PHYSICAL REVIEW B 69, 045112 (2004
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Correlated electrons in a binary alléyB;_, are investigated within the Hubbard model and dynamical
mean-field theoryDMFT). The random energies have a bimodal probability distribution and an energy
separatiom. We solve the DMFT equations by the numerical renormalization-group method at zero tempera-
ture and calculate the spectral density as a function of disorder strargytld interactiorJ at different fillings.

For filling factorsy=x or 1+ x the lower or upper alloy subband is half filled and the system becomes a Mott
insulator at strong interactions, with a correlation gap at the Fermi level. At the metal-insulator transition
hysteresis is observed. We also analyze the effective theory in\theo limit and find good agreement
between analytical and numerical results for the critical interadtiprat which the metal-insulator transition
occurs.
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[. INTRODUCTION find hysteresis in this transition, such as the one observed for
the MIT in the pure Hubbard model at half fillirtg:** From
A Mott-Hubbard metal-insulator transitiofMIT) occurs  the numerical data we construct a phase diagram=at and
when the local interactiot) between the electrons on a lat- propose a classification scheme for correlated insulators with
tice reaches a critical valug, .># Since in the Mott insulator  binary-alloy disorder. We also develop an effective analytic
the particles are essentially localized on lattice sites, the trartheory which is asymptotically exact in the limit of alloy
sition can only occur if the number of particles is commen-band splitting and which shows that the Mott-Hubbard MIT
surate with the number of sites, i.e., for integer filling factor occurs at the critical interactioUC/W%3\/§/2, whereW is
v=N/N_, whereN andN_ are the number of electrons and the bandwidth of the noninteracting system.
lattice sites, respectively. If the translational symmetry of the In Ref. 5 we analyzed the problem of the Mott MIT in a
lattice is broken either spontaneoushs in an antiferromag- binary-alloy host at relatively high temperatures using the
ned or by application of some fiel(as in a superlattioehe  quantum Monte Carlo method to solve the DMFT equations.
unit cell is enlarged and the Mott insulator can, in principle, This only allowed us to detect a crossover from a correlated
occur even at a rational filling factor=p/q, wherep,q metal to a Mott insulator. Moreover, since in Ref. 5 we were
eN.2"* In fact, in our recent investigation of disordered primarily interested in ferromagnetism in binary-alloy sys-
electronic systemswe discovered that in binary-alloy sys- tems, we used the density of stat€&09) corresponding to
tems A,B,_,, composed of two different atom& and B the fcc lattice in infinite dimensiot® Such an unbounded
with concentrationsx and 1-x, respectively, a Mott- DOS supports ferromagnetism in a one-band Hubbard
Hubbard MIT can even occur for arbitranpnintegerfilling  model*®” but does not lead to a real gap for the Mott insu-
factors. This transition takes placeif=x or 1+x, where lator. The NRG method applied here is accurate enough to
0<x<1. This observation extends the traditional view of detect a sharp MIT in a disordered and correlated electron
the Mott-Hubbard MIT and the notion of Mott insulators to a system at zero temperature. Explicit calculations were per-
wider class of systems with, basically, arbitrary fillings. As formed with a semielliptic Bethe DOS, having finite support,
we will argue below, in such a system magnetic long-rangavhich leads to the opening of a genuine gap at the MIT.
order should be suppressed due to the absence of particladditionally, the NRG allows us to determine the self-energy
hole symmetry and, therefore, the ground state is likely to b@n the real frequency axis and to discuss in detail how the
paramagnetic. Therefore, the experimental realization oMott gap opens.
such a Mott insulator would provide an excellent playground The paper is organized as follows. In Sec. Il we introduce
for the study of Mott insulators without long-range order. the model and discuss the properties of interacting electrons
In the present paper we study correlated electrons on & a binary-alloy host. In Sec. Ill the DMFT method is intro-
lattice using the dynamical mean-field thedbfyDMFT) ap-  duced to solve the Hubbard model with local disorder. In
plied to the disordered Hubbard model at zero temper&tureSec. IV, we present the numerical results and provide evi-
The numerical renormalization-groydRG) method is used dence for a MIT away from half filling. In Sec. V an
to solve the self-consistent DMFT equatichs? We present asymptotic theory is developed and in Sec. VI our conclu-
results for the single-electron spectral density and the selfsions are presented. In the Appendix, we present a method to
energy to show how a correlated metal away from half fillingextract the local self-energy within the DMFT in disordered
may turn into a Mott insulator by increasing the disorder. Wesystems.
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Il. ANDERSON-HUBBARD HAMILTONIAN WITH BINARY The most spectacular effect of strong correlations between
ALLOY DISORDER the electrons in a pureA(=0) system is the Mott-Hubbard
As a minimal model describing correlated lattice eIectronsmet"j‘l"nSUIatOr transition. It occurs far=1.2,....3-1,

in the presence of disorder we consider the single-orbitaf'N€reg is an orbital degeneracy, at an interacthUrzq;UC
Anderson-HubbardAH) Hamiltonian (note thatv=2g corresponds to a band insulaté?*>~?*For

interactionsU<U_ the electrons gain kinetic energy due to
+ the delocalized nature of the wave function. Whenin-
Han= _t%:U 8joQjo % €Ny T UZ niMi;, (D creases, the electrons keep at a distance as much as possible,
and atU=U_ the many-body wave function is essentially
wheret>0 is the hopping integral for the electrons between|gcalized at each lattice site. The system is then a Mott insu-
nearest-neighbor sitel) is the on-site interaction energy be- |ator. Within the DMFT for Hubbard-like models with single
tween electrons with opposite spins=+1/2, nj,=a/,a,,  or degenerate orbitals a Mott-Hubbard MIT was shown to
is the local electron number operator, ands the local ionic  occur at integer filling factors.?”?2 At low but finite tem-

energy which is a random variable. In the following we as-peratures this MIT is discontinuous, while at zero tempera-
sume a bimodal probability distribution for the random vari-¢,re it is continuous, i.e., when approaching the critical in-

ablee;, i.e., teraction from the metallic side the quasiparticle peak
A A continuously narrows until it completely disappears at the
Ple)=xd| €+ 5 +(1—x)5< €— E)' (2)  transition point>*>*In the insulating phase the DOS is zero

at the Fermi level and the whole spectral weight is shifted

which corresponds to a binary-alloy system composed of twdnto the two Hubbard subbands, which are remnants of the
different atomsA andB. The atoms are distributed randomly atomic levels with single and doublenultiple) occupancy.
on the lattice and have ionic energiegg, with eg—e,  AWay from integer filling the system is always metallic and
=A. The parameteA is a measure of the disorder strength.the spectral function has visible Hubbard subbands at any
The concentration ofA (B) atoms is given byx=N,/N, finite and largeU.
(1—x=Ng/N_), whereN, (Ng) is the number of the cor- New possibilities appear in systems with correlated elec-
responding atoms. trons and binary-alloy disorder. The Mott-Hubbard metal-
From the localization theorem (the Hadamard- insulator transition can occur at any filling=x or 1+x,
Gerschgorin theorem in matrix algebri& is known that if  corresponding to a half-filled lower or to a half-filled upper
the HamiltonianH 5, with a bimodal distribution fok;, is  alloy subband, respectively, as shown schematically ifor
bounded, then there is a gap in the single-particle spectrursx in Fig. 1. The Mott insulator can then be approached
for sufficiently largeA >max(t|,U).2°Hence aln=A the  either by increasing) when A=A (alloy band splitting
DOS splits into two parts corresponding to the lower and thdimit), or by increasing\ whenU=U, (Hubbard band split-
upper alloy subbands with centers of mass at the ionic eneting limit). The nature of the Mott insulator in the binary-
giese, andeg, respectively. The width of the alloy gap is of alloy system can be understood physically as follows. Due to
the order ofA. The lower and upper alloy subbands containthe high-energy cost of the order bfthe randomly distrib-
2xN, and 2(1-x)N, states, respectively. If the Hamiltonian uted ions with lower(highep local energiese; are singly
is not bounded such as, for example, in the case of a tightoccupied atv=x (v=1+x), i.e., the double occupancy is
binding Hamiltonian on a hypercubic lattice in infinite di- suppressed. In the Mott insulator with=x the ions with
mensions, the alloy gap is reduced to a pseudogap, i.e., thdgher local energies are empty and do not contribute to the
spectral function vanishes only at a single point. These statdow—energy processes in the system. Likewise, in the Mott
ments hold for all space dimensions. However, the alloy gajinsulator withv= 1+ x the ions with lower local energies are
can be destroyed by clusters of one type of atoms which ardouble occupied, implying that the lower alloy subband is
surrounded by atoms of the other type. They create an expdlocked and does not play any role. We note that for fiblite
nentially vanishing DOS in the gafhifshitz tails) near the virtual processes leading to double occupation either in the
edges of the alloy subbands. lower (v=x) or in the upper alloy subbandv €& 1+x) are
Binary-alloy disorder in a noninteracting electron systemstill possible, leading to the antiferromagnetic superexchange
can create two kinds of localized stat@g:states which are interaction. However, since the positions of the correspond-
localized due to coherent backscattering proce@sederson  ing atoms are random, particle-hole symmetry is absent such
localization, Refs. 20 and 2&nd (ii) states in the middle of that long-range antiferromagnetic order is expected to be
the alloy subband® which are localized due to a particular suppressed. Of course, antiferromagnetism cannot be ruled
superposition of the electronic wave functions caused by pameut completely on these reasonings and its appearance in the
ticular arrangements of the alloy atoi€32*While the lo-  model requires further studies.
calized states of typé) are generic and gradually appear in  For U>U_(A) in the Mott-insulating state with binary-
the alloy subbands starting from the band edges, the locaklloy disorder one may use the lowest excitation energies to
ized states of typdii) can be removed either by a small distinguish two different types of insulators; namely, for
perturbation of the ionic energies or by an interaction be<A an excitation must overcome the energy gap between
tween the particle, and, therefore, are beyond the scope tie lower and the upper Hubbard subbands, as indicated in
the present paper. Fig. 2. We call this insulating state aloy Mott insulator
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Ill. DYNAMICAL MEAN-FIELD THEORY FOR THE
DISORDERED HUBBARD MODEL

The Mott-Hubbard MIT is driven by the interaction be-
tween the particles. Since this transition occurs when the
interaction energy is comparable with the single-particle en-
ergy of the electrons, there is no natural small parameter
(e.g.,t or U) in the theory. The problem is generically non-
perturbative. Moreover, when the transition appears between
a paramagnetic metal and a paramagnetic insulator, there is
no obvious order parameter characterizing the insulating
phase. In the following the insulating stateTat O is defined
by the vanishing of the one-particle spectral function at the
Fermi level.

The model defined by the Hamiltonidf) is not exactly
solvable for any finite number of space dimensions. How-
ever, with a proper rescaling of the hopping integral it be-
comes numerically solvable in infinite dimensions, i.e.,
within DMFT.%72° For finite-dimensional systems DMFT is
a self-consistent approximation scheme which takes into ac-

~ FIG. 1. Schematic plot representing the Mott-Hubbard metal-coynt |ocal quantum fluctuations but neglects spatial correla-
insulator transition in a correlated electron system with the binarytions Since DMFT is a nonperturbative method, it is ideally

alloy disorder. The shapes of spectral functiés) are shown for
different interactiondJ and disorder strength&. IncreasingA at
U=0 leads to splitting of the spectral function into the lower
(LAB) and the uppefUAB) alloy subbands, which containx®|,
and 2(1-x)N, states, respectively. Increasikgat A=0 leads to
the occurrence of lowe(LHB) and upper(UHB) Hubbard sub-
bands. The Fermi energy for filling=x is indicated byu. At v
=X (or v=1+x, not shown in the plgtthe LAB (UAB) is half
filled. In this case an increase bfandA leads to the opening of a

correlation gap at the Fermi level and the system becomes a Mott

insulator.

On the other hand, foA <U an excitation must overcome

the energy gap between the lower Hubbard subband and th

upper alloy-subband, as shown in Fig. 2. We call this insu
lating state aralloy charge transfer insulator

U<A U>A
e+U | > UHB
E+A ) UAB g+A UAB
e+U | UHB N A
~U
€ LHB € LHB
alloy Mott alloy charge transfer
insulator insulator

FIG. 2. Two possible insulating states in the correlated electron

system with binary-alloy disorder. Whan<<A the insulating state

suited to study the Mott-Hubbard MIT.

To derive the DMFT equations for the problem at hand
we select a single lattice siteand integrate out all the elec-
tronic degrees of freedom corresponding to other Sitsis
leads to an effective single-impurity Anderson model
(SIAM) Hamiltonian

SIAM _ t t
H => (ei_M)ai(rai(r+UniTnil+k2 (Vi@jyCro
g T

()

* T T
+ Vk Ckoai U') + kz €k CisCko
o

v%ere,u is the chemical potential, and, and ¢, are the

hybridization matrix element and the dispersion relation for
the auxiliary bath fermions,,, respectively. In the present
paper the Hamiltoniafd) is solved at zero temperature using
the numerical renormalization-group method? For each
ionic energye; we obtain the local Green functidB(w, €;).
The physical Green functiofl) is obtained by algebraic av-
eraging of G(w,¢;) over different realizations of the
disordef i.e.,

G(w)=J deiP(€)G(w,€). (4)
From thek-integrated Dyson equation
G Hw)=w—n(w)—3(v) )

we determine the local self-energ¥(w). The function
n(w), called hybridization function, is defined as

nw)=2,

k

[Vi?

w—ek'

(6)

is an alloy Mott insulator with an excitation gap in the spectrum of The DMFT equations are closed by a Hilbert transform, re-

the order ofu. WhenU > A the insulating state is an alloy charge-
transfer insulator with an excitation gap of the orderAof

lating the local Green function for a given crystallographic
lattice to the self-energy, i.e.,
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s _j g NO(E) . 0.6
(w)— Em, ( )
where Ng(€) is the noninteracting DOS. Equatiof¥)—(7)
constitute a closed set of DMFT equations for the disordered
Hubbard model.

We solve Egs.(4)—(7) for a Bethe lattice with infinite —_

05

connectivity. In this case the DOS is given by % 0.3
N (e)zi D2—62 (8) 0.2
0 7D )
with the bandwidthW=2D. In the following we setD o1 |
=1. With the DOS(8) the Hilbert transform(7) can be cal-
culated analytically leading to a simple algebraic relation o
between the local Green functidB(w) and the hybridiza- -4

tion function »(w), i.e.,
FIG. 3. Spectral function of the Hubbard modellat=4 and

v=0.3 for different binary-alloy disorder strengtids The upper

alloy subband splits off fod=2. The shape of the lower alloy

subband is not significantly changed for laye

In the numerical calculations we adjust the value of the

chemical potentiaj. so that the number of particles in the gpectral function is composed of the lower Hubbard subband
system is fixed. Hence the independent variables'até, X, (which at this low density is merged with the quasiparticle
andA. , , peak and the upper Hubbard subband arousd 4. Upon
Since DMFT neglects short-range spatial correlations, a”?hcreasing& the upper alloy subband splits off and moves to
hence does not include effects due to backscattering of ele%\rgerw. At the same time the lower alloy subband appears
trons on the randomly distributed ions, it cannot describgyith a smaller number of states. Its shape and the position
effects of Anderson localization. On the other hand, binary,iin respect to the Fermi energy do not change £0r 2.
alloy disorder is a partlcule_lrly strong type ofdlsordgr since itrhese results and the shape invariance of the lower alloy
even leads to band spliting—and thereby to insulatings,phand in the presence of interactions between the electrons
behavior—in any spatial dimension. .ThIS dominant featuresuggest that in the.— limit the binary-alloy disordered
and all other effects caused by the simultaneous presence pf hhard model can be effectively described by the Hubbard

interactions and disorder, is well captured by DMFT. In par-,q4el in a reduced Hilbert space which contains only the
ticular, the DMFT equations reduce to the equations of thgates from the lower alloy subband.

coherent-potential approximatio(CPA) for interaction U
=0.%° The CPA method is known to be very successful in
explaining single-particle properties of disordered systemsB. Phase diagram and Mott-Hubbard transition at filling »=x

both in the case of models and realistic s_ysté?ﬁ’é_.ln par- By solving numerically the DMFT equations we extracted
ticular, it reproduces the alloy band splitting in binary-alloy 4, zero-temperature phase diagramvatx=0.5 which is
systems. Ther_efore we use the DMFT to descrl_be the MOttbresented in Fig. 4. The curve with filled dots represents the
Hubbard MIT in the presence of binary-alloy disorder, andcritical interaction U,,=U_,(A) separating the paramag-

consider additional effects due to Anderson localization a$,atic metal and the paramagnetic insulator. This boundary

2
n(w)=TG(w). 9

secondary. line was determined by solving iteratively the DMFT equa-
tions using ametallic hybridization function as an initial in-
IV. NUMERICAL RESULTS FOR THE DISORDERED put. It means that in solving the system of E®—(7) it-

HUBBARD MODEL eratively we began with the hybridization functiof®(w)
~G(O(w) that has a nonvanishing imaginary parteat 0.
The other curve(open dots represents the boundaty.;
=U.1(A) between the metallic and insulating phases, as de-
termined by solving the DMFT equations with arsulating
hybridization function as an initial input. In this case the
initial hybridization function had vanishing imaginary part at
w=0. The boundary pointdines) correspond to the values
of the (U,A) parameters where the converged spectral func-
tions obtained from Eqs4)—(7) starts to have zero weight at
The influence of the disorder-induced alloy band splittingw=0. In the inset to Fig. 4, the behavior of the spectral
on the spectral functiod\(w) is shown in Fig. 3 fold=4  function at the Fermi level is shown when the metal-insulator
and filling factorv=0.3. For vanishing disordet\(=0) the  boundary is approached from the metallgolid lineg and

In the following we present our numerical results for fill-
ing factorsv# x andv=x with equal concentration ¢k and
B atoms, i.e.x=1/2. In particular, the ground-state phase
diagram atv=x is presented and the MIT is discussed in
details.

A. Interacting electrons in the alloy band splitting limit
for v#x
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FIG. 4. Ground-state phase diagram of the Hubbard model with 4]

binary-alloy disorder at fillingy=x=0.5. The filled (open dots /é\ Iay
represent the boundary between paramagnetic met&lit) and S 27 I N T
paramagnetic insulatingPl) phases as determined by DMFT with W o =

(0] y

oc

the initial input given by the metalli¢insulating hybridization -2
function. The horizontal dotted line represebls obtained analyti-

cally from an asymptotic theory in the limik—o (see Sec. V. 4 =2 -1 0 1 2 3 4 5 8 7
Stars show the points at which the explicit spectral functions are ®

presented in Figs. 5—7. Inset: hysteresis in the spectral functions at

the Fermi level obtained from DMFT with an initial metallimsu- FIG. 5. (a) Spectral function,(b) imaginary part of the self-
lating) host represented by fille@pen symbols and soliddasheyt ~ €nergy, andc) real part of the self—energy for the Hubbard model
lines. atv=0.5, U=3 and different disordeA. As A increases, the qua-

siparticle peak appears and then vanishes, signaling a transition

from the insulating sidédashed lines respectively. We ob- from a metallic to an insulating phase. In the insulating phase (
serve hysteresis, however, at zero temperature the transition2) a Mott gap is opened ab=0 with Im2(0)=0 whereas
is continuous and occurs at the=U,(A) line.**We cal-  ReX(0) remains finite.
culated numerically the average density of double occupied
sitesd=(n;n;) in the coexistence regimeJ¢;<U<U.)  =0.3 case, cf Fig. Bto 1 and 1.5 leads to the splitting of the
and found thad is larger for a metallic solution. It implies alloy subbands and the emergence of the quasiparticle peak
that the metallic ground state is energetically more stable it =0, a feature of strong correlations between the elec-
this regime’ Of course, very close tdJ.,(A) we cannot trons. AtA=2 the quasiparticle peak is absent and the spec-
make an absolutely precise statement because of the finiteal function possesses a Mott gap at the Fermi level, a fea-
numerical accuracy. ture of an insulator. Keeping =2 in Fig. 6 and lowerindJ

From the inset to Fig. 4 we also conclude that in thefrom 3 to 2 leads to a shrinking of the Mott gap and reap-
metallic phaseA(0), thespectral function at the Fermi level pearance of a quasiparticle peak, characterizing a correlated
decreases with disorder but remains independeit.ofhis  metallic phase. Finally, upon lowering from 2 to O at
behavior corresponds to the “pinning” of the spectral func- constantU =2 the alloy subbands approach each other and
tion (Friedel sum rulgin the pure case, whe#(0) does not the quasiparticle peak merges with the lower Hubbard sub-
depend on the interactidd between the electroré Similar ~ band as presented in Fig. 7.
behavior is encountered in the disordered Hubbard model In addition to the spectral functions, the imaginary and
studied here. However, now(0) is reduced by thé de- real parts of the self-energy, calculated by the method pre-
pendent imaginary part of the self-energy. sented in the Appendix, are shown in pangds and (c) in

In the upper panels of Figs. 5—7 we present the spectrdfigs. 5-7. In the metallic phase with>0, two important
functions for selected parametdisandA along a path in the features of the self-energy should be notépithe imaginary
(U,A) phase diagrantFig. 4) indicated by crossedJ)=3 part of the self-energy at the Fermi level is finite, i.e.,
andA=0—1—1.5-2 (Fig. 5, A=2 andU=3—2 (Fig. Im2 (w=0)<0 and(ii) the real part of the self-energy at the
6), and finally,U=2 andA=2—1—0 (Fig. 7). These spec- Fermi level has a negative slope, i.eReX(w=0)/dw<0.
tral functions illustrate the evolution of the system within, or While the former featurgcaused by disorder even in the
between, a metallic and an insulating phase when disordgiresence of the local interactipoan be observed within the
and interaction are changed. In particular, in Fig. 5 we se@erturbation expansion with respect to smiJlthe latter is
for U=3 how increasingA from the value O(where the surprising since at)=0 the slope is always positive for any
spectral function is qualitatively similar to that of the A>0.3%
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FIG. 6. (a) Spectral function,b) imaginary part of the self- FIG. 7. (@) Spectral function(b) imaginary part of the self-
energy, andc) real part of the self-energy for the Hubbard model at energy, andc) real part of the self-energy for the Hubbard model at
A=2 andU=3 and 2. U=2 and different disordeA. Upon increasing\ the alloy sub-

bands are split and a quasiparticle resonance emerges between the

At the MIT the behavior of the self-energy changes. InHubbard subbands.
particular, the imaginary part becomes vanishingly small at V. ASYMPTOTIC LIMIT A
=0 whereas the real part is finite. These results imply that : -

the mechanism for opening a correlatidvott) gap at this Our understanding of the Hubbard model with binary-
MIT transition is different from that in the pure Hubbard ajloy disorder is based on the fact that the lower and upper
model with particle-hole symmetfy,* namely, consider the alloy subbands are split at large. We now show that for
spectral function at the Fermi level, which is expressed ifA — o the upper(or lowen alloy subband can be neglected
terms of the self-energy: and the problem can be mapped onto a low-energy subspace
of the full Hilbert space. Effectively, the correlated and
binary-alloy disordered electronic system is represented by a
Im=(0) correlatedpure system with renormalized parameters.
[e—ReX(0)]?+[Im=(0)]%

(10 A. Mapping of the Hilbert space

] _ ] ) We consider the casA>maxU,W). Then the Hilbert
Since we obtained numerically that at the Fermi level thespace can be divided into two subspagesndB consisting
imaginary part of the self-energy vanishes and the real part igf ions with energieg, andeg, respectively. We denote the

larger than the bandwidthV, we find A(0)=Ny[ReX(0)] I - -
=0. This result is in contrast to the Mott-Hubbard MIT in projection operator onto th& subspace by and the projec

H ~ B 35,36
the pure Hubbard model at half filling with particle-hole on operator onto theB subspace byQ=1—P.* The
symmetry. In this last case the opening of a correlation gap atcnf@inger equation can be decomposed as
T=0 is due to the formation of &-like singularity in the

1
A(0)=— ;f deNy(e)

imaginary part of the self-energy at the Fermi level. The real (E—~PHP)P|W)=PHQQ|¥),
part of 2 (w) has a 1k divergence at this point, consistent (12)
with the Kramers-Kronig relations. In the disordered case we (E-QHQ)Q|W)=QHPP| V),

do not see such a behavior of R@v), which implies that

lifting of the particle-hole symmetry due to finite disorder where|¥) is a many-body eigenstate of the Hamiltonidn
and noninteger filling affects the way how the gap is openedvith eigenvalueE. Solving this set of equations, the effective
in the Mott insulator. Hamiltonian of the lower alloy subband is formally given by
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1. disorderA or the interactiond is increased. Regarding the
HQTQH P. (120 excitation spectrum for the electrons we introduced the no-
QHQ tion of the “alloy Mott insulator” for U<A and of the “al-

The mapping implies that the number of lattice sites corredoy charge-transfer insulator” fot)>A. This classification
sponding to the\ subspace is equal to the numberegfions,  is analogous to the Zaanen-Sawatzky-Allen scheme for two-
i.e., No=xN, . Therefore, if we restrict ourselves to this band Hubbard systeni§in our case however, the role of the

low-energy many-body subspaddW¥), and consider only ©xygen band is played by the upper alloy subband. We also
the effective HamiltoniarH o, the filling factor can be re- found hysteresis upon approaching the metal-insulator
placed byv* = v/x. _boundary, dependlng on the initial cqndmons imposed in the
The interactionU is not changed by the projection of the iterative solution pf the DMFT equations. It shows 'that_ hys-
Hilbert space because it is a local quantity. However, thd€resis is a generic feature of the MIT in pure and in binary-
bandwidth of the lower alloy subband is renormalized be-2/l0y disordered systems within the DMFT scenario. We also
cause the number of nearest neighbors with on-site engrgy found that the opening of a Mott gap is associated with the
is reduced. In order to estimate how the bandwidth renormaidisappearance of the imaginary part of the self-energy at the
izes we consider the Bethe lattice with a finite coordinationF€rmi level. Finally we discussed the analytical theory, valid
number z and calculate the second momenz(® N the alloy band splitting limit, and showed that the Hubbard

_ 2 : . P model with binary-alloy disorder can be mapped onto an
_Eg | H;L? f\?vrith t:gargscin::izrhabcgrn?\oplgiirgIltlci)glrag l—glg(i)ven effective Hubbard Hamiltonian with renormalized bandwidth
- i,60%i A+ 3 .

. i . . . nd filling f r.Th im ritical interactibh in thi
lattice site A we can havez, neighbors with energies,, and g facto e estimated critical interactibh in this

. asymptotic theory agrees very well with the numerical re-
whgre O.SZA(%Z' lt'_s’ eazsy tr? shov; tg.?t thdg se_zt():or)d mzmentsults. We note that the Hubbard model with a binary-alloy
at siteAis p1;”'(za) = at". The probability distribution 02y gigtrihuted U can also have an insulating ground state at

is given by noninteger fillings™®
7 Our study of the Mott-Hubbard MIT was limited to the
P(zp) =( )XZA(]_—X)ZZA_ (13 Hubbard model with a nondegenerate orbital. A similar phase
ZaN transition should be expected in the Hubbard model with
orbital degeneracy. An important question is, however,
whether one can find a physical system where such a transi-
Na tion is realized. For binary alloys this might be a very de-
(@Y= 12 (2)P(zp) = 2. (14  manding task because the predicted MIT requires fine tuning
Nai=1m7a of the filling factor with concentration of the alloy elements
For a Bethe lattice with coordination numbertending to ~ @s Well as special values for the interaction and the disorder

infinity we rescalet—t* =t/yz. We then find that the sec- splitting. At present we do not know which alloy system
ond moment i€ 1 (@) =t*2x. It means that the bandwidth, as would be the best candidate for realizing the predicted Mott-

measured by the second moment, is reduced in the effectijdubbard MIT. . _ _ _
HamiltonianH 4 by the factoryx. _ The most promising cand|da_tes for _experlme_ntal reallz_a-
tion may come from systems with fermions moving on arti-
ficial lattices. Creating a lattice with a binary-alloy disorder
seem to be possible either with a matrix of quantum dots
The approximate value of the critical interaction for the with two different sizes® or with optical lattices, where
occurrence of the Mott transition can be found analyticallycounterpropagating laser beams can be used to trap fermi-
within the linearized DMFT, where the full DMFT problem onic atoms? In the latter case, with proper selection of laser
is mapped onto the two-site SIAM with self-consistencylight and physical boundaries one can obtain at least quasid-
conditions®* For the pure Hubbard model it was shown thatisordered systerfswhere a binary-alloy-like distribution is
the critical interaction has the valué.=6.u®. From the possible. From the point of view of our theory, where Ander-
results in the preceding section we find that the critical interson localization is not included, quasirandomness of the op-
action for the MIT in the strong disorder limit—oo is given  tical lattice is not a major limitation as it yields the effective
by U,=6t* JX. For parameters used in our calculatigtis alloy band splitting which is crucial for our calculation.
=0.5 andx=0.5, we obtainJ.=3/,/2. This value is shown Since in the present Mott insulator the long-range ordering is
by the dotted line in Fig. 4. The agreement between ousuppressed due to the disorder, such a system might be very

numerical calculation and this estimateldf is surprisingly ~ useful to study the ground state of, and excited states in,
good. paramagnetic Mott insulators.

o

Heg=PHP—

Therefore we find the average momépt®)):2*

B. Critical interaction U,
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Flw,€)

Glw,€)’
The self-energy can, in principle, be calculated directly ) . ' ) )
from a Dyson equatio () =G (w)—w+ 7(w). How-  From a formal point of view Eq(A3) looks like a single-

ever, Bulla et all® have proposed a different approach, Particle equation for a Green functi@(w, ¢;) with random
namely, to use a two-particle correlation function to deter-PotentialVi(w). The average Green functid(w) is found
mine the self-energy. In this way certain systematic errorsWithin the CPA by demanding that the average of the transfer
leading to inaccurate spectral weights, are canceled. In thidatrix, given by
appendix we show how to generalize this method to find the

APPENDIX: CALCULATION OF THE SELF-ENERGY Vi(w)=e+U (Ad)

self-energy in the correlated system with binary-alloy disor- €+U M—E(w)
der. With a new interpretation of the CPA equation one can _ G(o,€)
: : - : Ti(w)= (AS)
use two-particle correlation functions to determine the Flw,€)
single-particle self-energy. Our method can be applied to an 1-|&t+U m—E(w) G(w)

arbitrary DOS and, as we checked independently, leads to ) .
better convergence of the DMFT equations due to apparenith self-energy2 (o), vanishes, i.e.fdeP(€;) Ti(w) =0.

error cancellations.
Within the DMFT, the disordered Hubbard model is

mapped onto a single-impurity Anderson model which con-

tains the local ionic energy, as a parameter. For eaehthe
Anderson model is solved independently. It yields the loca
ei-dependent Green functid®(w, &) =((a;,|a,)). In addi-
tion, for eache; we can find a two-particle Green function

F(w, e-i) = <<ai(rai1-;aiﬂai1.0'>>'

On the other hand, the equation of motion ®&(w,¢;) ob-
tained from thee; dependent SIAM is

(A1)

(0—€)G(w,6) —UF(w,€)— n(0)G(w,€)=1,
(A2)

which can be rewritten as

[0=7(0)]G(w,6)=1+V(0)G(w,&),  (A3)

For binary-alloy disorder the equation for the self-energy
can be solved analytically, leading to

1 1
| E(w)=§ Vl(w)+V2(w)—miE(w) y (A6)
where
1 2
E(w)=< Vl(w)+Vz(w)—m} — 4| Vi(w)Va(w)
Vi(w) Va(w) ]| M2
XGw) Y G<w>) |

Causality of the Green function requires that the sign in Eq.
(A6) has to be properly choserfi) at w— —o(+x) the
physical solution of Eq(A6) has a ) [(+)] sign and(ii)

the change of the sign happens an odd number of times at
frequenciesw, for which Im= (wg) =0.
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