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Abstract. In the last few years LDA+DMFT, the merger of conventional band
structure theory in the local density approximation (LDA) with the many-body
dynamical mean-field theory (DMFT) has been proven to be a powerful tool for
the realistic modeling of strongly correlated electron systems. This paper provides a
brief introduction to this novel computational technique and presents the results for
two prime examples of strongly correlated electron systems, i.e., the Mott-Hubbard
transition in V20O3z and the volume collapse transition in Ce.

1 Introduction

In the last century, solid state theory was divided into two main communi-
ties, the density functional [1,2,3] (DFT) band structure community, mainly
based on the local density approximation (LDA), and the many-body com-
munity. The approaches developed by the respective communities are rather
complementary in their strengths and weaknesses, see Table 1. LDA allows
for the calculation of physical properties of real materials, starting ab initio
from the potential of the ionic lattice, the kinetic energy and the Coulomb
interaction of the electrons (without free parameters). Moreover, LDA cal-
culations turned out to be unexpectedly successful, even quantitatively and
even for the electronic band structure which, strictly speaking, cannot be
calculated within the DFT framework. This is surprising because LDA is a
serious approximation to the Coulomb interaction between electrons. In par-
ticular, the correlation but also the exchange contribution of the Coulomb
interaction is only treated rudimentarily, i.e., by means of a local density and
by a functional obtained from the jellium model [4], a weakly correlated prob-
lem. However, there are important classes of materials where LDA fails, such
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Table 1. Two complementary approaches in solid state theory, pros and cons

DFT/LDA band structure theory many-body theory
+ e material specific (input lattice const.) e systematic investigations of
no free parameters: ab initio electronic correlations

e often very successful (quantitatively) e often allows qualitative insight

— e effective one-particle approach e based on model Hamiltonians
fails for strong electronic correlations (parameters needed as input)
(transition metal oxides, f-electrons ...) e CPU intensive

as transition metal oxides or heavy fermion systems, i.e., materials where
electronic correlations are strong. For instance, LDA predicts LaoCuQOy4 and
V203, to be metals [5,6] whereas, in reality, they are insulators.

The study of the electronic correlations induced by the Coulomb interac-
tion is the principal task of the other community, which investigates the con-
sequential many-body physics by perturbative and non-perturbative meth-
ods. Often many-body approaches provide insight into the relevant physical
mechanism. But, the electronic correlations make the theory complicated
and numerical approaches CPU intensive, such that only simplified model
Hamiltonians can be investigated. With the need of parameters as an input
and simplified models, many-body calculations were not capable to quanti-
tatively predict material properties. One of the most successful many-body
approaches developed in the last years is the dynamical mean-field theory
[7,8,9,10,11,12,13,14,15] (DMFT). This theory is controlled in the parame-
ter 1/7 (Z: number of neighboring lattice sites) and reliably treats the local
electronic correlations, at least for three dimensional systems. Depending on
the strength of the Coulomb interaction, it yields a weakly correlated metal,
a strongly correlated metal with heavy quasiparticles, or a Mott insulator.
At the same time, DMFT is general and powerful enough to be applied to
complicated many-body Hamiltonians.

Recently, [16,17] physicists of the two communities have joined forces to
combine the advantages of LDA and DMFT and developed the computational
LDA+DMFT approach which is capable of calculating strongly correlated
systems such as transition metal oxides and f-electron materials realistically.
In Sect. 2, we introduce this LDA+DMFT approach. Calculations for V5,03
and the f-electron system Ce are presented in Sect. 3 and 4, respectively.
A summary closes the presentation in Sect. 5.

A more details description of LDA+DMFT can be found in [18], also see
the conference proceedings [19].
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2 The LDA+DMFT Approach

2.1 Local Density Approximation

Within Born-Oppenheimer approximation [20] and neglecting relativistic ef-
fects, electronic properties of solid state systems are described by the elec-
tronic Hamiltonian

it = Z/d3r B (r,0) {_;;emvm( )| #(r,0)

+ Z/d3 ' Ut (r, o)t (', 0") Vee(r—1') W (x' o')W (r,0). (1)

oo’

Here, ¥t (r, o) and ¥(r,0) are field operators that create and annihilate an
electron at position r with spin o, A is the Laplace operator, m, the electron
mass, e the electron charge, and

Vion(r) = 2Z|r_R| and  Vee(r— r)— Z (2)
r;ér’

denote the one-particle ionic potential of all ions ¢ with charge eZ; at given
positions Rj;, and the electron-electron interaction, respectively.

While the ab initio Hamiltonian (1) is easy to write down it is impossible
to solve it exactly if more than a few electrons are involved. Thus, one has
to do approximations. DFT/LDA turned out to be unexpectedly successful
in this respect. In principle, DF'T/LDA only allows one to calculate static
properties like the ground state energy or its derivatives. However, in practice
it turned out that the Kohn-Sham equations [2] also reliably describe the band
structure [3], at least for weakly correlated materials with s and p orbitals.
This corresponds to replacing the ab initio Hamiltonian (1) by

R X B2
HLDA:Z/d3r vt(r,o) { ;Z}A + Vion(r /d3r’p (r')Vee (r—1")
o e

B (p(r))
Ip(r)

Here, p(r') is the electron density and ELXPA(p(r)) the exchange correlation
potential within LDA, determined by the weakly correlated jellium problem
[1]. Equation (3) describes independent electrons moving in the lattice po-
tential and the density of the other electrons, which has to be determined
self-consistently.

For practical calculations one needs to expand the field operators w.r.t. a
basis @i, €.g., a linearized muffin-tin orbital (LMTO)[21] basis (i denotes

} ¥ (r,0). (3)
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lattice sites; [ and m are orbital indices). In this basis, one has ¥+ (r, ) =
> itm é;’l%@um (r), such that the Hamiltonian (3) reads

A A e A
Hipa = E (Oitm,jirm’ Eitm M + titm,jirm? Cilincgl/m’)~ (4)
im,jl'm’ o

Here, tim jim: = (Pitm|—02A/2me + Vien(r) + [ d31' Vee(r — /) p(r')+
OEIPA (p(r)) /0p(x)|®jirms) for ilm # jl'm’ and zero otherwise, i, denotes
the corresponding diagonal part, and 2%, = émné?lm-

For d or f electrons the most important Coulomb interaction is the lo-
cal Coulomb interactions on the same lattice site. These contributions are
largest due to the extensive overlap (w.r.t. the Coulomb interaction) of these
localized orbitals. Moreover, the largest non-local contribution is the nearest-
neighbor density-density interaction which, to leading order in the number of
nearest-neighbor sites, yields only the Hartree term [3,22], already included
in the LDA. The large local Coulomb interactions lead to strong electronic
correlations which are only very rudimentary taken into account in the LDA.
To improve on this, we supplement the LDA Hamiltonian (4) with the lo-
cal Coulomb matrix approximated by the (most important) matrix elements
Ugg?;, (Coulomb repulsion and Z-component of Hund’s rule coupling) and
Jmm (spin-flip terms of Hund’s rule coupling) between the localized elec-
trons (for which we assume i = i4 and [ = l3):

A A 1 / o .
H=Hipa + 9 E U»gz%/nildnwnildm’a’

mo,m’c’

/
1 3 P )
A o - o . =
- 9 JmWI’('ildma(’il,;,m’&cil,lm’o‘('ildmﬁ - Aeq Nilgmo - (d)

mo,m’ mo

Here, the prime on the sum indicates that at least two ol the indices of
an operator have to be different, and & =] (1) for ¢ =1 (}). In typical
applications we have Uk = U, J . = J, U, = U —2J — J8,, for
m # m/. With M interacting orbitals, the average Coulomb interaction is
then U =[U+(M —1)(U—2J)+(M —1)(U —3.J)]/(2M —1). The last term of
the Hamiltonian (5) reflects a shift of the one-particle potential of the in-
teracting orbitals and is necessary if the Coulomb interaction is taken into
account. This shift, the local Coulomb repulsion U, and the Hund’s rule ex-
change can be determined by constrained LDA calculations [23].

2.2 Dynamical Mean-Field Theory

The many-body extension of LDA, Equation (5), was proposed by Anisi-
mov et al.[24] in the context of their LDA+U approach. Within LDA+U
the Coulomb interactions of (5) are treated within the Hartree-Fock approx-
imation. Hence, LDA+U does not contain true many-body physics. While
this approach is successful in describing long-range ordered, insulating states
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of correlated electron systems it fails to describe strongly correlated para-
magnetic states. To go beyond LDA+U, to capture the many-body na-
ture of the electron-clectron interaction various approximation schemes have
been proposed and applied[16,17,25,26,27,28]. One of the most promising ap-
proaches, first implemented by Anisimov et al.[L0], is to solve (5) within
DMFT [7,3,9,10,11,12,13,14,15] (“LDA+DMEFT”). Of all extensions of LDA
only the LDA4+DMFT approach is presently able to describe the physics
of strongly correlated, paramagnetic metals with well-developed upper and
lower Hubbard bands and a narrow quasiparticle peak at the Fermi level.
This characteristic three-peak structure is a signature of the importance of
many-body effects [11,12].

During the last ten years, DMFT has proved to be a successful approach
for investigating strongly correlated systems with local Coulomb interac-
tions [15]. It becomes exact in the limit of a high lattice coordination numbers
Z; it is controlled in 1/Z, [7,8] and preserves the dynamics of local interac-
tions. Hence, it represents a dynamical mean-field approximation. In this
non-perturbative approach the lattice problem is mapped onto an effective
single-site problem which has to be determined self-consistently together with
the k-integrated Dyson equation connecting the self energy X' and the Green
function G at frequency w

Gamame @) = [ @k ([w1+ 1 = o (0 - B(w)] ) (©)

B. qlm,q’l'm’
Here, 1 is the unit matrix, o the chemical potential, the matrix HEDA(k) is
defined as Hipa — Eizid’l:ld Y me A€d Nitme with Hypa being the matrix
elements of (4), X(w) denotes the self energy matrix which is non-zero only
between the interacting orbitals, [...] 7! implies the inversion of the matrix
with elements n (=¢lm), n'(=¢'l'm’), and the integration extends over the
Brillouin zone with volume V.

The DMFT single-site problem depends on G(w)™' = G(w)~! + X (w)
and is equivalent [11,12] to an Anderson impurity model if its hybridization
A(w) satisfies G7H(w) = w — [dw'A(W')/(w — w'). The local one-particle
Green function at a Matsubara frequency iw, = i(2v + 1)m/8 (5: inverse
temperature), orbital index m (I = lg, ¢ = qq), and spin o is given by the
following functional integral over Grassmann variables 1 and 1*

Here, Z = [ D\ D145, 5% exp( A, %, G71]) is the partition function

and the single-site action A has the form (the interaction part of A is in
terms of the “imaginary time” 7, i.c., the Fourier transform of w,)
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Alp,y,G7! Zzp (Gom) ™ U0

13
1
7%(;”0 ggn’/dT wm( )1/m( )1/}m’ (T)'(/)m’ ( )
B
1 ' 0'* O * o
by X e [T RO (®)
mo,m 0

This single-site problem (7) has to be solved self-consistently together with
the k-integrated Dyson equation (6) to obtain the DMF'T solution of a given
problem.

Due to the equivalence of the DMFT single-site problem and the Anderson
impurity problem a variety of approximate techniques have been employed to
solve the DMFT equations, such as the iterated perturbation theory (IPT)
[11,15] and the non-crossing approximation (NCA) [29,30,31], as well as nu-
merlcal techniques like quantum Monte Carlo simulations (QMC) [32], exact
diagonalization (ED) [33,15], or numerical renormalization group (NRG) [31].
In principle, QMC and ED are exact methods, but they require an extrap-
olation, i.e., the discretization of the imaginary time Ar — 0 (QMC) or
the number of lattice sites of the respective impurity model Ny — oo (ED),
respectively.

In the context of LDA+DMEFT we refer to the computational schemes
to solve the DMFT equations discussed above as LDA+DMFT(X) where
X=IPT [16], NCA [28], QMC [35] have been investigated in the case of
the Sr-doped LaTiOs3, and quantitatively compared. [35] The same strategy
was formulated by Lichtenstein and Katsnelson [17] as one of their LDA++
approaches. They also applied LDA+DMFT(IPT) [30], and were the first
to use LDA4+DMFT(QMC) [37], to investigate the spectral properties of
iron. Recently, among others Vo035 [38,39], Ca(Sr)VOs [10], LiVoOy [11],
Cag_SryRuOy [12,13], CrOy [11], Ni [15], Fe [15], Mn [16], Pu [17], and Ce
[13,19,50] have been studied by LDA+DMFT. Realistic investigations of itin-
erant ferromagnets (e.g., Ni) have also become possible by combining density
functional theory with multi-band Gutzwiller wave functions. [51]

3 Mott-Hubbard Metal-Insulator Transition in V503

One of the most famous examples of a cooperative electronic phenomenon
occurring at intermediate coupling strengths is the transition between a para-
magnetic metal and a paramagnetic insulator induced by the Coulomb in-
teraction between the electrons — the Mott-Hubbard metal-insulator transi-
tion. [52] Correlation-induced metal-insulator transitions (MIT) are found,
for example, in transition metal oxides with partially filled bands near the
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Fermi level. For such systems band structure theory typically predicts metal-
lic behavior. The most famous example is VoO3 doped with Cr. At low tem-
peratures, V,Os is an antiferromagnetic insulator with monoclinic crystal
symmetry and, at high temperature, it is a paramagnet with a corundum
structure. In this paramagnetic phase, an isostructural first-order transition
from a metal to an insulator occurs upon Cr-doping, accompanied by a 1-
2% increase in volume. From a model point of view the MIT is triggered
by a change of the ratio of the Coulomb interaction U relative to the band-
width W. Originally, Mott considered the extreme limits W = 0 (when atoms
are isolated and insulating) and U = 0 where the system is metallic. While
it is simple to describe these limits, the crossover between them, i.e., the
metal-insulator transition itself, poses a very complicated electronic corre-
lation problem. Among others, this metal-insulator transition has been ad-
dressed by Hubbard in various approximations [53] and by Brinkman and
Rice within the Gutzwiller approximation [54]. During the last few years, our
understanding of the MIT in the one-band Hubbard model has considerably
improved, in partucular due to the application of the dynamical mean-field
theory [55].

Within LDA, both the paramagnetic metal VoOg and the paramagnetic
insulator (Vo.062Cro.038)203 are found to be metallic (see Fig. 1), if one takes
into account the slightly different lattice parameters [56]. The LDA DOS
shows a splitting of the five Vanadium d orbitals into three ¢z, states near
the Fermi energy and two e states at higher energies. This reflects the (ap-
proximate) octahedral arrangement of oxygen around the vanadium atoms.
Due to the trigonal symmetry of the corundum structure the t,, states are
further split into one a1, band and two degenerate eg bands, see Fig. 1. The
only visible difference between (Vg.962Cro.038)203 and V203 is a slight nar-
rowing of the ¢35 and eg bands by ~ 0.2 and 0.1 eV, respectively as well
as a weak downshift of the centers of gravity of both groups of bands for
V303. In particular, the insulating gap of the Cr-doped system is seen to
be missing in the LDA DOS. Here we will employ LDA+DMFT(QMC) to
show explicitly that the insulating gap is caused by electronic correlations.
We restrict ourselves to the three {5, bands at the Fermi energy and make
use of a simplification for cubic transition metal oxides which allows for the
use the LDA DOS instead of the full LDA Hamiltonian as an input (see [18];
note that this is an approximation for VO3 since cubic symmetry is lifted).

While the Hund’s rule coupling J is insensitive to screening effects and
may, thus, be obtained within LDA to a good accuracy (J = 0.93 eV [57]), the
LDA-calculated value of the Coulomb repulsion U has a typical uncertainty
of at least 0.5 eV [35]. To overcome this uncertainty, we study the spectra
obtained by LDA+DMFT(QMC) for three different values of the Hubbard
interaction (U = 4.5,5.0,5.5¢V) in Fig. 2. From the results obtained we
conclude that the critical value of U for the MIT is at about 5 eV: At U =
4.5 eV one observes pronounced quasiparticle peaks at the Fermi energy,
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Fig. 1. Left: Scheme of 3d levels in the corundum crystal structure. Right: Par-
tial LDA DOS of the 3d bands for paramagnetic metallic V2O3 and insulating
(Vo_gezcro,oss)Qog [reproduced from [,'),N]]
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Fig.2. LDA+DMFT(QMC)
spectra for  paramagnetic
(V0.962Cro.038)203 “ins.”)
and V203 (“met.”) at U=4.5,
5 and 5.5 ¢V, and T'=0.1 eV
= 1160 K [reproduced from

[35]]

i.e., characteristic metallic behavior, even for the crystal structure of the
insulator (Vo.962Cr0.038)203, while at U = 5.5 eV the form of the calculated
spectral function is typical for an insulator for both sets of crystal structure
parameters. At U = 5.0 eV one is then at, or very close to, the MIT since
there is a pronounced dip in the DOS at the Fermi energy for both a1, and ej
orbitals for the crystal structure of (Vg.962Crp.035)203, while for pure V203
one still finds quasiparticle peaks. We note that at 7" ~ 0.1 eV one only
observes metallic-like and insulator-like behavior, with a rapid but smooth
crossover between these two phases, since a sharp MIT occurs only at lower
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temperatures [55]. The critical value of the Coulomb interaction U ~ 5 ¢V
is in reasonable agreement with the values determined spectroscopically by
fitting to model calculations, and by constrained LDA, see [38] for details.

To compare with the VoO3z photoemission spectra by Schramme et al.
[58] and Mo et al. [59], as well as with the X-ray absorption data by Miiller
et al. [00], the LDA+DMFT(QMC) spectrum at 7' = 300K is multiplied
with the Fermi function and Gauss-broadened by 0.09 eV to account for the
experimental resolution. The theoretical result for U = 5 eV is seen to be
in good agreement with experiment (Fig. 3). In contrast to the LDA results,
our results do not only describe the different bandwidths above and below
the Fermi energy (= 6 eV and =~ 2—3 eV, respectively), but also the position
of two (hardly distinguishable) peaks below the Fermi energy (at about -
1eV and -0.3eV) as well as the pronounced two-peak structure above the
Fermi energy (at about 1eV and 3-4eV). In our calculation the ef states
have not been included so far. Taking into account the Coulomb interaction
U=U —2J ~3eV and also the difference between the eg band and the to4
band centers of gravity of roughly 2.5eV, the ef band can be expected to be
located roughly 5.5 eV above the lower Hubbard band (-1.5eV), i.e., at about
4eV. From this estimate one would conclude the upper X-ray absorption
maximum around 4eV in Fig. 1 to be of mixed ef and ey nature.

While LDA also gives two peaks below and above the Fermi energy, their
position and physical origin is quite different. Within LDA+DMFT(QMC)
the peaks at -1eV and 3-4eV are the incoherent Hubbard bands induced by
the electronic correlations whereas in the LDA the peak at 2-3eV is caused
entirely by the ef (one-particle) states, and that at -1eV is the band edge
maximum of the a;, and ej states (see Fig. 1). Obviously, the LDA+DMFT

T T T T T T T T T T T
LDA --eeeeeeeee
LDA+DMFT(QMC)
Moetal’02 o
Schramme et al.’00

LDA
LDA+DMFT(QMC)
Mueller etal'97 o

Intensity in arbitrary units

5 25 2 45 4 05 0
E(eV)
Fig. 3. Comparison of the LDA4+DMFT(QMC) spectrum[338] at U = 5eV and
T = 300K below (left Figure) and above (right Figure) the Fermi energy (at 0eV)
with the LDA spectrum[38] and the experimental spectrum (left: photoemission
spectrum of Schramme et al. [58] at 7' = 300K and Mo et al. at 7' = 175K [59];
right: X-ray absorption spectrum of Miiller et al. at 7 = 300K [60]). Note that
Mo et al. [59] use a higher photon energy (hv = 500eV) than Schramme et al. [58]
(hv = 60€eV) which considerably reduces the surface contribution to the spectrum
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results are a big improvement over LDA which, as one should keep in mind,
was the best method available to calculate the VoOgs spectrum before.

Particularly interesting are the spin and the orbital degrees of freedom in
V203. From our calculations [38], we conclude that the spin state of V2Og3
is S = 1 throughout the Mott-Hubbard transition region. This agrees with
the measurements of Park et al. [61] and also with the data for the high-
temperature susceptibility [02]. But, it is at odds with the S = 1/2 model
by Castellani et al. [63] and with the results for a one-band Hubbard model
[64] which corresponds to S =1/2 in the insulating phase and, contrary to
our results, shows a substantial change of the local magnetic moment at the
MIT [55]. For the orbital degrees of freedom we find a predominant occupa-
tion of the ej orbitals, but with a significant admixture of a14 orbitals. This
admixture decreases at the MIT: in the metallic phase at "= 0.1eV we de-
termine the occupation of the (a1g, €}y, €j,) orbitals as (0.37, 0.815, 0.815),
and in the insulating phase as (0.28, 0.86, 0.86). This should be compared
with the experimental results of Park et al. [61] who, from their analysis,
extracted the ratio of the configurations egeg:egaiy to be 1:1 in the paramag-
netic metallic and 3:2 in the paramagnetic insulating phase. This corresponds
to a one-electron occupation of (0.5,0.75,0.75) and (0.4,0.8,0.8), respectively.
Although our results show a somewhat smaller value for the admixture of ay,
orbitals, the overall behavior, including the tendency of a decrease of the a;,
admixture across the transition to the insulating state, are well reproduced.
In this context we would also like to note the work by Laad et al. [39] who
started from our LDA DOS for V503 and found, within DMFT(IPT), that it
is possible to trigger a Mott-Hubbard metal-insulator transition by shifting
the eg band with respect to the a1, band.

In the study above, the experimental crystal parameters of VoO3 and
(V0.962Crp.038)203 have been taken from the experiment. This leaves the
question unanswered whether a change of the lattice is the driving force
behind the Mott transition, or whether it is the electronic Mott transition
which causes a change of the lattice. For another system, Ce, we will show
in Section 4 that the energetic changes near a Mott transition are indeed
sufficient to cause a first-order volume change.

4  Volume Collapse in Ce

Cerium exhibits a transition from the ~- to the a-phase with increasing pres-
sure or decreasing temperature. This transition is accompanied by an un-
usually large volume change of 15% [65], much larger than the 1-2% volume
change in V,03. The y-phase may also be prepared in metastable form at
room temperature in which case the v-a transition occurs under pressure at
this temperature [66]. Similar volume collapse transitions are observed under
pressure in Pr and Gd (for a recent review, see [67]). It is widely believed that
these transitions arise from changes in the degree of 4f electron correlations,
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as is reflected in both the Mott transition [(8] and the Kondo volume collapse
(KVCQC) [69] models. These two scenarios were considered to be contradictory,
but might be more similar [70,71] than previously thought.

For a realistic calculation of the cerium a-v transition, we employ the full
Hamiltonian calculation where the one-particle Hamiltonian was calculated
by LDA and the 4f Coulomb interaction U along with the associated 4f
site energy shift [Aeg in Equation (5)] by a constrained LDA calculation
(for details, see [(7,19,50]). We have not included the spin-orbit interaction
which has a rather small impact on LDA results for Ce, nor the intra-atomic
exchange interaction which is less relevant for Ce as occupations with more
than one 4f-electron on the same site are rare [J = 0 in Equation (5)].
Furthermore, the 6s, 6p, and 5d orbitals are assumed to be non-interacting
in the formalism of Equation (5). Note, that the 4f orbitals are even better
localized than the 3d orbitals and, thus, uncertainties in U and the 4f site
energy are relatively small and would only translate into a possible volume
shift for the a-vy-transition. We would also like to note earlier calculations by
7ol et al. [48] who studied Ce by LDA+DMFT(NCA) and by Savrasov et
al. [17] who used an IPT-inspired DMFT solver for Pu.

The LDA+DMFT(QMC) spectral evolution of the Ce 4 f-electrons is pre-
sented in Fig. 4. It shows similarities to V2Os3 (Fig. 2): At a volume per atom
V =20 A3, Fig. 4 shows that almost the entire spectral weight lies in a large

4.0

as | V=2°A3/\_//\,\ ] 9.0 . .

| o—Ce i
sol 80 | UE
25 v=p4a’

A(w)

15 F \\/_\ 40 | 1
v=29A°
L~ AN~ [\_ T 3.0
[ v=34A° 1 ‘
20 |
| V=408’ ]
' 10
V=46A°
0.0 . . . 0.0

60 -30 00 30 60 90 "-5.0 0.0 5.0 10.0
w(eV) o(eV)

Fig.4. Left: 4f spectral function A(w) at different volumes and T = 632K
(w = 0 corresponds to the chemical potential; curves are offset as indicated,;
AT = 0.11eV™Y); Right: Total LDA+DMFT spdf-spectrum (solid line) in com-
parison with the combined photoemission and BIS spectrum [72] (circles) for a-
(upper part) and v-Ce (lower part) at T = 580 K [reproduced from [50]]
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quasiparticle peak with a center of gravity slightly above the chemical po-
tential. This is similar to the LDA solution; however, a weak upper Hubbard
band is also present even at this small volume. At the volumes 29 A3 and
34 A3 which approximately bracket the a-v transition, the spectrum has a
three peak structure. Finally, by V =46 A?’, the central peak has disappeared
leaving only the lower and upper Hubbard bands.

In the right part of Fig. 4 we show the total LDA+DMFET spdf-spectrum
(broadened with the experimental resolution 0.4 eV) and compare with exper-
iment [72]. The calculated f-spectrum shows a sharp quasiparticle or Kondo
resonance slightly above the Fermi energy, which is the result of the forma-
tion of a singlet state between f- and conduction states. We thus suggest
that the spectral weight seen in the experiment is a result of this quasiparti-
cle resonance. In the lower part of Fig. 4, a comparison between experiment
and our calculation for 7-Ce is shown. The most striking difference between
the lower and the upper part of Fig. 4 is the absence of the Kondo resonance
in the y-phase which is in agreement with our calculations. Nonetheless, 7-
Ce remains metallic with spectral weight arising from the spd-electrons at
the Fermi energy, quite contrary to V,Oj3. Altogether, one can say that the
agreement with the experimental spectrum is very good, and comparable to
the LDA accuracy for much simpler systems.

Fig. 5a shows our calculated DMFT(QMC) energies Epvipr [19,50] as a
function of atomic volume at three temperatures relative to the paramag-
netic Hartree Fock (HF) energies Epypur [of the Hamiltonian (5)], i.e., the
energy contribution due to electronic correlations. We also present the po-
larized HF energies which basically represent a (non-self-consistent) LDA+U
calculation and reproduce Epypr at large volumes and low temperatures.
With decreasing volume, however, the DMFT energies bend away from the
polarized HF solutions. Thus, at 7' = 0.054eV ~ 600 K, a region of nega-
tive curvature in Epypr — Fpvur is evident within the observed two phase
region (arrows). Fig. 5b presents the calculated LDA+DMFT total energy
Etot(T) = ELDA(T)+EDMFT(T) _EmLDA(T) where EmLDA is the energy
of an LDA-like solution of the Hamiltonian (5) [73]. Since both Erpa and
FEpyvur — Eunpa have positive curvature throughout the volume range con-
sidered, it is the negative curvature of the correlation energy in Fig. 5a which
leads to the dramatic depression of the LDA+DMFT total energies in the
range V = 26-28 A for decreasing temperature, which contrasts to the smaller
changes near V=34 A® in Fig. 5b. This trend is consistent with a double well
structure emerging at still lower temperatures (prohibitively expensive for
QMC simulations), and with it a first-order volume collapse. This is in rea-
sonable agreement with the experimental volume collapse and strongly sug-
gests that the electronic correlations leading to the emergence of a Kondo-like
energy scale are eventually responsible for the 15% volume collapse in Ce.
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Fig.5. (a) Correlation energy Epmer — Epmur as a function of atomic volume
(symbols) and polarized HF energy Earur—Epmur (dotted lines); arrows: observed
volume collapse from the a- to the ~-phase. (b) The negative curvature of the
correlation energy leads to a growing depression of the total energy near V = 26—
28 A® as temperature is decreased, consistent with an emerging double well at
still lower temperatures and thus the a-vy transition. The curves at 7" = 0.544 eV
were shifted downwards in (b) by —0.5¢V to match the energy range [reproduced
from [49]]

5 Summary

In this paper we discussed the set-up of the computational LDA+DMFT
scheme which merges two non-perturbative, complementary investigation
techniques of solid state theory. LDA+DMFET allows one to perform ab ini-
tio calculations of real materials with strongly correlated electrons and is, at
present, the only available ab initio computational technique which is able to
treat systems close to a Mott-Hubbard MIT, heavy fermions, and f-electron
materials.

As two particular examples we presented results for the transition metal
oxide V203 and the f-electron system Ce. Our LDA+DMFT(QMC) cal-
culations show a MIT in V5,03 upon Cr-doping at a reasonable value of
the Coulomb interaction U &~ 5eV and are in good agreement with the
experimentally determined photoemission and X-ray absorption spectra for
V30s3, i.e., above and below the Fermi energy. In particular, we find a spin
state S = 1 in the paramagnetic phase, and an orbital admixture of eTe”

9%
and egai, configurations, which both agree with recent experiments. Thus,
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LDA+DMET(QMC) provides a remarkably accurate microscopic theory of
the strongly correlated electrons in the paramagnetic metallic phase of V2Os.

Paramagnetic Ce undergoes an even more dramatic, isostructural volume
collapse than V503. Our LDA+DMFT(QMC) spectra show a dramatic re-
duction in the size of the f-electron quasiparticle peak at the Fermi level
when passing from the (expermental) a- to the 4-phase volume. In contrast
to V20gs, Ce remains metallic due to the spd electrons. But, nonetheless, the
total spectrum changes considerably and is in good agreement with experi-
ment. An important aspect of our results is that the rapid reduction in the size
of the f-electron quasiparticle peak seems to coincide with the appearance
of a negative curvature in the correlation energy and a shallow minimum in
the total energy. This suggest that the electronic correlations responsible for
the reduction of the quasiparticle peak are associated with energetic changes
strong enough to cause a volume collapse in the sense of the Kondo vol-
ume collapse model [69], or a Mott transition model [68] including electronic
correlations.
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