Charge and spin dynamics of TMTSF and TMTTF salts
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Abstract

A comprehensive investigation of the charge and spin dynamics of the quasi one-dimensional organic compounds
(TMTSF): X and (TMTTF)2 X with X= PFs, AsFg, Br, and ClO4 has been performed in the temperature range
from 2 K up to 500 K. By substitution of the organic donors or inorganic anions, the dimensionality of the systems
can be tuned. While the resisitivity strongly increases in (TMTTF)2 X below 100 K, the susceptibility measured

by electron spin resonance varies only slightly.

In the well-known phase diagram which spans
from (TMTTF):PFg to (TMTSF),ClOy, the in-
terchain coupling of the organic systems increases
and thus the dimensionality crosses over from a
strictly one-dimensional to a more two or three-
dimensional system. Besides ordered states like
Mott insulator, spin Peierls, antiferromagnetic in-
sulator, spin-density-wave (SDW), and supercon-
ductivity also the metallic state changes its behav-
ior going from a Tomonaga-Luttinger liquid to a
Fermi liquid. This can be nicely seen in electronic
properties like the out-of-plane resistivity [1] or
the optical conductivity [2]; the spin dynamics on
the other hand does not show any fundamental
change going from TMTTF to TMTSF except the
spins are less localized [3].

As displayed in Fig. 1 the temperature de-
pendence of the resistivty of (TMTTF)sAsFs,
(TMTTF)2PFs, (TMTTF)2ClO4, (TMTTF),Br,
(TMTSF)3PFg, and (TMTSF),ClO4 was mea-
sured along the chain direction in the range
1K < T < 400 K. Around 250 K we find a broad
minimum in resistivity of (TMTTF),;PFg while
in (TMTTF);AsFg the behavior is basically tem-
perature independent from 200 K up to 400 K.
In both compounds we may identify an activated
behavior p(T) o« exp{A,/T} with A, =~ 820 K
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Fig. 1. Temperature dependence of the resistivity p(T") of
different salts of the (TMTSF)2 X and (TMTTF)2 X family
measured along the chain direction.

for 100 K < T < 200 K in accordance to earlier
reports [4]. For (TMTTF);ClO4 we do not see a
minimum in p(7T) and also the activation energy is
only about 510 K above the first order phase tran-
sition (due to anion ordering) at 74 K and about
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Fig. 2. Temperature dependence of the resistivity of
(TMTTF)2ClO4. Deviations for higher electric fields show
the importance of non-linear effects at low temperatures.
In the inset the data are plotted as a function of T—1/2,

350 K below. However, as shown in Fig. 2 for
the example of (TMTTF),ClOy, one-dimensional
hopping transport with p oc exp{Tp/T°?} is also
a possible explanation. At low temperature non-
linear and heating effects make the evaluation of
the transport mechanism difficult. (TMTTF),;Br
stays metallic above 100 K, in the range down
to 20 K we can identify an activiation energy of
A, ~ 100 K. In the temperature range 15 K <
T < 20 K where the antiferromagnetic ordering
occurs (Tn = 17.6 K), p(T') increases only slightly,
but for T < 10 K the same activation energy of
100 K is found. This agrees with the fact that the
antiferromagnetic ordering is not a SDW transi-
tion with the opening of an energy gap at Er but
it is due to localized spins. (TMTSF);PFg¢ and
(TMTSF);Cl04 show the well-known metallic be-
havior in the resisitivity with a SDW transition of
(TMTSF)QPFG at 12 K.

At high temperatures the spin susceptibility at
constant volume of the (TMTTF);X-compounds
(Fig. 3) can be described by a spin 1/2 antifer-
romagnetic Heisenberg chain with exchange con-
stants J = 420 K (X = PFg), J =430 K (X =
Cl0y4), and J = 500 K (X = Br) using the com-
mon EAT model [5]. Even though (TMTSF),PFs,
(TMTSF);AsFg and (TMTSF),ClO4 are one-
dimensional organic metals down to low tempera-
tures, for T > 100 K the temperature dependence
of x(T') can be described within the framework of
the Hubbard model in the limit of strong Coulomb
repulsion [6] with J &~ 1400 K and ¢,/U = 0.2 (3].

Going from the fully insulating (TMTTF),PF¢
to the highly metallic (TMTSF)2Cl0,4 there is a
sudden change in the charge-transport properties
when the transfer integral becomes comparable to
the charge gap, while the spin dynamics changes
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Fig. 3. Temperature dependence of the spin suscep-
tibility (xs)v at constant volume of (TMTSF);PFe,
(TMTSF)2Cl04, (TMTTF)2Br, and (TMTTF);PF¢ as
obtained by ESR intensity. The lines in (a) to (c) corre-
spond to fits using the EAT-model for a S = 1/2 AFM
Heisenberg chain with J = 420 K, J = 430 K and
J = 500 K, the line in the lowest frame (d) corresponds to
a fit using the model of Seitz and Klein with ¢, /U = 0.2.

continuously described by a steadily increasing ex-
change constant. The resisitivity in (TMTTF), X
strongly increases below 100 K; in contrast the
susceptibility and also the line width vary only
slightly. This behavior indicates the separation of
spin and charge degrees of freedom.
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