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SOLVING PARAMETER-DEPENDENT LYAPUNOV EQUATIONS
USING REDUCED BASIS METHOD WITH APPLICATION TO

PARAMETRIC MODEL ORDER REDUCTION

NGUYEN THANH SON∗ AND TATJANA STYKEL†

Abstract. Our aim is to numerically solve parameter-dependent Lyapunov equations using
reduced basis method. Such equations arise in parametric model order reduction. We restrict
ourselves to systems that affinely depend on the parameter as our main ingredient is the min-Θ
approach. In those cases, we derive various a posteriori error estimates. Based on these estimates,
Greedy algorithms for constructing reduced basis are formulated. Thanks to the derived results,
a novel so-called parametric balanced truncation model reduction method is developed. Numerical
examples are presented.

Key words. Parameter-dependent Lyapunov equations, reduced basis method, affine depen-
dence, min-Θ approach, error estimates, Greedy algorithm, model order reduction, parametric bal-
anced truncation.

1. Introduction. In this paper, we consider the following parametric algebraic
Lyapunov equations (PALE)

A(µ)X(µ)ET(µ) + E(µ)X(µ)AT(µ) = −B(µ)BT(µ), (1.1)

where A(µ), E(µ) ∈ RN×N and B(µ) ∈ RN×m with m� N are given. The coefficient
matrices and the right-hand side depend on parameter µ in a compact domain D ⊂ Rd.
For the rest of the paper, we assume that E(µ) is nonsingular and all eigenvalues of
a pencil λE(µ)−A(µ) have negative real part for all µ ∈ D. With these assumptions,
equation (1.1) has a unique symmetric positive semidefinite solution X(µ) for all
µ ∈ D, see, e.g., [18]. Solving Lyapunov equations is of great importance in many
control problems including stability analysis, stabilization problem, model reduction
by balanced truncation and optimal control [2, 10]. The PALE (1.1) arises naturally
in parametric model reduction [4] or in the design of low gain feedback [34].

Because of their role in the control theory, various works have been devoted to
the numerical solution of Lyapunov equations. First of all, it is worth to mention
the direct methods by Bartels and Stewart [3] and by Hammarling [13]. To avoid
expensive computations in the direct methods, iterative ones such as the sign function
method [6], the alternating directions implicit method [20, 33], and Krylov subspace
methods [16, 25] have been developed. Exploiting the fact that the right-hand sides
of Lyapunov equations in most applications have low rank, low-rank versions of the
mentioned iterative methods have been formulated, [9, 19, 24, 26], just to name a few,
see also [5, 27] for the recent surveys on the state-of-the-art algorithms.

Although a lot of attention has been paid to Lyapunov equations, only very few
publications dedicated to solving PALEs can be found. To our knowledge, the method
proposed in [17] is the only released printed work on this subject. Nevertheless, the
purpose of this work, computing solutions for many different parameter samples, is
not our goal. Unlike [17], we would like to compute the solution X(µ) for any µ ∈ D.

For dealing with parameter-dependent problems, reduced basis method [23] is
an effective tool. This method was initially proposed for coercive elliptic partial differ-
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2 SON AND STYKEL

ential equations and then extended to non-coercive equations [32], Burgers equations
[31], and Navier-Stokes equations [8]. Applying this method to PALEs is most prob-
ably the first time performed in the present paper, while an extension to parametric
Riccati equation can be found in a very recent paper [12].

To use the reduced basis method, first we have to convert the Lyapunov equation
to a linear system using a Kronecker product. The size of the resulting linear system is
N2, where N is itself already large. This fact results in very expensive computations
as well as huge storage requirement. The key point to avoid these difficulties is to
keep all computations within matrices and vectors of dimension N . The norm used
to measure errors must also be carefully chosen in order to make all computations
feasible. Similar to [23], an a posteriori error estimate will be constructed, based on
which a Greedy algorithm is utilized for determining the reduced basis.

To this end, the rest of the paper is organized as follows. In Section 2, we repeat
how the Lyapunov equation can be converted to a linear equation by Kronecker pro-
duct. We also provide some formulae that allow us to replace N2-sized operations
with N -sized operations. Section 3 introduces a reduced basis method for parameter-
dependent linear systems. Important components of this method are the Greedy
algorithm and a posteriori error estimates which will be discussed in Sections 3.1
and 3.2, respectively. We also explain how to efficiently compute the residual norm,
which is the main ingredient for the error estimate in this section. In Section 4,
we present an extension of the reduced basis framework to parametric symmetric
Lyapunov equations. Nonsymmetric case is treated in Section 5. Based on these
results, we develop in Section 6 a new approach for parametric model order reduction.
Two numerical examples will be presented in Section 7. Finally, in Section 8, we
conclude the issue as well as pose some problems for the future work.

Throughout this paper, we will use bold font for matrices and vectors of dimension
N2 and the standard font for that of dimension N . Given a matrix A ∈ RN×N and
a vector v ∈ RN2

, vec(A) will denote the column vector in RN2

generated from A by
stacking all columns of A, and mat(v) is the N×N -matrix such that vec(mat(v)) = v.
The trace of the matrix A is denoted by trace(A), ker(A) = {v ∈ RN : Av = 0},
span(A) is the subspace spanned by columns of A, AT stands for the transpose of A,
and A > 0 (A ≥ 0) means that A is positive definite (semidefinite), i.e., vTAv > 0
(vTAv ≥ 0) for all v 6= 0. The smallest and largest singular values of A are denoted
by σmin(A) and σmax(A), respectively, whereas the smallest and largest eigenvalues of
symmetric A are denoted by λmin(A) and λmax(A), respectively. Similarly, λmin(E,A)
and λmax(E,A) will denote the smallest and the largest eigenvalue of the matrix
pencil λE − A, respectively. We denote by ‖v‖ =

√
(vT v) the Euclidean vector

norm of v ∈ RN , by ‖A‖2 = σmax(A) the spectral norm of A ∈ RN×M , and by
cond(A) = ‖A‖2‖A−1‖2 the condition number of invertible A. Furthermore, the
inner product of two matrices A,B ∈ RN×M is defined as 〈A,B〉 = trace(BTA), and
‖A‖F =

√
〈A,A〉 is the Frobenius matrix norm.

2. Lyapunov equations and linear systems. We begin this section with
a definition of the Kronecker product. For A = [aij ] ∈ Rk×l and B ∈ Rm×n, the
Kronecker product A⊗B is the km× ln block matrix

A⊗B =

 a11B · · · a1lB
...

. . .
...

ak1B · · · aklB

 .
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The following lemmas provide some useful properties of the Kronecker product, vec-
and mat-operators.

Lemma 2.1. Let E,A,X, Y ∈ RN×N , x = vec(X) and y = vec(Y ). Then
1. yTx = 〈X,Y 〉,
2. vec(AXET + EXAT ) = Lx with L = E ⊗A+A⊗ E.

Proof. See [15].

Lemma 2.2. Let V = [v1, . . . ,vk] ∈ RN2×k, Vj = mat(vj) for j = 1, . . . , k,

U = [u1, . . . ,ul] ∈ RN2×l, Uj = mat(uj) for j = 1, . . . , l, and L = E ⊗A+A⊗ E.
1. LV = [ vec(AV1E

T + EV1A
T ), . . . , vec(AVkE

T + EVkA
T ) ].

2. The entries of UTLV∈Rl×k are given by (UTLV)ij=
〈
AVjE

T + EVjA
T , Ui

〉
.

3. Let Ls = Es⊗As+As⊗Es, s = 1, 2. Then the entries of UTLT1 L2V ∈ Rl×k
are given by (UTLT1 L2V)ij = 〈A2VjE

T
2 + E2VjA

T
2 , A1UiE

T
1 + E1UiA

T
1 〉.

Proof. The equalities can be easily verified by calculation.
Let S denote a space of N×N symmetric matrices. Consider a Lyapunov operator

Lµ : S→ S given by

Lµ(X) = −A(µ)XET(µ)− E(µ)XAT(µ).

Then the PALE (1.1) takes the form Lµ(X(µ)) = B(µ)BT(µ). Using Lemma 2.1, this
equation can also be written as a linear system

L(µ)x(µ) = b(µ), (2.1)

where x(µ) = vec(X(µ)), b(µ) = vec(B(µ)BT(µ)), and

L(µ) = −E(µ)⊗A(µ)−A(µ)⊗ E(µ) (2.2)

is the matrix representation of the linear Lyapunov operator Lµ. The following the-
orem establishes some properties of Lµ and L(µ).

Theorem 2.3. Let −A(µ) and E(µ) be symmetric, positive definite for all µ ∈ D.
1. The matrix L(µ) in (2.2) is symmetric and positive definite for all µ ∈ D and

its smallest and largest eigenvalues are bounded as

λmin(L(µ)) ≥ 2λmin(−A(µ))λmin(E(µ)), (2.3)

λmax(L(µ)) ≤ 2λmax(−A(µ))λmax(E(µ)) (2.4)

for all µ ∈ D.
2. The Lyapunov operator Lµ is uniformly coercive, i.e., it holds

α(µ) := inf
V ∈RN×N\{0}

〈Lµ(V ), V 〉
‖V ‖2F

> 0 (2.5)

for all µ ∈ D.
3. The Lyapunov operator Lµ is uniformly continuous, i.e., it holds

γ(µ) := sup
W,V ∈RN×N\{0}

〈Lµ(V ),W 〉
‖W‖F ‖V ‖F

<∞ (2.6)

for all µ ∈ D.
Proof. 1. Since −A(µ) and E(µ) are both symmetric, the matrix L(µ) in (2.2)

is also symmetric for all µ ∈ D. Using Weyl’s theorem [14, Theorem 4.3.1] and the
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multiplicativity property of eigenvalues of the Kronecker product [15, Theorem 4.2.12],
we have

λmin(L(µ)) ≥ λmin(−E(µ)⊗A(µ)) + λmin(−A(µ)⊗ E(µ))
= 2λmin(−A(µ))λmin(E(µ)) > 0.

The last inequality follows from the positive definiteness of −A(µ) and E(µ). Thus,
the bound (2.3) holds and L(µ) is positive definite. The bound (2.4) can be proved
analogously.

2. We obtain from Lemma 2.1 and the Courant-Fischer theorem [14, Theo-
rem 4.2.6] that

α(µ) = inf
V ∈RN×N\{0}

〈Lµ(V ), V 〉
‖V ‖2F

= inf
v∈RN2\{0}

vTL(µ)v

‖v‖2 = λmin(L(µ)) > 0

for all µ ∈ D, and, hence, Lµ is uniformly coercive.
3. Using again Lemma 2.1 and the Courant-Fischer theorem, we have

γ(µ) = sup
W,V ∈RN×N\{0}

〈Lµ(V ),W 〉
‖W‖F ‖V ‖F

= sup
w,v∈RN2\{0}

wTL(µ)v

‖w‖‖v‖ = λmax(L(µ)) <∞

for all µ ∈ D. Thus, Lµ is uniformly continuous.
The parameter-dependent quantities α(µ) and γ(µ) are called coercivity constant

and continuity constant of the Lyapunov operator Lµ, respectively. From the proof
of Theorem 2.3 we obtain the important relations

α(µ) = λmin(L(µ)), γ(µ) = λmax(L(µ)), (2.7)

which together with the estimates (2.3) and (2.4) will be very useful in the following.

3. Reduced basis method. In this section, we consider the application of the
reduced basis method to the linear system (2.1) with L(µ) as in (2.2), where −A(µ)
and E(µ) are assumed to be symmetric and positive definite. This method consists
of the following steps. For selected parameters µ1, . . . , µk ∈ D, we construct first a
reduced basis matrix Vk = [ x(µ1), . . . , x(µk) ], where x(µj) is the solution of system
(2.1) at µ = µj for j = 1, . . . , k. Then, for any µ ∈ D, an approximate solution can
be computed by Galerkin projection x(µ) ≈ Vkx̂(µ), where x̂(µ) solves the reduced
linear system

L̂(µ)x̂(µ) = b̂(µ) (3.1)

with L̂(µ) = VT
k L(µ)Vk and b̂(µ) = VT

k b(µ). This seemingly simple procedure
raises several issues: optimal choice of the sample parameters µ1, . . . , µk providing
good reduced basis subspaces that guarantee a rapid convergence of the reduced basis
approximation Vkx̂(µ) to x(µ) over the entire parameter domain D; rigorous error
estimates for the approximate solution and efficient computations.

3.1. Greedy algorithm. The key point to the success of the reduced basis
method is the construction of an appropriate basis. It should be done in such a way
that the error of the approximation is smaller than a given tolerance while the dimen-
sion of the reduced basis is kept as small as possible. One way to do this is to employ
a Greedy algorithm, e.g., [23], which successively determines snapshots depending on
the error magnitude.
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Suppose that we have already computed a basis matrix Vk = [ x(µ1), . . . ,x(µk) ].
Then the error and the residual of the approximate solution Vkx̂(µ) are given by

ek(µ) = x(µ)−Vkx̂(µ),
rk(µ) = b(µ)− L(µ)Vkx̂(µ),

respectively. They satisfy the equation

L(µ)ek(µ) = rk(µ), (3.2)

which immediately implies the error estimate

‖ek(µ)‖ = ‖L−1(µ)rk(µ)‖ ≤ ‖rk(µ)‖
α(µ)

≤ ‖rk(µ)‖
αLB(µ)

=: ∆k(µ). (3.3)

Here, αLB(µ) is a positive lower bound for the coercivity constant α(µ), and ∆k(µ)
is the resulting error estimator. To enlarge the basis in order to somewhat reduce
the approximation error, we will find the next value µk+1 such that ∆k(µk+1) is the
largest in D. Of course, we cannot pursue the search on D, which is a continuous set.
Instead, one usually does it on a discrete subset of D. To ensure that we do not miss
any good candidate, this training set, denoted by Dtrain, should be rather dense and,
therefore, large. In practice, we choose Dtrain first and pick µ1 arbitrarily in Dtrain.
We also need to specify a tolerance tol for the approximation. The Greedy algorithm
is then given as follows.

Algorithm 1 Greedy algorithm for linear systems

Input: tolerance tolrb < 1, training set Dtrain, initial parameter µ1 ∈ Dtrain.
Output: a basis matrix Vk.

1: Solve L(µ1)x(µ1) = b(µ1).
2: ∆max

1 = 1, M1 = {µ1} and V1 = x(µ1), k = 2.
3: while ∆max

k−1 ≥ tolrb do
4: µk = arg max

µ∈Dtrain\Mk−1

∆k−1(µ)

5: ∆max
k = ∆k−1(µk)

6: Mk =Mk−1 ∪ {µk}
7: solve L(µk)x(µk) = b(µk)
8: Vk = [ Vk−1, x(µk) ]
9: k ← k + 1

10: end while

For the success of this algorithm, an efficient, sharp and rigorous error estimate
is required. This issue will be addressed in the next subsection.

3.2. Error estimation. First, we impose some further restrictions on the prob-
lems treated in this paper. To wit, we assume that the matrices A(µ), E(µ) and B(µ)
are affine in the parameter µ, i.e.,

(A1) A(µ) =

nA∑
j=1

θAj (µ)Aj , E(µ) =

nE∑
j=1

θEj (µ)Ej , B(µ) =

nB∑
j=1

θBj (µ)Bj ,

where Aj , Ej and Bj are independent of µ, nA, nE and nB are very small compared
to N , θAj (µ), θEj (µ) and θBj (µ) are continuous in D and their evaluations at each
µ ∈ D are cheap. This assumption permits us to decompose the computation of the
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solution of the linear system (2.1) into an offline stage (computationally expensive),
in which the reduced basis matrix Vk is constructed and all parameter-independent
matrices are computed and stored, and an online stage (computationally inexpensive),
in which the reduced system (3.1) is solved for any µ ∈ D to get the approximate
solution x(µ) ≈ Vkx̂(µ).

Furthermore, we require that the matrices −A(µ) and E(µ) are parametrically
coercive, i.e.,

(A2) Ej = ETj ≥ 0 and θEj (µ) > 0 for all µ ∈ D and j = 1, . . . , nE ,

(A3) −Aj = −ATj ≥ 0 and θAj (µ) > 0 for all µ ∈ D and j = 1, . . . , nA.

The following lemma shows that under assumptions (A1)–(A3) the linear system (2.1)
maintains the affine dependence and parametric coercivity.

Lemma 3.1. Let A(µ), E(µ) and B(µ) satisfy (A1)–(A3). Then the matrix L(µ)
and the vector b(µ) in the linear system (2.1) are affine in the parameter µ. Moreover,
L(µ) is parametrically coercive.

Proof. The proof of affine dependence is straightforward and based on the pro-
perties of the Kronecker product [15]. Nevertheless, since we will need the explicit
form of the affine dependence later on, it is briefly written down here. One can easily
verify that the coefficient matrix and the right-hand side in (2.1) take the form

L(µ) =

nE∑
i=1

nA∑
j=1

θLij(µ)Lij , b(µ) =

nB∑
i=1

nB∑
j=1

θbij(µ)bij , (3.4)

where

θLij(µ) = θEi (µ)θAj (µ) > 0, Lij = −Ei ⊗Aj −Aj ⊗ Ei,
θbij(µ) = θBi (µ)θBj (µ), bij = vec(BiB

T
j ).

(3.5)

Obviously, Lij is symmetric and positive semidefinite. This fact together with the
positiveness of θLij completes the proof.

Remark 3.1. In general, the parametric coercivity of L(µ) does not imply its
coercivity, i.e., the positivity of α(µ) = λmin(L(µ)). If, however, in addition to the
parametric coercivity, we assume that

(A4) there exist at least one pair (Aj , Ei) such that −Aj > 0 and Ei > 0,

then the coercivity is satisfied. Assumption (A4) can also be replaced by a condition
that ⋂

j=1,...,nA

ker (Aj) = ∅ and
⋂

j=1,...,nE

ker (Ej) = ∅.

To derive a posteriori error estimates, we first have to find positive lower bounds
for the coercivity constant α(µ). We will mainly employ a min-Θ approach [23] based
on the affine decomposition (A1). To this end, for a fixed value µ̄ ∈ D, we define the
following functions

θL,µ̄min(µ) = min
i=1,...,nE
j=1,...,nA

θLij(µ)

θLij(µ̄)
, θL,µ̄max(µ) = max

i=1,...,nE
j=1,...,nA

θLij(µ)

θLij(µ̄)
, θL,µ̄(µ) =

θL,µ̄max(µ)

θL,µ̄min(µ)
.

For convenience, an upper bound for the continuity constant γ(µ) is also included in
the following lemma.

Lemma 3.2. Let E(µ) and A(µ) satisfy (A1)–(A4) and let µ̄, µ̄1, µ̄2 ∈ D.
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1. For all µ ∈ D, the coercivity constant α(µ) in (2.5) is bounded from below as

α(µ) ≥ αLB(µ) := max
(
αL,µ̄

LB (µ), αA,µ̄1;E,µ̄2

LB (µ), αL
LB(µ)

)
> 0, (3.6)

where

αL,µ̄
LB (µ) = 2 θL,µ̄min(µ)λmin

(
−A(µ̄)

)
λmin

(
E(µ̄)

)
,

αA,µ̄1;E,µ̄2

LB (µ) = 2 θA,µ̄1

min (µ) θE,µ̄2

min (µ)λmin

(
−A(µ̄1)

)
λmin

(
E(µ̄2)

)
,

αL
LB(µ) = 2

nE∑
i=1

nA∑
j=1

θLij(µ)λmin(−Aj)λmin(Ei).

2. For all µ ∈ D, the continuity constant γ(µ) in (2.6) is bounded from above as

γ(µ) ≤ γUB(µ) := min
(
γL,µ̄UB (µ), γA,µ̄1;E,µ̄2

UB (µ), γLUB(µ)
)
, (3.7)

where

γL,µ̄UB (µ) = 2 θL,µ̄max(µ)λmax

(
−A(µ̄)

)
λmax

(
E(µ̄)

)
,

γA,µ̄1;E,µ̄2

UB (µ) = 2 θA,µ̄1
max (µ) θE,µ̄2

max (µ)λmax

(
−A(µ̄1)

)
λmax

(
E(µ̄2)

)
,

γLUB(µ) = 2

nE∑
i=1

nA∑
j=1

θLij(µ)λmax(−Aj)λmax(Ei).

Proof. 1. From the Courant-Fischer theorem and the estimate (2.3) we obtain
that

λmin

(
L(µ)

)
= min
‖v‖=1

nE∑
i=1

nA∑
j=1

θLij(µ) vTLijv = min
‖v‖=1

nE∑
i=1

nA∑
j=1

θLij(µ)

θLij(µ̄)
θLij(µ̄) vTLijv

≥ θL,µ̄min(µ)λmin

(
L(µ̄)

)
≥ 2 θL,µ̄min(µ)λmin

(
−A(µ̄)

)
λmin

(
E(µ̄)

)
.

On the other hand, using (2.3) again and applying the min-Θ approach to the matrices
A(µ) and E(µ), we have

λmin

(
L(µ)

)
≥ 2λmin

(
−A(µ)

)
λmin

(
E(µ)

)
≥ 2 θA,µ̄1

min (µ) θE,µ̄2

min (µ)λmin

(
−A(µ̄1)

)
λmin

(
E(µ̄2)

)
.

Finally, Weyl’s theorem [14, Theorem 4.3.1] implies that

λmin

(
L(µ)

)
≥

nE∑
i=1

nA∑
j=1

θLij(µ)λmin(Lij) ≥ 2

nE∑
i=1

nA∑
j=1

θLij(µ)λmin(−Aj)λmin(Ei).

Thus, the bound (3.6) holds.
2. The bound (3.7) can be proved similarly using (2.4).
Remark 3.2. One can observe that if E(µ) = E is constant and µ̄ = µ̄1 = µ̄2

then αA,µ̄1;E,µ̄2

LB (µ) and γA,µ̄1;E,µ̄2

UB (µ) become αL,µ̄
LB (µ) and γL,µ̄UB (µ), respectively. Note

also that the quantities αL
UB(µ) and γLUB(µ) in (3.6) and (3.7), respectively, have no

relation to min-Θ approach. We put them into the bounds in order to possibly have
tighter bounds.
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The following theorem provides an a posteriori error estimate for the reduced
basis solution Vkx̂(µ).

Theorem 3.3. Let assumptions (A1)–(A4) be fulfilled and let αLB(µ) and γUB(µ)
be as in (3.6) and (3.7), respectively. Then the error ek(µ) = x(µ)−Vkx̂(µ) satisfies
the bounds

‖ek(µ)‖ ≤ ∆k(µ) ≤ γUB(µ)

αLB(µ)
‖ek(µ)‖, (3.8)

where the error estimator ∆k(µ) is given by

∆k(µ) =
‖rk(µ)‖
αLB(µ)

. (3.9)

Proof. The error estimate ‖ek(µ)‖ ≤ ∆k(µ) immediately follows from (3.3) and
(3.6). Furthermore, using (2.7), (3.2) and (3.7), we have

∆k(µ) =
‖rk(µ)‖
αLB(µ)

≤ γUB(µ)

αLB(µ)
‖ek(µ)‖.

This completes the proof.
The effectivity of the error estimator ∆k(µ) is measured by the quantity

ηk(µ) =
∆k(µ)

‖ek(µ)‖ .

The error estimate is tight if ηk(µ) is very close to 1. It follows from (3.8) that

1 ≤ ηk(µ) ≤ γUB(µ)

αLB(µ)
. (3.10)

Therefore, to sharpen the error estimate, one could choose the parameter µ̄ ∈ D
such that the quotient γUB(µ)/αLB(µ) is as small as possible. The solution to this
optimization problem, however, goes beyond the purpose of this paper.

Recall that in the Greedy algorithm, finding the maximizer of the error estimator
∆k(µ) on a large discrete set Dtrain is required. This involves the repeated computa-
tion of the residual norms ‖rk(µ)‖ in the vector space of huge dimension N2 for all
µ ∈ Dtrain. Only a good strategy for computing the residuals can avoid the unfeasibly
expensive computations. This can be done thanks to the choice of norm, the affine
dependence in L(µ) and b(µ) and a suitable arrangement.

To simplify the notation, we re-index the expressions for the coefficient matrix
and the right-hand side in (3.4) by replacing the two-index system by the one-index
system, say

L(µ) =

nAnE∑
p=1

θLp (µ)Lp, b(µ) =

n2
B∑

p=1

θbp (µ)bp, (3.11)

where

Lp = Lij , θLp (µ) = θLij(µ) for p = (i− 1)nA + j,

bp = bij , θbp (µ) = θbij(µ) for p = (i− 1)nB + j.
(3.12)
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Then the residual norm can be represented as

‖rk(µ)‖2 =
(
b(µ)− L(µ)Vkx̂(µ)

)T (
b(µ)− L(µ)Vkx̂(µ)

)
=

n2
B∑

p,q=1

θbp (µ)θbq (µ)bTp bq − 2

n2
B∑

p=1

nAnE∑
q=1

θbp (µ)θLq (µ)bTp LqVkx̂(µ) (3.13)

+

nAnE∑
p,q=1

θLp (µ)θLq (µ)x̂T(µ)VT
k LTp LqVkx̂(µ),

where x̂(µ) is the solution of the reduced linear system (3.1). Note that the parameter-
dependent coefficient matrix and the right-hand side in (3.1) also admit the affine
decomposition

L̂(µ) =

nAnE∑
p=1

θLp (µ)VT
k LpVk, b̂(µ) =

n2
B∑

p=1

θbp (µ)VT
k bp. (3.14)

One can easily realize that several matrix-matrix and matrix-vector products in (3.13)
and (3.14), namely bTp bq, bTp LqVk, VT

k LTp LqVk, VT
k LpVk and VT

k bp, are indepen-
dent of µ. They are expensive to compute but cheap to store. Another worthwhile
advantage is that all these parameter-independent quantities can be computed and
stored hierarchically with respect to k when running the Greedy algorithm. In other
words, at each Greedy step only one entry of the vectors, and one row and one col-
umn of the matrices must be computed and added to their previous versions. Once
all parameter-independent quantities are available, for each µ ∈ Dtrain, one first com-
putes (3.14), solves (3.1) for x̂(µ) and, finally, computes (3.13). These three steps are
cheap since their computational complexity depends only on k, nE , nA and nB , which
are very small. Therefore, the search on Dtrain is quite fast, which makes the Greedy
algorithm feasible and efficient even for large-scale problems and the large training
set Dtrain.

4. Low-rank reduced basis method for Lyapunov equation. A major
drawback of the reduced basis method described above is that it operates with matri-
ces and vectors of huge dimension N2 and, as a consequence, suffers from high compu-
tational complexity and storage requirements. Fortunately, thanks to Lemma 2.2, the
reduced basis method can directly be applied to the PALE (1.1) keeping all operations
in terms of N ×N -matrices and N -vectors. Moreover, assuming that the solution of
the PALE (1.1) with the low-rank right-hand side B(µ)BT(µ) is well approximated
by a low-rank matrix X(µ) ≈ Z(µ)ZT(µ), we can further reduce computational cost
and memory requirements both in offline and online stages.

4.1. Offline phase. In the offline phase, instead of solving the linear system
(2.1), we compute the solutions of the PALE (1.1) for selected parameters µ1, . . . , µk.
Let Zj ∈ RN×nj be the low-rank Cholesky factor of the solution X(µj) ≈ ZjZ

T
j of

(1.1) at µ = µj , j = 1, . . . , k. These factors can efficiently be computed by the low-
rank alternating directions implicit (LR-ADI) method [5, 19, 24], the rational Krylov
method [9, 26] or the Riemannian method [30]. Then for a reduced basis matrix
Vk = [Z1, . . . , Zk ] and any µ ∈ D, we determine an approximate solution of (1.1) as

X(µ) ≈ mat(Vkx̂(µ)) =: XRB(µ),
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where Vk = [vec(Z1Z
T
1 ), . . . , vec(ZkZ

T
k )] and x̂(µ) solves the reduced linear system

(3.1). The solution XRB(µ) can also be written as

XRB(µ) =

k∑
j=1

x̂j(µ)ZjZ
T
j = Vk

x̂1(µ)In1

. . .

x̂k(µ)Ink

V Tk , (4.1)

where x̂(µ) = [x̂1(µ), . . . , x̂1(µ)]T . Note that we never form the matrix Vk explicitly to
construct the reduced linear system (3.1). Instead, we exploit the affine decomposition

(3.14) for the coefficient matrix L̂(µ) and the right-hand side b̂(µ) and compute the
entries of the parameter-independent matrices VT

k LpVk for p = (i − 1)nA + j with
i = 1, . . . , nE , j = 1, . . . , nA, and the vectors VT

k bp for p = (i − 1)nB + j with
i, j = 1, . . . , nB , using Lemmas 2.1, 2.2 and relations (3.5), (3.12) as follows

(VT
k LpVk)rl = 〈−EiZlZTl ATj −AjZlZTl ETi , ZrZTr 〉

= −2trace
(
ZTr (EiZl)(AjZl)

TZr
)
,

(VT
k bp)r = 〈BiBTj , ZrZTr 〉 = trace

(
(BTj Zr)(Z

T
r Bi)

)
for r, l = 1, . . . , k. Thus, taking advantage of the structure of Lp, bp and Vk reduces
the computational cost, for example, for VT

k LpVk from O(N4k) to O(N2n) with
n = n1 + . . .+ nk. In counting, we did not exploit the sparsity of Ei and Aj .

Remark 4.1. Note that even Ei and Aj are assumed to be symmetric, we always
write ETi and ATj if the transpose matrices are needed. This will simplify the extension
of the reduced basis method to nonsymmetric problems, see Section 5.

For the approximate solution XRB(µ), we obtain from Theorem 3.3 the error
estimate

‖X(µ)−XRB(µ)‖F = ‖ek(µ)‖ ≤ ∆k(µ) (4.2)

with ∆k(µ) as in (3.9). This error estimator can now be utilized in the Greedy
parameter sampling procedure presented in Algorithm 2.

Algorithm 2 Greedy algorithm for Lyapunov equations

Input: tolerance tolrb < 1, training set Dtrain, initial parameter µ1 ∈ Dtrain.
Output: a basis matrix Vk.

1: Solve the PALE (1.1) at µ = µ1 for X(µ1) ≈ Z1Z
T
1 .

2: ∆max
1 = 1, M1 = {µ1}, V1 = Z1, k = 2.

3: while ∆max
k−1 ≥ tolrb do

4: µk = arg max
µ∈Dtrain\Mk−1

∆k−1(µ)

5: ∆max
k = ∆k−1(µk)

6: Mk =Mk−1 ∪ {µk}
7: solve the PALE (1.1) at µ = µk for X(µk) ≈ ZkZTk
8: Vk = [Vk−1, Zk ]
9: k ← k + 1

10: end while

For the efficient computation of the residuals ‖rk(µ)‖, we use again the affine rep-
resentation (3.13), where computing the parameter-independent quantities demands
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a more detailed discussion. Consider first bTp bq for p = (i−1)nB+j, q = (f−1)nB+g
and i, j, f, g = 1, . . . , nB . Using (3.5) and (3.12) we obtain

bTp bq = 〈BfBTg , BiBTj 〉 = trace
(
(BTi Bf )(BTg Bj)

)
.

The components of the vector bTp LqVk for p = (i − 1)nB + j, q = (f − 1)nA + g,
i, j = 1, . . . , nB , f = 1, . . . , nE and g = 1, . . . , nA can be expressed as

(bTp LqVk)l = 〈−AgZlZTl ETf − EfZlZTl ATg , BiBTj 〉
= −trace

(
BTi (EfZl)(AgZl)

TBj +BTi (AgZl)(EfZl)
TBj

)
, l = 1, . . . , k.

Finally, the matrix VT
k LTp LqVk for p = (i − 1)nA + j, q = (f − 1)nA + g and

i, f = 1, . . . , nE , j, g = 1, . . . , nA can be determined element-wise

(VT
k LTp LqVk)rl = 〈−AgZlZTl ETf − EfZlZTl ATg ,−AjZrZTr ETi − EiZrZTr ATj 〉

= 2 trace
(
(EiZr)

T(EfZl)(AgZl)
T(AjZr) + (EiZr)

T(AgZl)(EfZl)
T(AjZr)

)
for r, l = 1, . . . , k. Here, we used Lemma 2.2 and relations (3.5) and (3.12).

4.2. Online phase. Once the reduced basis matrix Vk is constructed such that
the error estimator does not exceed a given tolerance, the solution of the PALE (1.1)
at any µ ∈ D can be obtained in the online phase as in (4.1). Nevertheless, a serious
disadvantage of this approach is that the resulting solution XRB(µ) is not necessarily
positive semidefinite since the solution x̂(µ) of (1.1) may have negative entries. This
difficulty can be circumvented by computing the approximate solution in the form
X(µ) ≈ VkX̂(µ)V Tk =: X̂RB(µ), where X̂(µ) solves the reduced Lyapunov equation

Â(µ)X̂(µ)ÊT(µ) + Ê(µ)X̂(µ)ÂT(µ) = −B̂(µ)B̂T(µ) (4.3)

with Ê(µ) = V Tk E(µ)Vk, Â(µ) = V Tk A(µ)Vk and B̂(µ) = V Tk B(µ). Since −A(µ)
and E(µ) are symmetric and positive definite, this equation has a unique symmetric
positive semidefinite solution X̂(µ) = Ẑ(µ)ẐT(µ). Then X̂RB(µ) can be written in
the factorized form X̂RB(µ) = ZRB(µ)ZTRB(µ) with ZRB(µ) = VkẐ(µ).

Let

R̂k(µ) = A(µ)X̂RB(µ)ET(µ) + E(µ)X̂RB(µ)AT(µ) +B(µ)BT(µ) (4.4)

be the residual associated with the approximate solution X̂RB(µ). Then the error
X(µ)− X̂RB(µ) can be estimated similarly to the linear system case as

‖X(µ)− X̂RB(µ)‖F ≤
‖R̂k(µ)‖F
α(µ)

≤ ‖R̂k(µ)‖F
αLB(µ)

=: ∆̂k(µ) (4.5)

with αLB(µ) as in (3.6). Replacing the approximate solution Vkx̂(µ) in (3.13) by

vec(X̂RB(µ)) = (Vk ⊗ Vk)vec(X̂(µ)),
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we obtain the following expression for the residual

‖R̂k(µ)‖2F = ‖b(µ)− L(µ)(Vk ⊗ Vk)vec(X̂(µ))‖2

=

nB∑
i,j=1

nB∑
f,g=1

θBijfg(µ)trace
(
(BTi Bf )(BTg Bj)

)
+ 2

nB∑
i,j=1

nE∑
f=1

nA∑
g=1

θAEBijfg (µ)trace
(
BTi (EfVk)X̂(µ)(AgVk)TBj

)
+ 2

nB∑
i,j=1

nE∑
f=1

nA∑
g=1

θAEBijfg (µ)trace
(
BTi (AgVk)X̂(µ)(EfVk)TBj

)
+ 2

nE∑
i,f=1

nA∑
j,g=1

θAEijfg(µ)trace
(
(EfVk)T (EiVk)X̂(µ)(AjVk)T (AgVk)X̂(µ)

)
+ 2

nE∑
i,f=1

nA∑
j,g=1

θAEijfg(µ)trace
(
(EfVk)T (AjVk)X̂(µ)(EiVk)T (AgVk)X̂(µ)

)
,

where θBijfg(µ) = θBi (µ)θBj (µ)θBf (µ)θBg (µ), θAEBijfg (µ) = θBi (µ)θBj (µ)θEf (µ)θAg (µ) and

θAEijfg(µ) = θEi (µ)θAj (µ)θEf (µ)θAg (µ). Again, all parameter-independent matrices can

be precomputed and stored in the offline stage. Then the error estimator ∆̂k(µ) can
be calculated in the online stage at low computational cost which is independent of
the large dimension N .

Note that in the Greedy algorithm, instead of ∆k(µ) one can also use the estima-
tor ∆̂k(µ). It should, however, be emphasized that the computation of the reduced
basis solution XRB(µ) in (4.1) is less expensive than that of X̂RB(µ) = VkX̂(µ)V Tk .

This is caused by the fact that solving the linear system (3.1) with L̂(µ) ∈ Rk×k is
cheaper than solving the Lyapunov equation (4.3) with Ê(µ), Â(µ) ∈ Rn×n, where
n = n1 + . . .+ nk may be significantly larger than k. The dimension n depends on m
(number of columns of B(µ)), the convergence rate of the iterative method used for
solving the PALE (1.1) and the number of Greedy steps. To keep the offline compu-
tational cost low, we compute the error estimator based on XRB(µ), whereas in the
online phase, where the positive semidefiniteness of the solution is most essential, we
calculate X̂RB(µ). Moreover, due to the fact that span(Vk) ⊂ span(Vk ⊗ Vk), the
approximate solution X̂RB(µ) is to predicted to have smaller error. It is reasonably
compliant with the fact that computing X̂RB(µ) is more expensive. In order to retain
a low-rank structure in X̂RB(µ) and to reduce the online computational cost, the col-
umn compression in Vk should be performed with a prescribed tolerance tolcc. This
can be done by computing a rank-revealing QR decomposition or a singular value
decomposition (SVD) of Vk.

4.3. Energy norm based error estimates. Instead of the Euclidean vector
norm and the Frobenius matrix norm, one can also quantify the approximation error
in the energy norm which is frequently used in the reduced basis method [23]. In
our setting, the energy vector norm is defined by ‖x‖µ =

√
xTL(µ)x. A matrix

counterpart can be introduced as

‖X‖F,µ =
√
〈Lµ(X), X〉.

It is easy to verify that ‖X‖F,µ = ‖vec(X)‖µ and√
α(µ)‖X‖F ≤ ‖X‖F,µ ≤

√
γ(µ)‖X‖F . (4.6)



PARAMETER-DEPENDENT LYAPUNOV EQUATIONS 13

with α(µ) and γ(µ) as in (2.5) and (2.6), respectively. Furthermore, for a symmetric
matrix X, we have ‖X‖F,µ =

√
2 trace(−A(µ)XET(µ)X). The first inequality in

(4.6) implies the energy based error estimates

‖X(µ)−XRB(µ)‖F,µ ≤
‖rk(µ)‖√
αLB(µ)

=: ∆en
k (µ), (4.7)

‖X(µ)− X̂RB(µ)‖F,µ ≤
‖R̂k(µ)‖F√
αLB(µ)

=: ∆̂en
k (µ). (4.8)

The corresponding effectivity constants satisfy

1 ≤ ηenk (µ) =
∆en
k (µ)

‖X(µ)−XRB(µ)‖µ
≤
√
γUB(µ)

αLB(µ)
,

1 ≤ η̂enk (µ) =
∆̂en
k (µ)

‖X(µ)− X̂RB(µ)‖µ
≤
√
γUB(µ)

αLB(µ)
.

We see that the upper bound for ηenk (µ) and η̂enk (µ) is smaller than that for ηk(µ)
in (3.10). This implies that the estimates (4.7) and (4.8) are sharper than (4.2) and
(4.5), respectively.

Similarly to [23, Lemma 4A and Proposition 4C], one can get even a sharper error
estimate

‖ek(µ)‖µ ≤
‖L−1(µ̄)rk(µ)‖µ̄√

θL,µ̄min(µ)
=: ∆en,µ̄

k (µ) (4.9)

with the effectivity constant

1 ≤ ηen,µ̄k (µ) :=
∆en,µ̄
k (µ)

‖ek(µ)‖µ
≤
√
θL,µ̄(µ).

Let us, however, consider one term in the affine decomposition of

‖L−1(µ̄)rk(µ)‖2µ̄ = rTk (µ)L−1(µ̄)rk(µ)

=
(
b(µ)− L(µ)Vkx̂(µ)

)T
L−1(µ̄)

(
b(µ)− L(µ)Vkx̂(µ)

)
,

say the last one. The parameter-independent matrix products there have the form
VT
k LTp L−1(µ̄)LqVk with p = (i − 1)nA + j and q = (f − 1)nA + g. To compute the

(r, l)-th entry of this matrix, we need to
• compute Kq = −AgZlZTl ETf − EfZlZTl ATg ,

• solve the Lyapunov equation −A(µ̄)XET(µ̄)− E(µ̄)XAT(µ̄) = Kq,
• compute the inner product 〈X,−AjZrZTr ETi − EiZrZTr ATj 〉.

Thus, the computation of the error estimator ∆en,µ̄
k (µ) requires solving several Lya-

punov equations most probably without low-rank right-hand sides which makes the
error estimate (4.9) inefficient.

5. Nonsymmetric case. The reduced basis method as described above can also
be applied to the PALE (1.1), where A(µ) is nonsymmetric, with some adjustments
in formulating the error estimates.

Assume that the pencil λE(µ)−A(µ) is strictly dissipative, i.e.,

E(µ) = ET(µ) > 0, A(µ) +AT(µ) < 0 (5.1)



14 SON AND STYKEL

for all µ ∈ D. These conditions guarantee the solvability of the reduced Lyapunov
equation (4.3) for any projection matrix Vk. They are fulfilled if assumptions (A1),
(A2) together with

(A3´) Aj +ATj ≤ 0 and θAj (µ) > 0 for all µ ∈ D and j = 1, . . . , nA;

(A4´) there exist at least one pair (Aj , Ei) such that Aj +ATj < 0 and Ei > 0

hold. Taking into account (3.2) and (3.3), we just need to find upper bounds for
‖L(µ)‖2 = σmax

(
L(µ)

)
and ‖L−1(µ)‖2 = 1/σmin

(
L(µ)

)
. For this purpose, we intro-

duce

S(µ) =
1

2

(
A(µ) +AT(µ)

)
, (5.2)

LS(µ) =
1

2

(
L(µ) + LT (µ)

)
= −E(µ)⊗ S(µ)− S(µ)⊗ E(µ).

Obviously, these matrices inherit the affine structure. Moreover, S(µ) = ST (µ) < 0
and LS(µ) = LTS (µ) > 0 for all µ ∈ D. The following lemma establishes the bounds
for the smallest and largest singular values of L(µ).

Lemma 5.1. Let E(µ) and A(µ) satisfy (A1), (A2), (A3´) and (A4´), and let
µ̄, µ̄1, µ̄2 ∈ D.

1. For all µ ∈ D, the smallest singular value of L(µ) is bounded from below as

σmin

(
L(µ)

)
≥ α̃LB(µ) := max

(
α̃L,µ̄

LB (µ), α̃A,µ̄1;E,µ̄2

LB (µ), α̃L
LB(µ)

)
> 0, (5.3)

where

α̃L,µ̄
LB (µ) = 2 θL,µ̄min(µ)λmin

(
−S(µ̄)

)
λmin

(
E(µ̄)

)
,

α̃A,µ̄1;E,µ̄2

LB (µ) = 2 θA,µ̄1

min (µ) θE,µ̄2

min (µ)λmin

(
−S(µ̄1)

)
λmin

(
E(µ̄2)

)
,

α̃L
LB(µ) = 2

nE∑
i=1

nA∑
j=1

θLij(µ)λmin(−Sj)λmin(Ei)

with S(µ) as in (5.2) and Sj = (Aj +ATj )/2.
2. For all µ ∈ D, the largest singular value of L(µ) is bounded from above as

σmax

(
L(µ)

)
≤ γ̃UB(µ) := min

(
γ̃L,µ̄UB (µ), γ̃A,µ̄1;E,µ̄2

UB (µ), γ̃LUB(µ)
)
, (5.4)

where

γ̃L,µ̄UB (µ) = 2 θL,µ̄max(µ)σmax

(
A(µ̄)

)
λmax

(
E(µ̄)

)
,

γ̃A,µ̄1;E,µ̄2

UB (µ) = 2 θA,µ̄1
max (µ) θE,µ̄2

max (µ)σmax

(
A(µ̄1)

)
λmax

(
E(µ̄2)

)
,

γ̃LUB(µ) = 2

nE∑
i=1

nA∑
j=1

θLij(µ)σmax(Aj)λmax(Ei).

Proof. 1. Based on an important inequality between singular values of a matrix
and eigenvalues of its symmetric part [15, Corollary 3.1.5], we get

σmin

(
L(µ)

)
≥ λmin

(
LS(µ)

)
.

Then the bound (5.3) immediately follows from Lemma 3.2, part 1.
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2. Using the multiplicativity property of the singular values of the Kronecker
product [15, Theorem 4.2.15], we obtain that

σmax

(
L(µ)

)
≤ 2σmax

(
A(µ)

)
λmax

(
E(µ)

)
.

Then the bound (5.4) can be proved analogously to Lemma 3.2, part 2.
We use now the bounds (5.3) and (5.4) to derive the error estimates for the

reduced basis solutions of the PALE (1.1).
Theorem 5.2. Let E(µ) and A(µ) satisfy (A1), (A2), (A3´) and (A4´), and

let XRB(µ) and X̂RB(µ) be the reduced basis solutions of the PALE (1.1). Then the
errors X(µ)−XRB(µ) and X(µ)− X̂RB(µ) can be estimated as

‖X(µ)−XRB(µ)‖F ≤
‖rk(µ)‖
α̃LB(µ)

=: ∆ns
k (µ) ≤ γ̃UB(µ)

α̃LB(µ)
‖X(µ)−XRB(µ)‖F ,

‖X(µ)− X̂RB(µ)‖F ≤
‖R̂k(µ)‖F
α̃LB(µ)

=: ∆̂ns
k (µ) ≤ γ̃UB(µ)

α̃LB(µ)
‖X(µ)− X̂RB(µ)‖F ,

where α̃LB(µ) and γ̃UB(µ) are as in (5.3) and (5.4), respectively.
Proof. The result follows from (3.2), (3.3) and Lemma 5.1.
Alternative error estimates can be derived using a 2-logarithmic norm of the pencil

λE(µ)−A(µ) defined as

`
(
E(µ), A(µ)

)
= λmax

(
E(µ), S(µ)

)
.

If E(µ) ≡ I, then `
(
I, A(µ)

)
= `

(
A(µ)

)
= λmax

(
S(µ)

)
is the 2-logarithmic matrix

norm which is frequently used in differential equations and numerical analysis [28].
Conditions (5.1) imply that `

(
E(µ), A(µ)

)
< 0 for all µ ∈ D, so it is not a norm in

the usual sense. Define a weighted matrix norm

‖X‖E(µ) = ‖E(µ)X‖F = ‖GT (µ)XG(µ)‖F ,

where G(µ) is a Cholesky factor of E(µ) = G(µ)GT (µ). The following theorem
establishes an error estimate for the reduced basis solution X̂RB(µ) = VkX̂(µ)V Tk .

Theorem 5.3. Let X(µ) and X̂RB(µ) be the exact and approximate solutions of
the PALE (1.1). Then the error X(µ)− X̂RB(µ) can be estimated as

‖X(µ)−X̂RB(µ)‖E(µ) ≤
‖R̂k(µ)‖F
αE,A,µ̄LB (µ)

=: ∆̂E,A,µ̄
k (µ) ≤ γE,A,µ̄UB (µ)

αE,A,µ̄LB (µ)
‖X(µ)−X̂RB(µ)‖E(µ),

where

αE,A,µ̄LB (µ) = 2
θA,µ̄min(µ)

θE,µ̄(µ)
λmin

(
E(µ̄)

)
λmin

(
E(µ̄),−S(µ̄)

)
,

γE,A,µ̄UB (µ) = 2 θA,µ̄max(µ)
√
θE,µ̄(µ)σmax

(
A(µ̄)

)√λmax

(
E(µ̄)

)
λmin

(
E(µ̄)

) ,
and R̂k(µ) is the residual given in (4.4).

Proof. Let Ξ(µ) = X(µ)− X̂RB(µ). It follows from

G−1(µ)R̂k(µ)G−T (µ) = −AG(µ)GT (µ)Ξ(µ)G(µ)−GT (µ)Ξ(µ)G(µ)ATG(µ)
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with AG(µ) = G−1(µ)A(µ)G−T (µ) that

−GT (µ)Ξ(µ)G(µ) =

∫ ∞
0

eAG(µ)tG−1(µ)R̂k(µ)G−T (µ)eA
T
G(µ)tdt.

The matrix exponential is estimated as

‖eAG(µ)t‖2 ≤ e`
(
G−1(µ)A(µ)G−T (µ)

)
t = e`

(
E(µ),A(µ)

)
t,

see [7, 22]. Therefore,

‖Ξ(µ)‖E(µ) ≤ ‖G−1(µ)R̂k(µ)G−T (µ)‖F
∫ ∞

0

e2`(E(µ),A(µ))tdt ≤ ‖R̂k(µ)‖F ‖E−1(µ)‖2
−2 `

(
E(µ), A(µ)

) .

It remains to find a lower bound for −`
(
E(µ), A(µ)

)
. We again employ the min-Θ

approach. For

S(µ) =

nA∑
j=1

θAj (µ)Sj

with Sj = (Aj +ATj )/2, we obtain similarly to the proof of Lemma 3.2 that

−`
(
E(µ), A(µ)

)
= λmin

(
E(µ),−S(µ)

)
= min
v∈Rn\{0}

vT (−S(µ))v

vTE(µ)v

= min
v∈Rn\{0}

∑nA

j=1 θ
A
j (µ)vT (−Sj)v∑nE

j=1 θ
E
j (µ)vTEjv

≥ min
v∈Rn\{0}

θA,µ̄min(µ)vT (−S(µ̄))v

θE,µ̄max(µ)vTE(µ̄)v

=
θA,µ̄min(µ)

θE,µ̄max(µ)
λmin

(
E(µ̄),−S(µ̄)

)
.

Hence, we have the error estimate

‖X(µ)− X̂RB(µ)‖E(µ) ≤
‖R̂k(µ)‖F
αE,A,µ̄LB (µ)

=: ∆̂E,A,µ̄
k (µ)

with

αE,A,µ̄LB (µ) = 2
θA,µ̄min(µ)

θE,µ̄(µ)
λmin

(
E(µ̄)

)
λmin

(
E(µ̄),−S(µ̄)

)
.

Taking into account that

‖R̂k(µ)‖F = ‖A(µ)(X̂RB(µ)−X(µ))ET (µ) + E(µ)(X̂RB(µ)−X(µ))AT (µ)‖F
≤ 2 ‖A(µ)‖2

√
‖E(µ)‖2‖E−1(µ)‖2‖X(µ)− X̂RB(µ)‖E(µ)

≤ 2 θA,µ̄max(µ)σmax

(
A(µ̄)

)√
θE,µ̄(µ)

λmax

(
E(µ̄)

)
λmin

(
E(µ̄)

) ‖X(µ)− X̂RB(µ)‖E(µ),

the effectivity constant can be estimated as

ηE,A,µ̄k (µ) :=
∆̂E,A,µ̄
k (µ)

‖X(µ)− X̂RB(µ)‖E(µ)

≤ 2θA,µ̄max(µ)
√
θE,µ̄(µ)σmax

(
A(µ̄)

)
λ

1/2
max

(
E(µ̄)

)
αE,A,µ̄LB (µ)λ

1/2
min

(
E(µ̄)

) .

This completes the proof.
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6. Application to parametric model order reduction. Given a parametric
linear dynamical system

E(µ)ẋ(t, µ) = A(µ)x(t, µ) +B(µ)u(t, µ),
y(t, µ) = C(µ)x(t, µ),

(6.1)

where A(µ), E(µ) and B(µ) satisfy (A1), and the output matrix C(µ) ∈ Rl×N with
l� N also depends affinely on µ, i.e.,

C(µ) =

nC∑
j=1

θCj (µ)Cj .

A main goal of model reduction is to approximate system (6.1) by a reduced-order
model

Ẽ(µ) ˙̃x(t, µ) = Ã(µ)x̃(t, µ) + B̃(µ)u(t, µ),

ỹ(t, µ) = C̃(µ)x̃(t, µ),
(6.2)

where Ã(µ), Ẽ(µ) ∈ Rr×r, B̃(µ) ∈ Rr×m and C(µ) ∈ Rl×r with r � N . This
model can be computed by balanced truncation, a probably most effective model
order reduction method for linear control systems. This method is based on the
controllability and observability Gramians X(µ) and Y (µ) defined as the solutions of
the PALE (1.1) and the dual PALE

AT(µ)Y (µ)E(µ) + ET(µ)Y (µ)A(µ) = −CT(µ)C(µ), (6.3)

respectively. For the brevity of this paper, we do not review the balanced truncation
method here, but refer the reader who is not familiar with this method to [2, 29].

Based on the derived results, we develop a so-called parametric balanced trun-
cation method as follows. One can observe that for the parametric system (6.1), the
balanced truncation method admits the offline-online decomposition. In the offline
phase, we determine the reduced basis matrices VX ∈ RN×nX and VY ∈ RN×nY by
the Greedy algorithm applied to the PALEs (1.1) and (6.3), respectively. Then in the
online phase, for any µ ∈ D, we first find the approximate Gramians

X(µ) ≈ VXZX(µ)ZTX(µ)V TX , Y (µ) ≈ VY ZY (µ)ZTY (µ)V TY ,

where X̂(µ) = ZX(µ)ZTX(µ) and Y̆ (µ) = ZY (µ)ZTY (µ) solve, respectively, the re-

duced Lyapunov equations (4.3) with Â(µ) = V TXA(µ)VX , Ê(µ) = V TXE(µ)VX and

B̂(µ) = V TXB(µ) and

ĂT(µ)Y̆ (µ)Ĕ(µ) + ĔT(µ)Y̆ (µ)Ă(µ) = −C̆T(µ)C̆(µ) (6.4)

with Ă(µ) = V TY A(µ)VY , Ĕ(µ) = V TY E(µ)VY and C̆(µ) = C(µ)VY . Computing the
SVD

ZTY (µ)V TY E(µ)VXZX(µ) =

nE∑
j=1

θEj (µ)ZTY (µ)V TY EjVXZX(µ) (6.5)

= [U1(µ), U2(µ)]

[
Σ1(µ) 0

0 Σ2(µ)

]
[V1(µ), V2(µ)]T ,
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with Σ1(µ) ∈ Rr×r, we obtain the projection matrices

W (µ) = VY ZY (µ)U1(µ)Σ
−1/2
1 (µ), T (µ) = VXZX(µ)V1(µ)Σ

−1/2
1 (µ).

Then the reduced-order system matrices in (6.2) take the form

Ẽ(µ) = WT(µ)E(µ)T (µ), Ã(µ) = WT(µ)A(µ)T (µ),

B̃(µ) = WT(µ)B(µ), C̃(µ) = C(µ)T (µ).

Exploiting the affine structure and the parametric formulations of the Gramians, we
get

Ẽ(µ) =

nE∑
j=1

θEj (µ)W̃T(µ)V TY EjVX T̃ (µ), B̃(µ) =

nB∑
j=1

θBj (µ)W̃T(µ)V TY Bj ,

Ã(µ) =

nA∑
j=1

θAj (µ)W̃T(µ)V TY AjVX T̃ (µ), C̃(µ) =

nC∑
j=1

θCj (µ)CjVX T̃ (µ).

(6.6)

with W̃ (µ) = ZY (µ)U1(µ)Σ
−1/2
1 (µ) and T̃ (µ) = ZX(µ)V1(µ)Σ

−1/2
1 (µ). All parameter-

independent terms should be computed and stored before running the online stage.
We summarize the parametric balanced truncation model reduction method as follows.
Offline: Given the parametric system (6.1),

• Compute the reduced basis matrices VX and VY .
• Compute and store all parameter-independent matrices

V TXEjVX , V TY EjVY and V TY EjVX for j = 1, . . . , nE ;
V TXAjVX , V TY AjVY and V TY AjVX for j = 1, . . . , nA;
V TXBj and V TY Bj for j = 1, . . . , nB ; CjVX and CjVY for j = 1, . . . , nC .

Online: Given µ ∈ D,

• Compute Â(µ) = V TXA(µ)VX , Ê(µ) = V TXE(µ)VX , B̂(µ) = V TXB(µ) and

Ă(µ) = V TY A(µ)VY , Ĕ(µ) = V TY E(µ)VY , C̆(µ) = C(µ)VY using precomputed
parameter-independent terms and the affine structure.

• Solve (4.3) and (6.4) for the Cholesky factors ZX(µ) and ZY (µ), respectively.
• Compute the SVD (6.5).
• Compute the reduced-order model (6.2), (6.6).

Ignoring the small numbers nA, nE , nB , and nC , one can verify that the computational
complexity of the online stage does not exceed O(n3

X + n3
Y ).

Remark 6.1. Note that the parametric reduced-order system (6.2) can also be
determined by applying the reduced basis method directly to (6.1), see [11]. However,
the model reduction approach presented here has several advantages over that method.
It has the control-theoretic background and gains all benefits of balanced truncation.
Furthermore, in contrast to the reduced basis method applied to the dynamical system,
our approach does not rely on the state snapshots and the projection subspaces are
independent of the training input.

7. Numerical examples. In this section, we present some results of numerical
experiments to demonstrate the properties of the reduced basis method. For solving
the Lyapunov equations for fixed parameter values, we use the LR-ADI method as
described in [5]. All computations are performed with MATLAB on a laptop using
Windows 8.1, equipped with 2.40 GHz 8 GB Intel(R) Core(TM) i7-4500U CPU.



PARAMETER-DEPENDENT LYAPUNOV EQUATIONS 19

7.1. A heat equation. The first model is taken from [17]. Consider the heat
equation

∂ϑ

∂t
−∇(σ(ξ)∇ϑ) = f in Ω× (0, T ),

ϑ = 0 on ∂Ω× (0, T ),
(7.1)

with the heat conductivity coefficient

σ(ξ) =

{
1 + µi for ξ ∈ Di, i = 1, . . . , 4,
1 for ξ ∈ Ω\(∪4

i=1Di),
(7.2)

where Di ⊂ Ω = (0, 4)2, i = 1, . . . , 4, are four discs of radius 0.5 centered at (1, 1),
(3, 1), (1, 3) and (3, 3), respectively, and the parameter µ = [µ1, µ2, µ3, µ4]T varies in
D = [0.1, 10]4. Equation (7.1) with the source term f ≡ 1 is discretized using the
finite element method with piecewise linear basis functions resulting in a system (6.1)
of dimension N = 1580 with the symmetric positive definite mass matrix E(µ) ≡ E
and the stiffness matrix

A(µ) = µ1A1 + µ2A2 + µ3A3 + µ4A4 +A5, (7.3)

where Ai, i = 1, . . . , 4, are symmetric negative semidefinite, and A5 is symmetric
negative definite. The input matrix B(µ) ≡ B ∈ RN originates from the source
function f , and the output matrix C(µ) ≡ C ∈ R1×N is chosen at random.

For solving the controllability and observability PALEs (1.1) and (6.3), we employ
the reduced basis method with the same setting for both equations: the training set
Dtrain consisting of 10000 random points, the tolerance tolrb = 10−4 for stopping the
Greedy iteration, the maximal number of iterations kmax = 40, the test set Dtest

containing 50 random points (different from that in the training set) on which the
online phase is run, and the tolerance tolcc = 10−10 for column compression in the
online phase. In Figure 7.1(a), we present the convergence history of the largest
error estimate in the Greedy algorithms for both PALEs. One can observe that the
convergence of the Greedy algorithm is not very satisfactory: the iteration indeed
stops before the tolerance is reached. The true errors in the solutions are, however,
acceptable, and the computed reduced bases provide reasonably good approximations
to the solutions for the test parameter samples. Figure 7.1(b) shows the absolute
errors ‖X(µ) − XRB(µ)‖F and ‖X(µ) − X̂RB(µ)‖F , the error estimates ∆k(µ) and
∆̂k(µ) as in (3.9) and (4.5), respectively, and the error efficiencies

γUB(µ)

αLB(µ)
‖X(µ)−XRB(µ)‖F ,

γUB(µ)

αLB(µ)
‖X(µ)− X̂RB(µ)‖F

for the controllability PALE (1.1) with µ ∈ Dtest. One can see that the corresponding
errors and error estimates are different from each other by a multiplicative factor of
about 103. Moreover, ‖X(µ)− X̂RB(µ)‖F is smaller than ‖X(µ)−XRB(µ)‖F which
supports our observation in Section 4.2 and encourages the use of the method by the
fact that the error in the online phase is even smaller than that in the offline phase.

Finally, by our setting of inputs, we reduce the system order from 1580 down to
about 20 (the reduced orders may vary for different parameters). Figure 7.2(a) shows
the relative errors for the solution of the PALEs (1.1) and (6.3) in the online phase.
In Figure 7.2(b), we present the approximate H∞-norm of the absolute error in the
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Fig. 7.1. Heat equation: (a) the largest error estimate during the Greedy iteration; (b) errors,
error estimates and error efficiencies measured in two ways for the controllability PALE (1.1).
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Fig. 7.2. Heat equation: (a) the relative errors of approximate solutions of the controllability
and observability PALEs; (b) the absolute error of parametric model order reduction.

frequency response defined as

‖H(µ, ·)− H̃(µ, ·)‖H∞ = sup
ω∈R
‖H(µ, iω)− H̃(µ, iω)‖2

≈ sup
ωj∈[ωmin,ωmax]

‖H(µ, iωj)− H̃(µ, iωj)‖2,

where H(µ, s) = C
(
sE−A(µ)

)−1
B and H̃(µ, s) = C̃

(
sẼ− Ã(µ)

)−1
B̃ are the transfer

functions of the original and the reduced-order systems and µ ∈ Dtest. The relative
errors, which are not depicted here, are even smaller as the full response of the original
system vary between 1 and 10.

7.2. An anemometer model. We consider now an anemometer model describ-
ing a thermal based flow sensor, see [21] and references therein. Simulation of this
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device requires solving a convection-diffusion partial differential equation of the form

ρc
∂ϑ

∂t
= ∇(κ∇ϑ)− ρcv∇ϑ+ q̇, (7.4)

where ρ denotes the mass density, c ∈ [0, 1] is the specific heat, κ ∈ [1, 2] is the
thermal conductivity, v ∈ [0.1, 2] is the fluid velocity, ϑ is the temperature, and q̇ is
the heat flow into the system caused by the heater. The considered model is restricted
to the case ρ = 1. The finite element discretization of (7.4) leads to system (6.1) of
order N = 29008 with the mass matrix E(µ) = E1 + cE2, where E1 and E2 are
symmetric positive definite and the stiffness matrix A(µ) = A1 + kA2 + cvA3, where
A1 is symmetric negative definite, A2 is nonsymmetric but negative semidefinite, A3

is symmetric negative semidefinite, and µ = [c, k, v]T . The input matrix B ∈ RN
and the output matrix C ∈ R1×N are parameter-independent. The data can be
downloaded from [1].

In this example, we want to test the error for nonsymmetric system and the
reliability of the method when applied to really large system. We run the Greedy
algorithm for 20 steps on the training set Dtrain with 10000 points and, in the online
phase, we examine the error at 50 test points. In both cases, the points are chosen
randomly. We compute the errors, the nonsymmetric error estimates and the effi-
ciencies as in Theorem 5.2 and Theorem 5.3, see Figure 7.3(b) and Figure 7.4(a).
The situation is quite similar to the previous example except for the fact that the
error of the approximate solutions X̂RB(µ) of the observability PALE (6.3) shown
in Figure 7.4(a) is rather large comparing to that of the controllability PALE (1.1).
The reason is most probably that the corresponding Greedy iteration stagnates after
first five steps, see Figure 7.3(a). Together with the numerical results in Section 7.1,
we believe that the reduced basis approximation is better when the maximal error
in the Greedy search (almost) monotonously decreases. In Figure 7.3(b), we present
the approximate H∞-norm of the absolute error for the reduced models at the test
parameters. One can see that the errors remain small for all these parameters.

Now we turn our attention to computation time shown in Figure 7.5. One can see
that most of the time (63%) used in offline phase is spent for solving the Lyapunov
equation at twenty different points seek by the Greedy algorithm. Thanks to suitable
arrangement of parameter-dependent and parameter-independent terms, the compu-
tation time of seemingly expensive search on the training set can be almost ignored
(4%). The time for computing the parameter independent terms is quite remarkable
(27%). Note, however, that these terms will be stored and used in the online phase
which helps to reduce the cost. To wit, in online phase, for the true error, we have
to solve the original Lyapunov equation and the reduced Lyapunov equation at 50
points. The first task takes 1663 sec, while the second one takes only 31 sec, which
accelerates the computation by a factor of 53.

8. Conclusion. In this paper, we presented a reduced basis method for solving
large-scale PALEs. For deriving the error estimates for approximate solutions to
PALEs with symmetric and nonsymmetric matrix coefficients depending affinely on
parameters, we used min-Θ approach. The reduced basis method was then used to
extend the standard balanced truncation model reduction approach to the parametric
systems which does not required interpolation. Numerical examples shown that, on
the one hand, the proposed method worked well for large problems, but on the other
hand, the error estimate can be poor especially in the nonsymmetric case. Tightening
the error estimates by using other matrix norms and/or other techniques such as
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Fig. 7.3. Anemometer model: (a) the largest error estimate during the Greedy iteration; (b)
errors, error estimates and error efficiencies measured in two ways for the controllability PALE
(1.1).
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Fig. 7.4. Anemometer model: (a) the relative errors of approximate solutions of the controlla-
bility and observability PALEs; (b) the absolute error of parametric model order reduction.

natural norm approach, successive constraint method or their combination remains
for the future work.
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