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The computation scheme merging the local density approximation and the dynamical mean-field theory
(DMFT) is employed to calculate spectra both below and above the Fermi energy and spin and orbital
occupations in the correlated paramagnetic metallic and Mott insulating phase of V2O3. The self-consistent
DMFT equations are solved by quantum Monte Carlo simulations. Room-temperature calculations provide
direct comparison with experiment. They show a significant increase of the quasiparticle height in comparison
with the results at 1160 K. We also obtain new insights into the nature of the Mott-Hubbard transition in V2O3.
Namely, it is found to be strikingly different from that in the one-band Hubbard model due to the orbital
degrees of freedom. Furthermore, we resolve the puzzle of the unexpectedly small Mott gap in Cr-doped V2O3.
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I. INTRODUCTION

The phase transition between a paramagnetic metal and a
paramagnetic insulator caused by the Coulomb interaction
between electrons is referred to as the Mott-Hubbard metal-
insulator transition.1,2 Reliable microscopic investigations of
this many-body phenomenon are known to be exceedingly
difficult. Indeed, the question concerning the nature of this
transition poses one of the fundamental theoretical problems
in condensed matter physics. Correlation-induced metal-
insulator transitions(MIT ) of this type are found, for ex-
ample, in transition-metal oxides with partially filled bands
near the Fermi level. In these systems band theory typically
predicts metallic behavior. The most famous example is
V2O3 doped with Cr;3–5 see Fig. 1. While at low tempera-
tures V2O3 is an antiferromagnetic insulator(AFI) with
monoclinic crystal symmetry, the high-temperature paramag-
netic phase has a corundum structure. All transitions shown
in the phase diagram are of first order. In the case of the
transitions from the high-temperature, paramagnetic phases
into the low-temperature antiferromagnetic phase this is
naturally explained by the fact that the transition is accom-
panied by a change in crystal symmetry. In contrast, the MIT
in the paramagnetic phase is isostructural; only the ratio of
the c/a axes changes discontinuously. This may be taken as
an indication for a predominantly electronic origin of this
transition.

To explain an MIT induced by electronic correlations, one
can either investigate a simplified electronic many-body
model to understand, at least, some of the basic features of
the MIT, or employ material-specific approaches such as the
density-functional theory in the local density approximation
(LDA ). Concerning the former approach,1,3 the spinS=1/2,
half-filled, single-band Hubbard model6–8 is certainly the
simplest possible model to be investigated. In particular, the
existence of an MIT in the paramagnetic phase of the half-
filled Hubbard model had been investigated already in the

early work of Hubbard.6,9 However, while the Hubbard I and
III approximations6,9 describe the insulating phase rather
well, they do not describe a Fermi-liquid phase on the me-
tallic side. On the other hand, the Gutzwiller approximation
provides a picture of the breakdown of the Fermi-liquid
phase as indicated by the collapse of the quasiparticle peak
and the simultaneous divergence of the effective mass at a
critical value of the Coulomb interactionUc (Brinkman-Rice
transition).10 However, within this framework one cannot de-
scribe the Hubbard bands that are essential both in the
strongly correlated metallic phase belowUc and in the insu-
lating phase aboveUc. With these limitations, the details of
the MIT in the Hubbard model remained unclear, except for
the one-dimensional case,11 which is very particular since it
always describes an insulator, i.e.,Uc=0+.

During the last few years, our understanding of the MIT
in the one-band Hubbard model has considerably improved
due to the development of dynamical mean-field theory
(DMFT).12,13 Within DMFT the electronic lattice problem is
mapped onto a self-consistent single-impurity Anderson
model.13 This mapping becomes exact in the limit of infinite
coordination number12 and allows one to investigate the dy-
namics of correlated lattice electrons nonperturbatively at all
interaction strengths. This is of essential importance for a
problem like the MIT which occurs at a Coulomb interaction
comparable to the electronic bandwidth. In particular, DMFT
provides a framework for deriving a coherent picture of the
electronic spectrum at all energy scales, i.e., of the incoher-
ent features at high energies(Hubbard bands),9 and the co-
herent quasiparticle behavior at low energies.7,14At T=0, the
transition from the metallic to the insulating state is signaled
by a divergence of the effective mass and the collapse of the
Fermi-liquid quasiparticle peak at the Fermi energy for Cou-
lomb interactionU→Uc

−.13,15–17DMFT furthermore revealed
the coexistence of the metallic and the insulating phase be-
low a critical point at temperatureTc, such that there is a
first-order phase transition in agreement with the experimen-
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tal observation for V2O3. To investigate the MIT in V2O3,
Rozenberget al.18 applied DMFT to the one-band Hubbard
model. The influence of orbital degeneracy was studied by
means of the two-19–21 and three-band20 Hubbard model for
the semicircular density of states(DOS) of a Bethe lattice.
Most recently, a detailed analysis22 of the conductivity
change demonstrated that, except for a very narrow region
directly at the critical point, the critical exponents are of the
liquid-gas transition type, in accordance with a Landau
theory for the Mott transition within DMFT.15,23,24

Although the Hubbard model is able to explain certain
basic features of the Mott-Hubbard MIT in V2O3 and its
phase diagram, it cannot explain the physics of that material
in any detail. Clearly, a realistic theory of V2O3 must take
into account the complicated electronic structure of this sys-
tem. In our previous work,25 we therefore applied the LDA
+DMFT scheme to study the MIT in paramagnetic
V2O3.

26,27With LDA spectra calculated for the crystal struc-
ture of metallic V2O3 and insulatingsV0.962Cr0.038d2O3 as
input for the subsequent three-band DMFT[quantum Monte
Carlo (QMC)] calculations, we found an MIT, or rather
a sharp crossover, atU<5 eV. Due to restrictions in com-
puter resources, the QMC calculations in Ref. 25 were done
at T=1160 K. Subsequently, extensive QMC simulations at
temperatures down toT<300 K were performed to make
possible a comparison between experiment and theory at ex-
perimentally relevant temperatures. Those computations
yielded spectra with a quasiparticle peak at the Fermi edge
considerably stronger than that at 1160 K and were in con-

trast to the existing photoemission measurements. This
puzzle was finally resolved by recent improvements in pho-
toemission spectroscopy(PES) experiments, which allowed
one to perform high-energy, bulk sensitive PES, displaying a
prominent peak atEF in essential agreement with the LDA
+DMFT results.28

In this paper, we provide details of our calculations re-
ported in Ref. 28, present LDA+DMFT spectra for 300 K,
700 K, and 1160 K both below and above the Fermi edge,
and compare them to PES and X-ray absorption spectros-
copy (XAS) measurements. Based on calculations of spin
and orbital occupations, we then discuss the properties of the
ground state. In particular, the nature of the MIT turns out to
be rather distinct from that in a one-band model, i.e., we find
that the effective mass in thea1g orbitals doesnot diverge at
the MIT transition.

The paper is organized as follows: In Sec. II the LDA
band structure, based on the experimental corundum crystal
structure, and the relevance of V-V pairs are discussed. Elec-
tronic correlations are taken into account by DMFT as de-
scribed in Sec. III. The resulting LDA+DMFT spectra are
presented in Sec. IV, including a discussion of the depen-
dence on temperature and the Hund’s rule exchange cou-
pling. The pecularities of the MIT in V2O3 and the differ-
ences to the MIT of the one-band Hubbard model are worked
out in Sec. V. A detailed comparison with the experimental
spectra follows in Sec. VI. A summary and outlook is finally
provided in Sec. VII.

FIG. 1. Phase diagram of V2O3 showing the
MIT as a function of pressure and of doping with
Cr and Ti; data points from McWhanet al. (Ref.
5).
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II. CRYSTAL AND ELECTRONIC STRUCTURE

In the paramagnetic metallic phase stoichiometric V2O3
crystallizes in the corundum structure, which has a trigonal

lattice and space groupR3̄c sD3d
6 d with lattice constants

a=4.9515 Å andc=14.003 Å.29 Vanadium and oxygen at-
oms occupy the Wyckoff positionss12cd and s18ed with in-
ternal parameterszV =0.34630 andxO=0.31164, respectively,
which deviate markedly from the value 1/3 assumed in an
ideal hexagonal arrangement.29 Within the corundum struc-
ture the vanadium atoms are arranged in pairs along the hex-
agonal c axis, which can be derived from an ideal chain
structure by introducing vacancies at every third site.30 The
oxygen atoms form distorted octahedra around the vanadium
sites. While the V-V pair along the hexagonalc axis shares
octahedral faces, the octahedra are interlinked via edges and
corners perpendicular to this axis,29,30 see Fig. 2.

In the Cr-doped paramagnetic insulating phase the lattice
symmetry is preserved, but the crystal structure parameters
change slightly. In particular, forsV0.962Cr0.038d2O3 the lattice
constants amount toa=4.9985 Å andc=13.912 Å and the
positional parameters arezV =0.34870 andxO=0.30745,
respectively.29 All these changes combine into a distinct dis-
placement pattern: As compared to the metallic phase the
shared octahedral faces between the V-V pair shrink, while
those octahedral faces pointing to the opposite side along the
c axis, i.e., towards the aforementioned vacancies, are en-
larged. At the same time, the vanadium atoms shift away
from the shared faces of the V-V pair such that the distances
within the V-V pair increase upon Cr doping, even though
the c-axis lattice constant decreases. The increaseda-axis
lattice constant directly leads to enhanced vanadium dis-
tances within theab plane. As a net result,all nearest-
neighbor vanadium distances are enlarged for insulating
sV0.962Cr0.038d2O3. Hence, we expect a reduction of the band-

width especially of thet2g-derived bands. From a comparison
of pure and doped V2O3 as well as Cr2O3, Dernier29 con-
cluded that the metallic properties are intimately connected
with the vanadium hopping within theab-plane rather than
with hopping processes between the V-V pairs along thez
axis.

As a first step LDA band structure calculations31,32 were
performed, which used the augmented spherical wave
(ASW) method.33,34 Figures 3 and 5–7 show these band
structures along selected high-symmetry lines(Fig. 4) within
the first Brillouin zone of the hexagonal lattice and the den-
sities of states(DOS) for V2O3 and sV0.962Cr0.038d2O3.

In total our results are in good agreement with those pub-
lished by Mattheiss.30 In particular, while the O 2p-derived
bands show up in the range between −9 and −4 eV, the V
3d-dominated states fall, due to the octahedral surrounding
with oxygen, into two groups of bands:t2g andeg

s. With this
separation, theeg

s bands will be empty and thet2g bands
partially filled with two electrons per V ion.

Due to the lower trigonal lattice symmetry thet2g states
are further split into doubly and singly degenerateeg

p anda1g
states(see Figs. 5 and 7, and the scheme in Fig. 8). The value
of this splitting(<0.3 eV for the centers of gravity) is much
smaller than thet2g bandwidth s<2 eVd. However, as the
value of the Coulomb interaction parameterU sU.4 eVd is
larger than the bandwidth, this small trigonal splitting
strongly determines the orbital ground state of the V ion
obtained from LDA+DMFT calculations, as will be shown

FIG. 2. (Color online) Crystal structure of V2O3.

FIG. 3. Electronic bands of V2O3 along selected symmetry lines
within the first Brillouin zone of the hexagonal lattice, Fig. 4. The
width of the bars given for each band indicates the contribution
from thea1g orbitals.

FIG. 4. First Brillouin zone of the hexagonal lattice.
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below. To highlight the difference betweeneg
p anda1g states,

we append to each band at eachk point a bar in Fig. 3,
whose length is a measure for the contribution from thea1g
orbitals to the respective wave function.

The changes on going tosV0.962Cr0.038d2O3 are stated eas-
ily: In Figs. 6 and 7, we observe a narrowing of thet2g andeg

s

bands of<0.2 and 0.1 eV, respectively, as well as a slight
downshift of the centers of gravity of theeg

p bands. However,
the insulating band gap expected for a calculation with the
insulating crystal structure is missing.

As already mentioned a peculiarity of the corundum crys-
tal structure are thec-axis V-V pairs. Long ago Allen35 em-
phasized the importance of the intrapair interactions for in-
terpreting spectroscopic properties of V2O3 and its solid
solution with Cr2O3. Since thea1g orbitals are directed along
the c axis, these orbitals are the ones that mediate a strong
hybridization between V-V pairs. This hybridization for the
V-V pair led Castellaniet al.36 to a model(see Fig. 8) where
two of the four electrons per V-V pair occupy a bonding
molecular orbital formed bya1g orbitals, leaving two elec-
trons(one per site) in a partially filled twofold-degenerateeg

p

band. That results in a spin-1
2 orbitally degenerate state per V

ion with complicated orbital and spin ordering pattern ex-

plaining the unusual properties of the low-temperature anti-
ferromagnetic phase.

Indeed, Figs. 3 and 5 show some splitting of thea1g
bands, in particular, between theM and theK point of the
band structure, as one would expect from the formation of a
chemical bond. But, the situation is far more complicated
than a simple chemical bonding of thea1g band into a bond-
ing and an antibonding band: There is some additional spec-
tral weight nearEF (e.g., in the vicinity of theG point).
Moreover, there is not even a low-lying “bonding”a1g band
in parts of the Brillouin zone(e.g., between theH and A
point).

The Castellaniet al. model36 was challenged by Parket
al.37 Based on the polarization dependence of x-ray absorp-
tion experiments they came to the conclusion that the V3+

ion is in a spin-1 state. They also demonstrated that the or-
bital ground state of the ion is predominantlyeg

peg
p with a

small admixture ofeg
pa1g configurations. This was later sup-

ported by LDA+U calculations of Ezhovet al.38 where a
spin-1 ground state with aeg

peg
p orbital configuration was

obtained.
Nevertheless, the picture where the strongest hybridi-

zation parameter in V2O3 is the a1g-a1g hopping within the
V-V pair, with all other hybridizations being much smaller,
is still popular. Many theoretical studies of this material start
with a (as good as possible) solution for the V-V pair and
consider the interpair interactions as a perturbation.39–41All
these model calculations were based on the values of hop-
ping parameters obtained by a least-square fit of LDA bands
to a model Hamiltonian with nearest-neighbor hopping. Re-
cently this problem was reexamined by Elfimovet al.42 who
found that the value of thea1g-a1g hopping in the V-V pair is
significantly reduced if next-nearest neighbor-hoppings
(which were found to be significant) are taken into account
in the fit to a model Hamiltonian. Hence, one cannot con-
sider interpair hoppings as a mere perturbation, as it was
taken for granted for a long time.

III. INCLUDING ELECTRONIC CORRELATIONS
VIA DMFT

The LDA band structure of the preceding section clearly
fails to describesV1−xCrxd2O3. In particular, the chromium-

FIG. 5. (Color online) Total and partial densi-
ties of states(DOS) of V2O3 per unit cell.

FIG. 6. Electronic bands ofsV0.962Cr0.038d2O3.
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doped compoundsV0.962Cr0.038d2O3 is an insulator, whereas
LDA predicts metallic behavior. The reason for this failure is
that LDA deals with electronic correlations only very rudi-
mentarily, namely, the dependence of the LDA exchange-
correlation energy on the electron density is given by pertur-
bative or quantum Monte Carlo calculations for jellium,43,44

which is a weakly correlated system. To overcome this short-
coming, we supplement the LDA band structure by the most
important Coulomb interaction terms, i.e., the local Coulomb
repulsionU and the local Hund’s rule exchangeJ. The local
Coulomb repulsionU gives rise to a genuine effect of elec-
tronic correlations, the Mott-Hubbard metal-insulator
transition.13,15–17,23,24,45If the LDA bandwidth is consider-
ably larger than the local Coulomb interaction, the LDA re-
sults are slightly modified but the system remains a metal. If
the LDA bandwidth is much smaller than the local Coulomb
interaction, one has essentially the atomic problem where it
costs an energy of aboutU to add an electron and the system
is an insulator. In between, the Mott-Hubbard metal-insulator
transition occurs with V2O3 being on the metallic side,
whereassV0.962Cr0.038d2O3, which has a 0.1–0.2 eV smaller
bandwidth, is on the insulating side.

Interpreting the LDA band structure as a one-particle

HamiltonianĤLDA
0 and supplementing it with the local Cou-

lomb interactions give rise to the multiband many-body
Hamiltonian46

Ĥ = ĤLDA
0 + Uo

i m

n̂im↑n̂im↓ + o
i mÞm̃ss̃

sV − dss̃Jdn̂imsn̂im̃s̃.

s1d

Here,i denotes the lattice site andn̂ims is the operator for the
occupation of thet2g orbital m with spin sP h↑ ,↓j. The in-
teraction parameters are related byV=U−2J, which is a con-
sequence of orbital rotational symmetry. This holds exactly
for degenerate orbitals and is a good approximation in our
case where thet2g bands have similar centers of gravity and
bandwidths. As in the local spin density approximation
(LSDA), the spin-flip term of the exchange interaction is not
taken into account in Eq.(1). The consequences of this ap-
proximation for states in the vicinity of the Fermi energy do
not seem to be large as comparative calculations using the
noncrossing approximation within DMFT show.47 Further-
more, a pair hopping term proportional toJ is neglected
since it requires that one orbital is entirely empty while
another is entirely full, which is a rare situation in the solid
state and corresponds to highly excited states. For the Hund’s
rule coupling J we take the constrained LDA valueJ
=0.93 eV(Ref. 48) throughout the paper with the exception
of Fig. 12. Unfortunately, such anab initio calculation is not
feasible for the Coulomb repulsionU sinceU depends sen-
sitively on screening, which leads to uncertainties of about
0.5 eV.49 For our present purposes this uncertainty is too
large since V2O3 is on the verge of a Mott-Hubbard metal-
insulator transition, and, thus, small changes ofU have dras-
tic effects. In particular, due to the small differences in the
LDA band structure it is unlikely that for aU value calcu-
lated by constrained LDA, V2O3 is metallic whereas
sV0.962Cr0.038d2O3 is insulating. Therefore, we adjustU in
such a way as to make sure that these two systems are me-
tallic and insulating, respectively.A posteriori, we will com-
pare the adjusted value with those calculated by constraint
LDA calculations and those extracted from the experiment.

So far, we did not specifyĤLDA
0 . In principle, it should

contain the valence orbitals, i.e., the oxygen 2p orbitals and
the five vanadium 3d orbitals per atom and, maybe, some

FIG. 7. (Color online) Total and partial densi-
ties of states(DOS) of sV0.962Cr0.038d2O3 per unit
cell.

FIG. 8. (Color online) Left and right: splitting of thet2g orbitals
in the corundum crystal structure. Middle: Formation of a chemical
bond for a single V-V pair along thec axis.
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additionals orbitals. However, for V2O3 we are in the fortu-
nate situation that the threet2g bands at the Fermi energy are
well separated from the other orbitals(see Fig. 7). Therefore,
it is possible to restrict ourselves to the threet2g bands at the
Fermi energy that are made up of the corresponding atomic
vanadium 3d orbitals with some admixtures of oxygenp
orbitals. In the case of three degeneratet2g orbitals, which is
close to our situation where bandwidths and centers of grav-
ity of the a1g and the doubly degenerateeg

p band are very
similar, the k-integrated Dyson equation simplifies to be-
come an integral over the DOS,27

Gmsvd =E de
Nm

0 sed
v + m − Smsvd − e

. s2d

HereGmsvd, Smsvd, andNm
0 sed (Ref. 50) are the Green func-

tion, self-energy, and LDA density of states, respectively, for
the t2g orbital m. In principle,Nm

0 sed should contain a double
counting correction, which takes into account that part of the
local Coulomb interaction already included in the LDA.
However, this correction results in the same effect for all
three orbitals and, hence, only translates into a simple shift
of the chemical potentialm. This makes the issue of how to
calculate the double counting correction irrelevant for the
present purposes. The(shifted) m has to be controlled ac-
cording to the vanadium valency, i.e., in such a way that
there are two electrons in the three bands at the Fermi en-
ergy.

Within DMFT thek-integrated Dyson equation(2) has to
be solved self-consistently together with a one-site(mean
field) problem which is equivalent to an Anderson impurity
model with hybridizationDmsv8d, fulfilling 13

fGmsvdg−1 + Smsvd = v + m −E
−`

`

dv8
Dmsv8d
v − v8

. s3d

The self-consistent solution of the Anderson impurity model
given by Eq.(3) together with the Dyson equation(2) allows
for a realistic investigation of materials with strongly corre-
lated electrons. At small values ofU this procedure typically
yields a spectrum with a central quasiparticle resonance at
the Fermi energy and two incoherent Hubbard sidebands,
while at larger values ofU the quasiparticle resonance dis-
appears and a metal-insulator transition occurs.12 This ap-
proach has been successfully applied to a number of
transition-metal oxides,49,51 transition metals,52 and elemen-
tal Pu and Ce.53 For more details and an introduction to the
LDA+DMFT approach, we refer the reader to Ref. 27.

In the present paper, we solve the multiband Anderson
impurity model by the QMC method,54 where by means of
the Trotter discretization and Hubbard-Stratonovich transfor-
mations the interacting Anderson impurity model is mapped
to a sum of noninteracting problems, the sum being per-
formed by the Monte Carlo technique. We employ a Trotter
discretization ofDt=0.25 eV−1 unless noted otherwise and
follow Ref. 55 for the Fourier transformation between Mat-
subara frequencies and imaginary timet.

To obtain the physically relevant spectral function
Amsvd=−s1/pdImGmsvd we employ the maximum entropy
method.56,57 This statistical approach allows us to solve

Gmstd =E
−`

`

dv
etsm−vd

1 + ebsm−vdAmsvd s4d

for Amsvd, i.e., to analytically continue from imaginary time
to real frequencies. The QMC method has the advantage of
being numerically exact while the main disadvantage is that
it is restricted to higher temperatures. The room-temperature
calculations of this paper were computationally very expen-
sive, using up to 40 iterations with up to 200 000 sweeps and
requiring about 200 000 h CPU time on the Hitachi
SR8000-F1 at the Leibnitz Rechenzentrum Munich. For the
implementation of the QMC method in the context of LDA
+DMFT, including flow diagrams, see also Ref. 27.

IV. LDA+DMFT SPECTRA

Using the crystal structure of paramagnetic metallic(PM)
V2O3 and paramagnetic insulating(PI) sV0.962Cr0.038d2O3, re-
spectively, as input, we performed LDA1DMFT(QMC) cal-
culations with onea1g and two degenerateeg

p bands. The
results for the spectra of thet2g bands are shown in Fig. 9. At
U=4.5 eV both crystal structures lead to spectra showing
metallic behavior, with a lower Hubbard band at about
−1 eV, an upper Hubbard band at 4 eV and a quasiparticle
peak at the Fermi edges0 eVd. The peak at about 1 eV is
split from the uppert2g Hubbard bands due to Hund’s rule
exchange as we will discuss below.

By contrast, atU=5.5 eV, both crystal structures lead to
spectra showing nearly insulating behavior. The lower Hub-
bard band is strongly enhanced, whereas at the Fermi edge, a

FIG. 9. (Color online) LDA+DMFTsQMCd spectra for para-
magnetic insulating(PI) sV0.962Cr0.038d2O3 and metallic(PM) V2O3

at U=4.5, 5, 5.5 eV, andT=1160 K.
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pseudogap is formed. Above the Fermi energy, only small
changes of the two-peak structure are visible.

Apparently, qualitatively different spectra for the two
crystal structures require an intermediate value ofU. This is
indeed observed atU=5.0 eV: Whereas pure V2O3 now
shows a small peak at the Fermi edge(a residue of the qua-
siparticle peak obtained atU=4.5 eV) and is therefore me-
tallic, the Cr-doped system exhibits a pronounced minimum
in the spectrum implying that it is nearly insulating. Due to
the high temperature ofT=0.1 eV <1160 K of the QMC
simulations one only observes a smoothcrossoverbetween
the two phases with a metal-like and insulator-like behavior
of the respective curves instead of a sharp metal-insulator
transition as would be expected for temperatures below the
critical point (i.e., for T,400 K in the experiment). The
value of the critical interaction of 5.0 eV is in accordance
with constrained LDA calculations by Solovyevet al.,48 who
analyzed the charging energy between di- and trivalent vana-
dium ions in an octahedral oxygen environment for LaVO3,
obtaining aU value for thet2g orbitals that is only slightly
smaller than 5 eV. SimilarU values of 4–5 eV were ob-
tained by fitting spectroscopy data for vanadium oxides to
model calculations.58

Not only the overallt2g DOS but also the band-resolved
spectra of thea1g andeg

p bands provide valuable insight. In
Fig. 10, thea1g and one of the two degenerateeg

p spectra are
shown atU=5.5 eV. The basic features of the spectrum can
be understood as follows: We will show in the next section
that the predominant local configuration has two spin-aligned
electrons in theeg

p orbitals, i.e., aeg
peg

p spin-1 configuration,
with some admixture ofa1geg

p spin-1 configurations. Since
there are moreeg

p than a1g electrons, let us for a moment
disregard thea1geg

p configurations. The lower Hubbard band
at about −1.5 eV indicates the removal of aneg

p electron
from the predominantlyeg

peg
p spin-1 configurations. In an

atomic picture(which is a reasonable starting point for the
insulating phase) this eg

peg
p→eg

p transition leads to an energy
gain of V−J−m<−1.5 eV (the approximate position of the
lower Hubbard band). The uppereg

p Hubbard band is caused
mainly by the eg

peg
p→eg

peg
peg

p transitions. Since the spin
alignment is lost this transition costs an energyU+V−m

=U+J+sV−J−md<4.4 eV, which roughly agrees with the
position of the upper Hubbard band. On the other hand, add-
ing an a1g electron costs 2V−m<2.6 eV or 2V−2J−m
<0.7 eV, depending on whether this electron is spin aligned
or not. The Hund’s rule coupling therefore leads to a splitting
of the upper Hubbard band. The resulting two-peak structure
in the uppera1g Hubbard band is indeed seen in Fig. 10. The
presence ofa1geg

p spin-1 configurations causes slight modi-
fications of this picture. In fact, there is also a splitting of the
uppereg

p band, resulting in a low peak atsE−EFd<0.5 eV
due toa1geg

p→a1geg
peg

p transitions. Since the splitting causes
the lower part of the split band to move towards the Fermi
energy the gap in the insulating phase becomes very small,
much smaller than a gap of orderV<3 eV, which would be
expected in a one-band Hubbard model. This also explains
the puzzle in the attempt to model the optical gap with a
one-band Hubbard model:18 fitting to the small experimental
gap one is led to an unrealistically small Coulomb repulsion
of about 1 eV and a bandwidth of less than 0.5 eV.

To study the metal-insulator transition at experiment-
ally relevant temperatures, we performed calculations at
T=700 K andT=300 K. Since the computational effort is
proportional toT−3, those low-temperature calculations were
computationally very expensive. Figure 11 shows the results
of our calculations atT=1160 K, T=700 K, andT=300 K
for metallic V2O3 and atT=1160 K andT=700 K for insu-
lating sV0.962Cr0.038d2O3.

59 In the metallic phase, the incoher-
ent features are hardly affected when the temperature is
changed, whereas the quasiparticle peak becomes sharper
and more pronounced at lower temperatures. This behavior
also occurs in the Anderson impurity model60 and has its
origin in the smoothing of the Abrikosov-Suhl quasiparticle
resonance at temperatures larger than the Kondo tempera-
ture. However, in contrast to the Anderson impurity model
this smoothing occurs at considerably lower temperatures,
which is apparently an effect of the DMFT self-consistency
cycle.

To study the possible effect of a smaller Hund’s rule cou-
pling J, we performed additional high-temperature calcula-
tions for a reduced value ofJ=0.7 eV, keepingV nearly
constant. The results in Fig. 12 show that the positions of the

FIG. 10. (Color online) LDA+DMFTsQMCd
spectrum(a1g and oneeg

p band) for paramagnetic
insulating sV0.962Cr0.038d2O3 (PI) for U=5.5 eV;
T=1160 K.
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upper Hubbard bands are significantly shifted towards lower
energies while the spectra below the Fermi energy are hardly
affected. This suggests that the physical properies do not
change much. Indeed, we find, for example, that the spin-1
state hardly changes when the Hund’s exchange is reduced.
Even at values as low asJ=0.5 eV the local moment stays
almost maximal, i.e.,kmz

2l=3.85 atJ=0.5 eV, implying that
unrealistically small values ofJ are required for the Castel-
lani et al.36 picture to hold.61

V. CHANGES ACROSS THE MOTT-HUBBARD
TRANSITION

A. Local magnetic moment and orbital occupation

The spin and orbital degrees of freedom play an important
role in the paramagnetic phase of V2O3 and in the changes
occurring across the MIT. For example, we find the squared
local magnetic momentkmz

2l=ksom fn̂m↑− n̂m↓gd2l to have a
value ofkmz

2l<4, unaffected by the MIT(see Fig. 13). This
value corresponds to two spin-aligned electrons in the
sa1g,eg1

p ,eg2
p d orbitals and therefore to a spin-1 state in the

Mott-Hubbard transition regime in good agreement with po-
larization dependent x-ray absorption measurements of Park
et al.37 It also agrees with measurements of the high-
temperature susceptibility which give the value ofmef f
=2.66mB for the effective magnetic moment.62 This is close
to the idealS=1 valuemef f=2.83mB. Note that whenU is
reduced toU,3, the Hund’s rule couplingJ needs to be
reduced as well to avoid an unphysical attractive Coulomb
interaction(namely, a Coulomb energyU−3J,0 would oth-
erwise be gained when a spin-aligned electron is added to a
singly occupied site). It is this reduction ofJ that finally
leads to a smaller local squared magnetic moment. Our re-
sults of a spin state that is essentially unaffected by the MIT
is in stark contrast to results for the one-band Hubbard model
wheremz

2 changes strongly at the MIT(Ref. 13) (in fact, this
quantity had even been used as an indicator for the MIT).

The orbital occupation(Fig. 13) obtained by us clearly
rules out ana1g singlet since this would correspond tona1g
=1, neg

p=1. Therefore our results contradict the model of
Castellaniet al.,36 who proposed the formation of ana1g
singlet and hence a spin-1/2 state. At allU values we find
predominantly occupiedeg

p orbitals, but with a significant
admixture ofa1g orbitals (see Fig. 13). On the basis of an
analysis of their linear dichroism data Parket al.37 concluded
that the ratio of the configurationsseg

p ,eg
pd and seg

p ,a1gd
is equal to 1:1 for the paramagnetic metallic phase(PM)
and 3:2 for the paramagnetic insulating phase(PI). This
corresponds to an electron occupation of thesa1g,eg1

p ,eg2
p d

orbitals of (0.4,0.8,0.8) for the PI phase and(0.5,0.75,0.75)
for the PM phase. AtT=1160 K we find for the PI phase
(“insulating” crystal structure andU=5.0 eV) occupations
of (0.28,0.86,0.86), while for the metallic phase(“metall-
ic” crystal structure and U=5.0 eV) we obtain
(0.37,0.815,0.815). While our results give a smaller value for
the admixture ofa1g orbitals(even more so atT=300 K), the
tendency for the decrease of this value at the transition to the
insulating state is well reproduced. Figure 13 also shows that
in the immediate vicinity of the Mott transition the orbital
occupation has a considerable temperature dependence, with
even fewer electrons in thea1g orbitals at lower tempera-
tures.

Further experimental evidence for anseg
p ,eg

pd configura-
tion in the ground state of the V+3 ions in V2O3 comes from
Brown et al.63 They measured the spatial distribution of the
field-induced magnetization in paramagnetic V2O3 by polar-
ized neutron diffraction. Their results show that the moment
induced on the V atoms is almost entirely due to the elec-
trons in the doubly degenerateeg

p orbitals with only a minor

FIG. 11. (Color online) LDA+DMFTsQMCd spectra for para-
magnetic insulatingsV0.962Cr0.038d2O3 and metallic V2O3 at U
=5 eV.

FIG. 12. (Color online) Comparison of the LDA
+DMFTsQMCd V2O3 spectra at two strengths of the exchange in-
teraction sT=1160 Kd: J=0.93 eV (as obtained from constrained
LDA and used in all other figures), U=5.0 eV,V=3.14 eV, andJ
=0.7 eV,U=4.5 eV,V=3.1 eV.
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contribution from thea1g orbital. For the antiferromagnetic
insulating phase of V2O3, calculations of the electronic struc-
ture by LDA+U also yielded a spin-1 ground state for the
V3+ ion and anseg

p ,eg
pd orbital configuration.38

The origin for the ground-state orbital configuration
discussed above is easily understood from the LDA DOS
(Fig. 5) where the center of gravity of thea1g orbital is
0.3 eV higher in energy than the corresponding value foreg

p

orbitals. This shift together with the asymmetry of the DOS
leads to an LDA occupation of about 0.55 for thea1g and
0.72 for each of theeg

p bands. The occupation ofeg
p orbitals

is further enhanced in the strongly correlated metallic regime
and, in particular, in the insulating phase where the Coulomb
interaction valuesU.5 eVd is significantly larger than the
bandwidthsW<2 eVd.

B. Quasiparticle renormalization and spectral weight at the
Fermi level

To study the MIT in detail we have calculated the quasi-
particle weightZ by fitting a third-order polynominal to the
imaginary part of the QMC self-energy ImSsivnd at the
lowest Matsubara frequenciesvn, which gives Z=f1
−]Im Ssivd /]ivg−1 via the slope of the polynominal atv
=0. The resulting quasiparticle weight for thea1g and theeg

p

bands is shown as a function ofU in Fig. 14. With increasing
U, Z first shows a strong decrease for both types of bands.
However, in the vicinity of the MIT at aboutU=5 eV thea1g
quasiparticle weightremains constantwhile that of theeg

p

electrons goes to zero. This behavior of thea1g quasiparticle
weight is in striking contrast to the behavior at the MIT in
the one-band Hubbard model whereZ→0, such that its in-
verse, the effective mass, diverges. Indeed, from Fig. 14
alone one might conclude that the MIT occurs only for theeg

p

band. On the other hand, the total LDA+DMFT spectrum
clearly shows insulating behavior at large Coulomb interac-
tions. In the following, we will resolve this puzzle. But let us
start with a reaffirmation of the spectral result.

A quantity that measures the spectral weight at the Fermi
energy and does not depend on the analytical continuation to
real frequencies is given by

s5d

More specifically, −b /pGst=b /2d measuresAsvd in the
region given by the kernelKsvd, which is centered around
the Fermi energy atv=0 and has a width proportional to
T=1/b. The results in Fig. 15 show that, for 300 K, the
spectral weight at the Fermi energy disappears at a critical
value ofU between 5.1 and 5.2 eV for both types of orbitals
in the case of metallic V2O3. These values ofU agree quite
well with the position where theeg

p quasiparticle weight is
expected to disappear in Fig. 14. For the 300 K data for
insulatingsV0.962Cr0.038d2O3, the criticalU value is between
4.9 and 5.0 eV. With increasing temperature, the MIT is a
smeared out to become a crossover and, at 1160 K, is only
signaled by a change of curvature slightly above 5 eV. In

FIG. 14. (Color online) Quasiparticle weightZ for the a1g and
the eg

p bands vsU, using the crystal structure of metallic V2O3.

FIG. 13. (Color online) (a) Spin and(b) or-
bital occupation vs Coulomb interactionU for
metallic V2O3.
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Fig. 15, the statistical error for the 300 K data is smaller than
the size of the symbols used in the curves, for the 1160 K
data, it is comparable to the linewidth. We therefore did not
include error bars in the figure. This analysis reaffirms the
correctness of our choice of the valueU=5 eV for the simul-
taneous description of the metallic and insulating behavior of
V2O3 and sV0.962Cr0.038d2O3, respectively.

We still have to address the question why thea1g quasi-
particle weight remains constant across the transition, i.e.,
why the effectivea1g mass doesnot diverge. The DMFT
Green function is given by Eq.(2), which under the assump-
tion of a Fermi-liquid-like self-energy

Smsvd = ReSms0d +U ] Re Smsvd
] v

U
v=0

v, s6d

andZ=f1−]Re Smsvd /]vuv=0g−1 yields

Gmsvd =E de
ZNm

0 sed
v + Zfm − ReSms0d − eg

. s7d

Hence, an MIT can either occur if the effective mass di-
verges, i.e.,Z→0, or if the effective chemical potential
m−ReSms0d moves, due to electronic correlations, outside
the noninteracting LDA DOS such thatNm

0 fm−ReSms0dg
=0. In the case of V2O3 the latter happens as is demonstrated
by Fig. 16, where ReSms0d has been approximated by its
value at the lowest Matsubara frequency, ReSmsv0d. At the
MIT, betweenU=5.1 and 5.2 eV,m−ReSa1g

s0d crosses the
upper LDA band edge whilem−ReSeg

ps0d moves below the
lower band edge.

This explains the pronounced changes of the orbital occu-
pation in Fig. 13 and, in particular, why an MIT can occur
although thea1g quasiparticle weight does not vanish(Fig.
14). This unexpected feature of the MIT has important physi-
cal consequences: Since at the MITNa1g

0 fm−ReSa1g
s0dg

→0, the height of the a1g quasiparticle peak goes to zero,
rather than its width, which is given byZ. For theeg

p band we
have bothNeg

p
0 fm−ReSeg

ps0dg→0 and Z→0 such thatheight

andwidth simultaneously go to zero. Therefore the quasipar-

ticle DOS Na1g

0 fm−ReSa1g
s0dg /Z does not diverge. Conse-

quently, physical quantities proportional to this quasiparticle
DOS like the linear coefficient of the specific heat and the
local susceptibility do not diverge, at least for thea1g bands.

VI. COMPARISON WITH EXPERIMENTAL SPECTRA

To be able to compare with experimental photoemission
spectra all LDA+DMFT results in this section were multi-
plied with the Fermi function at the experimental tempera-
ture sT<180 Kd and broadened with a 0.09 eV Gaussian to
account for the experimental resolution.28,64The same proce-
dure was used for the comparison with x-ray spectroscopy
data (with an inverse Fermi function atT=300 K and a
broadening of 0.2 eV taken from experiment). We used the
Fermi function at the same temperature for all theory curves
to have a more direct comparison of the QMC data without a
further temperature dependence being introduced by the
Fermi function. On the experimental side, the PES of Refs.
28 and 65 were corrected for the inelastic Shirley-type back-
ground, which also removes the O 2p contribution. All ex-
perimental and theoretical curves were normalized to yield
the same area. This area is a measure of the occupation of the
vanadiumt2g bands and should be two(two t2g electrons per
vanadium site; note that the spectrum is measured in units
eV−1).

In Fig. 17, LDA+DMFT results for temperatures 1160,
700, and 300 K are presented. Besides the broad, essentially
temperature-independent peak at about −1.25 eV corre-
sponding to the lower Hubbard band, the three curves clearly
show the development of a well-defined resonancelike struc-
ture just below the Fermi energy when the temperature is
decreased. The latter peak is what remains of the quasiparti-
cle peak after multiplication with the Fermi function. At
1160 K it is nearly equal in height to the lower Hubbard
band, and there remains almost no minimum between these
two features.

In Fig. 18, the LDA+DMFT results at 300 K are com-
pared with early photoemission spectra by Schramme65 and
recent high-resolution bulk-sensitive photoemission spectra
by Mo et al.28 The strong difference between the experimen-

FIG. 15. (Color online) Spectral weight of thea1g andeg
p orbit-

als at the Fermi energy, as estimated by −b /pGst=b /2d, vs U.

FIG. 16. (Color online) Effective chemical potentialm
−ReSsv0d vs U. The upper and lower band edges of the noninter-
acting LDA DOS are shown as solid lines and the entire LDA DOS
of V2O3 is plotted vertically at the rightz axis.
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tal results is now known to be due to the distinct surface
sensitivity of the earlier data. In fact, the photoemission data
by Mo et al.28 obtained athn=700 eV andT=175 K exhibit
a pronounced quasiparticle peak. This is in good qualitative
agreement with our low-temperature calculations. However,
the experimental quasiparticle peak has more spectral
weight. The latter is about 11% larger than that in the theo-
retical curve(0.40 and 0.36, respectively, when measuring
from −0.63 eV; note that while the theory peak considerably
sharpens with decreasing temperature its weight only in-
creases by 11% from 1160 to 300 K). The origin for this
discrepancy, for a system as close to a Mott transition as
V2O3, is presently not clear.

In Fig. 19 we present the corresponding calculations for
Cr-doped V2O3: There is a lower Hubbard band centered at
about −1 eV as in the metallic phase, but a quasiparticle
peak at the Fermi energy no longer exists. It is interesting to
note, however, that there remains some spectral weight in the
vicinity of the Fermi energy. Clearly this is not a Fermi-
liquid effect, but is due to highly incoherent states with a
large imaginary part of the low-frequency self-energy. With
decreasing temperatures, this incoherent spectral weight is

reduced and is expected to vanish forT→0. Therefore the
resistanceincreaseswith decreasing temperature as is to be
expected for an insulator. For comparison we also show the
LDA data in Fig. 19. They give a completely different pic-
ture: Besides a small peak at about −0.8 eV, which is
roughly in the same energy region as the lower Hubbard
band of the LDA+DMFT calculations, it shows a strong
peak slightly below the Fermi energy. Clearly, LDA predicts
a metallic solution, although the input crystal structure is that
for insulatingsV0.962Cr0.038d2O3.

While the comparison with PES data provides important
insight into the physics of V2O3, more than half of the the-
oretical spectrum lies aboveEF. For this region we compare
our results at 1160, 700, and 300 K with O 1s x-ray absorp-
tion spectra(XAS) for V2O3 at 300 K by Mülleret al.66 (see
Fig. 20). Since in the XAS data the Fermi energy is not
precisely determined, the data were shifted so that the peaks
at 1.1 eV coincide; all curves were normalized to the same
area.

The theoretical spectra aboveEF are found to be almost
independent of temperature. Just above the Fermi energy

FIG. 17. (Color online) LDA+DMFTsQMCd results for the me-
tallic phase at different temperatures atU=5 eV.

FIG. 18. (Color online) Comparison of LDA+DMFTsQMCd re-
sults at T=300 K and U=5 eV with photoemission data by
Schrammeet al. (Ref. 65) and Mo et al. (Ref. 28) for metallic
V2O3.

FIG. 19. (Color online) Comparison of LDA and LDA
+DMFTsQMCd results for insulatingsV0.962Cr0.038d2O3; U=5 eV
for the LDA+DMFT calculations.

FIG. 20. (Color online) Comparison of LDA+DMFTsQMCd re-
sults atU=5 eV with x-ray absorption data by Mülleret al. (Ref.
66) for metallic V2O3.
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they all show some structure[i.e., a shoulder at higher tem-
peratures developing into a small peak at low temperatures
s300 Kd], which is the residue of the quasiparticle peak. Fur-
thermore, at 1.1 eV there is a rather narrow peak, and at
about 4.2 eV a broad peak. The latter two structures are parts
of the upper Hubbard band, which is split due to the Hund’s
rule couplingJ. Hence, the relative position of those two
peaks can be expected to depend sensitively on the value of
J. A slightly smaller value ofJ will therefore yield an even
better agreement with experiment.

The absence of any quasiparticle weight nearEF in the
XAS data is puzzling. This quasiparticle weight is not only
present in the theoretical spectra aboveandbelowEF, but is
also seen in the high-resolution PES measurements by Moet
al.28 belowEF. This calls for additional XAS or inverse pho-
toemission spectroscopy experiments. For comparison with
future experiments, we also show the theoretical XAS spec-
tra for Cr-doped insulating V2O3 in Fig. 21, where our data
have been broadened with the experimental resolution of
Müller et al.66

The comparison between theoretical and experimental
spectra for metallic V2O3 is summed up in Fig. 22 where our
LDA+DMFT results for 300 K are shown together with the
experimental PES data by Moet al.28 and XAS data by
Müller et al.66 To document the theoretical improvement
achieved by including the electronic correlations with the

LDA+DMFT technique we also show the results of LDA.
We note again that, by adjusting the value ofU such that the
experimentally determined crystal structures lead to the cor-
rect metallic and insulating behavior, the spectrum was cal-
culated without any further parameter fit. In consideration of
this fact the agreement of our results with the experimental
spectra aboveand below the Fermi energy is remarkably
good. Although LDA yields the same gross features, their
weight, position and width neither agree with LDA+DMFT
nor experiment. The interpretation of the two large peaks in
the upper half of the spectrum is also different within LDA
and LDA+DMFT. As denoted in the figure, the peaks in
LDA are purely fromt2g (lower peak) and eg

s (upper peak)
bands whereas they are mainlya1g for the lower andeg

p for
the upper peak in LDA+DMFT, with some admixture of the
respective other band.

We note that theeg
s bands were not taken into account in

our calculations. Therefore, while the complete LDA curve is
normalized to an area of 10(corresponding to tend elec-
trons), the experimental and LDA+DMFT curves are nor-
malized to an area of 6(corresponding to the six electrons of
the t2g bands). We may estimate the position of theeg

s bands
in a LDA+DMFT calculation as following: Assuming that
the intra-t2g Coulomb interactionV=U−2J<3 eV also ap-
plies for the interactionbetween t2g and eg

s electrons, and
taking the difference between theeg

s- andt2g-band centers of
gravity of roughly 2.5 eV into account, we expect theeg

s

band to be located approximately at 2.5 eV+3 eV=5.5 eV
above the lower Hubbard bands−1.5 eVd, i.e., at about 4 eV.
With this estimate we expect the(upper) XAS peak at around
4 eV in Fig. 22 to be a mixture ofeg

s and t2g states. More
precisely, this upper Hubbard band describestransitions
from eg

peg
p configurations with two electrons to the three-

electron configurationseg
peg

peg
p, eg

peg
pa1g, andeg

peg
peg

s (there is
a minor admixture ofeg

pa1g states).
The properties of paramagnetic V2O3 across the MIT ob-

tained with LDA+DMFT for a multiband model are thus
found to be remarkably different from those known from the
one-band Hubbard model. Indeed, the orbital degrees of free-
dom are seen to play an essential role: They are not only
responsible for the high asymmetry of the spectra below and
above the Fermi energy, but are also required to explain the
reduction of the height of the quasiparticle peak at the Fermi

FIG. 21. (Color online) LDA+DMFTsQMCd spectra forE.EF

for insulatingsV0.962Cr0.038d2O3 at U=5 eV.

FIG. 22. (Color online) Comparison of LDA
+DMFTsQMCd results atU=5 eV with PES data
by Mo et al. (Ref. 28) and x-ray absorption data
by Müller et al. (Ref. 66) for the metallic phase
above and belowEF.
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energy when the MIT is approached in the metallic phase, as
well as the smallness of the insulating gap.

VII. CONCLUSION

Using LDA-calculated densities of states for paramag-
netic metallic V2O3 as well as paramagnetic insulating
sV0.962Cr0.038d2O3 as input, we performed DMFT(QMC) cal-
culations at 300, 700, and 1160 K for variousU values. For
U<5 eV, the calculated spectra show a Mott-Hubbard MIT
(or rather a sharp crossover at the temperatures accessible by
present-day QMC simulations). The details of this MIT are
quite different from those obtained within the one-band Hub-
bard model.13,15–18In the latter model theheightof the qua-
siparticle peak at the Fermi energy is fixed and the MIT is
signaled by a divergence of the effective mass(or the inverse
quasiparticle weight 1/Z) such that thewidth of the quasi-
particle peak goes to zero. In contrast, our LDA+DMFT
results show that, for thea1g quasiparticle peak, theheight
goes to zero while thewidth stays constant, as indicated by a
roughly constant value of 1/Z at the MIT. For theeg

p quasi-
particle peak a combination of, both, a reducedheight and
width at the MIT is found. This new type of physics, but also
the high asymmetry of the spectra belowand above the
Fermi energy as well as the smallness of the insulating gap,
are all due to theorbital degrees of freedom.

We compared our theoretical data atU=5 eV with the
results of various experimental measurements and found the
orbital occupation to be predominantly ofeg

p character(with
a small admixture ofa1g), in agreement with experiments.
Thea1g occupation decreases for higherU values, especially

at low temperatures. Furthermore, we found a spin-1 state
across the MIT in agreement with polarization dependent
x-ray absorption measurements. The 300 K spectrum calcu-
lated by us for metallic V2O3 is in good overall agreement
with new bulk-sensitive PES measurements.28 On the other
hand, the difference in the quasiparticle weight remains to be
explained. The comparison with x-ray absorption measure-
ments shows that our LDA+DMFTsQMCd calculations also
give a good description of the spectrum above the Fermi
energy.

All calculations described above were done using the in-
tegral over the LDA density of states(DOS) [Eq. (2)] to
obtain the lattice Green function. For a noncubic system, this
procedure is an approximation to the exact LDA+DMFT
scheme. In the future we plan to make use of the full Hamil-
tonianH0 [Eq. (1)]. In this way it will be possible to study
the influence of correlation effects on all orbitals including
the eg

s orbitals and the oxygen states.
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