Strongly Correlated Materials:
Insights From Dynamical
Mean-Field Theory

Materials with correlated electrons exhibit some of the
most intriguing phenomena in condensed matter physics.
A new theoretical framework is now allowing theorists to
calculate the electronic structure of these materials, which

can exist in a rich variety of phases.

Gabriel Kotliar and Dieter Vollhardt

Modern solid-state physics explains the physical prop-
erties of numerous materials, such as simple metals
and some semiconductors and insulators. But materials
with open d and f electron shells, where electrons occupy
narrow orbitals, have properties that are harder to ex-
plain. In transition metals, such as vanadium, iron, and
their oxides, for example, electrons experience strong
Coulombic repulsion because of their spatial confinement
in those orbitals. Such strongly interacting or “correlated”
electrons cannot be described as embedded in a static
mean field generated by the other electrons.! The influence
of an electron on the others is simply too pronounced for
each to be treated independently.

The effect of correlations on materials properties is
often profound. The interplay of the d and f electrons’ in-
ternal degrees of freedom—spin, charge, and orbital mo-
ment—can exhibit a whole zoo of exotic ordering phenom-
ena at low temperatures. That interplay makes strongly
correlated electron systems extremely sensitive to small
changes in external parameters, such as temperature,
pressure, or doping.

The dramatic effects can range from huge changes in the
resistivity across the metal-insulator transition in vanadium
oxide and considerable volume changes across phase transi-
tions in actinides and lanthanides, to exceptionally high tran-
sition temperatures (above liquid-nitrogen temperatures) in
superconductors with copper—oxygen planes. In materials
called heavy fermion systems, mobile electrons at low tem-
perature behave as if their masses were a thousand times the
mass of a free electron in a simple metal. Some strongly cor-
related materials display a very large thermoelectric re-
sponse; others, a great sensitivity to changes in an applied
magnetic field—an effect dubbed colossal magnetoresistance.
Such properties make the prospects for developing applica-
tions from correlated-electron materials exciting. But the
richness of the phenomena, and the marked sensitivity to mi-
croscopic details, makes their experimental and analytical
study all the more difficult.
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The theoretical challenge

To understand materials made up of
weakly correlated electrons—silicon
or aluminum, for example—band the-
ory, which imagines electrons behav-
ing like extended plane waves, is a
good starting point. That theory helps
capture the delocalized nature of elec-
trons in metals. Fermi liquid theory
describes the transport of conduction
electrons in momentum space and provides a simple but
rigorous conceptual picture of the spectrum of excitations
in a solid. In that description, excited states consist of in-
dependent quasiparticles that exist in a one-to-one corre-
spondence to states in a reference system of noninteract-
ing Fermi particles plus some additional collective modes.

To calculate the various microscopic properties of such
solids, we have accurate quantitative techniques at our
disposal. Density functional theory (DFT),? for example, al-
lows us to compute the total energy of some materials with
remarkable accuracy, starting merely from the atomic po-
sitions and charges of the atoms. See box 1 for a more de-
tailed prescription of DFT.

However, the independent-electron model and the
DFT method are not accurate enough when applied to
strongly correlated materials. The failure of band theory
was first noticed in insulators such as nickel oxide and
manganese oxide, which have relatively low magnetic-or-
dering temperatures but large insulating gaps. Band the-
ory incorrectly predicts them to be metallic when magnetic
long-range order is absent.

Neville Mott showed that those insulators are better
understood from a simple, real-space picture of the solid
as a collection of localized electrons bound to atoms with
open shells. Adding and removing electrons from an atom
leaves it in an excited configuration. Because the internal
degrees of freedom (like orbital angular momentum and
spin) in the remaining atoms scatter the excited configu-
rations, these states propagate through a crystal incoher-
ently and broaden to form bands, called the lower and the
upper Hubbard bands.

The modeling problem becomes more complicated as
one moves away from these two well-understood, extreme
limits and works with materials made up of electrons that
are neither fully itinerant (propagating as Bloch waves in
the crystal) nor fully localized on their atomic sites. The
dual particle—-wave character of the electron forces the
adoption of components of the real-space and momentum-
space pictures.

Systems with strongly correlated electrons fall within
that middle ground. Traditionally, such materials have
been described using the model Hamiltonian approach.
That is, the Hamiltonian is simplified to take into account
only a few relevant degrees of freedom—typically, the va-
lence electron orbitals near the Fermi level. Reducing the
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Box 1. Density Functional Theory

In DFT, the basic quantity is the local electronic charge den-
sity of the solid, p(r). The total energy of the full, many-body
problem of interacting quantum mechanical particles is ex-
pressed as a functional of this density:
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The equation contains three parts: the kinetic energy of a
noninteracting system T[p]; the potential energy of the crys-
tal, V_(r), plus the Hartree contribution to the Coulomb in-
teraction between the charges; and the rest, denoted as the
exchange and correlation energy term E_. Minimizing the
functional results in the Kohn-Sham equations

[-V*/2m+ Vs (1) ¥ = &,
which have the form of one-particle Schrodinger equations

with a potential V,4(r). This Kohn-Sham potential represents
a static mean field of the electrons and has to be determined
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full many-body Hamiltonian to a simpler, effective model
retains the essence of the physical phenomena one wants
to understand, but is itself a complicated problem.

One of the simplest models of correlated electrons is
the Hubbard Hamiltonian, defined in equation 2b of box 2.
This Hamiltonian describes electrons with spin directions
o =1 or | moving between localized states at lattice sites
i and j. The electrons interact only when they meet on the
same lattice site i. (The Pauli principle requires them to
have opposite spin.) The kinetic energy and the interac-
tion energy are characterized by the hopping term ¢, and
the local Coulomb repulsion U, respectively. These two
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from the self-consistency condition
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The Kohn-Sham equations serve as a reference system for
DFT because they yield the correct ground-state density via

P(f)=Zf(8f)|w,(r)|2,

where f(g) is the Fermi function. That is, although the
Kohn-Sham equations describe a noninteracting single-particle
system, they give the correct density of the many-body inter-
acting system. Practical implementations require explicit, al-
beit approximate, expressions for E,_ (for example, the local
density approximation obtained from the uniform electron
gas). Although the eigenvalues and eigenvectors of these
equations cannot be identified rigorously with the excitations
of the solid, if electrons are weakly correlated the energies ¢;
are often a very good starting point for computing the true ex-
citation spectra by perturbation theory in the screened
Coulomb interaction.

(1d)

terms compete because the kinetic part favors the elec-
trons’being as mobile as possible, while the interaction en-
ergy is minimal when electrons stay apart from each
other—that is, localized on atomic different sites. This
competition is at the very heart of the electronic many-
body problem. The parameters that determine the proper-
ties described by the Hubbard model are the ratio of the
Coulomb interaction U and the bandwidth W (W is deter-
mined by the hopping, ¢,), the temperature T, and the dop-
ing or number of electrons.

The lattice structure and hopping terms influence the
ability of the electrons to order magnetically, especially in
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Electron reservoir

Figure 1. Dynamical mean-field theory (DMFT) of correlated-electron solids replaces the full lattice of atoms and electrons
with a single impurity atom imagined to exist in a bath of electrons. The approximation captures the dynamics of electrons
on a central atom (in orange) as it fluctuates among different atomic configurations, shown here as snapshots in time. In the
simplest case of an s orbital occupying an atom, fluctuations could vary among [0), | 1), |!), or | 1}), which refer to an unoc-
cupied state, a state with a single electron of spin-up, one with spin-down, and a doubly occupied state with opposite spins.
In this illustration of one possible sequence involving two transitions, an atom in an empty state absorbs an electron from the
surrounding reservoir in each transition. The hybridization V, is the quantum mechanical amplitude that specifies how likely

a state flips between two different configurations.
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the insulating state. If the magnetic ordering is impeded—
crucial for observing subtle transitions between nonmag-
netic phases—the system is said to be “frustrated.”

Despite using model Hamiltonians to simplify the
problem, even simple properties such as the phase dia-
gram of a strongly correlated electron system are difficult
to calculate exactly. Given the rich variety of physical prop-
erties in such systems, though, it is important to develop
techniques that are tractable and yet remain flexible
enough to allow theorists to incorporate material-specific
details into the calculations. Dynamical mean-field theory
(DMFT) has been allowing researchers to make strides in
that direction.

Dynamical mean-field theory

A wide variety of numerical techniques and analytical
methods have been used to treat strongly correlated elec-
tron systems. In 1989, Walter Metzner and one of us (Voll-
hardt) introduced a new limit to the correlated electron
problem, that of infinite lattice coordination: Each lattice
site is imagined to have infinitely many neighbors.? That
approach retained the competition between kinetic energy
and Coulomb interaction of electrons while simplifying the
computation. And it triggered a multitude of investiga-
tions of the Hubbard and related models taken in this
limit. Consequently, a better understanding of various ap-
proximation schemes emerged along with an exact solu-
tion of some simpler models.*

A second advance came when Antoine Georges and one
of us (Kotliar) mapped the Hubbard model (a lattice model)
onto a self-consistent quantum impurity model—a set of
local quantum mechanical degrees of freedom that inter-
acts with a bath or continuum of noninteracting excita-
tions.® (For a subsequent significant derivation, see Mark
Jarrell’s article in ref. 6.) That construction provides the
basis of the dynamical mean-field theory of correlated elec-
trons.” It allowed many-body theorists to formulate and
solve a variety of model Hamiltonians on the lattice using
analytic® and numerical techniques such as quantum
Monte Carlo,® previously developed to study impurity mod-
els.” The DMFT solutions become exact as the number of
neighbors increases.

In essence, a mean-field theory reduces (or maps) a
many-body lattice problem to a single-site problem with ef-
fective parameters. Consider the classical theory of mag-
netism as an analogy: Spin is the relevant degree of free-
dom at a single site and the medium is represented by an
effective magnetic field (the classical mean field). In the
fermionic case, the degrees of freedom at a single site are
the quantum states of the atom inside a selected central
unit cell of the crystal; the rest of the crystal is described
as a reservoir of noninteracting electrons that can be emit-
ted or absorbed in the atom. Figure 1 depicts that emis-
sion or absorption as mediated by a quantum mechanical
amplitude V,, and box 2 describes it mathematically. The
effect of the environment on the site is to allow the atom
to make transitions between different configurations. Un-
like the classical case, in which a number—the effective
magnetic field—describes the effect of the medium on the
central site, the quantum case requires a hybridization
function A(w) to capture the ability of an electron to enter
or leave an atom on a time scale 1/w.

The local description of a correlated solid in terms of
an atom embedded in a medium of noninteracting elec-
trons corresponds to the celebrated Anderson impurity
model, but now with an additional self-consistency condi-
tion. The hybridization function plays the role of a mean
field and describes the ability of electrons to hop in and
out of a given atomic site. When the hybridization is very
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Box 2. Dynamical Mean-

Field Theory

To treat strongly correlated electrons, one has to introduce
a frequency resolution for the electron occupancy at a
particular lattice site. A Green function that specifies the
probability amplitude required to create an electron with
spin o (1 or |) at a site / at time 7' and destroy it at the same
site at a later time 7 will do the job:

=(cip (r)c, (7)) (2a)

The Green function contains information about the local
one-electron photoemission spectrum. The dynamical mean-
field theory (DMFT) can be used to investigate the full many-
body problem of interacting quantum mechanical particles
or effective treatments such as the Hubbard model™”

H= Ztu €t /G+U n.n., (2b)
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which is the simplest model of interacting electrons on a lat-
tice. The equation contains a matrix element t; that de-
scribes hopping of electrons with spin o between orbitals at
sites i and j, and a local Coulomb interaction U between two
electrons occupying the same site i; n, = c! ¢, is the density
of electrons at site i with spin o.

The Anderson impurity model

HAIM awm + Zgba&h path z(v cha bath +h. C) 20

(in which h.c. is the Hermitian conjugate) serves as a refer-
ence system for the Hubbard model because it yields the
exact local Green function in DMFT when the V, fulfills a
self-consistency condition. It provides the mathematical de-
scription of the physics in figure 1: Starting from a general
Hamiltonian, one separates a lattice site’s atomic degrees of
freedom, described by H,,., from the remaining degrees of
freedom, treated as a bath of electrons with energy levels
gbah Electrons may hop in and out of that site via the hy-
bridization V, between the atomic (c,,) and the bath elec-
trons (aPah). The parameters %" and V, appear in a simple
combination in the hybrldlzatlon function

Vv,
A(w)= 2 | Lw 2d)

w—¢&,

which here plays the role of a mean field.” Its frequency de-
pendence makes it a dynamic mean field. Because the bath
describes the same electrons as those on the local site, A(w)
has to be determined from the self-consistency condition

G[A(w)]= ;{w ~3[Aw)]-4), (2e)

where the self-energy term [A(w)] = — 1/ClA(w)] + ®
takes on the meaning of a frequency dependent potentlal
and ¢, is the Fourier transform of the hopping matrix ele-
ments t; of the solid.

By analogy with density functional theory, an exact func-
tional of both the charge density and the local Green func-
tion of the correlated orbital is introduced as

r[o().G]=T[(r) c] JM
j” d3d3r'+E [p Gl

The functional® has a 5|m|Iar decomposition as in DFT.
However, the kinetic energy is no longer that of a free elec-
tron system because T[p, G] is the kinetic energy of a system
with given density p(r) and local Green function G. DMFT
provides an explicit approximation for E_[p(r),G].
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Figure 2. The density of states (DOS) of electrons in a
material varies as a function of the local Coulomb interac-
tions between them. This series illustrates how the spectral

features—as measured by photoemission or tunneling

experiments, say—evolve in the dynamical mean-field
solution of the Hubbard model at zero temperature and
half filling (the same number of electrons as lattice sites).

U is the interaction energy and W is the bandwidth of

noninteracting electrons. (a) For the case in which elec-
trons are entirely independent, the DOS is assumed to
have the form of a half ellipse with the Fermi level E,, lo-
cated in the middle of the band, characteristic of a metal.
(b) In the weakly correlated regime (small U), electrons
can be described as quasiparticles whose DOS still resem-
bles free electrons. The Fermi liquid model accounts for
the narrowing of the peak. (c) In strongly correlated met-
als, the spectrum exhibits a characteristic three-peak struc-
ture: the Hubbard bands, which originate from local
“atomic” excitations and are broadened by the hopping of
electrons away from the atom, and the quasiparticle peak
near the Fermi level. (d) The Mott metal-insulator transi-
tion occurs when the electron interactions are sufficiently
strong to cause the quasiparticle peak to vanish as the
spectral weight of that low-frequency peak is transferred to
the high-frequency Hubbard bands.

small, the electron is almost entirely localized at a lattice
site and moves only virtually, at short durations compati-
ble with the Heisenberg uncertainty principle. On the
other hand, when it is large, the electron can move
throughout the crystal.

We thus obtain a simple local picture for the competi-
tion between itinerant and localized tendencies underly-
ing the rich phenomena that correlated materials exhibit.
The mapping of the lattice model onto an impurity model—
the basis of the dynamical mean-field theory—simplifies
the spatial dependence of the correlations among electrons
and yet accounts fully for their dynamics—that is, the local
quantum fluctuations missed in static mean-field treat-
ments like the Hartree—Fock approximation.

Besides its conceptual value of providing a quantum
analog of the classical mean field, the mapping of a lattice
model onto the Anderson impurity model has had great
practical impact. Applications of DMFT have led to a lot of
progress in solving many of the problems inherent to
strongly correlated electron systems, such as the Mott
metal-insulator transition, doping of the Mott insulator,
phase separation, and the competition of spin, charge, and
orbital order.

The potential for system-specific modeling of materi-
als using DMFT was recognized early on.” But actual im-
plementation required combining ideas from band theory
and many-body theory.® Vladimir Anisimov’s group in Eka-
terinburg, Russia, and one of us (Kotliar) first demon-
strated the feasibility of this approach using a simplified
model of a doped three-dimensional Mott insulator,
La, Sr TiO,. The electrons in that material are divided
into two sets: weakly correlated electrons, well described
by alocal-density approximation (LDA) that models the ki-
netic energy of electron hopping, and strongly correlated
(or more localized) electrons—the titanium d orbitals—
well described using DMFT. The one-body part of the
Hamiltonian is derived from a so-called Kohn—Sham
Hamiltonian. The on-site Coulomb interaction U is then
added onto the heavy d and f orbitals to obtain a model
Hamiltonian. DMFT (or more precisely, “LDA + DMFT”) is
then used to solve that Hamiltonian.

Just as the Kohn—Sham equations serve as a reference
system from which one can compute the exact density of a
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solid, the Anderson impurity model serves as a reference
system from which one can extract the density of states of
the strongly correlated electrons. The parallel between
DFT and DMFT is best seen in the functional approach to
DMEFT,® outlined in box 2. It constructs the free energy of
the system as a function of the total density and the local
Green function. Finding the extrema of the functional
leads to a self-consistent determination of the total energy
and the spectra. These and related efforts to combine
many-body theory with band-structure methods are an ac-
tive area of research.!%!

The metal-insulator transition

How does an electron change from itinerant to localized be-
havior within a solid when a control parameter such as
pressure is varied? The question gets at the heart of the
Mott transition problem, which occurs in materials as var-
ied as vanadium oxide, nickel selenium sulfide, and layered
organic compounds.'* Those materials share similar high-
temperature phase diagrams, despite having completely
different crystal structures, orbital degeneracies, and band
structures: In each, a first-order phase transition separates
a high-conductivity phase from a high-resistivity phase. At
low temperatures, in contrast, the materials exhibit very
different ordered phases: Organics are superconducting,
vanadium oxide forms a metallic and an antiferromagnetic
insulating phase, and nickel selenium sulfide forms a broad
region of itinerant antiferromagnetism.

The Mott transition is central to the problem of mod-
eling strongly correlated electrons because it addresses di-
rectly the competition between kinetic energy and corre-
lation energy—that is, the wavelike and particlelike
character of electrons in the solid. Indeed, systems near
the Mott transition display anomalous properties such as
metallic conductivities smaller than the minimum pre-
dicted within a band picture, unconventional optical con-
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ductivities, and spectral functions outside of what band
theory can describe.! A crucial question is how the local
density of states—or more generally, the spectral func-
tion—varies as the ratio of the correlation strength U to
bandwidth W increases (see figure 2). The extremes are
clear enough. When the electron is delocalized, its spectral
function closely resembles the local density of states of
band theory; when the electron is localized, the density of
states peaks at the ionization energy and the electron
affinity of the atom. Those atomic-like states compose the
Hubbard bands, illustrated in figure 2d.

But how does the density of states evolve between
these well-characterized limits? In DMFT, the spectral
function of the electron contains both quasiparticle fea-
tures and Hubbard bands in the intermediate correlation
region.’ A three-peak structure appears naturally within
the Anderson impurity model, but was unexpected for a
lattice model that describes the Mott transition. In fact,
part of what makes DMFT an advance over previous tech-
niques is that it allows researchers to obtain and equally
treat the Hubbard bands and the quasiparticle peak
within this three-peak structure. (DFT treats the quasi-
particles alone, atomic theory treats the Hubbard band
alone, but DMFT treats both.) Within DMFT, the Mott
transition appears as the result of the transfer of spectral
weight from the quasiparticle peak to the Hubbard bands
of the correlated metallic state.!? The transfer of spectral
weight can be driven by pressure, doping, or temperature,
and is responsible for the anomalous behavior near the
Mott transition.

To appreciate the DMFT description of the Mott tran-
sition, consider the qualitative features of the phase dia-
gram shown in figure 3. The figure essentially summarizes
the features of a partially frustrated Hubbard model in dif-
ferent temperature regimes. The disappearance of metallic
coherence and the closing of the high-energy Mott—Hubbard
gap are distinct phenomena that occur in different regions
of the phase diagram—at low temperatures in the form of
lines at energies U, and U, that frame a hysteretic re-
gion, and at high temperature (above a second-order crit-

Figure 3. Schematic phase diagram of a material
undergoing a Mott metal-insulator transition.
Temperature and the strength of Coulombic repul-
sion U are plotted for a correlated electron material
that is described using a Hubbard model. At low
temperature, the system has long-range (for exam-
ple, magnetic or orbital) order (red) according to
solutions of the dynamical mean-field theory; the

ical point) in the form of two distinct crossover lines that
gradually separate metallic from insulating phases.”

The Coulomb interactions and the matrix elements
that describe electron hopping from site to site are the
basic ingredients necessary to calculate the experimental
phase diagram of materials near a Mott transition. The
question is, Can the phase diagram be obtained from an
electronic model alone, or is the coupling of electrons to the
lattice required to obtain a first-order phase transition be-
tween a paramagnetic insulator and a paramagnetic
metal? According to DMFT studies, an electronic model
alone will do the job. Lattice changes across the phase
transition are therefore the consequence, rather than the
origin, of the discontinuous metal-insulator transition.

Now widely accepted, that conclusion was not reached
without controversy. An analytic approach to the Mott
transition was first required,'* which deepened the anal-
ogy between the local spectral function and a statistical-
mechanics order parameter. The electronic properties of
the system—for example, the DC conductivity—behave
like the order parameter of a liquid—gas transition or like
the magnetization of the Ising spin model in statistical
mechanics.

Experimental confirmation

Numerous efforts have been made to square the surprising
aspects of the theory of the Mott transition with experimen-
tal observations. For instance, a collaboration of groups from
Bell Labs and Rutgers University observed that pure vana-
dium oxide (V,0,) is located in the vicinity of the crossover
line that continues the U, line (where the metallic phase
disappears in figure 3) above the endpoint of the first-order
transition line.** Using DMFT, this collaboration predicted
that, with increasing temperature, resistivity would strongly
increase and the weight of the quasiparticle peak would
strongly decrease. And, indeed, optical conductivity meas-
urements bore that prediction out. A group led by Gordon
Thomas detected a transfer of optical intensity from low to
high frequency with increasing temperature, a finding con-
sistent with a temperature-dependent quasiparticle peak.'*

Only photoemission can measure the density of states
of the correlated electrons directly. Z. X. Shen’s group at
Stanford University observed a quasiparticle peak, well
defined and separated from the Hubbard bands in nickel
selenium sulfide and depending strongly on temperature
and proximity to the Mott transition. More recently, an in-
ternational collaboration of experimentalists and theorists

type of ordering is material- and model-dependent.
In the orange region, the model has two distinct
paramagnetic solutions bounded by the lines U,
(where the insulator disappears) and U, (where the
metal disappears). In equilibrium, a dotted first-
order phase transition boundary indicates the posi-
tion at which the free energy of these two solutions
crosses. The first-order line terminates at a second-
order critical point. At higher temperatures, the
phase diagram is more universal. Systems as diverse
as vanadium oxide alloys, nickel selenium sulfide,
and organic materials exhibit the same qualitative
behavior. Two crossover regimes indicate the
change in materials properties as the electron inter-
actions increase from left to right. The first illustrates
the crossover from a Fermi liquid to a bad metal
(blue), in which the resistivity is anomalously large.

0.05—

kT

0.025 —

In the second crossover, materials take on the
properties of a bad insulator (green), in which the
resistivity decreases as temperature increases.
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correlation problems is now an active
research frontier. The materials and
topics under study include mangan-
ites, ruthenates, vanadates, actinides,
lanthanides, fullerenes, quantum crit-
icality in heavy fermion systems, mag-
netic semiconductors, and Bechgaard
salts (quasi-1D organic materials). A
deeper understanding of the metal—
insulator transition is useful not just
for predicting the properties of that list

3 2.5 2 1.5 1
ENERGY (eV)

Figure 4. Photoemission spectrum of metallic vanadium oxide (V,0,) near the
metal-insulator transition. The dynamical mean-field theory calculation (solid
curve) mimics the qualitative features of the experimental spectra. The theory
resolves the sharp quasiparticle band adjacent to the Fermi level and the occu-
pied Hubbard band, which accounts for the effect of localized d electrons

in the lattice. Higher-energy photons (used to create the blue spectrum) are
less surface sensitive and can better resolve the quasiparticle peak. (Adapted

from Mo et al., ref. 15.)

observed well-defined and separated peaks in the metallic
phase of vanadium oxide after first overcoming problems
related to surface sensitivity that prevented clear observa-
tion in earlier studies (see figure 4).1°

Inthe Sr, Ca VO, system, researchers observed a sim-
ilar quasiparticle peak well separated from the Hubbard
band. The quasiparticle signal decreased in intensity with
increasing calcium doping, x. Attempts to interpret the
spectra within DMFT as enhanced electron correlation
with increasing x, however, did not square with other ex-
perimental results; the specific heat, for instance, was
measured as essentially independent of x. A group led by
D. D. Sarma and Isao Inoue and one by Shigemasa Suga
helped resolve the puzzle by performing bulk-sensitive photo-
emission experiments.'® Earlier photoemission experi-
ments had given the false impression that the electronic
structure was evolving toward a more correlated system as
doping increased, when, in fact, only the surface states
were doing so. On the theoretical side, first-principles cal-
culations demonstrated that the strength of the correla-
tions do not significantly depend on the concentration x.

This kind of successful blending of DMFT and exper-
iment is also occurring in studies of electronic transport.
In materials such as vanadium oxide, nickel selenium sul-
fide, and x-organics, researchers have been able to map
theoretically the various regimes of the phase diagrams in
some detail.'*! After many unsuccessful attempts, even the
critical behavior predicted by the theory has been observed
in transport measurements around the critical endpoint of
vanadium oxide and organic materials.'?

Other materials

The application of DMFT concepts and techniques to a
broad range of materials and a wide variety of strong-
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of materials, but provides insights into
diverse electronic structure problems.
Plutonium and cerium, for instance,
exhibit itinerant magnetism and suf-
fer a large change in the crystal vol-
ume at the Mott transition. The fol-
lowing brief case studies outline the
relevance of DMFT to these elements.
» Plutonium, in its stable d phase, is
not well described within LDA. That
approximation underestimates the
phase volume by nearly 30% and pre-
dicts a nonexistent unstable phase.
Using DMFT, researchers realized
that the plutonium f electrons stabilize the material near
a Mott transition, and they were able to interpret calcu-
lated photoemission spectra in terms of the quasiparticle
peak and Hubbard bands described previously. More re-
cently, a collaboration among Rutgers University, New
Jersey Institute of Technology, and Los Alamos National
Laboratory predicted the theoretical spectrum of vibra-
tions of 8-Pu using DMFT. Figure 5 illustrates the re-
markable agreement between the theoretical vibrational
spectrum and recent experimental measurements.'®

» Cerium displays an isostructural transition!® and also
exhibits a large volume change (the so-called volume col-
lapse) between two of its phases, @ and y. Jim Allen and
Richard Martin, then at Xerox Corp, interpreted the ther-
modynamics and spectral changes across the a—y transi-
tion in terms of the Anderson impurity model more than
20 years ago. Recently, Andy McMahan, Karsten Held, and
Richard Scalettar calculated the spectra, total energies,
and thermodynamics of cerium using DMFT* and found
close accord with the experimental spectra. The calcula-
tion indicated a dramatic reduction of the 4/ quasiparticle
weight at the transition, responsible for the energy
changes and the volume collapse at the transition.

» Iron and nickel exhibit metallic ferromagnetism at
low temperatures at which band theory applies. And a
combination of DFT and LDA bears that out. However, at
high temperatures, those elements behave more like a col-
lection of atoms, described by a Curie susceptibility and a
local magnetic moment reduced below the atomic value.
DMFT provides a natural framework to describe both the
high- and low-temperature regimes and the crossover be-
tween them. Indeed, in the case of nickel, Alexander Licht-
enstein and collaborators found that the theoretical photo-
emission spectrum contains an experimentally well known
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Figure 5. Predicted theoretical phonon spectrum of
plutonium (red), calculated using dynamical mean-field
theory, compares well with the experimental values (solid
squares), measured by inelastic x-ray scattering. The dis-
persion curves plotted here map the vibrational frequen-
cies of the atoms in momentum space. The frequencies
vary with the wave vectors and are evident in the
branches as one moves in a particular Brillouin zone di-
rection. (Adapted from ref. 18.)

satellite at energies well below the Fermi level. That fea-
ture, like the Hubbard band, is not reproduced in band the-
ory. DMFT also predicts the correct magnetic properties
above and below the Curie temperature.

Future directions

Judging by how reliably the theory reproduces complicated
physical properties in a variety of materials, dynamical
mean-field methods clearly represent a new advance in
many-body physics. The strongly correlated electron
regime of transition-metal oxides, for instance—in which
electrons are neither fully itinerant nor localized—has
simply not been accessible to other techniques.

Generalizations of the theory to an even wider variety
of materials systems is an active area of research. By ex-
tending DMFT from single sites to clusters, for example,
researchers can capture the effects of short-range correla-
tions. And combining DMFT with advanced electronic-
structure methods should make it possible to evaluate the
Hamiltonian and the frequency-dependent screened
Coulomb interaction from first principles without having
to first construct a local density functional.! Similarly,
combining realistic DMFT total energies (calculated as a
function of atomic positions) with molecular dynamics to
treat the motion of ions and electrons simultaneously is
another great challenge.

As the number of DMFT implementations and stud-
ies of new materials increases, more detailed comparisons
with experiments are becoming possible. Such compar-
isons should help separate the effects that can be under-
stood simply from local physics (captured by DMFT) from
the effects that require long-wavelength modes not cap-
tured by the DMFT approach.

The DMFT equations have also been recast in a form
useful for modeling strongly inhomogeneous materials,
such as disordered alloys or interfaces—two new areas in
which to explore strongly correlated phenomena. They are
also areas of great technological importance. As growing
computer power, novel algorithms, and new concepts bol-

http://www.physicstoday.org

ster the ability of theorists to better model complicated
systems, one can foresee a time when investigating corre-
lated electron phenomena at nanoscales and in biological
molecules is possible.
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terials theory, the US Department of Energy, the Office of
Naval Research, and the German Research Foundation
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