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Competing phases in the extended U-V-J Hubbard model near the Van Hove fillings
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The phase diagram of the two-dimensional extended one-band U-V-J Hubbard model is considered within
a mean-field approximation and two- and many-patch renormalization-group ~RG! approaches near the Van
Hove band fillings. At small t8 and J.0, mean-field and many-patch RG approaches give similar results for
the leading spin-density-wave ~SDW! instability, while the two-patch RG approach that predicts a wide region
of charge-flux ~CF! phase becomes unreliable due to nesting effect. There is a complex competition between
SDW, CF phases, and d-wave superconductivity at small t8 in two- and many-patch RG approaches. The
spin-flux phase, which is not stable at the mean-field level, is identified as a possible ground state at J,0 in
both RG approaches. With increasing t8 the results of all three approaches merge: d-wave superconductivity at
J.0 and ferromagnetism at J,0 become the leading instabilities. For large enough V, the charge-density-
wave state occurs.
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I. INTRODUCTION

Despite many years of research, the mysterious properties
of underdoped high-temperature superconductors remain an
unsolved and most challenging problem of strongly corre-
lated electron physics. Recent theoretical proposals as well
as experimental data trace the possible origin of the uncon-
ventional electronic properties of underdoped cuprates to a
delicate competition between various types of ordering phe-
nomena. Since metallic cuprates result from doping Mott-
Hubbard antiferromagnetic insulators, it is natural that strong
magnetic correlations persist for superconducting composi-
tions, but alternative ordering tendencies may be hidden as
well.
The relation between superconductivity and antiferromag-

netism and the attempt to treat both types of order on the
same footing was the basis of the phenomenological SO~5!
theory as originally proposed by Zhang.1 Yet, the observation
of inhomogeneous charge and spin structures in static stripe
patterns in rare-earth doped La22xSrxCuO4 ~Ref. 2! and the
appearance of an anisotropic d-wave–like pseudogap at tem-
peratures well above the superconducting transition have
pointed to the possibility of nearby instabilities towards other
phases in competition or coexistence with d-wave supercon-
ductivity.
The relevance of stripe patterns was proposed earlier ~for

a review see, e.g., Ref. 3!, and years later their existence was
indeed experimentally verified in La22x2yNdySrxCuO4.2
These static stripe structures may, in fact, result from the
lattice anisotropy connected to the CuO6 octahedral tilt pat-
tern in the LTT phase of this compound.4 Time-reversal sym-
metry breaking charge-flux5–7 ~CF! and spin-flux8–10 ~SF,
spin nematic! phases were also proposed earlier as possible
ground states of the basic correlated electron Hamiltonians
commonly used to model high-Tc superconductors.
The idea of circulating orbital currents ~also called an

orbital antiferromagnetic state5! was recently revived as the
underlying origin of the pseudogap phase in underdoped
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cuprates.11 Two variants of orbital current structures are cur-
rently discussed: Varma12 proposed a circulating current pat-
tern in the CuO2 planes, which preserves the discrete trans-
lational symmetry of the lattice, while the more recently
proposed d-density wave state11,13 contains a staggered cur-
rent pattern that doubles the unit cell. The latter state is, in
fact, equivalent to the orbital antiferromagnet discussed a
long time ago.6 These time-reversal symmetry-breaking
phases may furthermore coexist with d-wave superconduc-
tivity. Yet, another instability connected to the spontaneous
deformation of the Fermi surface @Pomeranchuk instability
~PI!# was recently proposed for the two-dimensional Hub-
bard model.14 It appears tempting to suggest a possible rela-
tion between the Pomeranchuk instability and stripe pattern
formation.
Remarkably, the possible existence of orbital currents has

most recently received experimental support. Angle-resolved
photoemission with circularly polarized light identified in-
tensity differences for left and right circularly polarized pho-
tons below the pseudogap temperature in Bi2212 ~Ref. 15!,
and c-axis oriented ordered magnetic moments were detected
by spin-polarized neutron scattering in yttrium barium cop-
per oxide.16 Both datasets can find a natural interpretation in
terms of planar circulating current phases.
The tendency towards the formation of charge-flux phases

is most likely beyond the physics of the standard Hubbard
model. In order to allow for a larger variety of competing or
coexisting phases, it therefore appears demanding to explore
some extensions of the Hubbard model. A natural choice is to
consider the extended U-V-J Hubbard model (V is a nearest-
neighbor interaction and J is the Heisenberg exchange cou-
pling!. This model was chosen earlier to study orbital anti-
ferromagnetism and spin nematic phases. In one dimension
~1D!, this model was studied within the bosonization
technique.17,18 However, in 1D, one cannot explore the pos-
sibility of charge- and spin-flux phases, but they were inves-
tigated later on in an extension to ladder systems.19 In two
dimensions, the U-V-J model was considered within mean-
©2003 The American Physical Society04-1
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field approximation for J50 ~Refs. 20,21! and for V50.22
The possible coexistence of antiferromagnetism and d-wave
superconductivity,23 and charge-flux and d-wave
superconductivity24 was discussed in this context. More re-
cently, the possibility of coexisting phases was reanalyzed
within a mean-field treatment of the extended Hubbard
model, which furthermore includes correlated hopping.25
Common to these studies is the need to go beyond the

standard one-band Hubbard model to allow for a variety of
alternative ordering phenomena. However, a mean-field
treatment does not allow for an accurate treatment of fluc-
tuations that may alter the complex ground-state phase dia-
gram. Other analytical and numerical methods are needed for
a reliable insight into the interplay of various types of order-
ing tendencies. One possible step forward in this direction
has been the recent analysis of competing phases within dy-
namical mean-field theory.26
Another possible route is to start from the weak-coupling

regime, where magnetic or superconducting instabilities can
result from nesting of the Fermi surface ~FS! or Van Hove
singularities ~vHS! in the density of states. The latter case is
also relevant from a material-oriented point of view since the
FS of cuprates in an intermediate doping regime is close to
vHS of the electron spectrum.27–29 Schulz considered30 dif-
ferent phases near Van Hove band fillings within a mean-
field-like analysis which, however, did not take into account
the interplay of different electron-scattering channels. The
parquet approach was first applied to the extended Hubbard
model with a nearest-neighbor hopping in Refs. 31–33,
where besides the standard superconducting, spin-, and
charge-density-wave instabilities, the possibilities for spin-
and charge-flux instabilities were also discussed. Recently,
the standard Hubbard model (V5J50) was investigated
within the renormalization-group ~RG! approach on a
patched FS using the Polchinsky flow equations,34 Wick-
ordered RG equations,35 and a RG scheme for one-particle
irreducible functions.36 The possibility of the charge-flux
phase as well as the Pomeranchuk instability for the standard
Hubbard model was addressed in Ref. 37. These latter meth-
ods have the advantage that they allow to take into account
the contributions of the entire FS. At the same time, even the
restriction of the momenta to the vicinity of Van Hove points
~the so-called ‘‘two-patch’’ approach originally proposed in
Refs. 38,39! can capture the essential physics and can give
results that are in qualitative agreement with the RG ap-
proaches on patched Fermi surfaces, see Ref. 40. This two-
patch approach allows to include the contribution of particle-
hole scattering at small momenta, which is expected to be
important for the determination of the complete ground-state
phase diagram. Recently, the role of this type of scattering
was also explored within the RG approach with a tempera-
ture cutoff on the patched FS.41 Although the phase diagram
of the U-V-J Hubbard model was investigated previously
within the two-patch RG approach, only the cases of J50
~Ref. 21! and arbitrary J with nearest-neighbor hopping
dispersion,42 but without the contribution of the small-
momenta particle-hole scattering were considered. The same
model within the many-patch approach was not systemati-
cally studied so far.
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In this paper we reconsider the phase diagram of the ex-
tended U-V-J Hubbard model with special emphasis on the
possibility of flux phases. We employ the mean-field ap-
proximation, and two- and many-patch RG approaches. The
paper is organized as follows: In Sec. II, we start with the
mean-field phase diagram of the U-V-J Hubbard model. In
Sec. III, we describe the two- and many-patch RG schemes,
and compare the results obtained with both approaches to the
mean-field phase diagram. In Sec. IV, we complement the
RG analysis by symmetry arguments. Finally, in Sec. V, we
summarize the main results and conclude.

II. MEAN-FIELD ANALYSIS

We consider the extended U-V-J Hubbard model on a
square lattice, given by

H52(
i js

t i jc is
† c js1U(

i
n i↑n i↓1

V
2 (̂

i j&
n in j

1
J
2 (̂

i j&
Si•Sj2mNe , ~1!

where the hopping amplitude t i j5t for nearest-neighbor sites
i and j, and t i j52t8 for next-nearest neighbor sites (t ,t8
.0); Ne is the total number of electrons. U.0 is the on-site
interaction, V the nearest-neighbor interaction, J is the
Heisenberg exchange coupling, and

n i5(
s

c is
† c is , Si5
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sss8 are the Pauli matrices. We introduce operators that cor-
respond to different types of order,
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where l i j511(21) for j5i1dx(dy) and zero otherwise;
dx ,y denote unit vectors that connect to nearest-neighbor sites
in x and y directions, respectively. (21) i[(21) ix1iy, z54
is the number of nearest-neighbor sites on the square lattice,
and n is the electron density. Nonzero average values of the
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operators ÔCDW(i) and ÔSDW(i) correspond to charge- and
spin-density wave states, ÔdSC(i) to d-wave superconductiv-
ity, ÔCF and ÔSF to states with charge flux ~the orbital anti-
ferromagnet state!5,6,13 and spin flux ~spin nematic state!,8–10

respectively, and finally ÔF corresponds to a ferromagnetic
state. We decouple the interactions by introducing the order
parameters Om5^Ôm& (m5CDW,SDW, . . . ), and arrive at
the mean-field Hamiltonian

H5(
ks

«kcks
† cks1(

k
DmÔm~k!1

Dm
2

Gm
, ~3!

where

«k522t~cos kx1cos ky!14t8cos kxcos ky2m . ~4!

Ôm(k) are the Fourier transforms of the operators in Eq. ~2!,
Dm5OmGm , and

GCDW58V2U;GSDW5U12J;GdSC53J24V;

GCF53J14V;GSF54V2J;GF5U22J . ~5!

At finite temperature T, the self-consistency conditions
lead to the mean-field equations ~see, e.g., Ref. 8!

15
Gm

2N (
k,a56

8 fk
2

Eka
i tanh

Eka
m

2T ,

n512
1
2N (

k,a56

8
tanh

Eka
m

2T , ~6!

where S8 denotes the summation over momenta in the mag-
netic Brillouin zone defined by cos kx1cos ky>0 ~the lattice
constant has been set to unity!; fk51 for SDW and CDW
phases, and fk5 f k[(cos kx2cos ky)/2 for CF, SF, and dSC
phases,

Eka
m 5

«k1«k1Q

2 1
a

2
A~«k2«k1Q!214fk

2Dm
2 ~7!
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for m5SDW,CDW,CF, or SF, and

Eka
dSC5

1

2
A~«k2«k1Q!214fk

2DdSC
2 . ~8!

Q5(p ,p) is the wave vector for staggered order. For the
ferromagnetic phase, the mean-field equations read

DF5
GF
N (

k,a56
a f ka ,n5

1
N (

ka
f ka ,

Eka
F 5«k2aDF , ~9!

where f ka[ f (Eka
F ) is the Fermi function. Nontrivial mean-

field solutions exist only for Gm.0, which therefore deter-
mines the borders of absolute stability of the corresponding
phases in the phase diagram.
We also allow for coexistence of antiferromagnetism,

d-wave superconductivity, and charge-flux phases. The cor-
responding mean-field equations are the generalization of
those for the coexistence of SDW and dSC phases,23 and CF
and dSC phases,24 and have the form
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where the electronic spectrum is given by
Eka5A~«k
21«k1Q

2 !/21DSDW
2 1 f k

2~DCF
2 1DdSC

2 !1~«k1«k1Q!gka/2,

gka5aA~«k2«k1Q!214~DSDW
2 1 f k

2DdSC
2 !. ~11!
We note that a nonzero expectation value of both antiferro-
magnetic and superconducting order parameters also pro-
duces a nonzero p-triplet pairing amplitude with momentum
Q ~see, e.g., Ref. 23!. Analogously, nonzero values of charge
flux and d-wave superconducting order parameters lead to a
finite singlet-pairing amplitude with momentum Q ~so-called
h pairing!. Here, we do not include p and h pairing in the
mean-field analysis, since it was verified numerically23 that
the corresponding amplitudes are significantly smaller than
the amplitudes of the corresponding ‘‘parent’’ order param-
eters.
The mean-field equations ~6!, ~9!, and ~10! were solved

numerically for T50, U54t , t850.1t , and band filling n
50.92 ~which is the Van Hove filling for this value of t8/t ,
see the following section!. Since the regions of stability of
different phases overlap, we compare the energies E5^H&
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1mNe to identify the mean-field ground state. The resulting
phase diagram is shown in Fig. 1. At positive J and not too
large V, we find coexistence of a spin-density wave with
d-wave superconductivity. However, the fraction of super-
conductivity in this phase is quite small ~for V50 and J
50.5U , we have OSDW50.40 and OdSC50.06). With de-
creasing V the superconducting fraction increases and be-
comes substantially close to the transition into the pure dSC
state ~for V523U/4 and J520.05U , we have OSDW
50.18 and OdSC50.12), and finally at the boundary between
the dSC and SDW-dSC phases, the antiferromagnetic order
parameter vanishes continuously. Therefore, this transition as
well as the transition from the SDW to the SDW-dSC phase
is of second order. All other phase boundary lines in Fig. 1
correspond to first-order transitions. The CF, SF, and CF-
dSC phases are not energetically favorable at all on the
mean-field level, the dSC phase is stable only for V,22t .
The mean-field phase diagram at other fillings or other t8/t is
similar. In the special case t850 and half filling, the coex-
istence region of the SDW-dSC phase is replaced by a pure
SDW state.
Away from half filling, the phases with ordering wave

vector Q5(p ,p), i.e., CDW, SDW, CF, and SF phases are
usually unstable towards phase separation ~see, e.g., the dis-
cussion in Refs. 43,44!. To analyze this possibility, we cal-
culate the isothermal compressibility kT defined by

kT5
1
n2

]n
]m

5
N

n2 S ]2E

]n2 D
21

. ~12!

A negative kT necessarily implies the thermodynamic insta-
bility of the considered homogeneous phase and a possible
tendency towards phase separation. The numerical analysis
shows that all above phases are indeed unstable except for

FIG. 1. The mean-field phase diagram for U54t , t8/t50.1, and
Van Hove band filling n50.92. SDW and CDW denote the spin-
and charge-density wave phases, dSC the d-wave superconducting
phase, SDW1dSC marks phase coexistence, and F is the ferromag-
netic phase. Solid and dashed lines correspond to first- and second-
order transitions, respectively.
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the SDW-dSC phase in the region J!U and V→2U , where
the fraction of the SDW order parameter is small.
The above mean-field results provide a rough qualitative

picture for the regions of different stable phases in the
ground-state phase diagram of the U-V-J Hubbard model.
More detailed information is extracted from the weak-
coupling RG treatments discussed below.

III. RENORMALIZATION-GROUP ANALYSIS

A. Two-patch analysis

The tight-binding spectrum ~4! leads to vHS in the density
of states arising from the contributions of the points kA
5(p ,0) and kB5(0,p). These singularities lie at the FS if
m524t8. For t850, the corresponding filling is nVH51
and the FS is nested, but the nesting is removed for t8/t
.0, when nVH,1. The shape of the FS at different t8/t and
Van Hove band fillings is shown in Fig. 2.
The two-patch approach38–40 considers the fillings that are

close to the Van Hove band fillings. At these fillings, the
density of states at the Fermi energy and the electron-
electron interaction vertices at momenta k5kA ,B contain
logarithmical divergences coming from the momentum inte-
grations in the vicinity of the points k5kA ,B , and therefore
one can expect that the contributions from the vicinities of
these points are the most important for the calculation of the
renormalized electron-electron interaction vertices.
We start by rewriting the U-V-J Hamiltonian in momen-

tum space,

H5(
ks

«kcks
† cks1

1
2N2 (

k1k2k3k4
(
ss8

g~k1 ,k2 ,k3 ,k4!

3ck1s
† ck2s8

† ck3s8ck4sdk11k22k32k4, ~13!

where

FIG. 2. The Fermi surface at Van Hove band fillings: t850 and
n51 ~solid line!, t8/t50.1 and n50.92 ~long-dashed line!, and
t8/t50.3 and n50.72 ~short-dashed line!; A and B are Van Hove
points.
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g~k1 ,k2 ,k3 ,k4!5U1~V2J/4!gk22k32~J/2!gk32k1,
~14!

gk52(cos kx1cos ky), and the Kronecker d symbol ensures
momentum conservation. Since we restrict the momenta to
the vicinity of kA and kB , it is convenient to introduce new
electron operators ak and bk by

cks5H ak2kA ,s , kPO~A !

bk2kB ,s , kPO~B !.

Here O(A)5$k: uk2kAu,L% and similar for B; L is a mo-
mentum cutoff parameter. We expand the spectrum near the
Van Hove points,

«kA1p[«p
A522t~sin2wpx

22cos2wpy
2!2m̃

522tp1p22m̃ , ~15a!

«kB1p[«p
B52t~cos2wpx

22sin2wpy
2!2m̃ ,

52t p̃1 p̃22m̃ , ~15b!

where cos(2w)5R52t8/t, m̃5m14t8, p65pxsinw

6pycosw, p̃65pxsinw6pycosw, and rewrite the Hamil-
tonian in the form

H5(
ps

«p
Aaps
† aps1(

ps
«p
Bbps
† bps

1
2p2t

N2 (
pi ,ss8

@g1~l !ap1s
† bp2s8

† ap3s8bp4s

1g2~l !ap1s
† bp2s8

† bp3s8ap4s#dp11p22p32p4

1
p2t

N2 (
pi ,ss8

@g3~l !ap1s
† ap2s8

† bp3s8bp4s

1g4~l !ap1s
† ap2s8

† ap3s8ap4s1a↔b#dp11p22p32p4

~16!

where «p
A ,B5«kA ,B1p , l5ln@L/max(pi1 ,pi2 ,p̃i1 ,p̃i2 ,umu/t#;

the summation is restricted to momenta upiu,L . Neglecting
the weak ~nonlogarithmical! dependence of the vertices g i on
momenta upiu,L , we obtain the bare values of the vertices
g i
0 which are independent of l and given by

g1
05g~kA ,kB ,kA ,kB!5g0~124V/U2J/U !,

g2
05g~kA ,kB ,kB ,kA!5g0~114V/U1J/U !,

g3
05g~kA ,kA ,kB ,kB!5g0~124V/U13J/U !,

g4
05g~kA ,kA ,kA ,kA!5g0~114V/U23J/U !, ~17!

where g05U/(4p2t) is the dimensionless coupling param-
eter. Note that at half filling and t850, the contributions of
the flat, nested parts of the FS @which should be considered
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separately ~see, e.g., Ref. 33 and references therein# is ne-
glected. The contribution of these nested parts of the Fermi
surface can be considered within the many-patch approach,
as we discuss in the following section.
To obtain the dependence of the vertices g i on l , we

apply the RG analysis. We start with the bare values of the
vertices at momenta far from Van Hove singularities ~i.e.,
with g i

0); and integrate out the fermions ap with momenta
Le2l,p6,Le2l2dl, and fermions bp with momenta
Le2l, p̃6,Le2l2dl at each RG step. We consider first
the one-loop corrections that contain particle-hole (p-h) and
particle-particle (p-p) bubbles at small momenta and mo-
menta close to Q. The results for these bubbles can be sum-
marized as follows:

Pq
p-p5 (

Le2l,p6,L

12 f ~«p
A!2 f ~«p1q

A !

«p
A1«p1q

A 5
c0
4p2t

l2,

~18a!

Pq1Q
p-h 5 (

Le2l,p6,L

f ~«p
A!2 f ~«p1q

B !

«p
A2«p1q

B 5
1
4p2t

min~l2,2zQ!,

~18b!

Pq1Q
p-p 5 (

Le2l,p6,L

12 f ~«p
A!2 f ~«p1q

B !

«p
A1«p1q

B 5
cQ
2p2t

l ,

~18c!

where

c051/sin~2w !51/A12R2,

cQ5tan21~R/A12R2!/R ,

zQ5ln@~11A12R2!/R# . ~19!

The contribution of the slices (Le2l,p6 , p̃6,Le2l2dl)
is obtained by taking the derivatives dP i /dl . Since the con-
tribution to the particle-hole (Pq

p-h) channel is concentrated
near the FS, we use the weaker cutoff condition Le2l

,p1,L or Le2l,p2,L for this channel, which gives

Pq
p-h5 (

Le2l,p1,L or
Le2l,p2,L

f ~«p
A!2 f ~«p1q

A !

«p
A2«p1q

A 5
z0l

2p2t
, ~20!

with z05c0. A more accurate treatment of the p-h channel
requires the parquet summation of the one-loop diagrams; it
was shown, however, in Ref. 40 that the corresponding cor-
rections do not change the results qualitatively. Equation ~20!
can also be justified by considering the temperature flow of
the vertices on a patched FS as proposed in Ref. 41 ~also see
the following section!.
While the bubbles PQ

p-h ~at l,2zQ) and P0
p-p contain

squared logarithms, the bubbles PQ
p-h ~at l.2zQ), P0

p-h ,
and PQ

p-p contain only single-logarithmical divergences.
Strictly speaking, the RG approach does not perform a cor-
rect summation of these subleading divergences. However,
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one cannot simply neglect the single-logarithmical contribu-
tions (Pq1Q

p-p at l,2zQ , P0
p-h , and Pq

p-h) in comparison to
the squared-logarithmical ones, since it amounts to ignore
some electron-scattering channels and therefore would ex-
clude the possibility of related orders, see Ref. 40 for a dis-
cussion. Mathematically, this difficulty manifests itself in the
corresponding phases by the growing of the vertices which
are multiplied by single logarithms, whose contribution can
therefore become comparable to the squared-logarithmic
contributions.40
As we will see below from the solution of the RG equa-

tions, in the weak-coupling regime at small t8/t!1, the con-
tribution of the subleading corrections P0

p-h and PQ
p-p is

small, so that they do not change substantially the flow of the
coupling constants. With increasing coupling, the contribu-
tion of single-logarithmical terms is comparable to the con-
tribution of the leading squared-logarithmical terms, which
reflects the possibility of a corresponding ordering phenom-
ena ~e.g., ferromagnetism! in the strong-coupling regime, al-
though the latter cannot be explored within the weak-
coupling RG approach.
At intermediate t8/t , the situation changes. In this case,

the contributions of different channels ~containing single-
and double-logarithmical terms! are already comparable in
the weak-coupling regime. We have checked, however, that
even for intermediate t8/t , the qualitative results of the two-
patch RG approach do not depend on the cutoff procedure,
which means that the treatment of the subleading single-
logarithmical terms within the same RG procedure for inter-
mediate t8/t is qualitatively reliable. Therefore, we take into
account the contribution of both single- and squared-
logarithmical terms in Eqs. ~18! and ~20!. At the same time,
the contribution of the subleading single-logarithmical term
in Eq. ~18a! can be safely neglected, since it is multiplied by
the same vertex as the leading one, and therefore is always
subleading.
We determine the RG equations for the vertices g i(l)

as38–40

dg1 /dl52d1~l !g1~g22g1!12d2g1g422 d3g1g2 ,

dg2 /dl5d1~l !~g2
21g3

2!12d2~g12g2!g42d3~g1
21g2

2!,

dg3 /dl522d0~l !g3g412d1~l !g3~2g22g1!,

dg4 /dl52d0~l !~g3
21g4

2!1d2~g1
212g1g222g2

21g4
2!,
~21!

where

d0~l !52c0l ,d252z0 ;d352cQ ,

d1~l !52 min~l ,zQ!. ~22!

Equations ~21! have to be solved with the initial conditions
g i(0)5g i

0 . Note that we neglect here the renormalization of
coupling constants that arise from nonlogarithmical contribu-
tions at l,1; this renormalization is small provided that the
condition g i

0!1 is satisfied.
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Equations ~21! coincide with the temperature cutoff RG
approach41 for one-particle irreducible functions on the
patched FS ~see Sec. III B! in the approximation that the
vertex is constant ~i.e., does not depend on the patch! for the
momenta in the vicinity of the vHS ~for upiu,L) and zero
far from it ~when upiu.L at least for one i51, . . . ,4).
Therefore, the real dependence of the vertices on the mo-
menta along the FS is replaced by a step function in the
two-patch approach. At the same time, the momentum de-
pendence of the vertices in the direction perpendicular to the
FS is treated correctly through the scaling variable l . Note,
however, that the momentum dependence of the electronic
spectrum within each patch is correctly taken into account in
the two-patch approach.
Strictly speaking, some of the two-loop diagrams ~e.g.,

the self-energy corrections! give contributions of the same
order as the single-logarithmical terms, which we treat here,
and they should be taken into account as well. However, the
analysis of such contributions is rather involved and the sub-
ject for future work.45 Note that this difficulty is also ‘‘hid-
den’’ in the RG approaches on a patched FS where additional
logarithmical divergences arise from the momentum integra-
tion along the FS.
In order to explore the possible instabilities of the system,

we consider the behavior of the zero-frequency, time-ordered
response functions at zero temperature,

xm~q!5E
2`

`

dt^T@Ôm~q,t !Ôm~2q,0!#&, ~23!

where Ôm(q,t) denote the Fourier components of operators
~2! in the Heisenberg representation. Besides the operators in
Eq. ~2!, we also test ~following Refs. 21,42!, the susceptibili-
ties that correspond to the operators

Q̂~ i !5
1
2 (

s
~c is
† c is21 !,

t̂~ i !5
1
2z (

js
l i jc is

† c js ,

Â~ i !5
1
2z (

js
sl i jc is

† c js ,

p̂~ i !5
~21 ! i

2z (
js

l i jc is
† c j ,2s

† ,

ĥ~ i !5
~21 ! i

2z (
j(i),s

sc is
† c j ,2s

† , ~24!

where j(i) are the nearest-neighbor sites of site i. The sus-
ceptibility xQ(0) is related to the isothermal compressibility
kT by

kT5xQ~0 !/n2. ~25!

The bond-charge order parameter t characterizes an instabil-
ity towards a spontaneous deformation of the FS,42 i.e., an-
isotropy in x and y directions, the so-called Pomeranchuk
instability.14 Analogously, a bond-spin order parameter A
4-6
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characterizes a spin-dependent Pomeranchuk instability. The
operators p̂ and ĥ correspond to triplet and singlet pairing
with momentum Q5(p ,p).
Picking up the logarithmical divergences in l , we obtain

the RG equations for the susceptibilities in the same approxi-
mations as discussed above ~cf. Refs. 30,38–40!,

dxm~l !/dl5dam~l !Tm
2 ~l !, ~26!

d ln Tm~l !/dl5dam~l !Gm~l !,

where the coefficients Gm are given by

GCDW5g22g322g1 ; GSDW5g21g3 ;

GCF5g21g322g1 ; GSF5g22g3 ;

Gp5g12g2 ; Gh52g12g2 ;

GQ5g122g22g4 ; GF5g11g4 ;

Gt52g112g22g4 ; GA5g42g1 ;

GdSC5g32g4 . ~27!

In Eqs. ~26!, am50 for the dSC phase; am51 for SDW,
CDW, SF, and CF phases; am52 for F, Q, t , and A phases;
and am53 for p and h phases. Equations ~26! have to be
solved with the initial conditions Tm(0)51, xm(0)50. At
l50, the vertices ~27! coincide with those considered in the
mean-field approach in Sec. II @see Eq. ~5!#.
Numerical solutions of Eqs. ~21! show that at a critical

value lc of the scaling parameter l , some of the vertices and
susceptibilities are divergent. We analyze the behavior of the
coupling constants g1–g4 for l→lc representing it in the
form (b1•••b4), where b i50,1 , or 2 describes the behav-
ior of the coupling constant g i : the ‘‘plus’’ ~‘‘minus’’! sign
means relevant in the RG sense and tends to 1` (2`), and
zero means irrelevant. To identify the leading instabilities,
we calculate the inverse susceptibilities for l,l* (l* is the
value of the scaling parameter l when the largest absolute
value of the coupling constants, ug iu, exceeds unity! and then
use a linear extrapolation of the inverse susceptibility ~see
Fig. 7 below!. From the RG point of view, at l;l* the
‘‘one-dimensional-like’’ behavior of the coupling constants
considered above changes to two-dimensional one, and also
the parts of the FS far from the Van Hove points become
non-negligible. However, since the values of the susceptibili-
ties are large already at l*, the corresponding critical region
is narrow.
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For a given lc , the size L of the patches is restricted by
L!p and ln(4/L)!lc . The latter criterion follows from the
condition that the contribution of the electrons with uk6u
,L to particle-hole and particle-particle bubbles is domi-
nant ~see, e.g., Ref. 42!. We choose L51 and require lc
@ln 4.1. Since lc decreases with increasing interaction,
this criterium restricts the values of the interactions where
the two-patch RG approach is valid.

B. Many-patch analysis

In the many-patch analysis, we follow the temperature
cutoff renormalization group for one-particle irreducible
~1PI! Green’s functions proposed recently by Honerkamp
and Salmhofer in Ref. 41. This version of the RG uses the
temperature as a natural cutoff parameter, allowing to ac-
count for both the excitations with momenta close to the
Fermi surface and far from it, which is necessary for the
description of the particle-hole instabilities with zero mo-
mentum transfer, e.g., ferromagnetism, phase separation, and
the Pomeranchuk instability. Neglecting the frequency de-
pendence of the vertices, which is justified in the weak-
coupling regime, the RG differential equation for the
temperature- and momentum-dependent electron-electron in-
teraction vertex ~see the diagrammatic representation in Fig.
3! has the form

FIG. 3. Diagrammatic representation for the many-patch RG
equations, Eq. ~28!. Lines drawn through the vertices show the
direction of spin conservation. Diagrams are drawn in the same
order as the respective terms in Eq. ~28!. The cutting dash at the
propagator lines means the derivative with respect to T ~for brevity,
we indicate only the derivative of one of the propagators, the same
diagrams with derivatives of another propagator are included as
well!.
d
dT VT~k1 ,k2 ,k3!52(

p
VT~k1 ,k2 ,p!Lp-p~p,2p1k11k2!VT~p,2p1k11k2 ,k3!

1(
k

@22VT~k1 ,p,k3!VT~p1k12k3 ,k2 ,p!1VT~k1 ,p,k3!VT~k2 ,p1k12k3 ,p!

1VT~k1 ,p,p1k12k3!VT~p1k12k3 ,k2 ,p!#Lp-h~p,p1k12k3!

1(
k

VT~k1 ,p1k22k3 ,p!Lp-h~p,p1k22k3!VT~p,k2 ,k3!, ~28!
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where

Lp-h~k,k8!5
f T8~«k!2 f T8~«k8!

«k2«k8

,

Lp-p~k,k8!5
f T8~«k!1 f T8~«k8!

«k1«k8

, ~29!

and f T8(«)5d f («)/dT . Equation ~28! has to be solved with
the initial condition VT0(k1 ,k2 ,k3)5g(k1 ,k2 ,k3 ,k11k2
2k3), where the initial temperature T0 is of the order of the
bandwidth. The evolution of the vertices with decreasing
temperature determines the temperature dependence of the
susceptibilities according to41,37

d
dT xmT5(

k8
TmT~k8!TmT~7k81qm!

3Lp-p ,p-h~k8,7k81qm!,

d
dTTmT~k!57(

k8
TmT~k8!GmT~k,k8!

3Lp-p ,p-h~k8,7k81qm!, ~30!

where

GmT~k,k8!55
VT~k,k8,k81qm!22VT~k,k8,k1qm!

for m5CDW,CF,Q and t

VT~k,k8,k81qm!

for m5SDW,SF,F , and A
VT~k,2k1qm ,k8!

for m5p ,h , and dSC.
~31!

qm5Q for CDW, SDW, CF, SF, p , and h , and qm50 oth-
erwise. The upper signs in Eq. ~30! refer to the particle-
particle response (p ,h , and dSC!, the lower signs to the
particle-hole response. The initial conditions for Eqs. ~30!
are

Tm ,T0~k!5H cos kx2cos ky for CF,SF,PI,A,dSC, and p

1 otherwise,
~32!

and xm ,T050. To solve numerically Eqs. ~28! and ~30!, we
use the discretization of momentum space in 32 patches and
the same patching scheme as proposed in Ref. 41 ~we have
checked in selected cases that increasing the number of
patches to 48 does not change the results!. With account of
the symmetries of the square lattice, this reduces the above
integro-differential equations to a set of 1920 differential
equations that were solved numerically. We use the value of
the starting temperature T0512t , which is slightly larger
than the bandwidth, and stop the flow of the coupling con-
stants where the largest coupling constant Vmax518t . As for
the two-patch analysis, we extrapolate the resulting inverse
susceptibilities and calculate the critical values of the scaling
12510
parameter lc
m where the extrapolated inverse susceptibilities

vanish. Due to this procedure, the results of RG analysis do
not depend strongly on Vmax . Note that the initial k depen-
dence of response functions ~32! is slightly changed during
the renormalization-group flow: responses with d-wave sym-
metry ~CF, SF, PI, A, dSC, and p) acquire g-wave and
higher-order harmonics, while responses with s-wave sym-
metry acquire additional extended s wave (cos kx1cos ky).
However, these additional corrections are small.

C. Results of the RG analysis

For the calculations we choose the interaction strength
U52t since for stronger interactions and moderate uJu/U
and uVu/U , the RG approach becomes unreliable. The phase
diagrams calculated with this value of U, different values of
t8/t50, 0.1, 0.3, and the corresponding Van Hove fillings
are presented in Figs. 4–6. The phase boundaries, deter-
mined from the two-patch approach, are shown by thin solid
and dashed lines. Solid lines separate the phases with differ-
ent behavior of the coupling constants, while dashed lines
separate phases with the same behavior of the coupling con-
stants, and are determined from the condition of the equality
of the corresponding critical values l5lc

m where the linearly
extrapolated susceptibilities vanish.
We first consider the results of the two-patch approach.

Since this approach is applicable for not too small lc ~see
Sec. III A!, we consider only the region of the phase dia-
grams with lc.2, which is bounded by bold lines. In most
of the part of the phase diagrams, the typical values of lc
range from 3 to 5. The dependences of the inverse suscep-
tibilities on the scaling parameter for selected parameter val-
ues are shown in Fig. 7. For not too large values of uJu (J
,0) and for t850 or t850.1t ~Figs. 4 and 5!, the two-patch
approach predicts that the spin-flux phase of the type (01
22) is the leading instability. With increasing V, this phase
is replaced by a phase that has comparable CDW and CF
susceptibilities ~CDW phase! and the behavior of the cou-
pling constants (2201). With increasing J up to J
*0.25U , the CDW susceptibility dominates; but also xt and
xSF are large ~we term this phase as CDW8). The corre-
sponding flow of the coupling constants is (0122). At
large negative V, a phase of type (0202) occurs where the
largest diverging susceptibility is xQ , which, according to
Eq. ~25!, implies a divergent isothermal compressibility kT .
A divergence of kT can be attributed generally to different
phenomena: a metal-insulator transition46 or phase separa-
tion. In the considered parameter region, the most natural
explanation is phase separation induced by a large negative
V. For large enough uJu (J,0), we obtain the ferromagnetic
state F with the coupling constant flow (1101); for large
positive V, xA is the most diverging susceptibility. However,
for small t8&0.3t , these instabilities are outside of the weak-
coupling region of the phase diagram. The dashed area cor-
responds to the frustrated regime where the critical value of
the scaling parameter lc.20, and the spin-density-wave in-
stability is strongly suppressed by negative J. Such behavior
arises from the competition between antiferromagnetic and
superconducting fluctuations on one side and ferromagnetic
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fluctuations on the other side. As a result, different types of
instabilities almost ‘‘cancel’’ each other.
Four other phases ~SDW, dSC, CF, and PI! have the same

flow of the coupling constants (0112). The magnitudes of
the susceptibilities xdSC , xSDW , xCF in the region J.0 are
close to each other @see Fig. 7~b!#, which naturally implies a
close competition between these states. With increasing J, we
find a PI phase where the susceptibility xt is largest. How-
ever, this instability also always appears outside the weak-
coupling region of the phase diagram where Eqs. ~21! are
valid.
As in the mean-field solution, away from half filling one

expects phase separation or the formation of inhomogeneous
structures of all ordered phases with wave vector Q ~CDW,
SDW, CF, and SF!. Note however, that this filling-induced
type of phase separation should be contrasted with the

FIG. 4. Phase diagram as obtained from two- and many-patch
RG analyses for U52t , t850, and n51. Bold lines bound the
weak-coupling region of the phase diagram, where the RG approach
is applicable. Solid lines correspond to the phase boundaries ob-
tained from the two-patch analysis. CF and SF denote, respectively,
the charge- and spin-flux phases and PS is the interaction-induced
phase separated state. F, PI, and A denote, respectively, the possi-
bilities for ferromagnetism, spontaneous spin-independent, and
spin-dependent deformations of the FS in the corresponding strong-
coupling regions. The other notations are the same as in Fig. 1. The
shaded region is the frustrated area with the critical scaling param-
eter of the two-patch approach lc.20. The captions at the phase
boundary lines denote the symmetry of Hamiltonian ~16! on these
lines with respect to the rotation operators Rh , Rp , Rt , or RA and
the corresponding ordered states that become equivalent. The sym-
bols correspond to the results of the many-patch RG approach:
circles correspond to SDW, diamonds to dSC, squares to SF, tri-
angles to F, crosses to PS, and stars to CDW phase. The open
symbols denote the frustrated regime in many-patch calculations
when no divergence of the coupling constants was obtained for
lT5ln(t/T)/2,4. The type of the corresponding ordering tendency
in this case was determined by the largest susceptibility at lT54.
12510
interaction-induced phase separation in the PS region of the
phase diagram, which is present even at half filling (t850)
and may not be magnetically ordered or superconducting.
The results of the many-patch approach are shown by

different symbols, explained in the figure captions. Solid
symbols correspond to different types of ordering tendencies.

FIG. 5. Phase diagram as obtained from the RG calculations for
U52t , t8/t50.1, and n50.92. Solid and dashed lines correspond
to the phase boundaries obtained from the two-patch analysis and
separate the phases with respect to the scaling behavior of the cou-
pling constants ~see text!. The half-filled circle corresponds to a
charge-flux instability in the many-patch RG analysis. Thin crosses
bound the bottom of the region where the charge-flux fluctuations
become substantial, xCF.(2/3)xSDW . Other notations are the same
as in Fig. 4.

FIG. 6. Phase diagram as obtained from the RG calculations for
U52t , t8/t50.3, and n50.72. Thin crosses bound the region
where charge-flux fluctuations become substantial, xCF
.(2/3)max(xSDW ,xdSC). Other notations are the same as in Figs. 4
and 5.
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Open symbols correspond to the frustrated behavior, where
the many-patch RG could not reach Vmax518t for lT
5ln(t/T)/2,4. Boundaries between some phases ~e.g., CDW
and SF, and dSC and PS for J.0) almost coincide in the
two- and many-patch approaches. At the same time, the
many-patch approach predicts a much broader region of sta-
bility for the SDW phase and an almost vanishing region of
stability for the CF phase. Therefore, for t850 and t8
50.1, taking into account more patches on the FS ~and
therefore the contribution of nested parts!, move the pre-
dicted phase boundaries closer to those of the mean-field
results. At the same time, the charge flux as well as the
d-wave superconducting response in the many-patch ap-
proach are substantial within the antiferromagnetic phase,

FIG. 7. Scale dependence of the leading order-parameter inverse
susceptibilities in the two-patch RG approach for U52t , t8/t
50.1, and n50.92. ~a! V5J50; ~b! V50, J50.2U; ~c! V
50.5U , J50. The vertical dot-dashed lines mark the scaling pa-
rameter l* where the largest absolute value of the coupling con-
stants, ug iu, is unity.
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which implies a close competition between the above order-
ing tendencies. For a rough estimate, where the charge re-
sponse is closest to the antiferromagnetic one, we bound the
region with xCF.(2/3)xSDW by thin crosses.
At J,0, many-patch approach does confirm the possibil-

ity of a spin-flux phase in almost the same parameter region
as determined from the two-patch approach. With decreasing
V this spin-flux phase is, however, replaced by a ~partially
frustrated! ferromagnetic phase, which fills most of the re-
gion where the frustrated SDW order was expected in the
two-patch approach. The presence of the ferromagnetic
phase at J,0 resembles closely the mean-field prediction in
this parameter range. The d-wave superconducting region for
J,0 is replaced by phase separation in the many-patch ap-
proach.
Note that with decreasing of U the region of d-wave su-

perconductivity at J.0 grows, while increasing of U favors
the SDW instability at J.0. Similarly, at J,0, decreasing
U shifts the balance between SF phase and ferromagnetism
towards the spin-flux phase. Other phases ~e.g., CDW and
PS! are essentially not influenced by varying U.
When increasing t8 up to t850.3t , the phase diagram

changes ~see Fig. 6!. In the two-patch approach, at J
.0.05U , d-wave superconductivity becomes the leading in-
stability. For large positive V, we obtain either CDW and A
instabilities ~CDW phase on Fig. 6! or CDW and PI insta-
bilities (CDW8 phase! depending on J. For large negative V,
we again find interaction-induced phase separation. Most of
the region with J,0.05U and moderate uVu is frustrated
(lc.20), which is again the result of a strong competition
of different ordering tendencies.
The many-patch approach also gives the strongest ten-

dency to d-wave superconductivity at J.0.05U , but the ten-
dency towards ferromagnetic order in a large part of the frus-
trated region J,0.05U . Similar to t850 and t850.1t , at
t850.3t , the d-wave superconducting region for J,0 pre-
dicted by the two-patch approach is replaced by phase sepa-
ration in the many-patch approach. The boundary of the
CDW phase also almost coincides for the many-patch and
two-patch approaches. Therefore, at t850.3t , the predictions
of the two-patch approach are closer to the results of the
many-patch approach, than for smaller t8. This is connected
with the absence of nested parts of the Fermi surface, as
discussed above.
In summary, the RG analysis gives a richer phase diagram

than anticipated from the mean-field results of the preceding
section. At the same time, for small t8, the results of the
many-patch RG approach, which takes into account the con-
tributions of the whole FS and therefore treats the renormal-
ization of the interactions in a more accurate way, are closer
to the mean-field predictions than the results of the two-patch
approach. At intermediate t8, the two-patch approach be-
comes more reliable, and the results of both approaches are
close. In the following section, we supplement the above RG
studies by an SO~8! symmetry analysis.

IV. SYMMETRIES AND ASYMPTOTIC BEHAVIOR

Additional insight to the phase diagram is obtained by
considering the symmetries of Hamiltonian ~1! with respect
-10
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to the SO~8! symmetry group of transformations of the
4-fermion states uk↑&,uk↓&,uk1Q↑&, and uk1Q↓& ~see, e.g.,
Ref. 47!. This group is generated by the so~8! algebra of 28
operators, which are given in part by

Ôm5
1
N (

i
Ôm~ i !, ~33!

with Ôm(i) as defined above in Eqs. ~2! and ~24!. For a full
list of operators of the so~8! algebra, we refer to Ref. 47.
From the operators Ôm of the so~8! algebra, we construct the
rotation operators

Rm~a !5exp~ iaÔm
†1iaÔm!, ~34!

where a is a real number. From the symmetry point of view,
the operators Ôm5p̂ ,ĥ ,Â , and t̂ are most useful. As dis-
cussed in Refs. 47,21, the operator Rp performs a rotation
between SDW and dSC states @which is the basis of the
SO~5! theory1#, the operator Rh between dSC and CF states,
the operator RA between SDW and CF phases, as well as
between CDW and SF phases, while the operator Rt rotates
between SDW and SF phases, and between CDW and CF
phases, respectively.
The symmetry of Hamiltonian ~1! under these operations

is as follows. The noninteracting part of the Hamiltonian is
invariant (H05RmH0Rm

21) under the rotations RA and Rt

and in the nesting case «k52«k1Q under Rp and Rh . The
interaction is invariant only under the rotations Rh for V
5J50, i.e., the Hubbard model, which was originally dis-
covered by Yang and Zhang,48 but the interaction is not in-
variant with respect to the other rotation operations.
The symmetry of the restricted two-patch Hamiltonian

~16! is considerably higher.42 For this restricted Hamiltonian,
the interaction part ~and therefore the entire Hamiltonian at
half-filling and zero t8) is invariant with respect to the op-
erations Rp ,Rh ,RA , or Rt on special lines in the V-J plane
~at fixed U). The corresponding lines are supplied by cap-
tions in Fig. 4, corresponding to the type of the symmetry.
The symmetry lines exactly coincide with the boundaries
between different phases in the two-patch approach, since
the corresponding susceptibilities xm(l) in this approach are
identical on these lines for arbitrary l . At the same time, as
we have seen in Sec. III, most of these symmetries ~those
that are connected with the SDW order! are broken by the
contribution of the nested parts of FS. Away from half filling
or at finite t8, the noninteracting part of the Hamiltonian
becomes invariant only with respect to the rotations RA and
Rt .
To get more insight into the possibility of different order-

ing tendencies, we rewrite the Hamiltonian in terms of the
operators of the so~8! algebra. We restrict ourselves to the
contribution of the vH points, since the corresponding analy-
sis for the whole FS becomes very complicated and requires
numerical diagonalization of the corresponding Hamiltonian.
Taking into account that the noninteracting part of Hamil-
tonian ~16! for vH points, i.e.,

H05«kAa0,s
† a0,s1«kBb0,s

† b0,s ~35!
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vanishes at the vH filling ~where «kA5«kB50), the Hamil-
tonian is rewritten as

He f f5g1~ÔCDW
2 2ÔCF

2 !1g2~Q̃22t2!1g3~ÔCDW
2 1ÔCF

2 !

1g4~Q̃21t2!22Q̃~g21g4!, ~36!

where Q̃5Q̂11/2 and g1 , . . . ,g4 are the vertices deter-
mined in the two-patch approach ~Sec. III A!. These vertices
can also be considered as those obtained from the many-
patch analysis for the corresponding momenta, provided that
the contribution of electrons with momenta far from the vH
singularities is small, i.e., t8/t is not close to zero. Under
these conditions, Hamiltonian ~36! can be considered as an
effective Hamiltonian of the RG procedure in the preceding
section, which acts on the space of 16 states usA ,sB&, where
sA ,B50,↑ ,↓ , or ↑↓ denotes the electron states with vH mo-
menta kA or kB .
First we consider the eigenstates um& of the operators Ôm ,

which are easily expressed in terms of the states usA ,sB&, and
we obtain the expectation values of the Hamiltonian in the
corresponding states as

Em~l !5
^muHe f f um&

^mum&
5C~l !2Gm~l !/2, ~37!

where C(l)52(g112g222g31g4)/2 is independent of m
and Gm(l) is defined in Eq. ~27!. Therefore the states that
were identified in the two-patch approach as having the larg-
est susceptibility @largest Gm(l) for l→lc] have also the
lowest effective energy among the eigenstates um&.
For mÞF or Q, the eigenstates um& of the operators Ôm

are not the eigenstates of the effective Hamiltonian ~36!,
since the operators Ôm generally do not commute with this
Hamiltonian. To find the eigenstates of the Hamiltonian, we
represent it as a matrix with respect to the states usA ,sB& and
diagonalize it. In fact, the subspaces with even ~odd! number
of particles,

NVH5^a0,s
† a0,s1b0,s

† b0,s&, ~38!

are not mixed by the operators of the so~8! algebra, and we
can consider them separately. In the following, we focus on
the even subspace where the interaction part of the Hamil-
tonian is nontrivial. The resulting energy levels and the
eigenfunctions are presented in Table I. The states uV i& are
the triplet of eigenvectors of the operator ÔF with eigenval-
ues 1,0, and 21, respectively. From the states uU i&, one can
form a doublet of vectors uU1&6uU2&, which are the eigen-
vectors of the operator Q̂ with eigenvalues 71. The other
states are not eigenvectors of any operator in Eqs. ~2! and
~24!. Considering the flow of the energy levels of the respec-
tive states that are given as a function of the coupling con-
stants g i in the second column of Table I, we obtain the
correspondence between the lowest-energy eigenstates of the
effective Hamiltonian in the two-patch RG procedure and the
phases identified in Sec. III. We find that in the F and SF
phases, the triplet uV i& has the lowest energy. It is natural to
associate the states uV1,3&, which have eigenvalues 61 of the
-11
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TABLE I. The eigenvalues Ek($g i%) and eigenstates uk& of the effective Hamiltonian, Eq. ~36!. The right
column represents the correspondence with the phases in the phase diagrams ~see text!.

k Ek($g i%) States Corresponding phases

1 2g22g4 uV1&5u↑ ,↑&,uV2&5u↑ ,↓&1u↓ ,↑&,uV3&5u↓ ,↓& F, SF
2 0 uU1&5u0,0&1u↑↓ ,↑↓&;uU2&5u0,0&2u↑↓ ,↑↓& PS
3 2g12g22g4 uC1&5u↑ ,↓&2u↓ ,↑& CDW, A
4 g122g21g3 uC2&5u↑↓ ,0&1u0,↑↓& CDW8
5 g122g22g3 uW&52u↑↓ ,0&1u0,↑↓& SDW, CF, dSC, PI
operator ÔF , with the ferromagnetic phase and the state uV2&
with the SF phase. Similarly, in the PS phase the states uU i&,
in the CDW and A phases the state uC1&, and in the CDW8
phase the state uC2& have the lowest energies. Finally, the
uW& state is common for SDW, CF, dSC, and PI instabilities,
i.e., phases that have the coupling constants flow of (011
2) type. The resulting correspondence is presented in the
right column of Table I.
To clarify possible types of orders which correspond to

the eigenstates uk& of the effective Hamiltonian ~36!, we ex-
pand these eigenstates in terms of the eigenvectors um& of the
operators Ôm by calculating the scalar products Cmk
5^kum& listed in Table II. Generally, the states uk& are a
mixture of the states that correspond to different order pa-
rameters. So, the state uC1& in Table I, which was identified
above with CDW and A phases, mixes CDW, CF, A, and h
types of order. The state uC2& ~identified with the CDW8
phase! mixes CDW, PI, and SF types of order. The state uU2&
that is connected with the PS phase is also a mixture of dSC
and h pairing. Finally, the uW& state mixes SDW, dSC, CF,
and PI types of order in complete agreement with the results
for the susceptibilities in the two-patch approach.
Although we do not analyze in this section the contribu-

tion of the whole FS, one can expect that general features
obtained from the simple two-patch analysis hold in this case
too. Namely, we expect that the eigenstates of the whole
Hamiltonian do not coincide with the eigenstates of opera-
tors, corresponding to different order parameters. Although
the eigenvectors of the effective Hamiltonian corresponding
to the contribution of the whole FS have a much more com-
plicated form, we expect that the combinations of the order
parameters listed in Table II which belong to the same eigen-
state remain mostly unchanged. This can be also seen from
the analysis of simultaneously diverging susceptibilities in
the many-patch approach. At the same time, one cannot
125104
safely argue whether or not the discussed states support the
coexistence of long-range orders, or whether a part of the
above-mentioned orders is only short range. Resolving these
possibilities requires a strong-coupling analysis of the prob-
lem, which is beyond the validity of one-loop
renormalization-group approach.

V. SUMMARY AND CONCLUSIONS

We considered the phase diagrams of the extended U-V-J
Hubbard model within mean-field approximation and from
RG approaches. The extended Hubbard model has a very
complex phase diagram with various types of orders. The
mean-field approximation provides only a rough phase dia-
gram of the system. At positive J, it leads mainly to the
coexistence of antiferromagnetism with a small amplitude of
d-wave superconductivity. At negative J, mean-field theory
predicts ferromagnetic order. For large enough positive V,
these phases are replaced by CDW order, while for large
negative V, the ground state is d-wave superconducting.
Charge- and spin-flux phases, as well as their coexistence
with d-wave superconductivity, are never energetically stable
within the mean-field approximation.
The RG analyses at Van Hove band fillings lead to sub-

stantially richer phase diagrams ~Figs. 4–6!. Instabilities to-
wards SDW, CDW, dSC, CF, SF, and F order are possible in
different parameter regimes. Importantly, for J>0 and not
too large uVu, the SDW, CF, and dSC orders have comparable
susceptibilities, which signals their close competition in this
parameter region. At the same time, the tendency towards the
formation of charge flux is greatly suppressed in the many-
patch approach in comparison with the two-patch results, and
it becomes the leading instability only in the restricted pa-
rameter range. With increasing ut8u, the d-wave supercon-
ducting state becomes more preferable. Tendencies towards
TABLE II. The scalar products Cmk5^kum& between the eigenstates of the effective Hamiltonian, Eq.
~36! ~see also Table I! and the eigenstates of the operators in Eqs. ~2! and ~24!.

State uSDW& udSC& uCF& uSF& uCDW& ut& uA& uh&

^V2u 1/A2 0 0 i/A2 0 0 1/A2 0
^C1u 0 0 2i/A2 0 21/A2 0 21/A2 21/A2
^C2u 0 0 0 1/A2 1/A2 1/A2 0 0
^U2u 0 21/A2 0 0 0 0 0 21/A2
^Wu 1/A2 21/A2 1/A2 0 0 21/A2 0 0
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both spin-independent and spin-dependent Pomeranchuk in-
stabilities are outside the weak-coupling region of the phase
diagrams where the RG analysis is applicable.
The symmetry analysis shows that most of the phases

obtained within the RG approach are, in fact, a mixture of
long- or short-range orders of different types. Resolving be-
tween short- and long-range orders for these phases requires
a strong-coupling analysis of the problem, which cannot be
performed within the RG approach.
Comparing the obtained results with the phase diagram of

the 1D version of the U-V-J Hubbard model,18 we observe
that the phase diagram of 1D model is similar to the results
of the two-patch approach at half filling. Charge- and spin-
flux phases replace the staggered bond-order-wave phase of
the 1D model. The CDW, CDW8 phases appear in two di-
mensions in the same parameter region as the CDW phase in
the 1D case. For J.0, the SDW phase of the 1D system is
partially substituted by d-wave superconductivity. At the
same time, the results of two-patch approach are strongly
changed at half filling by the contribution of the whole Fermi
surface, and become closer to the mean-field phase diagram,
rather than to 1D results.
The physically most relevant regime of the 2D U-V-J

Hubbard model is contained in the parameter range 0,V
,U/4, 0,J,U/2. The corresponding areas are shaded in
Figs. 4–6. With decreasing Van Hove filling, we observe the
following qualitative changes in the shaded area of the phase
diagram: at half filling SDW order dominates. For small dop-
125104
ing d512nVH50.08, we encounter a very complicated
situation in which SDW, charge-flux and d-wave supercon-
ductivity ordering tendencies are all simultaneously strong,
although SDW order is still dominating. In this regime the
ground-state structure is very sensitive to small parameter
changes, leading to a variety of possible phase transitions
and the possibility for coexisting phases. Finally, at larger
doping d50.28, the picture becomes simpler again, and only
d-wave superconductivity becomes the leading instability.
Under the above-mentioned circumstances of strong com-

petition of different order parameters, the self-energy effects
that are not accounted for in the one-loop RG approach can
become crucial. Therefore, for a final conclusion about the
possibility of a charge-flux phase in a broad parameter range
of the one-band U-V-J model, the analysis of the two-loop
contributions to the RG schemes remains to be performed.
Another topic for future work will be to investigate to what
extent the results for the one-band U-V-J model in a specific
parameter range allow implications for the competing orders
in cuprate materials.
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