Charge and spin dynamics of TMTSF and TMTTF salts

M. Dressel ^{a,1}, P. Hesse ^a, S. Kirchner ^a, G. Untereiner ^a, M. Dumm ^b, J. Hemberger ^b, A. Loidl ^b, L. Montgomery ^c

^a 1. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany ^b Experimentalphysik V, Universität Augsburg, D-86135 Augsburg, Germany ^c Department of Chemistry, Indiana University, Bloomington, IN 47405, U.S.A.

Abstract

A comprehensive investigation of the charge and spin dynamics of the quasi one-dimensional organic compounds $(TMTSF)_2X$ and $(TMTTF)_2X$ with $X = PF_6$, AsF_6 , Br, and ClO_4 has been performed in the temperature range from 2 K up to 500 K. By substitution of the organic donors or inorganic anions, the dimensionality of the systems can be tuned. While the resistivity strongly increases in $(TMTTF)_2X$ below 100 K, the susceptibility measured by electron spin resonance varies only slightly.

In the well-known phase diagram which spans from (TMTTF)₂PF₆ to (TMTSF)₂ClO₄, the interchain coupling of the organic systems increases and thus the dimensionality crosses over from a strictly one-dimensional to a more two or threedimensional system. Besides ordered states like Mott insulator, spin Peierls, antiferromagnetic insulator, spin-density-wave (SDW), and superconductivity also the metallic state changes its behavior going from a Tomonaga-Luttinger liquid to a Fermi liquid. This can be nicely seen in electronic properties like the out-of-plane resistivity [1] or the optical conductivity [2]; the spin dynamics on the other hand does not show any fundamental change going from TMTTF to TMTSF except the spins are less localized [3].

As displayed in Fig. 1 the temperature dependence of the resistivty of $(TMTTF)_2AsF_6$, $(TMTTF)_2PF_6$, $(TMTTF)_2ClO_4$, $(TMTTF)_2Br$, $(TMTSF)_2PF_6$, and $(TMTSF)_2ClO_4$ was measured along the chain direction in the range 1 K < T < 400 K. Around 250 K we find a broad minimum in resistivity of $(TMTTF)_2PF_6$ while in $(TMTTF)_2AsF_6$ the behavior is basically temperature independent from 200 K up to 400 K. In both compounds we may identify an activated behavior $\rho(T) \propto \exp\{\Delta_{\rho}/T\}$ with $\Delta_{\rho} \approx 820$ K

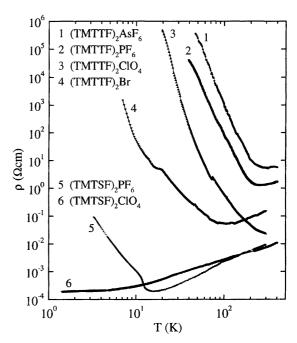


Fig. 1. Temperature dependence of the resistivity $\rho(T)$ of different salts of the (TMTSF)₂X and (TMTTF)₂X family measured along the chain direction.

for 100 K < T < 200 K in accordance to earlier reports [4]. For (TMTTF)₂ClO₄ we do not see a minimum in $\rho(T)$ and also the activation energy is only about 510 K above the first order phase transition (due to anion ordering) at 74 K and about

¹ E-mail: dressel@pi1.physik.uni-stuttgart.de

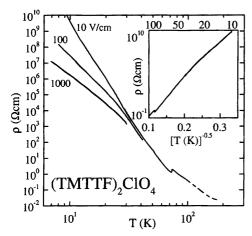


Fig. 2. Temperature dependence of the resistivity of $(TMTTF)_2ClO_4$. Deviations for higher electric fields show the importance of non-linear effects at low temperatures. In the inset the data are plotted as a function of $T^{-1/2}$.

350 K below. However, as shown in Fig. 2 for the example of (TMTTF)₂ClO₄, one-dimensional hopping transport with $\rho \propto \exp\{T_0/T^{0.5}\}$ is also a possible explanation. At low temperature nonlinear and heating effects make the evaluation of the transport mechanism difficult. (TMTTF)₂Br stays metallic above 100 K, in the range down to 20 K we can identify an activiation energy of $\Delta_{\rho} \approx 100$ K. In the temperature range 15 K < T < 20 K where the antiferromagnetic ordering occurs $(T_N = 17.6 \text{ K}), \rho(T)$ increases only slightly, but for T < 10 K the same activation energy of 100 K is found. This agrees with the fact that the antiferromagnetic ordering is not a SDW transition with the opening of an energy gap at E_F but it is due to localized spins. (TMTSF)₂PF₆ and (TMTSF)₂ClO₄ show the well-known metallic behavior in the resisitivity with a SDW transition of $(TMTSF)_2PF_6$ at 12 K.

At high temperatures the spin susceptibility at constant volume of the $(TMTTF)_2X$ -compounds (Fig. 3) can be described by a spin 1/2 antiferromagnetic Heisenberg chain with exchange constants $J=420~{\rm K}~(X={\rm PF_6}),~J=430~{\rm K}~(X={\rm ClO_4}),$ and $J=500~{\rm K}~(X={\rm Br})$ using the common EAT model [5]. Even though $(TMTSF)_2{\rm PF_6},$ $(TMTSF)_2{\rm AsF_6}$ and $(TMTSF)_2{\rm ClO_4}$ are one-dimensional organic metals down to low temperatures, for $T>100~{\rm K}$ the temperature dependence of $\chi(T)$ can be described within the framework of the Hubbard model in the limit of strong Coulomb repulsion [6] with $J\approx 1400~{\rm K}$ and $t_a/U=0.2$ [3].

Going from the fully insulating (TMTTF)₂PF₆ to the highly metallic (TMTSF)₂ClO₄ there is a sudden change in the charge-transport properties when the transfer integral becomes comparable to the charge gap, while the spin dynamics changes

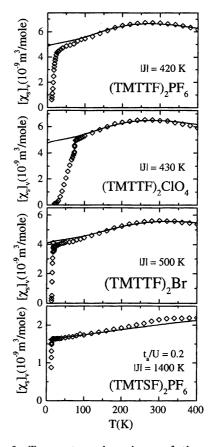


Fig. 3. Temperature dependence of the spin susceptibility $(\chi_s)_v$ at constant volume of $(TMTSF)_2PF_6$, $(TMTSF)_2ClO_4$, $(TMTTF)_2Br$, and $(TMTTF)_2PF_6$ as obtained by ESR intensity. The lines in (a) to (c) correspond to fits using the EAT-model for a S=1/2 AFM Heisenberg chain with J=420 K, J=430 K and J=500 K, the line in the lowest frame (d) corresponds to a fit using the model of Seitz and Klein with $t_\alpha/U=0.2$.

continuously described by a steadily increasing exchange constant. The resisitivity in $(TMTTF)_2X$ strongly increases below 100 K; in contrast the susceptibility and also the line width vary only slightly. This behavior indicates the separation of spin and charge degrees of freedom.

References

- J. Moser, M. Gabay, P. Auban-Senzier, D.Jérome, K. Bechgaard, J.M. Fabre, Eur. Phys. J. B 1 (1998) 39.
- [2] M. Dressel, A. Schwartz, G. Grüner, L. Degiorgi, Phys. Rev. Lett. 77 (1996) 398; V. Vescoli, L. Degiorgi, W. Henderson, G. Grüner, K.P. Starkey, L.K. Montgomery, Science 281 (1998) 1181.
- [3] M. Dumm, A. Loidl, B.W. Fravel, K.P Starkey, M. Montgomery, M. Dressel, Phys. Rev. B 61 (2000) 511; Phys. Rev. B 62 (2000).
- [4] C. Coulon, P. Delhaes, S. Flandrois, R.Lagnier, E. Bonjour, J.M. Fabre, J. Phys. (France) 43 (1982) 1059.
- [5] S. Eggert, I. Affleck, M. Takahashi, Phys. Rev. Lett. 73 (1994) 332.
- [6] W.A. Seitz, D.J. Klein, Phys. Rev. B 9 (1974) 2159.