 | det (m [V(e(A) = V(0L mv(e(A ) = v(0.)]) |

oEX

where

s(my — 1) _ s(my — 1)
C(Og) Co

In order to evaluate this determinant, we study the vertex v(o(\)). Its first component
is s(my —1)/c(o(XN)), and its o(k)-th component is s(mq))/c(c(N)) for k=2,...,j+1
and s(mymy — 1)/c(c(N)) for k= j+2,...,¢. Using ¢{(j + 1) = ¢(o(N)) and setting

x(a(M)) = c(o(M))v(o (X))

we find that the determinant equals D(c)/ch™ H§:2 5 (7) with

ve(0g) = forall k=1,... ¢

D(0) = det (mi[cox(a(A)) — 7 (2)x(0,)], . .., m[cox(a (X)) — 7 (£)x(0,)]) -
Ifke{o(2),...,0(j+1)}, then

(milcox(a (X)) = cf(j + Dx(00)]), = cos(mu) = {(j + D)s(mx — 1)
= Codk — s(mk — 1) Zdo(i),

since ¢ (j +1) = co + 305, doy- ke {o(j+2),...,0(()}, then

(mileox(a(X)) = 7 (7 + Dx(00)]), = cos(mp —1) = cf(j + 1)s(mp — 1)

= —s(mk — 1) Z do’(i)-
=2
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In the evaluation of D(o) we can ignore possible sign changes. Switching row o(j) in
row j results in

C(]dcr(2) - 8(m0(2) - 1)d0(2) ce Codg(g) - S(m (2 — 1) Zz 2 d o (i)

—s(mgy3) — 1)d, ... codyz) — S(Mgzy — 1 o Ay

D(0) = det ( ® )do(2 0do(3) — s(Mo(3 ) ) Yois dofi
: : g

_S(mg(z) — ].)do(g) oo Codg(ry — s(mo(g) - 1) Zi:z doi)

By factoring out d,() and adding — ZkH dy(;y times column 1 to column k > 2, we get

Co — 8<m0(2) — 1) —COdU(g) ... —(C ZZ ! da(l —Cp Zfzg dU(,)
—S(mg(g) — 1) Coda(g) Ce Cod Coda(g)
D(O’) = da(g) det 0 : '
: : Codo(e—1) Colo(e—1)
—S(mg(g) — 1) 0 Ce 0 Codo(g)

Adding each row k£ > 2 to row 1 leads to

—s(ma(g) — 1) Coda(g) c. CodU(g) CodU(g)
D(o) = dg(g) det 0 : :

: : codo(e—1) Cody(e—1)
—S(mg( 0 — 1) 0 e 0 Codg(g)

= ml—l 2Hd

It follows that the modulus of the determinant is equal to

s(my —1) Hﬁ:z do(j) _ s(m1 — 1) HJ 5 d;
o H§:2 7 (7) o Hj:2 7 (7)
When calculating Vol(Q;) instead of Vol(@Q),), the result becomes

s(mi )Hﬁezd
Co Hm ()

and summing the pieces as in the proof of Theorem 2.3 yields formula (2.10). qed

Consider a g-stationary divisor method, thus s(k) = k + ¢. Then the differences d; in
Theorem 2.4 are 1 for my > 1 and q for my,, = 0. This permits simplification of formula
(2.10) to the result in Theorem 2.5, which shows that the volume of P(m) depends only

on r(m) = |{i: m; # 0}|.
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Theorem 2.5 (Volumes of rounding polytopes for g-stationary rounding)

The volume of P(m) depends only on r := r(m) and is given by

1
Vol(P(m Z HM+ Y P o SR (2.11)

where we set 0 := 1.

Remark 2.3 (Rounding up/down)

If g =0 and r(m) < £, then ¢"~"™) =0 and therefore Vol(P(m)) = 0.
If g = 1, then all rounding polytopes have the same volume.

Corollary 2.2 (Volumes of special rounding polytopes)
If r(m) € {1,¢}, then the volume of P(m) is given by, for q € [0,1],

=1 7714 1
¢ sy 5o forr(m) =4,
Vol(P(m)) = V7 x { o jM“q ! (2.12)
j=1 M+lq—j fO’f’ T’(m) =1
The case r(m) = ¢ in Corollary 2.2 is treated in [22, p. 204, Theorem 6.2.10].
Proof of Theorem 2.5. The case ¢ = 0, r(m) < /¢ is an immediate consequence of

Remark 2.2. For ¢ > 0 and ¢ = 0, r(m) = ¢ we obtain s(m;) > 0 for all i. We assume
that m is ordered as m; > my > ... > my, which implies s(m; — 1) > 0. Hence, we can
apply formula (2.10) from Theorem 2.4.

Then, s(m; — 1) = m; + ¢ — 1 for all i« < r(m); d; =1 for j < r(m) and d; = ¢ for
j > r(m) 4+ 1. Therefore, cog = M + r(m)(q — 1) and

J I
SG) = ) stmew)+ Y s(mogy — 1)+ s(m; — 1)
k=1,k#i ke=j+1,k#i

J

= > (e +a)+ Y (me+q—1)+(mi+q—1)

k=1,k#i keP? (5)
{ M+ g+ (1 4+p7(5))(qg—1) for j < 1,
M+ (j—1)g+(1+pf(i)(g—1) forj>i,

with P7(j) :=oc({j+1,...,03\{i}))n{1,...,r(m)} and p7(j) := |P7(j)|. It follows from
(2.10) that

_TVE S m g ) L
VHPm) = S X ><q-1>>§£{cs<j>— eIy

o€y; ];ﬁz
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We next prove that
oEeY; j;éz

is independent of the index i by showing Z; = Z; for all 1 <4 < r(m), via the bijection
f:%; — X;. Since f(o) € ¥y, it must hold that f(o)(1) = 1. The remaining components
of f(o) are defined as follows. If 0=!(1) < then

o(j—1) for2<j<ij#ot+1,
o) =1 i for j = o141,
o(j) fori < j <V,
otherwise if ¢71(1) > i then

o(j—1) for2<j<i,

fl@)(g) =4 o(j) fori<j<tj+#c",
) for j = oL

Consequently, p f( )(j) p7(j—1) for 2 < j < i, and p] )(j) = p?(j) for j > i. It follows
that ¢7(j )—cl( )(j—l—l) for 1 < j <, and ¢7(j )—c{( (7) for i < j < ¢, which yields

i G =24 7 (J)
and Z; = Z;. Therefore the volume formula simplifies to
é r(m

Vol(P(m)) = L — ¥~ ) ZHT

oEX J=2

We have ¢§(j) = ¢](j) when ¢ ~ 7 in the sense of the proof of Lemma 2.4. Thus, we
index the equivalence classes by vectors t € {0,1}*~" with "1 t; = ¢ — 7(m), such that
a permutation o € ¥; in an equivalence class associated with t satisfies o(i + 1) < r(m)
if t; =0, and o(i + 1) > r(m) if t, = 1. We find

RO =2 (-t =)~ Xt

This result leads to an expression for ¢J(j), and we obtain

1
Vol(P(m
( r) te{zezl}JHQMﬂL (G=Da+0+0—j=>t)g—1)
which implies the claimed formula (2.11). qed

To illustrate the results we again study the rounding polytope for

= (2? 2? 1)t7
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method A c(N) v(A)
Adams (¢ = 0) (0,0,1)! 3 $(1,1,1)
(0,1,1)! 4 1(1,2,1)
(0,1,0) 3 :(1,2,0)
(1,0,0)! 3 £(2,1,0)
(1,0,1)! 4 1(2,1,1)
Webster (¢ = 0.5) (0,0,1)! 4.5 5(3,3,3)"
(0,1,1)! 5.5 +=(3,5,3)"
(0,1,0)! 4.5 5(3,5,1)
(1,1,0) 5.5 =(5,5,1)f
(1,0,0)! 4.5 5(5,3,1)
(1,0,1) 5.5 =(5,3,3)
Jefferson (¢ =1) (0,0,1)" 6 £(2,2,2)
(0,1,1)! 7 1(2,3,2)
(0,1,0) 6 £(2,3,1)
(1,1,0) 7 1(3,3,1)
(1,0,0)! 6 £(3,2,1)
(1,0,1)! 7 1(3,2,2)

Table 2.3: Vertices v()) of the rounding polytope P(m = (2,2,1)") for the g-stationary
divisor methods with ¢ = 0, ¢ = 0.5, and ¢ = 1, as determined by Theorem 2.3 (M = 5,
¢ =23).

which is highlighted for ¢ = 0, ¢ = 0.5, and ¢ = 1 in Figure 2.1(b-d). By Theorem 2.3, we
know for ¢ # 0 that 7(m) = 3 and P(m) has 23 — 2° — 1 = 6 vertices. For ¢ = 0 we find
only 23 — 2! — 1 = 5 vertices, because 7(m) = 2. To be more specific, A = (1,1,0)" does
not induce a vertex as \; # 0 for all j € R(m) = {1,2}. Table 2.3 gives the coordinates
of the vertices as they appear on a clockwise tour on the edges of the rounding polytope
according to the sequence

(0,0,1)" = (0,1,1)" — (0,1,0)" — (1,1,0)" — (1,0,0)" — (1,0,1)"

of vertex-inducing vectors. In the case ¢ = 0, the vector A = (1,1, 0)" is skipped. Finally,
Corollary 2.2 results in the volumes

g ~ 0.144 for ¢ = 0,
Vol(P(m)) = % ~ 0.070 for ¢ = 0.5,
V3

~ 0.041 for ¢ = 1.

o~
S



Chapter 3

Combinatorial Approach to Seat
Biases

In a proportional representation system, apportionment methods are needed to translate
vote proportions into integer numbers of seats in parliament, see Balinski and Young [5],
Kopfermann [22]. This rounding process leaves an inevitable gap between the ideal seat
allocation based on essentially continuous fractions and the actual seat allocation based
on the accuracy given by the size of the parliament. Of course, a suitable apportionment
method should — on average — treat the smaller and larger parties equally, and not allow
a systematic advantage in either direction.

Taking up original work by Pélya [27-29], Schuster et al. [32] introduce the notion of
seat biases to quantify how much a given apportionment method favors smaller or larger
parties. The shares of votes of a party are assumed to follow a uniform distribution, and
seat biases are the expected differences between actual seat allocations and ideal shares
of seats, under the condition that the parties are ordered by their vote proportions. For
3-party systems, Schuster et al. [32] derive seat bias formulas for popular apportionment
methods. In addition, they provide numerical evidence about asymptotic seat biases for
an arbitrary number of parties, as the number of seats in parliament grows.

Following [36], the present chapter first addresses seat allocation distributions, when
the size of the parliament is given. Based on these distributions, a systematic method for
calculating seat biases is developed subsequently.

3.1 Seat Allocation Distributions

We interpret the component w; of the weight vector w € S* as the share of votes for the
i-th largest party. For a given district magnitude or house size M, which is the number of
seats to be allocated among the parties, the possible seat allocations m form the grid set
GY(M). An apportionment method A maps a weight vector w into a seat allocation m,

A St — GYM).

22
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Rounding the weights w; individually in general is not a feasible apportionment method,
because the side condition ,

S =M

i=1

is not enforced automatically, see Happacher [16, Section 1]. As apportionment methods,
we address stationary divisor methods and the quota method of greatest remainders.

Let the g-stationary divisor method map a weight vector w into the integer vector
Az,M(W) S GK(M)v

and assume that this weight vector follows the uniform distribution on S*. We are inter-
ested in the distribution of the random variable AZ, oy Which we consider in Theorems 3.1
and 3.2.

Theorem 3.1 (Seat allocation distributions for divisor methods)

Suppose the weight vectors w are uniformly distributed on the probability simplex S°. Use
the q-stationary divisor method with q € [0, 1] to apportion the house size M.
Then the seat allocation A7y, is a discrete random variable, with values in the finite grid

set GY(M), attaining a grid point m € G*(M) with probability

, W) —m _ Z T g _ 1 1
P(A] y(w) ) NG te{zljl}HM+ T+tiy)g— (r—J+ty)
=: pgem(r), (3:1)

where v denotes the number of positive components of m, and 0° :=1 for g =10, r = £.

Proof. Due to the uniform distribution assumption the probabilities are proportional
to surface volumes. Since we know the constant of proportionality,

Vi
-1

the result follows from Theorem 2.5. qed

Vol(S*) =

For the specific parameter values ¢ = 0 and ¢ = 1 we can simplify formula (3.1) from
Theorem 3.1 to obtain a more convenient representation.
Corollary 3.1 (Rounding up/down)

For the divisor method with rounding up we have

P(AY,, =m) = (MH7 for m e GYM) with r = ¢,
o 0 form € GY(M) with r < {.

For the divisor method with rounding down we have

-1
P(Al, = m) = <M;_€1_ 1) form € GY(M). (3.3)
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Proof. For g =1, Theorem 3.1 implies that p, ¢/ (r) is constant in 7 and hence equals
the inverse of the cardinality |G*(M)|. For ¢ = 0, pyea(r) = 0 when r < £, and it is the
inverse of the cardinality [{m € G(M):m; > 1fori=1,...,/}] when r = /. qed

As already indicated by Pdlya [29, p. 367], all seat allocations m occur under the divisor
method with rounding down with the same probability, see Remark 2.3.

Let the quota method of greatest remainders map a weight vector w into the integer
vector

A&M(W) € GZ(M)

The following Theorem deals with the distribution of this random variable.

Theorem 3.2 (Seat allocation distributions for the Hamilton method)

Suppose the weight vectors w are uniformly distributed on the probability simplex S¢. Use
the quota method of greatest remainders to apportion the house size M.

Then the seat allocation Ay is a discrete random variable, with values in the finite grid
set GY(M), attaining a grid point m € G*(M) with probability

€—1 fit1
Pldeartw) =m) ()M-r te{zzjl ! ]Hl ( r+ t(g))
= p&M(’/‘), (34)

where v denotes the number of positive components of m.

Proof. By means of Theorem 2.2, the result can be obtained analogously to the proof
of Theorem 3.1. qed
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3.2 Combinatorial Method

Let the ¢ parties be decreasingly ordered by votes, and give the largest party index 1 and
the smallest party index ¢. We now consider the weight vectors in the ordered subset of
the probability simplex

Sg = {WESZ:w12~-~sz},
see Figure 3.1, and define the grid set of ordered seat allocation vectors in G*(M)
GZZ(M) = {m S GZ(M) LMy Z Z mg}.

Note that the definition of stationary divisor methods as well as of the quota method of
greatest remainders entails

we S, = A(w) e GL(M).

Conditional on wy > -+- > wy, i.e. W € Sg, the weight vectors are uniformly distributed
in Sé. Hence, probabilities are still proportional to volumes, where the constant of pro-
portionality becomes, by symmetry,

Vol(St) = Vol(S*) VI

0! o -1
Define the expected ideal share of seats to be
IY(M) := E[wM|w; > --- > wy],
and the expected number of seats to be
E‘(M) := E[A(W)|w; > - > w].
The vector of seat biases, sorted from the largest to the smallest party, then becomes
BY(M) := E[A(w) — wM|w;, > --- > w,] = EYM) - TIY(M).

Of course, the components Bf(M), ..., B{(M) of B¢(M) must sum to zero

¢ )4 ¢
S BI(M)=E|Y mi—- MY w
i=1 =1 i=1

w12-~-2wg] =M-M=0.

The expected ideal seat allocation T¢(M) = (If(M), ..., If(M))! results from geomet-
rical considerations.

Lemma 3.1 (Expected ideal share of seats)

The expected ideal share of seats of the i-th largest party equals
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m=(0,0,5)

m:(S:0,0) m=(0,5,0)

Figure 3.1: Ordered subset of the probability simplex.

Proof.  The vector I(M) equals M times
Ew|w; > ... > wy,

which is the center of mass of the ordered probability simplex Sg. The center of mass of
a simplex is the (arithmetic) mean of its vertices, and the vertices of Sé are given by the

vectors w/, j =0,...,¢ — 1, with i-th component
ol — g%j ifi <0—j,
‘ 0 if i >0 —j,
see [8]. Multiplying the mean of these vertices by M yields (3.5). qed

The expected ideal seat proportions I¢(M)/M do not depend on the house size, but only
on the number of parties in the system. In particular, one obtains

125\?4)_(2&)t’ I3(M)_<11 5 2)t7and I4$J)_<§Eli)t'

18718718

M 487 487 487 48

Let e; € R? be the Euclidean unit vector with i-th component one and all other compo-

nents zero. Defining
T
1
v, = — 5 €e;
r &=’
J=1
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forr=1,...,¢, we have

M l
T(M) = - > v
r=1

For obtaining seat biases, it remains the task of determining the expected number of
seats E(M) = (EX(M), ..., E{(M))!, for the various apportionment methods. We state

E(M)= )  mPAW) =mw > >uwy).

meGé(M)
Let S be the permutation group on {1,..., ¢}, and define
o(x) = (%(1), . .,:cg(g))t, ce S, xeR:
Then
b(m) := |{oc € S:0(m) =m}

counts the number of permutations leaving the seat allocation m invariant. We will call
b(m) the boundary factor for m, since we have b(m) # 1 only if the weight vector m/M
is located on the boundary of Sé.

Stationary divisor methods as well as the quota method of greatest remainders map
weight vectors with permuted entries to permuted seat allocations
Aw)=m = A(o(w)) =0c(m) forall o €S,
a property called “anonymity” by Balinski and Young [5]. For m € GZZ(M ), we have by
symmetry

P(A(w):m|w12---2wg):mP

where the unconditional probability P(A(w) = m) is given in Theorem 3.1 or 3.2. Note
that P(A(w) =m|w; > - >w,) =0 for m ¢ GL(M).

We decompose the grid set Gé2 (M) into disjoint subsets, for r =1,...,/,

K. (M) :={meGL(M):m, >0=my1}.

Therefore, a seat allocation m € K,.(M) has the first » components positive and the last
¢ — r components zero, and the subset K, (M) comprises the grid points in the polytope
generated by the vertices vy, ..., v,. The probability

is constant for m € K,.(M), see Theorems 3.1 and 3.2. Furthermore, the boundary factor
b(m) decomposes according to

b(m) = (€ —7)!b,(m),
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where b.(m) := b((my,...,m,)"). As a consequence, we obtain

i 1
B =2 g 2 pmg™

r=1 mEKT(M)

This leaves us with the task of determining

S"(M) = (Sj(M),....S;(M))' = > ——m.

mEKr(M) br(m)
Because the components of S"(M) are polynomials in M, they are called apportionment
polynomials in the following.

The definition of K,(M) implies that the last £ — r components are zero
S"(M) = (S{(M),...,S"(M),0,...,0)".

The non-vanishing polynomials S7(M), i < r, reflect the combinatorial-geometric struc-
ture of the boundary classes K, (M) of the ordered grid set G (M); they do not depend
on the size ¢ of the system, nor on the apportionment method. Seat biases therefore can
be represented as follows.

Theorem 3.3 (Calculation of seat biases)

Under the assumptions of Theorems 3.1 and 3.2 the seat biases satisfy

14

BI(M) = (Z e p<r>sr<M>> ~T3w

r=1

Proof.  The assertion is a consequence of the decomposition of GZZ(M ) into boundary
classes, the definition of the apportionment polynomials, and Lemma 3.1. qed
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3.3 Apportionment Polynomials

In view of Theorem 3.3 there still remains the task to efficiently handle the polynomials
SIH(M) for i <r,r=1,2,.... Since we frequently will have to distinguish different cases
according to the divisibility of M, it is convenient to introduce the notation

Y1 for % e N,

M—1
Yo for 2= € N,
[ylay%'-')yk]]]gvj = . . ¥

Yk for M e N.
For r = 1, the class K;(M) contains only m = (M, 0, ...,0)", and we immediately find
SHM) = M.
For r = 2, we obtain

L]VI;IJ

S0 = | 35 (4= m) +[¥0]M
S3(M) = Lgljm +{%,o]j

While the polynomial S?(M) sums over the seats m; = M — my of the largest party, the
polynomial S3(M) sums over the seats my of the second-largest party. When M is even
the tied seat allocation m = (M/2,M/2,0,...,0)" generates the additional term M /4.

While it is difficult to calculate the polynomials S (M), ..., Sl (M) individually, their
sum has a simple form not depending on the divisibility of the house size M.
Lemma 3.2 (Sum of apportionment polynomials)

The apportionment polynomials S7T(M), ..., SI(M) fulfill, for allT=1,2,...,

o0 =500 -l

Proof.  Choose ¢ = r and recall Ef(M) = E[m;|w; > --- > wy]. Generally, we have for
the stationary divisor method with parameter ¢ € [0, 1]
¢

M:ZEf(M):ZZ ,pqu(J) > o

i=1 9:1 meK, (M) j(m)

~

Specifically, selecting ¢ = 0, Corollary 3.1 leads to po e (j) =0 for j < £ =r, and

M = er!po,r,M(r) Z b:(nfil) = Zr!p07T7M(r)SZ(M) =7l ( 1 )_ Z Sr(M

1=1
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From this relation the claimed formula for Y, SI'(M) follows. qed

In general, we obtain S"(M) from recursions on M and r. According to our previous
definition, the first 7 components of the vectors rv, € {f,} are equal to one, and the last
¢ — r components are equal to zero.

Theorem 3.4 (Recursive scheme for apportionment polynomials)

Starting with S* (M) = (M, 0,...,0)" the vector S"(M) of the apportionment polynomials

for the class r = 2,3, ... obeys the recursive scheme
r—1 L@J M—myr—1
r _ 1 h ( h-1 )mrr
S"(M) = =0 Z (s (M —m,r) + a vy
h=1 my=1
M M
4{F@mm}w. (3.6)

Proof. The case r = 1 has been considered previously. In the case r > 2, we split the
sum over m € K, (M) into an iterated sum; first over the last non-vanishing component
m,., and then over my, ..., m,_;. We decompose the ordered seat allocation m € G4 (M)
as -

m = (m — m,rv,) + m,rv,.

From m € K, (M) we conclude that (m — m,rv,) € K,(M — m,r), for some h < r — 1,
and obtain

LA{;lJ

U m,rv, +m M M
S"(M) = T T = 0,....0| w,.
AR YD S DR ] R At A
" T Ky (M=m,r)

Applying the definition of the apportionment polynomials and

1 1 homg h
Z by(m) T M —myr mze ; by, (m) - ;S?(M —m,r),

me
Kp(M—myr) Kp(M—myr)

Lemma 3.2 results in the expression claimed in the assertion. qed

The recursion of Theorem 3.4 permits us to write the apportionment polynomials as
iterated sums. These sums may be simplified via the well known formulas for

S
Z k', i,s €N,
k=1

see Burrows and Talbot [9] or Edwards [14], which yields polynomial expressions for the
components of the vectors S"(M). For r = 2 we have

SHM) = RMP— M+ [0, 5],
S2M) = Lm? + [0, 2]
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For r = 3 we obtain

1M _11M
SIM) = oM® = M+ ZM + 0.5, 51]; +[0.55],
_ M M
S3(M) = spM* = gM* + M+ 0,55 53], +[0. 5],
_11M
Si(M) = gigM® —aM+ (0.5 5];5

and for r = 4 the result is

SI(M) = geaM* — M+ ZRM? — M+ 0,58 5 58], + [0.0. 5]
SHM) = gt — S M+ g M2 — M+ [0, 5538 ]y + [0.0.57
S§M) = @M = FM + g M + 5 M+ 0,58, 52wy +[0.0. 5]
SiM) = M ~ 5uss M + [0 3% 3 sl

The divisibility of M affects only the constant terms of the apportionment polynomials.
By Lemma 3.2, the sum »_;_, S7(M) has no constant term, as readily verified for r < 4.



Chapter 4

Seat Bias Results

We now are able to turn to the calculation of seat biases by means of the combinatorial
approach. Focussing on the divisor method with standard rounding and rounding down,
the conjecture of Schuster et al. [32, Section A.3] about seat biases in systems with four
parties can be confirmed. Moreover, analogous results for the quota method of greatest
remainders are given. Following [37], the combinatorial approach allows us to study the
seat biases in proportional representation systems with thresholds, see also [18]. Finally,
probabilities for the violation of majority and minority criteria are calculated.

4.1 Seat Bias Formulas

With the apportionment polynomials S"(M), r < 4, we are able to determine the vector
of seat biases B(M) for ¢ < 4 parties by Theorem 3.3. Schuster et al. [32] give seat bias
formulas for ¢ < 3 parties, as confirmed in the present approach. They study the divisor
methods with standard rounding as well as rounding down, for which we now derive seat
bias formulas in the case of ¢ = 4 parties. The results are given up to the highest order
in 1/M not depending explicitly on the divisibility of M. Theorems 3.1 and 3.3 yield for
general g-stationary divisor methods

4 _ 24¢° 1
BY(M) = (M +4g—1)(M +3¢—1)(M+2q—1) (M)

72(M?* + M + 2)¢*

+ S%(M
(0 T g~ (M +dg —2)(M + 3¢~ D(M +3g— ) (M 72g—1) > 1

. A8(3M2 + 21gM — 12M + 37¢% — 42g + 11)q S0
(M +4g—1)(M+4q—2)(M +4g—3)(M +3¢q—1)(M +3¢—2)

+ 1 S4(M)

(M +4qg —1)(M +4q — 2)(M + 49 — 3)
¢
M
- 72“
r=1

32
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=3+ (5le-) - %) u
_ sa—3)+ (30—~ 8) +O<;L)
Sa-h+Ca-)-)% | TOln
—w5a—3) - (Fla—) - %)+
For the divisor method with standard rounding (¢ = 1/2), the seat biases in the case of

{ = 4 parties are given by

19 1
48 M
71 1
B4(M) — 48 M +0 (_)
11 3
48 M M
271
8 M

The leading terms are of the order of magnitude 1/M, and there is no term proportional
to 1/M?. As is visible from Figure 2.1(a), the divisor method with standard rounding is
asymptotically unbiased when the number of available seats M increases.

For the divisor method with rounding down (¢ = 1), it follows that the seat biases in
the case of ¢ = 4 parties are given by

13251 25 1
24 48 M 24 M?2
1131 131 1
4 _ 24 48 M 24 M?
B(M)=| 5 731 71 +O<MJ
24 48 M 24 M?

Here we obtain noticeable seat biases in favor of the larger parties. When the number of
available seats M tends to infinity the asymptotic seat biases are
31 5 9\
lim B*(M — - .
i, BV = <24 24 24 24)

The largest party thus can expect an extra seat — beyond its ideal share of seats — every
other election. Non-zero asymptotes stand out in Figure 2.1(b).

The previous results confirm the conjecture of Schuster et al. [32] on asymptotic seat
biases for / — oo parties, which will be proved in the next chapter. Seat bias formulas in
the case of ¢ = 5 parties are addressed in [35].

For the quota method of greatest remainders we compute the seat biases analogously
with the g-stationary divisor methods. For ¢ = 4 parties, Theorems 3.2 and 3.3 yield

B%M)::ﬁ%(Qm@+44s%My+ms%Mj+LmsﬂM»—f¥§;w
w7+ 300 o 16 0 + a0 5 5
_ s+ a0 5 oo 5o a0 5 5
TR U e e U TS o I
—si3 + w0 165 5 16
as depicted in Figure 2.1(c).
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seat fractions

0.6 largest
sga_cgnd
_ —— thir
04 smallest (a)
0.2
0.0
-0.2 —
064 o ________
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004 “o========
-0.2 k_/“

-0.4 —

0.4 — (C)

0.2 —

0.0 —
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number of seats M

Figure 4.1: Seat biases B}, By, Bj, and Bj for { = 4 parties, as functions of the house
size M < 30. (a) Divisor method with standard rounding (Webster, Sainte-Lagué). (b)
Divisor method with rounding down (Jefferson, D’Hondt). (c) Quota method of greatest
remainders (Hamilton, Hare). The seat biases of the Webster and Hamilton method are
tiny and quickly converge to zero; thus the methods legitimately are termed “practically
unbiased”. In contrast, the Jefferson method comes with strong seat biases, favoring the
two larger at the expense of the two smaller parties. Moreover, dashed lines indicate the
asymptotic behaviour of the various seat bias curves.
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4.2 Systems with Thresholds

There are many proportional representation systems and plenty of methods are available
to determine the number of representatives proportionally to some electoral input data,
see Taagepera and Shugart [33] for a review from the point of view of political science. In
the following we extend our previous results on seat biases to electoral systems where, in
order to be eligible to participate in the apportionment process, the vote proportion of a
party has to exceed a certain threshold t. Many systems impose a five percent threshold.

There exists an extensive literature on thresholds in electoral systems, see Taagepera
[34], Palomares and Ramirez [26], and the references given there. However, those authors
do not study the impact of thresholds on seat biases, but calculate minimum thresholds
a party must pass in order to possibly be allocated some number of seats, and maximum
thresholds beyond which a party is certain to be allocated that many seats. In contrast,
we address thresholds that are fixed by the applicable electoral law, so that the smallest
party needs a vote proportion larger than ¢. In such systems, the vector of seat biases

BY(M,t) = Elm — Mw|w, > --- > wy > {]

depends on the threshold. In other words, while the parties are still ordered from largest
to smallest, we condition on the event that the last party has a weight which exceeds the
threshold, wy, > ¢, and cannot be arbitrarily close to zero.

The threshold ¢ can range from 0 to 1/¢, where ¢ denotes the number of parties that
are eligible to participate in the apportionment process. When the threshold is equal or
close to 0, the disparity between the largest and smallest party is most pronounced. On
the other hand, when the threshold is close to 1/¢, all parties have their vote proportion
close to 1/¢, and thus are more or less equal. It is therefore to be expected that, if at all
an apportionment method suffers from non-zero seat biases, they will be largest for small
thresholds and wear away as the threshold ¢ grows close to 1/¢. Indeed, the dependence
on t turns out to be practically linear.

Theorem 4.1 (Seat biases in systems with thresholds)

Under the condition that the vote proportions exceed a threshold t, wy > ... > wy > t, the

seat biases satisfy
BY(M,t) = (1 — ¢t) - B(M,0), (4.1)

where BY(M, 0) is the vector of seat biases for zero threshold.

In deriving formula (4.1) some mild approximations are used. However, it transpires
that these approximations are practically negligible. Figure 4.3 exhibits the straight-line
decrease of the seat biases in systems of 2, 3, and 4 parties. Dots for thresholds of 5, 10,
and 15 percent represent results from computer simulations (100 000 realizations). If the
approximations in deriving formula (4.1) were not negligible, the dots would show some
deviation from the straight lines, which is not the case.

Figure 4.3 was generated using the divisor method with rounding down, which yields
the most prominent seat biases among the traditional apportionment methods. Schuster
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m=(5,0,0) m=(0,5,0)
Figure 4.2: Restriction of the probability simplex due to the condition that every party
wins at least s = 1 seat under the quota method of greatest remainders (M =5, { = 3).

et al. [32] investigate two empirical data sets: one refers to the Swiss Kanton Solothurn,
where thresholds were never implemented, one comes from Bavaria, where the threshold
was at 5 percent throughout. Theoretical seat biases in a three-party system are a gain
of 5/12 = 0.42 seats for the largest, a loss of —1/12 = —0.08 seats for the middle, and a
loss of —4/12 = —0.33 seats for the smallest party. Applying a 5 percent threshold, the
seat biases need to be multiplied by a factor of 1 — 3/20 = 0.85. This change is so small
that the concordance with the empirical data set from Bavaria, which after all embraces
just 49 apportionments, persists.

Proof of Theorem 4.1.  The mentioned approximation is a transition from the vote
region to the seat region. Theoretically, we restrict our attention to situations where the
smallest party weight exceeds the threshold. Practically, we substitute this condition by
demanding that the smallest party wins at least s seats, where s fulfills s/M = t. While
the threshold ¢ is a continuous variable, the proportion of seats s/M is discrete. For all
district magnitudes M which are practically relevant this approximation works perfectly
well, and it appears to be a substantial simplification to condition on the event that the
smallest party wins at least s seats. Figure 4.2 gives an example.

Therefore we suppose my > s and replace the threshold seat bias by
B(M,s) =Em— Mw|w, > ...> wy,my > s].

Except for constants not depending on s, Theorem 3.3 yields that the i-th component of
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B(M, s) is the quotient of two sums
Bi(M,s) =) PN
009 =3 it/ 2 i

where the sums extend over all ordered seat allocations m € G (M) satisfying m, > s.

Let n denote the integer part of (M — 1)/¢. Except for constants not depending on s,
Theorem 3.4 then implies for the numerator of the above relation

n

D g = 2o T HOG) =af = (s = 1)+ O,

j=s

Similarly, the sum in the denominator is seen to equal

n

Dy = 2 (OGN = (s =) 00,

j=s

Being the quotient of polynomials in s, of degree ¢ in the numerator and of degree ¢ — 1
in the denominator, B;(M, s) thus is linear in s, except for lower order remainder terms.
Neglecting these terms leads to B;(M,s) = as + b, where we have b = B;(M,0). Finally,
B;(M,M/l) =0 results in a = —(¢/M)B;(M,0) and it follows

Bi(M,s) = (1 . e%) - Bi(M, 0).

Replacing the absolute seat threshold s by the corresponding proportional threshold ¢ =
s/M, we obtain equation (4.1). qed
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seat fractions
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Figure 4.3: Linear decrease of seat biases in a system of ¢ = 2, 3,4 parties and M = 598
seats for the divisor method with rounding down. With threshold ¢ growing from zero to
1/¢, the linear decrease is seen to be in perfect agreement with the simulated seat biases,
indicated by bold dots, for thresholds of 5, 10, and 15 percent.
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4.3 Majority and Minority Criteria

There are several criteria to decide whether an apportionment method is suitable for use
in proportional representation [22,24,25]. We may expect that the following two criteria
should be fulfilled:

1.) A majority of votes implies a majority of seats in parliament.

2.) A minority of votes implies a minority of seats in parliament.

However, in general these criteria are violated. An example for such a violation is shown
in Figure 4.4, where the marked set of weight vectors represents a majority of votes — of
course for the largest party. Still, because the divisor method with rounding up leads to
the seat allocation m = (2,2, 1)!, there is no majority of seats. In the present section we
aim at calculating the probability that the majority or minority criterion is not fulfilled.

Therefore, we introduce the set of weight vectors violating the majority criterion
V(A L) := {W € Sg twyp > % and A(w;) < %} :
and the set of weight vectors violating the minority criterion
V_(A L) := {W € Sg twy < % and A(wy) > %}

Assuming a uniform distribution of the weight vectors w on Sg, we are interested in the
probabilities
P (A 0) :=P(we V(A Olw >...>w)

and

P (A 0) :=P(w e V_(AOw > ...>wy).
To calculate these probabilities, the case that the house size M is even has to be distin-
guished from the case that M is odd.

For M even, under the condition that wy; = 1/2 implies A(w;) < M/2 we have

1
P (A 0)=P <w1 >3

wlz...zwg)— Z P(A(w) =m|w; > ... > wy),
mEGlZ(M)7

m1>%
and under the condition that w; = 1/2 implies A(w;) > M /2 we have

Pan= 3 P(A(W):m\wl2...zwg)—P<w1>1‘w12...2w5).

2
meGE (M),
mlz%
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m=(0,0,5)

m=(5,0,0) m=(0,5,0)

Figure 4.4: Set of weight vectors V, (A, ¢) violating the majority criterion for the divisor
method with rounding up (M =5, { = 3).

The quota method of greatest remainders fulfills both conditions, since the definition of
z(A) and e(\) implies z(A) + e(X) < £, and therefore

e(N)

= =t

By (2.3), this guarantees that a weight vector w with w; = 1/2 leads to a seat allocation
m with m; = M/2.

For the ¢-stationary divisor methods we examine whether the first component of the
vertex v(A = (0,1,...,1)") of the rounding polytope P(m = (M/2 + 1,ma,...,my)") is
at least 1/2, see (2.9),

1

M
() +a-1_ _ |
- — (-2

1
M+4lg—1 2

<~ q

as well as whether the first component of the vertex v(A = (1,0,...,0)") of the rounding
polytope P(m = (M/2 —1,ms,...,my)") is at most 1/2,

(4-1)+q

1 (-3
M+tlg—(0—-1) ~ 2

For system size ¢ = 3 we therefore can compute both P, (A, ) and P_(A,{), particularly
for the divisor methods with rounding up (¢ = 0) and down (¢ = 1). For £ = 4, one can
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calculate P, (A, /) for the divisor method with rounding up, and P_(A,¢) for the divisor
method with rounding down.

Turning to the case M odd, we have the relation

PAAO —P(AL) = P <w1 > %‘wl > > wg)

— > PAW)=mlw; > ... >uwy),
mEGZz(M),
m1>%

which we can evaluate only if P, (A, ¢) =0 or P_(A, () = 0; except for the quota method
of greatest remainders where we have additional geometrical insight.

For the ¢-stationary divisor methods we examine whether the first component of the
vertex v(A = (0,1,...,1)") of the rounding polytope P(m = ((M +1)/2,ma,...,m,)") is
at least 1/2, see (2.9),

as well as whether the first component of the vertex v(A = (1,0,...,0)") of the rounding
polytope P(m = (M —1)/2,my,...,m,)") is at most 1/2,

M—-1

=5 t4q 1

2 <- = g=1
M+lg—((—1) =2 1

For any system size, it follows that P_(A,¢) = 0 for the divisor method with rounding up
(¢ = 0) and that P.(A,¢) = 0 for the divisor method with rounding down (¢ = 1).

By integration we obtain

1/2 1 1/2—wp—...—w3

1/2 /2—wy
1 dw =2 dw I dwsy 1
¢ —1--- 2
wlz...>w4): 0 fwl fws

l—wy—...—wg )

1
P (wl -5 1 Ty T—wy—.—wg
fOl dwg fwﬁfl dwg_l e fwg 2 de 1

which yields for £ = 3 the value 3/4 and for ¢ = 4 the value 1/2. The summations

Z P(A(w) =m|w; > ... >w;) and Z P(A(w) =m|w; > ... > wy)

meGY, (M), meGY (M),
my > mi >

can be evaluated analogous with the calculation of seat biases by apportionment polyno-
mials. In particular, we apply the decomposition of GZZ(M ) into the disjoint subsets, for
r=1,...,¢,

K. (M)={meGL(M):m, >0=m4},
and account for the additional condition m; > % or my > % Resulting probabilities of

violated majority and minority criteria are presented in Table 4.5, for the quota method
of greatest remainders and the divisor methods with rounding up and down.
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method M P, (A1) P_(A0)
Hamilton even 12M = 8 12M — 16

i v — ——
8M? 8M?
M -1 M+1
odd 812 812
12M? — 16M + 8 12M2% + 16 M — 48
even S e
" M? —2M + 1 M?+2M — 1
0 e e
3M —6 M —2
Adams (¢ =0) even
5(M —1)(M —2) 5(M —1)(M —2)
M -1
odd 0
5(M —1)(M —2)
oven AM? — 22M + 28
v -
S 1) (0 — (M~ 3)
2M?% — 8M
odd - M+ 0
(M —1)(M —2)(M —3)
et , M +2 3M — 2
efferson (¢ = 1) even T+ (M 12) T+ (M 12)
3 3
M+1
dd 0
0 M+ 1)(M+2)
oven 4M? + 22M — 20
v -
s(M +1)(M +2)(M + 3)
2
odd 0 2M*+8M +6

(M +1)(M +2)(M + 3)

Table 4.5: Probabilities of violated majority and minority criteria for several apportion-
ment methods in systems of £ = 3 and ¢ = 4 parties.
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Asymptotic Seat Biases

The combinatorial approach to seat biases enables us to prove the mentioned conjecture
by Schuster et al. [32, Section A.3] on asymptotic seat biases for an arbitrary number of
parties, as the house size tends to infinity. Considered apportionment methods are both
the stationary divisor methods and the quota method of greatest remainders. Following
[13], the asymptotic seat bias formulas are given in the first section and proved applying
results from the second section of this chapter.

5.1 Asymptotic Seat Bias Formulas

General seat bias formulas holding for arbitrary system size ¢ are stated in the following
two Theorems.

Theorem 5.1 (Seat biases of divisor methods)

Under the q-stationary divisor method, the seat bias BY(M), i = 1,...,(, fulfills

1 1 1
B{(M) = (= — I )
on=(5-0) (-35) o ()
Theorem 5.2 (Seat biases of the Hamilton method)
Under the quota method of greatest remainders, the seat bias BY(M), i = 1,..., ¢, fulfills

B{(M) =0 (%) :

Due to Theorem 5.1 we find that the divisor method with standard rounding (¢ = 0.5) is
the only g-stationary divisor method which is asymptotically unbiased as the house size
M tends to infinity. In addition, Theorem 5.2 shows that the quota method of greatest
remainders is asymptotically unbiased. Schuster et al. [32] give a detailed interpretation
of these results.

43
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The proofs of Theorems 5.1 and 5.2 rely on the knowledge that the -th component of
BY(M) is equal to (Theorem 3.3)

Bi(M) = (Z (ot ‘:(M)) AL

r=1

where we introduce the notation, for i =1,...,r,

SI(M) =rISI(M) = Y rim;

mEKr(M) br (m)

Till now apportionment polynomials were defined without the factor 7! in the numerator.
However, the factor is advantageous to cast the subsequent findings into a more pleasing
format. Recall that b,(m) counts the permutations leaving m invariant, and

K,(M)={me Gé(M) tmy >0 =my4 ).

For i > r + 1, we have ST (M) = 0. In addition, Theorem 3.4 yields S}(M) = M, and for
r>2andit<r
< [r L= M—-—m,r—1
Sy (M) = SHM —m, ' . O(M).
0= (3) 3 (tar—mn+ (M7 )m) | -oan

myr=1

Proving Theorems 5.1 and 5.2 requires knowledge about the two leading terms of the
apportionment polynomials. Thus, we need to calculate the coefficients s;(r) and ¢;(r) in

SH(M) = s;(r)M" +t;(r)M"" + O (M"?),

which is done in Lemma 5.1.

Lemma 5.1 (Leading terms of apportionment polynomials)

The coefficients of M"™ and M"™™* of the apportionment polynomial ST(M) are

i L <
sy = { meamy Jorisr 61)
0 fori>r,
and
r r—11 .
YY) .= <
B = L sir—1)= 4 2=y Jori<m 52)
2 0 fori>r.
Proof.  The assertion results from Lemmata 5.2, 5.3, and 5.4. qed

Lemma 5.1 and the seat allocation distributions given in Theorems 3.1 and 3.2 enable us
to prove Theorems 5.1 and 5.2.
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Proof of Theorem 5.1.  Fix g € [0,1]. For obtaining the leading term of Bf(M) in
an expansion in powers of M ™! we have to calculate p(¢) and p(¢ — 1) by (3.1). We find

{—1 1
p(l) = (€— 1)!te{z“:1}£[1 M+ (C+tg)g— (C—j+tg)
(0 —1)!
M1 M2 (g — €+ ) + O (M)

and

-1 1
p(l—=1) = W—Q)!t gl}gMjL(ﬁ—lHo))q— (C—1—j+1ty)
q(f—1)!
ML+ O (ME2)

On the other hand, by Lemma 5.1, we have

_ M (1 AY i | >
55<M>=7(23>‘m@3>+0<w )

j=i

and

By polynomial division we obtain

¢ -1 -1
p(0)S;(M) = % (Z %) (M — Z(ﬁq - €+j)> - g (Z %) o) <%)

j=i

p(t =S (M) =¢q (g_l' %) +0 (%) .

and

This finally leads to

s = (£3)(50-0-9) (-9 (£2) =)

_ (i;) (;—q) (f—l)+<%—q) (1_€§;;> +o<%),

which yields the expression claimed in the assertion. qed
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Proof of Theorem 5.2.  Proceeding analogously to the proof of Theorem 5.1 we get

from (3.4)
_(t-1)! i \"T =)
0= S () =

()

and

(0~ 1) i\ - j
1) = — 7 l——d — 1— 4
=1 a2 | =1+t (MFT £ =1

(£—1)
T 2Me!
This results in
¢ -1
- M 1 14 1 1
4 M) = — e - L
p(O)S{ (M) = = <;j> 5 <;j> +0 (M)
and
11 1
1 —1 M) = = - -
P DS = <Zj> +0(5);
leading to the expression claimed in the assertion. qed

An alternative proof of Theorem 5.1 for the stationary divisor methods results from the
asymptotic treatment of the seat excess

Aw) —wM

in Heinrich et al. [18, Corollary 3.2], see also [17,19]. Assuming that the truncated weight
vector (wy,...,we_1)" has a Riemann integrable Lebesgue density on its domain

-1
{(wl, Cwe)t e 0,1 Zwi < 1} )
i=1

one can show that the (conditional) expectation of the seat excess satisfies

lim E[A(W) — wMw; > - > wp > 1] = (l—q) (1= - Elwlw > - > wy > 1))

M—o0 2
(5.3)
where ¢ is the threshold that parties have to pass in order to be eligible to participate in
the apportionment process. Under the assumption that the weight vector w is uniformly
distributed on the probability simplex S*, this leads to the asymptotic seat bias formula
of Theorem 5.3.
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Theorem 5.3 (Seat biases of divisor methods in systems with thresholds)
In systems with threshold t, under the g-stationary divisor method, the seat bias Bf(M,t)

lim BY(M,t) = ﬂ—%ﬂ(——q)(l—é?%)

M—o0

i=1,...,0, fulfills

- > wy > t}, with some

Proof of Theorem 5.3. On the conditioning event {w; >
threshold ¢ < 1/¢, the transformed variables, for i =1,... ¢,

Wi =TT

are non-negative and sum to unity. Therefore, they inherit the uniform distribution of w

and we get
= (1 —£1) - Ewj[w}

- > wp > 1]

(1 —2t) - E[w;|w,

From Lemma 3.1, see also Johnson et al. [20, p. 500], we know that

l
1 1
> wy| = = .
2wl = 5 g: ;

Efw;|w; >
j=i

This leads to
‘1

1L —{-Elww; > -+ >wp > t] = (1 — (1) (1_2_),
J

qed

which completes the proof due to (5.3).
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5.2 Leading Terms of Apportionment Polynomials

We prove Lemma 5.1 via the following Lemmata about the coefficients s;(r) and #;(r) of
the apportionment polynomials S} (M).

Lemma 5.2 (Coefficients of highest order)
Fori=1,...,r, the coefficient of order M" of the apportionment polynomial ST (M) is

si(r) = %Z% (5.4)

Proof.  For the stationary divisor method with parameter ¢ € [0, 1] and for w € S* we

have (w)
= Wi

Selecting ¢ = 0, it follows from (3.2), foralli =1,...,¢,

1 1 Il
0= lim — B{(M)= lim Tl)Sf(M)—ZZ_.,
‘

M—oo M M—oo M( v 1 o
Now v e
—1 -
O MZ—2
(6—1) T
implies
11
C—1)ls;(0) — = - =0,
SRR
from which the claim is derived. qed

Lemma 5.3 (Vanishing coefficient of second highest order)

The apportionment polynomial ST(M) has no term of order M™!,

tr(r) =0. (5.5)

Proof. For r <4 the result has been established previously. For » > 3 we have

Si(M) = h: (Z) Lﬁglj <M L 1)mr +O(M).

Using

M—-—m,r—1 1 - h " L
< h—1 ) - (h—l)' (M—mr’f’) _m (M—mrr) +0 ((M—mﬂ”) )
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3

for h =r —1 and h = r — 2 leads to cancellation of terms involving (M — m,r) ™3, and

yields
[+

sion = | 3 ERE  vo ().

my=1
Applying the Binomial Theorem, we write
|_M;1J r—2 r—9 |_]\/I;1J
M — m, ) 2m,r = _1)ipitlpr—2—i i+l
Syt = 37 (7 %) a5

myr=1 =0 myr=1

By Burrows and Talbot [9] or Edwards [14], the sum of powers of integers amounts to
git2 it

i+1 %
> mi =t TOE).

my=1

for all © > 0, where

M {M—lJ
§:=— +cCp = .
T T

Here, c¢)r = O(1) depends on M but is bounded. Applying the Binomial Theorem to the
term s+2 yields

Sl
o M*2 (i 2)Mitley M
) = +
" (i +2)rit2 rit(i 4+ 2) 2ritl

+0O (M),

my=1
By this result we obtain

— T 1+ 2
1\ <=2 [r—2 .
e (o DE ()0
i=0
The fact that
2 r—2 ,
(o
i=0 L
for r > 3, then implies the claim. qed
One can show that , .
i <r—2) - _ 1
i Ji+2  r(r—1)

i=0
Thus, the proof of Lemma 5.3 gives rise to an alternative proof of Lemma 5.2 for i = r

because it follows :

sy = Lo (M)

r-rl
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Lemma 5.4 (Coefficients of second highest order)
Fori=1,...,r, the coefficient of order M"=' of the apportionment polynomial ST (M) is

tr) = —2 sl —1) = —ﬁzl (5.6)

Proof. Lemma 5.3 establishes the claim for ¢ = r as then the sum in (5.6) is empty.
Moreover, for r < 4 the claim has been established previously. By virtue of these results
we can proceed by induction and assume

r—1

ti(r—1)=— si(r —2).

The recursion of the apportionment polynomials is rewritten as

S0 -500+ 3 Z( )str =)

myr=1 h=1

By Lemma 5.3, the polynomial S”(M) does not have a term of order M"~1. Thus, #;(r)
can be determined from the second term in the above relation, which we rewrite as

2] i
> (St ar =)+ SRS 0 — m) + O (0 = ) )

2

myr=1

Due to our assumption we know

rSIH M) + SITAHM) =rsi(r— )M+ O (M™),

and thus obtain

[

1 L]VI;lJ
Z Z( )Sh M —m,r) =rs;(r—1) Z (M —m,r)"* +O(MT_2).

mT:I : mT:I

The Binomial Theorem yields

LA{;1J 1

Z (M —m,r)!

my=1 =0

I
/N
=
=
[a—y
N———
~3
3

Defining
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we can evaluate ) _, m/ for i > 1 as in the proof of Lemma 5.3, but for i = 0 we have

>, _1 1 =s. Hence, we find

L]VI;lJ
Z (M —m,r) !

my=1

Af r—: (r - 1) (z_:)1 . M;—l i (r - 1>(_1),-

= =1

r—1
r— r—1 i r—
+ M ey ;:0 < . )(—1) + 0O (M™?)
MT B Mr—l

72 2

+0 (M.

After all, the coefficient of order M™~" in ST(M) equals t;(r) = —% s;(r — 1). qed



Chapter 6

Seat Excess Variances

The present chapter complements the work on seat biases, and addresses the conditional
variance of the seat excess. The first section gives analytical results, that are proved via
facts from the second section. Moreover, numerical simulations and a study of Bavarian
electoral data are discussed. These findings have been published in a recent paper [38].

6.1 Analytical and Numerical Results

Let the seat ezcess be the difference between the number of allocated seats and the ideal

share of seats,
A(w) — wM.

The previously studied seat bias then is the (conditional) expectation of the seat excess,
BY(M) := E[A(W) — wM|w; > --- > wy,

where w is assumed to be uniformly distributed on S*. Now we turn to the (conditional)
seat excess variance V(M) = (V, ..., V})!, which is defined as

V(M) := Var[A(w) — wM|w; > - > wy).

The following two Theorems give the asymptotic value of the seat excess variance as the
house size M tends to infinity in systems with two or three parties.

Theorem 6.1 (Seat excess variances of divisor methods)

For system size £ = 2 and { = 3, the asymptotic seat excess variances for the g-stationary
divisor methods are given by

Lo(d). (6.1)

t
OB A a-1)7) +o().

Vi) = (4 ha-b (-2

3 _ 301 13 112 235 7
Vi) = (m+ﬁ(q—§) v3s T (4

NOl= N

52
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method ¢ i Vs Vs . Ve average
Hamilton 2 0.083 0.083 0.083
3 0.093 0.093 0.093 0.093
4 0.094 0.094 0.094 ... 0.094
5 0.093 0.093 0.093 ... 0.093 0.093
10 0.090 0.090 0.090 ... 0.090 0.090
50 0.085 0.085 0.085 ... 0.085 0.085
Webster (¢ = 0.5) 2 0.083 0.083 0.083
0.117 0.091 0.085 0.097
4 0.131 0.096 0.088 ... 0.100
5 0.138 0.101 0.090 ... 0.084 0.100
10 0.145 0.110 0.097 ... 0.083 0.096
50 0.118 0.104 0.099 ... 0.083 0.086
Jefferson (¢ = 1) 2 0.104 0.104 0.104
0.161 0.116 0.099 0.126
4 0.200 0.122 0.106 ... 0.130
5 0.227 0.127 0.109 ... 0.090 0.130
10 0.301 0.149 0.120 ... 0.083 0.123
50 0.413 0.198 0.147 ... 0.083 0.099

Table 6.1: Seat excess variances V7, ..., V, for traditional apportionment methods, as the

size of parliament M tends to infinity, which is simulated using M = 50, 000. Systems of
¢ =2,3,4,5,10 and 50 parties are considered.

Theorem 6.2 (Seat excess variances of the Hamilton method)

For system size { =2 and { = 3, the asymptotic seat excess variance for the quota method
of greatest remainders has the same value for all parties,

t
V) = (55) +O(h), ©2)
t
VM) = (3a00) +0(5)
Proof of Theorems 6.1 and 6.2. The seat excess variance can be written as
V(M) = B (M) +T/(M) — (BY(M))”.

Here, B
‘(M) := E [W*M?|w; > ... > w]
is independent of the apportionment method,

EZ(M) =F [A(w)2 —2A(w)wM|wy > ... > wg] ,
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Seat excess variance

0.25
0.20

0.15 —

0.10 ;o: j

0.0 0.2 0.4 0.6 0.8 1.0
Parameter q of stationary divisor methods

Figure 6.2: Simulated seat excess variances for g-stationary divisor methods, where ¢ =5
and M = 50,000. Smaller variances correspond to smaller parties.

and the square of a vector is to be read as the vector of squared components. The values
for the seat bias for £ = 2 and ¢ = 3 can be found in Schuster et al. [32], see also [35].

Integration over Sg yields

RO = 08 ()
= t
R0 = M (32 )"

Furthermore, we obtain
E‘(M)= ) (m’-2mC‘(m)) P(A(w)=mlw; > ... >wy),
mEGeZ(M)

where

C'(m) ;== E[wM|A(W) =m,w; > ... > w,.

The conditional probabilities P(A(w) = m|w; > ... > wy) have been analyzed in section
3.2, and the expectation C*(m) equals M times the barycenter of the polytope

P(m) :=cl{we S, : A(w) =m}.

It is computed using formulas for the barycenters from the subsequent section. Thus the
sum in the above relation for Ef(M) can be evaluated, leading to V¥(M). In this lengthy
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method V3 v V@ average  SE(V?) SE(VP) SE(VP)
Hamilton 0.078 0.092 0.077  0.082 0.013 0.013 0.013
Webster (¢ =0.5) 0.095 0.082 0.077 0.085 0.019 0.013 0.011
Jefferson (¢ =1) 0.115 0.073 0.129 0.106 0.030 0.019 0.015

Table 6.3: Empirical seat excess variances in three-party systems, based on 49 Bavarian
elections (1966-1998), their average, and their simulated standard errors.

evaluation, a decomposition of GZZ(M ) into the disjoint subsets, for r =1,...,¢,
K.(M)={meGL(M):m, >0=m,4}
is helpful; compare the calculation of seat biases and the following sections. qed

Systems of more than three parties can be investigated by the numerical simulations
summarized in Table 6.1. Asymptotic seat excess variances for M — oo are simulated by
the house size M = 50,000. Each value in Table 6.1 is computed from 50, 000 simulated
seat excesses. For the quota method of greatest remainders the results confirm Theorem
6.2. The fact that the seat excess variance is asymptotically equal for all parties appears
to be a general feature of the method, observed in all the simulations. Interestingly, the
variance becomes maximal for ¢ = 4 and decreases monotonously for larger /. One may
conjecture that the asymptotic seat excess variances converge to 1/12 as ¢ — oc.

The outcome of the simulations for ¢-stationary divisor methods confirms Theorem
6.1. Generally, the seat excess variance is found to be maximal in the case of the largest
party and to decrease monotonously for smaller parties, where its average value again is
maximal for / = 4 and descreases thereafter. The simulations show that the asymptotic
variance, as a function of the parameter ¢, is a parabola with the minimum at ¢ = 1/2.
Figure 6.2 illustrates this conjecture for ¢ = 5 parties, presenting results of simulations
for ¢ =0.0,0.1,...,1.0 together with a least squares parabola.

Finally, using data from Schuster et al. [32] on 49 elections with three parties in the
German State of Bavaria (1966-1998), empirical seat excess variances can be computed,
see Table 2.3. Ignoring that the house size M of the elections was moderate and varied
from 19 to 65, these empirical variances can be compared to the theoretical asymptotic
values from Theorems 6.1 and 6.2; they are of the same order of magnitude. To judge
if the deviations between empirical and theoretical results are within chance variability,
49 weight vectors from a uniform distribution on S2 were repeatedly simulated, and the
seat excess variances for the large house size M = 50, 000 were computed. Using 10,000
repetitions, the standard errors SE(VZ-?)), 1 =1,2,3, of the empirical seat excess variance
take the values stated in Table 2.3. They confirm nice agreement between empirical and
theoretical variances which deviate by two standard errors or less, except for the case of
‘723 for the Jefferson method (¢ = 1) in which the deviation is slightly larger. Comparing
empirical seat excess variances and simulated variances for M — oo is justified since the
dependence of V(M) on the house size turns out to be very small. As a function of M,
the seat excess variances rapidly approach their asymptotic values.
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6.2 Barycenters of Rounding Polytopes

The proof of Theorems 6.1 and 6.2 in the former section was based on the barycenters of
the polytopes, for m € G4 (M),

P(m) =cl{w e Sg : A(w) =m}.

Set closure circumvents ambiguities in the definition of seat allocations when the weight
vector w contains ties. The polytope P(m) is the intersection of the rounding polytope

P(m) =cl{we S : Aw)=m}

with the ordered probability simplex S%. Note that these notations suppress the depen-
dence on the chosen apportionment method. Rounding polytopes for the quota method
of greatest remainders and for divisor methods have been addressed previously, resulting
in their vertices and surface volumes.

Recall that 0, and 1, are the row vectors in R® with all components equal to zero or
one, respectively. For m € G¢(M),
R(m) ={i:m; #0} and r(m)=|R(m)|.

The quota method of greatest remainders and the divisor methods give rise to rounding
polytopes with 2¢ — 26-7(m) — 1 vertices v(\), induced by the vectors A € {0,1}\ {0, 1,}
with \; = 0 for some index j € R(m). If 7(m) = 1, then v(0,) is an additional vertex.

By (2.3), for the quota method of greatest remainders the components of the vertices
are, fori =1,...,¢,

L(mi+1-285) =1,
vi(A) = ¢ &L (mi - zi/\(),\)> if \; =0 and 7 € R(m),
0

if \; =0 and ¢ ¢ R(m),

where z(A\) = [{i € R(m) : \; =0}| and e(\) ;== {1 <i </l N\ =1}

By (2.9), for the g-stationary divisor methods (with ¢ € [0, 1]) the components of the
vertices are, fori=1,...,/,

e if \ = 1,
v(A) =q " if A =0and i € R(m),
0 if \; =0 and i ¢ R(m),

with the normalization ¢(\) = M + fq — |{i : \; = 0}].
From the proofs of Lemma 2.4 and Theorem 2.3 we know

r(m)
P(m) =550 | U,

k=1



6.2. BARYCENTERS OF ROUNDING POLYTOPES 57

where the convex hulls
Up :=ch {v(\) : A € {0,1}", A, = 0}

are pairwise disjoint. In the following we decompose the sets Uy into simplices, compare
the proof of Lemma 2.4, and compute the barycenters of the simplices, which we can do
because for a simplex the barycenter is the arithmetic mean of its vertices. The simplex
barycenters then yield the barycenter of P(m).

Let Sk be the group of permutations on {1, ..., ¢} leaving k fix, and define
o(x):= (:L’U(l), . ,[L’U(g))t, ogeS, xeR
Let -
Sk :={0 €S, :0(Ai)j > 0(A;)j41 for all i and all j € B(m)},
where B(m) :={j: 1 <j <{—1,m; =mj;}. Defining
Mei = (11,0, 1; 441,00 51)" € R,
the definition of U, implies
Uk = U Ak,g and Uk = UkﬂSg = U Akﬂ,
o€Sy aeS”k

where

Apoi=ch{v(c(Ag;)):1=0,...,0—1}.

By using only the permutations in S, one takes into account exactly the ordered weight
vectors because

c(Ai)j = 0(Ai)jt1 = vi(0(Ari)) = vita(o (M),

compare the computed vertices for the quota method of greatest remainders and for the
g-stationary divisor methods.

The barycenter of the simplex Ay, equals

~
—_

be(Ag,) = V(o (M)

|

Il
o

As the interior of U; N Uj is empty for i # j and the interior of Ay, N Ay . is empty for
o # 7, the barycenter of P(m) therefore equals

r(m) £—1
— Vol Aka
be(P(m)) = Vol P(m)) E E E v(o(Aki))
O k= 1U€Sk =0

Considering the effects of a permutation ¢ € S on the vector Ake—1 yields that the sum
over k =1,...,r(m) in the latter relation can be replaced by a sum over k ¢ B(m). The
special form of A\;; then enables us to combine the sums over k£ and o, leading to

_ 1 Vol(A
bC(P(m>> = Vol(p(m)) Jeszz(m) g

Zl
V >\1@
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where

S‘m) = {o€ 8 :0(1) <r(m),o(l) ¢ B(m),

“(j+1) for all j € B(m),j #o(1) —1}.

This equation allows us to compute bc(P(m)) because we can extract the volumes of the
simplices A, from the proofs of Theorems 2.2 and 2.5.

We obtain for the quota method of greatest remainders

i1
VOl( E[Mé 1 H ( r +t(])> ;

and for the g-stationary divisor methods it follows

QZ_T\/Z(mou) +q—1) 1

(—D(M+rqg—r) HM+(r+t‘(’))q—(r—j+t(]))’

Vol(A,) =

Here the vector t7 = (¢7,...,t7 ;)" is defined by t7 = 1 for o(i) < r(m), i < o(1) and for
o(i+1) <r(m),i>o(l); t7 = 0 otherwise. Finally, for j < ¢ — 1 we define

J
>
i=1
The volume of the polytope P(m) results from

Vi

Vol(P(m)) = €~ 1)b(m)

P(A(w) =m)

and the seat allocation distributions stated in Theorems 3.1 and 3.2.
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6.3 Generalized Apportionment Polynomials

The seat allocations in the subset K, (M) of G (M) have the first r components positive
and the last £ —r components zero. If the probability P(A(w) = m) is constant for these
seat allocations we can write

E(M):Z(gf!rﬂp(r) > br(lm) (m* — 2mC*(m)) .

r=1 meK.,. (M)

To deal with the sum over m € K, (M) we introduce generalized apportionment polyno-
mials, forr=1,...,7,

S"(M) := Z 5 ! (m® — 2mC*(m)) .

meK,. (M) r(m)
They are determined from the apportionment polynomials S"(M) via the function
f(x) == x* — 2xC4(x)

as follows. Define

x; = (M,0,...,0),

xy = (M —mgy,my,0,...,0),

x5 = (4, M 0. 0),

xy = (M —2ms,ms,ms,0,...,0)"

x5 = (M —my—mg, mg,ms,0, ’O)t’
xg = (M5 ,%,mg,o,...,O)t,

xr o= (. 4,5.0,...,0)

ma—1 2 2
Son Lﬂ%ﬂ f<;<4>+f—ij s+ [ 260 o] ) 1 160 )"

Now we calculate the seat excess variance for systems of two and three parties via the
relation

V(M) =E(M)+I(M) - B(M)>
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By Schuster et al. [32], the seat biases of the quota method of greatest remainders are

won - (b p3T)

1 (1 4o —921M 4 44 o 4o _91M\'
B M)=—|Z+10,——, ——| ,=+1(0,——, ——| ,— + |0, ——, —— :
(M) M<6+{’9M’9ML’6+[’9M’9M]3’6+[’9M’9M]3>

Calculating the barycenters of the rounding polytopes P(m) for all classes of seat alloca-
tions yields for £ = 2 parties

be(x) = 4 (M -1 1Y
be(xa) = 5 (M —ma,my)',
belx) = & (4434 -1,
and for ¢ = 3 parties
be(xi) = & (M- L, 3 2
bea) = 5 (M —ma — s — £, 3)'
be(xs) = & (M4 2 4 19 1)
be(xs) = 15 (M —2mg,ms+ 2,ms — 2)',
be(xs) = 17 (M —my — mg, ma, ms)’,
be(xa) = 37 (M52 + 5, 452 — §,ma)’,
be(xr) = 7 (5 + 5,455 —35)

Recall that C'(m) equals M times the barycenter of P(m).

Concerning the probabilities py p(7), we obtain for £ = 2 parties

1 1
pom(l) = oY and  pon(2) = e
whereas for ¢ = 3 parties we find
1 1 2
pam(l) = EYVER panm(2) = VER and  p3n(3) = iR

The seat excess variance for the g-stationary divisor methods is calculated analogous
with the preceeding considerations. By Schuster et al. [32], we have the seat biases

oo (o) 23 ()
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and

s (o) 2-geo() Fb- 1o )

Turning to the probabilities p, ¢ (1), we find for £ = 2 parties

q 1
Pozi(l) =y g A Paan®) = g

whereas the result for £ = 3 parties is

2q°
Pgam(l) = (M +3¢—1)(M+2¢—1)
q(2M +5q — 1)
Pasnt(2) = R T (M 4 g - (M + 20— 1)

2
Pasn(3) = (M +3q—2)(M+3¢g—1)




Chapter 7

Asymptotic Equivalence of Seat Bias
Models

Seat biases are defined as averages of the difference between the seats apportioned to the
parties and their ideal shares of seats. To evaluate this expectation, Schuster et al. [32]
assumed a uniform distribution of the electoral vote proportions. Motivated by Balinski
and Young [5], this chapter introduces an alternative probabilistic model for evaluating
averages of the difference between actual and ideal seat allocations. The model stresses
the importance of the rounding process underlying the allocation of seats, as it is based
on an assumption other than that of uniformly distributed vote proportions. However, it
turns out that the asymptotic seat biases of stationary divisor methods follow the same
formula as found for the distributional assumption in Schuster et al. [32].

Following [39], the present chapter first gives a comparison of the seat bias models of
interest. Then we will turn to the calculation of asymptotic seat biases, where the proof
of the central result uses facts derived in the last section of this chapter.

7.1 Apportionment-oriented Seat Bias Model

Schuster et al. [32] introduced their concept of seat biases in order to investigate how an
apportionment method treats smaller and larger parties, in the process of allocating the
M seats available in a parliament to the ¢ competing parties. Assuming that the parties
are ordered according to their vote counts, the vector of seat biases is given by

BY(M) :=E[A(W) —wM | w; > - > wy].

In this model the weight vector w = (wy, ..., w;)" represents the vote proportions of the
competing parties. It is assumed to be uniformly distributed on the probability simplex

St = {WE [0,1]5:211}@-: 1}.

1=1
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(33)

. (6,0)
> 4

>X1
0 1 2 3 4 5 6

Figure 7.1: Rounding polytopes for the apportionment-oriented seat bias model, for the
divisor method with standard rounding, ¢ = 2 competing parties, and house size M = 6.
In this model, it is assumed that the vote outcomes x = (x1,x2)" are equally distributed
over the shaded area, indicating the regions of scaled weight vectors x € [0, 00)? that are
rounded to M = 6 seats.

The seat bias model of Schuster et al. [32] stresses the voter’s point of view, because
it is based on vote proportions resulting from the electoral process. The most important
assumption entering their model is the uniform distribution of these vote proportions on
the probability simplex. Alternatively, it is reasonable to approach the problem from the
point of view of the apportionment process itself, very much in the spirit of Balinski and
Young [5, p. 120f]. For this reason, we restrict our considerations to g-stationary divisor
methods, which allocate seats by means of the rounding function r,(x), with parameter
q € [0,1]. The quantity entering this function is a weight vector scaled by some divisor
D, that is z; = w;/D, for all i € {1,...,¢}. For a given set of vote proportions, we have,
in general, not only a single divisor leading to the correct total of M allocated seats but
an interval of possible divisors. Therefore, we introduce the set X*(M) of scaled weight
vectors which result in seat allocations with a total of M seats,

XYM) = {x € [0,00)" : qu(xi) = M} .

=1
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Because any scaled weight vector x € X*(M) may enter the rounding process, we assume
these weights to be uniformly distributed on the set X*(M), see Figure 7.1.

By means of this probabilistic assumption, it is possible to deal with seat biases in a
similar way as discussed in the previous chapters for the model of Schuster et al. [32]. In
particular, we assume the parties to be ordered according to their vote count. Again the
vector of seat biases Bf(M) is the conditional expectation of the difference between the
number of allocated seats A(x) and the ideal share of seats. However, the latter now is
given by a projection of the scaled weight vector according to

M
Zf:l Li

for x € X(M). Therefore, we have to deal with the expectation

X = (21,...,20)" = X,

BY(M) = F [A(x) - — T« x12~-~2xg], (7.1)

7
D i1 Ti

where the weights x € X*(M) are assumed to be equally probable. We call this concept
the apportionment-oriented model of seat biases.
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7.2 Calculation of Asymptotic Seat Biases

In the following, we address the asymptotic behaviour of the seat biases when the house
size increases, M — oo. This case is practically relevant for proportional representation
systems because the number of seats in a parliament almost always exceeds the number
of parties by far. The asymptotic seat biases in the apportionment-oriented model fulfill
the formula of Theorem 7.1.

Theorem 7.1 (Asymptotic seat biases in the apportionment-oriented model)

In the apportionment-oriented seat bias model, under the q-stationary divisor method with
parameter q € [0, 1], the seat bias of the i-th largest party is

Bi{(M) = <% - q) (1 - zzj %) 9 (%) : (7.2)

j=i

foro=1,...,¢(.

This is just the same asymptotic formula as obtained under the assumption of uniformly
distributed weights w € S%, see Theorem 5.1, and therefore the apportionment-oriented
model is asymptotically equivalent to the model of Schuster et al. [32] when the number
of seats available for apportionment increases, M — oo. One would not expect this kind
of equivalence as a uniform distribution on the set X*(M) corresponds to a non-uniform
distribution on the probability simplex S¢, which follows from studying the projection of
X(M) onto S,
1

Zf:l L

For the case of £ = 2 competing parties the situation is illustrated in Figure 7.1.

x = (21,...,20) — X.

Formula (7.2) in Theorem 7.1 states that standard rounding (Webster/Sainte-Lagué,
g = 0.5) yields the unique g-stationary divisor method which is asymptotically unbiased.
Balinski and Young [5, p. 120f] have a different concept of biasedness, in which a divisor
method is (pairwise) unbiased when the probability that party 1 is favored over party 2 is
equal to the probability that party 2 is favored over party 1. For this model, the method
of Webster/Sainte-Lagué is found to be (pairwise) unbiased even for finite house size M.

The proof of Theorem 7.1 will be given after some preparations which we address in
the following. The method of calculating the seat biases for the apportionment-oriented
model is similar to the geometric-combinatorial approach which we used for the model of
Schuster et al. [32], see the previous chapters. We again start from knowledge about the
vertices of rounding polytopes,

P(m) :=cl{x € X(M): A(x) =m},

where cl denotes set closure. A rounding polytope now is the set of scaled weight vectors
x resulting in the seat allocation m under the apportionment method A. Recall that the
quantity r(m) := |{i : m; # 0}| denotes the number of positive components of m. The
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vertices of a rounding polytope P(m) with r(m) = 0 and m;_; # m; for i = 2,..., ¢ are
given by

P(m):{xeXf(M);mi+q—1gxigmi+qforalli:1,...,€}. (7.3)

If m;_1 = m;, for some ¢ = 2, ..., /¢, the scaled weight vector x additionally has to fulfill
the condition z;_; < x;, in order to lie in P(m). If r(m) = k, we have to account for the
extra conditions z; > 0, for ¢ > ¢ — k.

For determining asymptotic seat biases for M — oo we subsequently have to account
only for the highest and second-highest order term in M. Thus, the following three types
of rounding polytopes will be of interest. As a consequence of (7.3), a rounding polytope
P(m) with m;_y # m, for all i = 2,...,¢ has the ¢-dimensional volume Vol(P(m)) = 1 if
r(m) = ¢. It has the volume Vol(P(m)) = ¢ if r(m) = ¢ — 1. Moreover, if r(m) = ¢ and
mi,—1 = my, for only one ig = 2,...,¢ the volume amounts to Vol(P(m)) = 0.5, which is
proved by simple integration.

For a predetermined house size M, we define V(M) to be the sum of the volumes of
all rounding polytopes,

ViM):= )" Vol(P(m)),

mEGé(M)

where G (M) is still the grid set of ordered seat allocations. The leading term of V(M)
in the house size M is established in the following.

Lemma 7.1 (Sum of volumes of rounding polytopes)
The sum of the volumes of all rounding polytopes fulfills

Mé—l

Vi) = 0 —1)!

+O(M*2). (7.4)

Proof. By Corollary 3.1, we know for the divisor method with rounding up, i.e. ¢ = 0,
that the probability to have a seat allocation m € G (M) with r(m) = ¢ and m;_y # m;

fori=2,...,01is
M—1\"
pu— :'
P(A =m) E'(ﬁ—l) .

In leading order in the house size M, seat allocations with r(m) # ¢ or m;_; = m; for at
least one ¢ = 2, ..., ¢ are not of interest, and we obtain

VY(M)=P(A=m)"

since Vol(P(m)) = 1 for all polytopes P(m) contributing in leading order. Therefore, we
can write

V(M) +O(M?),

C(M-1 (M- M
_E(ﬁ—l) M =01 =1)1 0 —=1)!

which completes the proof. qed
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Remark 7.1 (Leading term of expansion of partition numbers)

By Lemma 7.1, we established the leading term of the expansion of the partition numbers
p(n, k), see Jacobs [21, p. 249],

nk—l

o o)

p(n, k) =
where n, k € N.
Now we can turn to the proof of the asymptotic seat bias formula of Theorem 7.1 for

the apportionment-oriented model.

Proof of Theorem 7.1.  In order to evaluate (7.1), we write the conditional expecta-
tion as a sum over all seat allocations m € G (M),

B”(M):W(IM) > I(m), (7.5)

mEGé(M)

where I(m) denotes the seat bias resulting from the rounding polytope P(m), weighted
by the volume of P(m). In general, the class of rounding polytopes with r(m) = ¢ and
m;_1 # m; for i = 2,...,( contributes terms of order O(M?"), after summation in (7.5).
The class of polytopes with r(m) = ¢ and m;,—, = m;, for only one i = 2,...,¢ yields
terms of order O(M*1), which is also true for the class of polytopes with r(m) = ¢ — 1
and m;_1 # m; for i = 2,... (. Furthermore, contributions of other classes of rounding
polytopes are at most of order O(M*~2) and thus have not to be taken into account.

For the class of seat allocations m € GZZ(M) with m;_y # m; for i = 2,... ¢ we get,
for r(m) = ¢,

me+q mi1+q

I(m) =m — / day - - / dxlﬁz(%—q)(1—%m)+0(mM_2)>

my+q—1 m1+q—1

while for r(m) = ¢ — 1 we have

me_1+q mi1+q

I(m) = gm — /q dzg / dze_y - / dz, ZJZ"% — O(mM™Y). (7.7)

my_1+q—1 m1+q—1
For r(m) = ¢ and m;,_1 = m,, for only one iy = 2,...,¢ we obtain
me+q Miy+q mi+q

I(m):?— / dg - / dzig_y - / dzy Z]chxi:(’)(mM‘l). (7.8)

my+q—1 T4 mi+q—1

An evaluation of the above integrals is presented in the subsequent section. As (7.7) and
(7.8) miss terms of higher order than O(mM 1), the corresponding classes of rounding
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polytopes contribute only terms of order O(M*~2), after summation in (7.5). Therefore,
only the rounding polytopes with r(m) = ¢ and m;_1 # m; for i = 2, ..., ¢ contribute in
leading order in the house size M, and we can rewrite (7.5) as

| [Momet] | MoTigmict|

me=1 my_1=my+1 ma=m3+1

where |-] = 7,(-) denotes rounding down and m; = M — 3¢, m,. In leading order in M,
the summation over 1 yields V*(M) and the result of the summation over m is given by
the highest order term of the apportionment polynomial S‘(M) as determined in Lemma
5.1. The i-th component of this polynomial reads

SH(M) = (% % + oMY,

j=i

Therefore, we obtain for the i-th component (i = 1,...,£) of the seat bias vector B*(M),
using (7.4),

s = (5-0) (1- 4 M 25521 o ()

Simplifying this relation leads to the assertion of Theorem 7.1. qed
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7.3 Integral Formulas

The proof of Theorem 7.1 is based on formulas (7.6), (7.7), and (7.8), which we derive in
the following. Focussing on (7.6), the i-th component of the vector I(m) may be written
as, fori =1,...,¢,

q q a+M+3_, @ .
I;(m) =m; — / dxy- - / dxs / dry M(x; +m;) —. (7.9)
T
9—1 =1 MY

Because we need from the result of these integrations only the terms of order O(m;) and
O(m;M~1), we use the approximation

[ (1 b\ 1 b+l L
/d‘”<;+ﬁ):a+ z o)

a—1

in order to successively evaluate the integrals. In each step the structure of the integrals
in (7.9) is reproduced. For example, for i > 2, we obtain

2+ M+

q q
1 1
I;(m) = m; — /dl’g"'/dl’g / dxy M (z; +m;) <—+i+0($2_3))~
q—1 q—1

xry 13
2q—1+M+Zf:3 z;

When integrating over z; we are led to the additional factor (q — % + mi). For example,
for i # ¢, we have in the last step

Lq+M

1 1 =1
L;(m) =m; — / dxy, M <q — = +mi> <_ + -2 +(’)(:c;3)> '
2 Ty Xy
lg—1+M
This finally leads to
M 1 0 m.;
I; = ;— - L N2
i(m) = m €q+M<q 2—|—mz—|—2M)+(9(m, )

_ (% — q) (1 — % mi) +O(m;M~?).

Formulas (7.7) and (7.8) are derived similarly, except that only terms of order O(m;)
are needed. However, in the case of formula (7.8), the bookkeeping of the leading terms
during the successive integration is a bit more cumbersome, because the integration over
x;,—1 introduces additional terms by virtue of the approximation

a

/dx 1_c +O(a™?).
r a

a—c



Chapter 8

Summary and Outlook

In the previous chapters we have discussed a geometric-combinatorial approach in order
to study biases resulting from the apportionment of seats in proportional representation
systems. Special attention has been paid both to stationary divisor methods and to the
quota method of greatest remainders, for which we have obtained quantitative seat bias
results. We have started from a decomposition of the probability simplex into rounding
polytopes, and have assumed that the vote proportions are uniformly distributed on the
probability simplex. For the investigated apportionment methods, it has turned out that
the volume of a rounding polytope depends only on the number of parties obtaining at
least one seat, which has allowed us to calculate the volumes of all rounding polytopes,
and has paved the way for determining the seat bias

BY(M) = E[A(w) — wM]w; > -+ > wy], (8.1)

by means of systematic summation over the possible seat allocations. The general seat

bias formula
)

l
B! (M) = <Z % p<r>8f<M>) -4 >

of Theorem 3.3 needs as geometrical input the correct seat allocation distribution p(r),
see the results of Theorems 3.1 and 3.2, and as combinatorial input the apportionment
polynomial S"(M) resulting from the recursive scheme of Theorem 3.4. The seat biases
due to the divisor method with standard rounding (Webster, Sainte-Lagué) are tiny and
quickly converge to zero, when the size of parliament grows large. The same is true for
the quota method of greatest remainders (Hamilton). These two methods therefore are
“practically unbiased”, while the divisor methods with rounding up (Adams) and down
(Jefferson, D’Hondt) lead to rather strong seat biases, in favor of the smaller and larger
parties, respectively.

Apparently for the first time, it has been possible to study the seat biases in propor-
tional representation systems imposing a threshold ¢. We have found that the disparity
between the larger and smaller parties is most pronounced when the threshold ¢ is equal
or close to zero. In addition, all seat biases wear away when t grows close to 1/¢, where
the dependence on t is linear. In perfect agreement with numerical simulations, we have
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obtained the relation, see Theorem 4.1,
BY(M,t) = (1 —¢t) - B(M,0).
Comparison with empirical data is difficult due to a lack of sufficiently large data sets.

We have addressed the probability for a violation of the majority /minority criterion,
that is, the probability that a majority /minority of votes in the election does not imply
a majority /minority of seats in parliament. For evaluating these probabilities, we have
proceeded analogous with the calculation of seat biases via apportionment polynomials,
accounting for additional restrictions of the probability simplex and the set of possible
seat allocations. The findings given in Table 4.5 reveal that the probability for violating
the majority or minority criterion vanishes when the size of parliament grows large.

As a central result, the geometric-combinatorial approach has enabled us to prove a
previous conjecture on asymptotic seat biases for an arbitrary number of parties, as the
size of parliament grows large. It has been necessary to establish the leading coefficients
of an expansion of the apportionment polynomials in the house size, see Lemma 5.1. As
stated in Theorems 5.1 and 5.2, under the g-stationary divisor methods the asymptotic
seat bias of the i-th largest party fulfills

B{M) = (% - q) <1 - ﬁ: %) +0 (%) , (8.2)

j=i
whereas the quota method of greatest remainders is asymptotically unbiased.

We have complemented the investigation of seat biases by addressing the seat excess
variance

V(M) := Var[A(w) — wM|w, > --- > wy,

based on knowledge about the barycenters of rounding polytopes. For systems with two
and three parties, the calculated variances are summarized in Theorems 6.1 and 6.2. In
addition, asymptotic seat excess variances for large house size have been simulated, see
Table 6.3. For the quota method of greatest remainders, this variance is asymptotically
equal for every party. We have conjectured that the asymptotic value converges to 1/12
when the number of competing parties grows large. For the stationary divisor methods,
the asymptotic variance, as function of the parameter ¢, is a parabola with minimum at
q = 1/2. Moreover, a comparison with empirical data from Bavarian elections results in
nice agreement with the theoretical variances.

Finally, we have discussed an alternative probabilistic model stressing the importance
of the rounding process inherent in all apportionment methods. This model replaces the
assumption of a uniform distribution of the vote proportions on the probability simplex
by assuming a uniform distribution on the set of weight vectors rounded to a fixed house
size. Despite such diverse assumptions, we have been able to show for stationary divisor
methods that the apportionment-oriented model yields the same asymptotic seat biases
as denoted in equation (8.2) for the model of Schuster et al. [32]. This may suggest that
the distribution entering the conditional expectation of (8.1) plays a minor role for the
asymptotic behaviour of the seat bias. A detailed study of this dependence would be of
great interest, though at present it seems almost out of reach.
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