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Mott-Hubbard metal-insulator transition at noninteger filling
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Correlated electrons in a binary alloyAxB12x are investigated within the Hubbard model and dynamical
mean-field theory~DMFT!. The random energiese i have a bimodal probability distribution and an energy
separationD. We solve the DMFT equations by the numerical renormalization-group method at zero tempera-
ture and calculate the spectral density as a function of disorder strengthD and interactionU at different fillings.
For filling factorsn5x or 11x the lower or upper alloy subband is half filled and the system becomes a Mott
insulator at strong interactions, with a correlation gap at the Fermi level. At the metal-insulator transition
hysteresis is observed. We also analyze the effective theory in theD→` limit and find good agreement
between analytical and numerical results for the critical interactionUc at which the metal-insulator transition
occurs.
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I. INTRODUCTION

A Mott-Hubbard metal-insulator transition~MIT ! occurs
when the local interactionU between the electrons on a la
tice reaches a critical valueUc .1,2 Since in the Mott insulator
the particles are essentially localized on lattice sites, the t
sition can only occur if the number of particles is comme
surate with the number of sites, i.e., for integer filling fac
n[N/NL , whereN andNL are the number of electrons an
lattice sites, respectively. If the translational symmetry of
lattice is broken either spontaneously~as in an antiferromag
net! or by application of some field~as in a superlattice! the
unit cell is enlarged and the Mott insulator can, in princip
occur even at a rational filling factorn5p/q, where p,q
PN.2–4 In fact, in our recent investigation of disordere
electronic systems5 we discovered that in binary-alloy sys
tems AxB12x , composed of two different atomsA and B
with concentrationsx and 12x, respectively, a Mott-
Hubbard MIT can even occur for arbitrarynonintegerfilling
factors. This transition takes place ifn5x or 11x, where
0,x,1. This observation extends the traditional view
the Mott-Hubbard MIT and the notion of Mott insulators to
wider class of systems with, basically, arbitrary fillings. A
we will argue below, in such a system magnetic long-ran
order should be suppressed due to the absence of par
hole symmetry and, therefore, the ground state is likely to
paramagnetic. Therefore, the experimental realization
such a Mott insulator would provide an excellent playgrou
for the study of Mott insulators without long-range order.

In the present paper we study correlated electrons o
lattice using the dynamical mean-field theory6,7 ~DMFT! ap-
plied to the disordered Hubbard model at zero temperatu8

The numerical renormalization-group~NRG! method is used
to solve the self-consistent DMFT equations.9–12 We present
results for the single-electron spectral density and the s
energy to show how a correlated metal away from half filli
may turn into a Mott insulator by increasing the disorder. W
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find hysteresis in this transition, such as the one observed
the MIT in the pure Hubbard model at half filling.13,14 From
the numerical data we construct a phase diagram atn5x and
propose a classification scheme for correlated insulators
binary-alloy disorder. We also develop an effective analy
theory which is asymptotically exact in the limit of allo
band splitting and which shows that the Mott-Hubbard M
occurs at the critical interactionUc /W'3Ax/2, whereW is
the bandwidth of the noninteracting system.

In Ref. 5 we analyzed the problem of the Mott MIT in
binary-alloy host at relatively high temperatures using
quantum Monte Carlo method to solve the DMFT equatio
This only allowed us to detect a crossover from a correla
metal to a Mott insulator. Moreover, since in Ref. 5 we we
primarily interested in ferromagnetism in binary-alloy sy
tems, we used the density of states~DOS! corresponding to
the fcc lattice in infinite dimension.15 Such an unbounded
DOS supports ferromagnetism in a one-band Hubb
model,16,17 but does not lead to a real gap for the Mott ins
lator. The NRG method applied here is accurate enough
detect a sharp MIT in a disordered and correlated elec
system at zero temperature. Explicit calculations were p
formed with a semielliptic Bethe DOS, having finite suppo
which leads to the opening of a genuine gap at the M
Additionally, the NRG allows us to determine the self-ener
on the real frequency axis and to discuss in detail how
Mott gap opens.

The paper is organized as follows. In Sec. II we introdu
the model and discuss the properties of interacting electr
in a binary-alloy host. In Sec. III the DMFT method is intro
duced to solve the Hubbard model with local disorder.
Sec. IV, we present the numerical results and provide e
dence for a MIT away from half filling. In Sec. V an
asymptotic theory is developed and in Sec. VI our conc
sions are presented. In the Appendix, we present a metho
extract the local self-energy within the DMFT in disorder
systems.
©2004 The American Physical Society12-1
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II. ANDERSON-HUBBARD HAMILTONIAN WITH BINARY
ALLOY DISORDER

As a minimal model describing correlated lattice electro
in the presence of disorder we consider the single-orb
Anderson-Hubbard~AH! Hamiltonian

HAH52t (
^ i j &s

ais
† aj s1(

is
e inis1U(

i
ni↑ni↓ , ~1!

wheret.0 is the hopping integral for the electrons betwe
nearest-neighbor sites,U is the on-site interaction energy be
tween electrons with opposite spinss561/2, nis5ais

† ais

is the local electron number operator, ande i is the local ionic
energy which is a random variable. In the following we a
sume a bimodal probability distribution for the random va
ablee i , i.e.,

P~e i !5xdS e i1
D

2 D1~12x!dS e i2
D

2 D , ~2!

which corresponds to a binary-alloy system composed of
different atomsA andB. The atoms are distributed random
on the lattice and have ionic energieseA,B , with eB2eA
5D. The parameterD is a measure of the disorder streng
The concentration ofA ~B! atoms is given byx5NA /NL
(12x5NB /NL), whereNA (NB) is the number of the cor
responding atoms.

From the localization theorem ~the Hadamard-
Gerschgorin theorem in matrix algebra! it is known that if
the HamiltonianHAH , with a bimodal distribution fore i , is
bounded, then there is a gap in the single-particle spect
for sufficiently largeD@max(utu,U).18,19 Hence atD5Dc the
DOS splits into two parts corresponding to the lower and
upper alloy subbands with centers of mass at the ionic e
gieseA andeB , respectively. The width of the alloy gap is o
the order ofD. The lower and upper alloy subbands conta
2xNL and 2(12x)NL states, respectively. If the Hamiltonia
is not bounded such as, for example, in the case of a tig
binding Hamiltonian on a hypercubic lattice in infinite d
mensions, the alloy gap is reduced to a pseudogap, i.e.
spectral function vanishes only at a single point. These st
ments hold for all space dimensions. However, the alloy
can be destroyed by clusters of one type of atoms which
surrounded by atoms of the other type. They create an e
nentially vanishing DOS in the gap~Lifshitz tails! near the
edges of the alloy subbands.19

Binary-alloy disorder in a noninteracting electron syste
can create two kinds of localized states:~i! states which are
localized due to coherent backscattering processes~Anderson
localization, Refs. 20 and 21! and~ii ! states in the middle o
the alloy subbands,22 which are localized due to a particula
superposition of the electronic wave functions caused by
ticular arrangements of the alloy atoms.18,23,24While the lo-
calized states of type~i! are generic and gradually appear
the alloy subbands starting from the band edges, the lo
ized states of type~ii ! can be removed either by a sma
perturbation of the ionic energies or by an interaction
tween the particle, and, therefore, are beyond the scop
the present paper.
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The most spectacular effect of strong correlations betw
the electrons in a pure (D50) system is the Mott-Hubbard
metal-insulator transition. It occurs forn51,2, . . . ,2g21,
where g is an orbital degeneracy, at an interactionU5Uc

~note thatn52g corresponds to a band insulator!.13,25–28For
interactionsU!Uc the electrons gain kinetic energy due
the delocalized nature of the wave function. WhenU in-
creases, the electrons keep at a distance as much as pos
and atU>Uc the many-body wave function is essential
localized at each lattice site. The system is then a Mott in
lator. Within the DMFT for Hubbard-like models with singl
or degenerate orbitals a Mott-Hubbard MIT was shown
occur at integer filling factorsn.27,28 At low but finite tem-
peratures this MIT is discontinuous, while at zero tempe
ture it is continuous, i.e., when approaching the critical
teraction from the metallic side the quasiparticle pe
continuously narrows until it completely disappears at
transition point.7,13,14In the insulating phase the DOS is ze
at the Fermi level and the whole spectral weight is shif
into the two Hubbard subbands, which are remnants of
atomic levels with single and double~multiple! occupancy.
Away from integer filling the system is always metallic an
the spectral function has visible Hubbard subbands at
finite and largeU.

New possibilities appear in systems with correlated el
trons and binary-alloy disorder. The Mott-Hubbard met
insulator transition can occur at any fillingn5x or 11x,
corresponding to a half-filled lower or to a half-filled upp
alloy subband, respectively, as shown schematically fon
5x in Fig. 1. The Mott insulator can then be approach
either by increasingU when D>Dc ~alloy band splitting
limit !, or by increasingD whenU>Uc ~Hubbard band split-
ting limit!. The nature of the Mott insulator in the binary
alloy system can be understood physically as follows. Due
the high-energy cost of the order ofU the randomly distrib-
uted ions with lower~higher! local energiese i are singly
occupied atn5x (n511x), i.e., the double occupancy i
suppressed. In the Mott insulator withn5x the ions with
higher local energies are empty and do not contribute to
low–energy processes in the system. Likewise, in the M
insulator withn511x the ions with lower local energies ar
double occupied, implying that the lower alloy subband
blocked and does not play any role. We note that for finiteU
virtual processes leading to double occupation either in
lower (n5x) or in the upper alloy subband (n511x) are
still possible, leading to the antiferromagnetic superexcha
interaction. However, since the positions of the correspo
ing atoms are random, particle-hole symmetry is absent s
that long-range antiferromagnetic order is expected to
suppressed. Of course, antiferromagnetism cannot be r
out completely on these reasonings and its appearance i
model requires further studies.

For U.Uc(D) in the Mott-insulating state with binary
alloy disorder one may use the lowest excitation energie
distinguish two different types of insulators; namely, forU
,D an excitation must overcome the energy gap betw
the lower and the upper Hubbard subbands, as indicate
Fig. 2. We call this insulating state analloy Mott insulator.
2-2
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On the other hand, forD,U an excitation must overcom
the energy gap between the lower Hubbard subband and
upper alloy-subband, as shown in Fig. 2. We call this in
lating state analloy charge transfer insulator.

FIG. 2. Two possible insulating states in the correlated elec
system with binary-alloy disorder. WhenU,D the insulating state
is an alloy Mott insulator with an excitation gap in the spectrum
the order ofU. WhenU.D the insulating state is an alloy charg
transfer insulator with an excitation gap of the order ofD.

FIG. 1. Schematic plot representing the Mott-Hubbard me
insulator transition in a correlated electron system with the bina
alloy disorder. The shapes of spectral functionsA(v) are shown for
different interactionsU and disorder strengthsD. IncreasingD at
U50 leads to splitting of the spectral function into the low
~LAB ! and the upper~UAB! alloy subbands, which contain 2xNL

and 2(12x)NL states, respectively. IncreasingU at D50 leads to
the occurrence of lower~LHB! and upper~UHB! Hubbard sub-
bands. The Fermi energy for fillingn5x is indicated bym. At n
5x ~or n511x, not shown in the plot! the LAB ~UAB! is half
filled. In this case an increase ofU andD leads to the opening of a
correlation gap at the Fermi level and the system becomes a
insulator.
04511
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III. DYNAMICAL MEAN-FIELD THEORY FOR THE
DISORDERED HUBBARD MODEL

The Mott-Hubbard MIT is driven by the interaction be
tween the particles. Since this transition occurs when
interaction energy is comparable with the single-particle
ergy of the electrons, there is no natural small parame
~e.g., t or U) in the theory. The problem is generically non
perturbative. Moreover, when the transition appears betw
a paramagnetic metal and a paramagnetic insulator, the
no obvious order parameter characterizing the insula
phase. In the following the insulating state atT50 is defined
by the vanishing of the one-particle spectral function at
Fermi level.

The model defined by the Hamiltonian~1! is not exactly
solvable for any finite number of space dimensions. Ho
ever, with a proper rescaling of the hopping integral it b
comes numerically solvable in infinite dimensions, i.
within DMFT.6,7,29 For finite-dimensional systems DMFT i
a self-consistent approximation scheme which takes into
count local quantum fluctuations but neglects spatial corr
tions. Since DMFT is a nonperturbative method, it is idea
suited to study the Mott-Hubbard MIT.

To derive the DMFT equations for the problem at ha
we select a single lattice sitei and integrate out all the elec
tronic degrees of freedom corresponding to other sites.7 This
leads to an effective single-impurity Anderson mod
~SIAM! Hamiltonian

HSIAM5(
s

~e i2m!ais
† ais1Uni↑ni↓1(

ks
~Vkais

† cks

1Vk* cks
† ais!1(

ks
ekcks

† cks , ~3!

where m is the chemical potential, andVk and ek are the
hybridization matrix element and the dispersion relation
the auxiliary bath fermionscks , respectively. In the presen
paper the Hamiltonian~4! is solved at zero temperature usin
the numerical renormalization-group method.9–12 For each
ionic energye i we obtain the local Green functionG(v,e i).
The physical Green function~1! is obtained by algebraic av
eraging of G(v,e i) over different realizations of the
disorder,8 i.e.,

G~v!5E de iP~e i !G~v,e i !. ~4!

From thek-integrated Dyson equation

G21~v!5v2h~v!2S~v! ~5!

we determine the local self-energyS(v). The function
h(v), called hybridization function, is defined as

h~v!5(
k

uVku2

v2ek
. ~6!

The DMFT equations are closed by a Hilbert transform,
lating the local Green function for a given crystallograph
lattice to the self-energy, i.e.,

n

f

l-
-
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G~v!5E de
N0~e!

v2e2S~v!
, ~7!

whereN0(e) is the noninteracting DOS. Equations~4!–~7!
constitute a closed set of DMFT equations for the disorde
Hubbard model.

We solve Eqs.~4!–~7! for a Bethe lattice with infinite
connectivity. In this case the DOS is given by

N0~e!5
2

pD
AD22e2, ~8!

with the bandwidthW52D. In the following we setD
51. With the DOS~8! the Hilbert transform~7! can be cal-
culated analytically leading to a simple algebraic relat
between the local Green functionG(v) and the hybridiza-
tion functionh(v), i.e.,

h~v!5
D2

4
G~v!. ~9!

In the numerical calculations we adjust the value of
chemical potentialm so that the number of particles in th
system is fixed. Hence the independent variables aren, U, x,
andD.

Since DMFT neglects short-range spatial correlations,
hence does not include effects due to backscattering of e
trons on the randomly distributed ions, it cannot descr
effects of Anderson localization. On the other hand, bina
alloy disorder is a particularly strong type of disorder since
even leads to band splitting—and thereby to insulat
behavior—in any spatial dimension. This dominant featu
and all other effects caused by the simultaneous presenc
interactions and disorder, is well captured by DMFT. In p
ticular, the DMFT equations reduce to the equations of
coherent-potential approximation~CPA! for interaction U
50.30 The CPA method is known to be very successful
explaining single-particle properties of disordered syste
both in the case of models and realistic systems.19,31 In par-
ticular, it reproduces the alloy band splitting in binary-allo
systems. Therefore we use the DMFT to describe the M
Hubbard MIT in the presence of binary-alloy disorder, a
consider additional effects due to Anderson localization
secondary.

IV. NUMERICAL RESULTS FOR THE DISORDERED
HUBBARD MODEL

In the following we present our numerical results for fi
ing factorsnÞx andn5x with equal concentration ofA and
B atoms, i.e.,x51/2. In particular, the ground-state pha
diagram atn5x is presented and the MIT is discussed
details.

A. Interacting electrons in the alloy band splitting limit
for nÅx

The influence of the disorder-induced alloy band splitti
on the spectral functionA(v) is shown in Fig. 3 forU54
and filling factorn50.3. For vanishing disorder (D50) the
04511
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spectral function is composed of the lower Hubbard subb
~which at this low density is merged with the quasipartic
peak! and the upper Hubbard subband aroundv54. Upon
increasingD the upper alloy subband splits off and moves
largerv. At the same time the lower alloy subband appe
with a smaller number of states. Its shape and the posi
with respect to the Fermi energy do not change forD.2.
These results and the shape invariance of the lower a
subband in the presence of interactions between the elec
suggest that in theD→` limit the binary-alloy disordered
Hubbard model can be effectively described by the Hubb
model in a reduced Hilbert space which contains only
states from the lower alloy subband.

B. Phase diagram and Mott-Hubbard transition at filling nÄx

By solving numerically the DMFT equations we extract
the zero-temperature phase diagram atn5x50.5 which is
presented in Fig. 4. The curve with filled dots represents
critical interaction Uc25Uc2(D) separating the paramag
netic metal and the paramagnetic insulator. This bound
line was determined by solving iteratively the DMFT equ
tions using ametallic hybridization function as an initial in-
put. It means that in solving the system of Eqs.~4!–~7! it-
eratively we began with the hybridization functionh (0)(v)
'G(0)(v) that has a nonvanishing imaginary part atv50.
The other curve~open dots! represents the boundaryUc1
5Uc1(D) between the metallic and insulating phases, as
termined by solving the DMFT equations with aninsulating
hybridization function as an initial input. In this case th
initial hybridization function had vanishing imaginary part
v50. The boundary points~lines! correspond to the value
of the (U,D) parameters where the converged spectral fu
tions obtained from Eqs.~4!–~7! starts to have zero weight a
v50. In the inset to Fig. 4, the behavior of the spect
function at the Fermi level is shown when the metal-insula
boundary is approached from the metallic~solid lines! and

FIG. 3. Spectral function of the Hubbard model atU54 and
n50.3 for different binary-alloy disorder strengthsD. The upper
alloy subband splits off forD>2. The shape of the lower alloy
subband is not significantly changed for largeD.
2-4



it

ie

e

fin

he
l

c-

d

tr

or
rd
se

e
eak

ec-
ec-
fea-

p-
ated

nd
ub-

nd
re-

.,
e

e

y

i

h

ar
s

el
-
ition
(

MOTT-HUBBARD METAL-INSULATOR TRANSITION AT . . . PHYSICAL REVIEW B 69, 045112 ~2004!
from the insulating side~dashed lines!, respectively. We ob-
serve hysteresis, however, at zero temperature the trans
is continuous and occurs at theUc5Uc2(D) line.7,14 We cal-
culated numerically the average density of double occup
sitesd5^n↑n↓& in the coexistence regime (Uc1<U<Uc2)
and found thatd is larger for a metallic solution. It implies
that the metallic ground state is energetically more stabl
this regime.7 Of course, very close toUc2(D) we cannot
make an absolutely precise statement because of the
numerical accuracy.

From the inset to Fig. 4 we also conclude that in t
metallic phaseA(0), thespectral function at the Fermi leve
decreases with disorder but remains independent ofU. This
behavior corresponds to the ‘‘pinning’’ of the spectral fun
tion ~Friedel sum rule! in the pure case, whereA(0) does not
depend on the interactionU between the electrons.32 Similar
behavior is encountered in the disordered Hubbard mo
studied here. However, nowA(0) is reduced by theD de-
pendent imaginary part of the self-energy.

In the upper panels of Figs. 5–7 we present the spec
functions for selected parametersU andD along a path in the
(U,D) phase diagram~Fig. 4! indicated by crosses:U53
and D50→1→1.5→2 ~Fig. 5!, D52 andU53→2 ~Fig.
6!, and finally,U52 andD52→1→0 ~Fig. 7!. These spec-
tral functions illustrate the evolution of the system within,
between, a metallic and an insulating phase when diso
and interaction are changed. In particular, in Fig. 5 we
for U53 how increasingD from the value 0~where the
spectral function is qualitatively similar to that of then

FIG. 4. Ground-state phase diagram of the Hubbard model w
binary-alloy disorder at fillingn5x50.5. The filled ~open! dots
represent the boundary between paramagnetic metallic~PM! and
paramagnetic insulating~PI! phases as determined by DMFT wit
the initial input given by the metallic~insulating! hybridization
function. The horizontal dotted line representsUc obtained analyti-
cally from an asymptotic theory in the limitD→` ~see Sec. V!.
Stars show the points at which the explicit spectral functions
presented in Figs. 5–7. Inset: hysteresis in the spectral function
the Fermi level obtained from DMFT with an initial metallic~insu-
lating! host represented by filled~open! symbols and solid~dashed!
lines.
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50.3 case, cf Fig. 3! to 1 and 1.5 leads to the splitting of th
alloy subbands and the emergence of the quasiparticle p
at v50, a feature of strong correlations between the el
trons. AtD52 the quasiparticle peak is absent and the sp
tral function possesses a Mott gap at the Fermi level, a
ture of an insulator. KeepingD52 in Fig. 6 and loweringU
from 3 to 2 leads to a shrinking of the Mott gap and rea
pearance of a quasiparticle peak, characterizing a correl
metallic phase. Finally, upon loweringD from 2 to 0 at
constantU52 the alloy subbands approach each other a
the quasiparticle peak merges with the lower Hubbard s
band as presented in Fig. 7.

In addition to the spectral functions, the imaginary a
real parts of the self-energy, calculated by the method p
sented in the Appendix, are shown in panels~b! and ~c! in
Figs. 5–7. In the metallic phase withD.0, two important
features of the self-energy should be noted:~i! the imaginary
part of the self-energy at the Fermi level is finite, i.e
ImS(v50),0 and~ii ! the real part of the self-energy at th
Fermi level has a negative slope, i.e.,]ReS(v50)/]v,0.
While the former feature~caused by disorder even in th
presence of the local interaction! can be observed within the
perturbation expansion with respect to smallD, the latter is
surprising since atU50 the slope is always positive for an
D.0.33

th

e
at

FIG. 5. ~a! Spectral function,~b! imaginary part of the self-
energy, and~c! real part of the self–energy for the Hubbard mod
at n50.5, U53 and different disorderD. As D increases, the qua
siparticle peak appears and then vanishes, signaling a trans
from a metallic to an insulating phase. In the insulating phaseD
52) a Mott gap is opened atv50 with ImS(0)50 whereas
ReS(0) remains finite.
2-5
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At the MIT the behavior of the self-energy changes.
particular, the imaginary part becomes vanishingly smal
v50 whereas the real part is finite. These results imply t
the mechanism for opening a correlation~Mott! gap at this
MIT transition is different from that in the pure Hubbar
model with particle-hole symmetry,7,14 namely, consider the
spectral function at the Fermi level, which is expressed
terms of the self-energy:

A~0!52
1

pE deN0~e!
ImS~0!

@e2ReS~0!#21@ ImS~0!#2
.

~10!

Since we obtained numerically that at the Fermi level
imaginary part of the self-energy vanishes and the real pa
larger than the bandwidthW, we find A(0)5N0@ReS(0)#
50. This result is in contrast to the Mott-Hubbard MIT
the pure Hubbard model at half filling with particle-ho
symmetry. In this last case the opening of a correlation ga
T50 is due to the formation of ad-like singularity in the
imaginary part of the self-energy at the Fermi level. The r
part of S(v) has a 1/v divergence at this point, consiste
with the Kramers-Kronig relations. In the disordered case
do not see such a behavior of ReS(v), which implies that
lifting of the particle-hole symmetry due to finite disord
and noninteger filling affects the way how the gap is open
in the Mott insulator.

FIG. 6. ~a! Spectral function,~b! imaginary part of the self-
energy, and~c! real part of the self-energy for the Hubbard model
D52 andU53 and 2.
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V. ASYMPTOTIC LIMIT D\`

Our understanding of the Hubbard model with binar
alloy disorder is based on the fact that the lower and up
alloy subbands are split at largeD. We now show that for
D→` the upper~or lower! alloy subband can be neglecte
and the problem can be mapped onto a low-energy subs
of the full Hilbert space. Effectively, the correlated an
binary-alloy disordered electronic system is represented b
correlatedpure system with renormalized parameters.

A. Mapping of the Hilbert space

We consider the caseD@max(U,W). Then the Hilbert
space can be divided into two subspacesA andB consisting
of ions with energieseA andeB , respectively. We denote th
projection operator onto theA subspace byP̂ and the projec-
tion operator onto theB subspace byQ̂512 P̂.35,36 The
Schrödinger equation can be decomposed as

~E2 P̂HP̂!P̂uC&5 P̂HQ̂Q̂uC&,
~11!

~E2Q̂HQ̂!Q̂uC&5Q̂HP̂P̂uC&,

whereuC& is a many-body eigenstate of the Hamiltonian~1!
with eigenvalueE. Solving this set of equations, the effectiv
Hamiltonian of the lower alloy subband is formally given b

t
FIG. 7. ~a! Spectral function,~b! imaginary part of the self-

energy, and~c! real part of the self-energy for the Hubbard model
U52 and different disorderD. Upon increasingD the alloy sub-
bands are split and a quasiparticle resonance emerges betwee
Hubbard subbands.
2-6
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Heff5 P̂HP̂2 P̂HQ̂
1

Q̂HQ̂
Q̂HP̂. ~12!

The mapping implies that the number of lattice sites cor
sponding to theA subspace is equal to the number ofeA ions,
i.e., NA5xNL . Therefore, if we restrict ourselves to th
low-energy many-body subspaceP̂uC&, and consider only
the effective HamiltonianHeff , the filling factor can be re-
placed byn* 5n/x.

The interactionU is not changed by the projection of th
Hilbert space because it is a local quantity. However,
bandwidth of the lower alloy subband is renormalized b
cause the number of nearest neighbors with on-site energeA
is reduced. In order to estimate how the bandwidth renorm
izes we consider the Bethe lattice with a finite coordinat
number z and calculate the second momentm i

(2)

5^AuH0
2uA& for the noninteracting HamiltonianH0

5t( i ,dai
†ai 1d with nearest-neighbor hopping. For a give

lattice siteA we can havezA neighbors with energieseA ,
where 0<zA<z. It is easy to show that the second mome
at siteA is m i

(2)(zA)5zAt2. The probability distribution ofzA

is given by

P~zA!5S z

zA
D xzA~12x!z2zA. ~13!

Therefore we find the average moment^m (2)&:24

^m (2)&5
1

NA
(
i 51

NA

m i A
2 ~zA!P~zA!5zt2x. ~14!

For a Bethe lattice with coordination numberz tending to
infinity we rescalet→t* 5t/Az. We then find that the sec
ond moment iŝm (2)&5t* 2x. It means that the bandwidth, a
measured by the second moment, is reduced in the effec
HamiltonianHeff by the factorAx.

B. Critical interaction Uc

The approximate value of the critical interaction for t
occurrence of the Mott transition can be found analytica
within the linearized DMFT, where the full DMFT problem
is mapped onto the two-site SIAM with self-consisten
conditions.34 For the pure Hubbard model it was shown th
the critical interaction has the valueUc56Am (2). From the
results in the preceding section we find that the critical int
action for the MIT in the strong disorder limitD→` is given
by Uc56t* Ax. For parameters used in our calculationst*
50.5 andx50.5, we obtainUc53/A2. This value is shown
by the dotted line in Fig. 4. The agreement between
numerical calculation and this estimate ofUc is surprisingly
good.

VI. CONCLUSIONS

In this paper we studied the Mott-Hubbard transition in
correlated electronic system with binary-alloy disorder.
numerically solving the DMFT equations atT50 we
showed that for filling factorn5x a MIT occurs when the
04511
-

e
-

l-
n

t

ve

t

r-

r

disorderD or the interactionU is increased. Regarding th
excitation spectrum for the electrons we introduced the
tion of the ‘‘alloy Mott insulator’’ for U,D and of the ‘‘al-
loy charge-transfer insulator’’ forU.D. This classification
is analogous to the Zaanen-Sawatzky-Allen scheme for t
band Hubbard systems.37 In our case however, the role of th
oxygen band is played by the upper alloy subband. We a
found hysteresis upon approaching the metal-insula
boundary, depending on the initial conditions imposed in
iterative solution of the DMFT equations. It shows that hy
teresis is a generic feature of the MIT in pure and in bina
alloy disordered systems within the DMFT scenario. We a
found that the opening of a Mott gap is associated with
disappearance of the imaginary part of the self-energy at
Fermi level. Finally we discussed the analytical theory, va
in the alloy band splitting limit, and showed that the Hubba
model with binary-alloy disorder can be mapped onto
effective Hubbard Hamiltonian with renormalized bandwid
and filling factor. The estimated critical interactionUc in this
asymptotic theory agrees very well with the numerical
sults. We note that the Hubbard model with a binary-all
distributed U can also have an insulating ground state
noninteger fillings.38

Our study of the Mott-Hubbard MIT was limited to th
Hubbard model with a nondegenerate orbital. A similar ph
transition should be expected in the Hubbard model w
orbital degeneracy. An important question is, howev
whether one can find a physical system where such a tra
tion is realized. For binary alloys this might be a very d
manding task because the predicted MIT requires fine tun
of the filling factor with concentration of the alloy elemen
as well as special values for the interaction and the diso
splitting. At present we do not know which alloy syste
would be the best candidate for realizing the predicted M
Hubbard MIT.

The most promising candidates for experimental reali
tion may come from systems with fermions moving on ar
ficial lattices. Creating a lattice with a binary-alloy disord
seem to be possible either with a matrix of quantum d
with two different sizes,39 or with optical lattices, where
counterpropagating laser beams can be used to trap fe
onic atoms.40 In the latter case, with proper selection of las
light and physical boundaries one can obtain at least qua
isordered systems41 where a binary-alloy-like distribution is
possible. From the point of view of our theory, where Ande
son localization is not included, quasirandomness of the
tical lattice is not a major limitation as it yields the effectiv
alloy band splitting which is crucial for our calculation
Since in the present Mott insulator the long-range orderin
suppressed due to the disorder, such a system might be
useful to study the ground state of, and excited states
paramagnetic Mott insulators.
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APPENDIX: CALCULATION OF THE SELF-ENERGY

The self-energy can, in principle, be calculated direc
from a Dyson equationS(v)5G21(v)2v1h(v). How-
ever, Bulla et al.11 have proposed a different approac
namely, to use a two-particle correlation function to det
mine the self-energy. In this way certain systematic erro
leading to inaccurate spectral weights, are canceled. In
appendix we show how to generalize this method to find
self-energy in the correlated system with binary-alloy dis
der. With a new interpretation of the CPA equation one c
use two-particle correlation functions to determine t
single-particle self-energy. Our method can be applied to
arbitrary DOS and, as we checked independently, lead
better convergence of the DMFT equations due to appa
error cancellations.

Within the DMFT, the disordered Hubbard model
mapped onto a single-impurity Anderson model which co
tains the local ionic energye i as a parameter. For eache i the
Anderson model is solved independently. It yields the lo
e i-dependent Green functionG(v,e i)5^^aisuais

† &&. In addi-
tion, for eache i we can find a two-particle Green function

F~v,e i !5^^aisai s̄
†

ai s̄uais
† &&. ~A1!

On the other hand, the equation of motion forG(v,e i) ob-
tained from thee i dependent SIAM is

~v2e i !G~v,e i !2UF~v,e i !2h~v!G~v,e i !51,
~A2!

which can be rewritten as

@v2h~v!#G~v,e i !511Vi~v!G~v,e i !, ~A3!
ev

r

04511
,
-
s,
is
e
-
n

n
to
nt

-

l

where we define a complex and frequency dependent~dy-
namical! scattering potential

Vi~v![e i1U
F~v,e i !

G~v,e i !
. ~A4!

From a formal point of view Eq.~A3! looks like a single-
particle equation for a Green functionG(v,e i) with random
potentialVi(v). The average Green functionG(v) is found
within the CPA by demanding that the average of the trans
matrix, given by

Ti~v!5

e i1U
F~v,e i !

G~v,e i !
2S~v!

12Fe i1U
F~v,e i !

G~v,e i !
2S~v!GG~v!

~A5!

with self-energyS(v), vanishes, i.e.,*de iP(e i)Ti(v)50.
For binary-alloy disorder the equation for the self-ener

can be solved analytically, leading to

S~v!5
1

2 FV1~v!1V2~v!2
1

G~v!
6J~v!G , ~A6!

where

J~v!5S FV1~v!1V2~v!2
1

G~v!G
2

24FV1~v!V2~v!

2x
V1~v!

G~v!
2~12x!

V2~v!

G~v! G D 1/2

.

Causality of the Green function requires that the sign in E
~A6! has to be properly chosen:~i! at v→2`(1`) the
physical solution of Eq.~A6! has a (2) @(1)# sign and~ii !
the change of the sign happens an odd number of time
frequenciesv0 for which ImJ(v0)50.
ns.
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