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LDA+DMFT is a novel computational technique for ab initio investigations of real materials
with strongly correlated electrons, such as transition metals and their oxides. It combines the
strength of conventional band structure theory in the local density approximation (LDA) with a
modern many-body approach, the dynamical mean-field theory (DMFT). In the last few years
LDA+DMFT has proved to be a powerful tool for the realistic modeling of strongly correlated
electronic systems. In this paper the basic ideas and the set-up of the LDA+DMFT(X) approach,
where X is the method used to solve the DMFT equations, are discussed. Results obtained with
X=QMC (quantum Monte Carlo) and X=NCA (non-crossing approximation) are presented and
compared. By means of the model system La

1�x

Sr
x

TiO
3

we show that the method X matters
qualitatively and quantitatively. Furthermore, we discuss recent results on the Mott-Hubbard
metal-insulator transition in the transition metal oxide V

2

O
3

and the �- transition in the 4f-
electron system Ce.

1 Introduction

The calculation of physical properties of electronic systems by controlled approximations
is one of the most important challenges of modern theoretical solid state physics. In partic-
ular, the physics of transition metal oxides – a singularly important group of materials both
from the point of view of fundamental research and technological applications – may only
be understood by explicit consideration of the strong effective interaction between the con-
duction electrons in these systems. The investigation of electronic many-particle systems
is made especially complicated by quantum statistics, and by the fact that the investigation
of many phenomena require the application of non-perturbative theoretical techniques.

From a microscopic point of view theoretical solid state physics is concerned with the
investigation of interacting many-particle systems involving electrons and ions. However,
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it is an established fact that many electronic properties of matter are well described by the
purely electronic Hamiltonian
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Starting from the ab initio Hamiltonian (1), the LDA+DMFT approach is presented in
Section 2, including the DFT in Section 2.1, the LDA in Section 2.2, the construction of a
model Hamiltonian in Section 2.3, and the DMFT in Section 2.4. As methods used to solve
the DMFT we discuss the quantum Monte Carlo (QMC) algorithm in Section 2.5 and the
non-crossing approximation (NCA) in Section 2.6. A simplified treatment for transition
metal oxides is introduced in Section 2.7, and the scheme of a self-consistent LDA+DMFT
in Section 2.8. As a particular example, the LDA+DMFT calculation for La

1�x

Sr
x

TiO
3

is discussed in Section 3, emphasizing that the method X to solve the DMFT matters on
a quantitative level. Our calculations for the Mott-Hubbard metal-insulator transition in
V
2

O
3

are presented in Section 4, in comparison to the experiment. Section 5 reviews our
recent calculations of the Ce �- transition, in the perspective of the models referred to
as Kondo volume collapse and Mott transition scenario. A discussion of the LDA+DMFT
approach and its future prospects in Section 6 closes the presentation.

2 The LDA+DMFT Approach

2.1 Density Functional Theory

The fundamental theorem of DFT by Hohenberg and Kohn14 (see, e.g., the review by
Jones and Gunnarsson2) states that the ground state energy is a functional of the elec-
tron density which assumes its minimum at the ground state electron density. Following
Levy,15 this theorem is easily proved and the functional even constructed by taking the
minimum (infimum) of the energy expectation value w.r.t. all (many-body) wave functions
'(r
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) at a given electron number N which yield the electron density �(r):
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However, this construction is of no practical value since it actually requires the eval-
uation of the Hamiltonian (1). Only certain contributions like the Hartree energy
E

Hartree
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for ilm 6= jl

0

m

0 and zero otherwise; "
ilm

denotes the corresponding diagonal part.
As for static properties, the LDA approach based on the self-consistent solution of

Hamiltonian (11) together with the calculation of the electronic density Eq. (5) [see the
flow diagram Fig. 1] has also been highly successful for band structure calculations –
but only for weakly correlated materials.2 It is not reliable when applied to correlated
materials and can even be completely wrong because it treats electronic correlations only
very rudimentarily. For example, it predicts the antiferromagnetic insulator La

2

CuO
4

to be
a non-magnetic metal20 and also completely fails to account for the high effective masses
observed in 4f -based heavy fermion compounds.

2.3 Supplementing LDA with Local Coulomb Correlations

Of prime importance for correlated materials are the local Coulomb interactions between
d- and f -electrons on the same lattice site since these contributions are largest. This is due
to the extensive overlap (w.r.t. the Coulomb interaction) of these localized orbitals which
results in strong correlations. Moreover, the largest non-local contribution is the nearest-
neighbor density-density interaction which, to leading order in the number of nearest-
neighbor sites, yields only the Hartree term (see Ref. 4 and, also, Ref. 21) which is already
taken into account in the LDA. To take the local Coulomb interactions into account, one
can supplement the LDA Hamiltonian (11) with the local Coulomb matrix approximated
by the (most important) matrix elements U��0

mm

0

(Coulomb repulsion and Z-component of
Hund’s rule coupling) and J

mm

0 (spin-flip terms of Hund’s rule coupling) between the
localized electrons (for which we assume i = i

d

and l = l

d

):
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of Hund’s rule coupling), and (with the number of interacing orbitalsM )

�

U =

U + (M � 1)(U � J) + (M � 1)(U � 2J)
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Figure 2. If the number of neighboring lattice sites goes to infinity, the central limit theorem holds and fluctua-
tions from site-to-site can be neglected. This means that the influence of these neighboring sites can be replaced
by a mean influence, the dynamical mean-field described by the self energy �

�

lm

(!). This DMFT problem is
equivalent to the self-consistent solution of the k-integrated Dyson equation (21) and the multi-band Anderson
impurity model Eq. (20).

the TB-LMTO-ASA code19 yielded U = 4:2 eV in comparison to the value U = 3:2 eV
calculated by ASA-LMTO within orthogonal representation.25 Thus, an appropriate basis
like LMTO is mandatory and, even so, a significant uncertainty in U remains.

2.4 Dynamical Mean-Field Theory

The many-body extension of LDA, Eq. (18), was proposed by Anisimov et al.22 in the
context of their LDA+U approach. Within LDA+U the Coulomb interactions of (18) are
treated within the Hartree-Fock approximation. Hence, LDA+U does not contain true
many-body physics. While this approach is successful in describing long-range ordered,
insulating states of correlated electronic systems it fails to describe strongly correlated
paramagnetic states. To go beyond LDA+U and capture the many-body nature of the
electron-electron interaction, i.e., the frequency dependence of the self-energy, various ap-
proximation schemes have been proposed and applied recently.12, 26–30 One of the most
promising approaches, first implemented by Anisimov et al.,12 is to solve (18) within
DMFT3–11 (”LDA+DMFT”). Of all extensions of LDA only the LDA+DMFT approach
is presently able to describe the physics of strongly correlated, paramagnetic metals with
well-developed upper and lower Hubbard bands and a narrow quasiparticle peak at the
Fermi level. This characteristic three-peak structure is a signature of the importance of
many-body effects.7, 8

During the last ten years, DMFT has proved to be a successful approach to investigate
strongly correlated systems with local Coulomb interactions.11 It becomes exact in the
limit of high lattice coordination numbers3, 4 and preserves the dynamics of local interac-
tions. Hence, it represents a dynamical mean-field approximation. In this non-perturbative
approach the lattice problem is mapped onto an effective single-site problem (see Fig. 2)
which has to be determined self-consistently together with the k-integrated Dyson equation
connecting the self energy � and the Green functionG at frequency !:

G

qlm;q

0

l

0

m

0

(!) =

1



orbitals, [:::℄�1 implies the inversion of the matrix with elements n (=qlm), n0(=q0l0m0),
and the integration extends over the Brillouin zone with volume V

B

.
The DMFT single-site problem depends on G(!)�1 = G(!)

�1

+ �(!) and is
equivalent7, 8 to an Anderson impurity model (the history and the physics of this model
is summarized by Anderson in Ref. 31) if its hybridization �(!) satisfies G�1(!) =

! �

R

d!
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). The local one-particle Green function at a Matsubara fre-
quency i!

�

= i(2� + 1)�=� (�: inverse temperature), orbital index m (l = l

d

, q = q

d
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and spin � is given by the following functional integral over Grassmann variables  and
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[0; �℄ of the functional integral Eq. (20) is discretized into � steps of size �� = �=�,
yielding support points �

l

= l�� with l = 1 : : :�. Using this Trotter discretization, the
integral

R

�

0

d� is transformed to the sum
P

�

l=1

�� and the exponential terms in Eq. (20)
can be separated via the Trotter-Suzuki formula for operators ^

A and ^

B
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which is exact in the limit �� ! 0. The single site actionA of Eq. (21) can now be written
in the discrete, imaginary time as
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Since the sum in Eq. (25) consists of 2�M(2M�1) addends, a complete summation
for large � is computationally impossible. Therefore the Monte Carlo method, which is
often an efficient way to calculate high-dimensional sums and integrals, is employed for
importance sampling of Eq. (25). In this method, the integrand F (x) is split up into a
normalized probability distribution P and the remaining term O:

Z

dxF (x) =

Z

dxO(x)P (x) � hOi

P

(28)

with
Z

dxP (x) = 1 and P (x) � 0: (29)

In statistical physics, the Boltzmann distribution is often a good choice for the function P :

P (x) =

1





2.6 NCA Method to Solve DMFT

The NCA approach is a resolvent perturbation theory in the hybridization parameter �(!)
of the effective Anderson impurity problem.32 Thus, it is reliable if the Coulomb interac-
tion U is large compared to the band-width and also offers a computationally inexpensive
approach to check the general spectral features in other situations.

To see how the NCA can be adapted for the DMFT, let us rewrite Eq. (19) as

G

�

(z) =

1



The key quantity for the resolvent perturbation theory is the resolvent R(z), which obeys
a Dyson equation32

R(z) = R

0

(z) +R

0

(z)S(z)R(z) ; (41)

where R0

��

(z) = 1=(z � E

�

)Æ

��

and S
��

(z) denotes the self-energy for the local states
due to the coupling to the environment through �(z).

The self-energy S
��

(z) can be expressed as power series in the hybridization �(z).32

Retaining only the lowest-, i.e. 2nd-order terms leads to a set of self-consistent integral
equations
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breaking, the Green function and the self-energy of these bands remain degenerate, i.e.,
G
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0 and �
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0 for l = l

d

and
q = q

d

(where l
d

and q
d

denote the electrons in the interacting band at the Fermi energy).
Downfolding to a basis with these degenerate q

d

-l
d

-bands results in an effective Hamilto-
nian H0 e�

LDA

(where indices l = l

d

and q = q

d

are suppressed)
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3 Comparison of Different Methods to Solve DMFT: The Model
System La

1�x

Sr
x

TiO
3

The stoichiometric compound LaTiO
3

is a cubic perovskite with a small orthorhombic
distortion (\ T i � O � T i � 155

Æ)59 and is an antiferromagnetic insulator60 below
T

N

= 125 K.61 Above T
N

, or at low Sr-doping x, and neglecting the small orthorhombic
distortion (i.e., considering a cubic structure with the same volume), LaTiO

3

is a strongly
correlated, but otherwise simple paramagnet with only one 3d-electron on the trivalent Ti
sites. This makes the system a perfect trial candidate for the LDA+DMFT approach.

The LDA band-structure calculation for undoped (cubic) LaTiO
3

yields the DOS
shown in Fig. 6 which is typical for early transition metals. The oxygen bands, rang-
ing from�8:2 eV to�4:0 eV, are filled such that Ti is three-valent. Due to the crystal-field
splitting, the Ti 3d-bands separates into two empty e

g

-bands and three degenerate t
2g

-
bands. Since the t

2g

-bands at the Fermi energy are well separated also from the other bands
we employ the approximation introduced in section 2.5 which allows us to work with the
LDA DOS [Eq. (45)] instead of the full one-particle Hamiltonian H0

LDA

of [Eq. (19)]. In
the LDA+DMFT calculation, Sr-doping x is taken into account by adjusting the chemical
potential to yield n = 1 � x = 0:94 electrons within the t

2g

-bands, neglecting effects
disorder and the x-dependence of the LDA DOS (note, that Sr and Ti have a very similar
band structure within LDA). There is some uncertainty in the LDA-calculated Coulomb
interaction parameter U � 4� 5 eV (for a discussion see Ref. 24) which is here assumed
to be spin- and orbital-independent. In Fig. 7, results for the spectrum of La

0:94

Sr
0:06

TiO
3
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Figure 6. Densities of states of LaTiO
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calculated with LDA-LMTO. Upper figure: total DOS; lower figure:
partial t
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(solid lines) and e
g

(dashed lines) DOS [reproduced from Ref.24].
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Figure 7. Spectrum of La
0:94

Sr
0:06

TiO
3

as calculated by LDA+DMFT(X) at T = 0:1 eV (� 1000 K) and
U = 4 eV employing the approximations X=IPT, NCA, and numerically exact QMC. Inset left: Behavior at
the Fermi level including the LDA DOS. Inset right: X=IPT and NCA spectra at T = 80 K [reproduced from
Ref.24].

as calculated by LDA+DMFT(IPT, NCA, QMC) for the same LDA DOS at T � 1000 K
and U = 4 eV are compared.24 In Ref. 24 the formerly presented IPT12 and NCA30 spec-
tra were recalculated to allow for a comparison at exactly the same parameters. All three
methods yield the typical features of strongly correlated metallic paramagnets: a lower
Hubbard band, a quasi-particle peak (note that IPT produces a quasi-particle peak only
below about 250K which is therefore not seen here), and an upper Hubbard band. By
contrast, within LDA the correlation-induced Hubbard bands are missing and only a broad
central quasi-particle band (actually a one-particle peak) is obtained (Fig. 6).

While the results of the three evaluation techniques of the DMFT equations (the ap-
proximations IPT, NCA and the numerically exact method QMC) agree on a qualitative
level, Fig. 7 reveals considerable quantitative differences. In particular, the IPT quasi-
particle peak found at low temperatures (see right inset of Fig. 7) is too narrow such that
it disappears already at about 250 K and is, thus, not present at T � 1000 K. A similarly
narrow IPT quasi-particle peak was found in a three-band model study with Bethe-DOS
by Kajueter and Kotliar.38 Besides underestimating the Kondo temperature, IPT also pro-
duces notable deviations in the shape of the upper Hubbard band. Although NCA comes
off much better than IPT it still underestimates the width of the quasiparticle peak by a
factor of two. Furthermore, the position of the quasi-particle peak is too close to the lower
Hubbard band. In the left inset of Fig. 7, the spectra at the Fermi level are shown. At the
Fermi level, where at sufficiently low temperatures the interacting DOS should be pinned
at the non-interacting value, the NCA yields a spectral function which is almost by a fac-
tor of two too small. The shortcomings of the NCA-results, with a too small low-energy
scale and too much broadened Hubbard bands for multi-band systems, are well understood
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Figure 8. Comparison of the experimental photoemission spectrum,64 the LDA result, and the
LDA+DMFT(QMC) calculation for La

0:94

Sr
0:06

TiO
3

(i.e., 6% hole doping) and different Coulomb interaction
U = 3:2, 4:25, and 5 eV [reproduced from Ref.24].

and related to the neglect of exchange type diagrams.63 Similarly, the deficiencies of the
IPT-results are not entirely surprising in view of the semi-phenomenological nature of this
approximation, especially for a system off half filling.

This comparison shows that the choice of the method used to solve the DMFT equations
is indeed important, and that, at least for the present system, the approximations IPT and
NCA differ quantitatively from the numerically exact QMC. Nevertheless, the NCA gives
a rather good account of the qualitative spectral features and, because it is fast and can
often be applied to comparatively low temperatures, can yield an overview of the physics
to be expected.

Photoemission spectra provide a direct experimental tool to study the electronic struc-
ture and spectral properties of electronically correlated materials. A comparison of
LDA+DMFT(QMC) at 1000 K65 with the experimental photoemission spectrum64 of
La

0:94

Sr
0:06

TiO
3

is presented in Fig 8. To take into account the uncertainty in U ,24 we
present results for U = 3:2, 4:25 and 5 eV. All spectra are multiplied with the Fermi step
function and are Gauss-broadened with a broadening parameter of 0.3 eV to simulate the
experimental resolution.64 LDA band structure calculations, the results of which are also
presented in Fig. 8, clearly fail to reproduce the broad band observed in the experiment at 1-
2 eV below the Fermi energy.64 Taking the correlations between the electrons into account,
this lower band is easily identified as the lower Hubbard band whose spectral weight orig-
inates from the quasi-particle band at the Fermi energy and which increases with U . The
best agreement with experiment concerning the relative intensities of the Hubbard band
and the quasi-particle peak and, also, the position of the Hubbard band is found for U = 5

eV. The value U = 5 eV is still compatible with the ab initio calculation of this parameter
within LDA.24 One should also bear in mind that photoemission experiments are sensitive
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Figure 9. Experimental phase diagram of V
2

O
3

doped with Cr and Ti [reproduced from Ref. 68]. Doping V
2

O
3

effects the lattice constants in a similar way as applying pressure (generated either by a hydrostatic pressure P , or
by changing the V -concentration from V

2

O
3

to V
2�y

O
3

) and leads to a Mott-Hubbard transition between the
paramagnetic insulator (PI) and metal (PM). At lower temperatures, a Mott-Heisenberg transition between the
paramagnetic metal (PM) and the antiferromagnetic insulator (AFI) is observed.

to surface properties. Due to the reduced coordination number at the surface the bandwidth
is likely to be smaller, and the Coulomb interaction less screened, i.e., larger. Both effects
make the system more correlated and, thus, might also explain why better agreement is
found for U = 5 eV. Besides that, also the polycrystalline nature of the sample, as well
as spin and orbital66 fluctuation not taken into account in the LDA+DMFT approach, will
lead to a further reduction of the quasi-particle weight.

4 Mott-Hubbard Metal-Insulator Transition in V
2

O
3

One of the most famous examples of a cooperative electronic phenomenon occurring
at intermediate coupling strengths is the transition between a paramagnetic metal and a
paramagnetic insulator induced by the Coulomb interaction between the electrons – the
Mott-Hubbard metal-insulator transition. The question concerning the nature of this tran-
sition poses one of the fundamental theoretical problems in condensed matter physics.67

Correlation-induced metal-insulator transitions (MIT) are found, for example, in transition
metal oxides with partially filled bands near the Fermi level. For such systems band theory
typically predicts metallic behavior. The most famous example is V

2

O
3

doped with Cr as
shown in Fig. 9. While at low temperatures V

2

O
3

is an antiferromagnetic insulator with
monoclinic crystal symmetry, it has a corundum structure in the high-temperature param-
agnetic phase. All transitions shown in the phase diagram are of first order. In the case
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bands for paramagnetic metallic V
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O

3

and insulating (V
0:962

Cr

0:038

)

2

O

3

[reproduced from Ref.44].

of the transitions from the high-temperature paramagnetic phases into the low-temperature
antiferromagnetic phase this is naturally explained by the fact that the transition is accom-
panied by a change in crystal symmetry. By contrast, the crystal symmetry across the MIT
in the paramagnetic phase remains intact, since only the ratio of the =a axes changes dis-
continuously. This may be taken as an indication for the predominantly electronic origin
of this transition which is not accompanied by any conventional long-range order. From a
models point of view the MIT is triggered by a change of the ratio of the Coulomb interac-
tion U relative to the bandwidthW . Originally, Mott considered the extreme limitsW = 0

(when atoms are isolated and insulating) and U = 0 where the system is metallic. While it
is simple to describe these limits, the crossover between them, i.e., the metal-insulator tran-
sition itself, poses a very complicated electronic correlation problem. Among others, this
metal-insulator transition has been addressed by Hubbard in various approximations69 and
by Brinkman and Rice within the Gutzwiller approximation.70 During the last few years,
our understanding of the MIT in the one-band Hubbard model has considerably improved,
in particular due to the application of dynamical mean-field theory.71

Both the paramagnetic metal V
2

O
3

and the paramagnetic insulator
(V

0:962

Cr

0:038

)

2

O

3

have the same corundum crystal structure with only slightly
different lattice parameters.72, 73 Nevertheless, within LDA both phases are found to be
metallic (see Fig. 10). The LDA DOS shows a splitting of the five Vanadium d-orbitals
into three t

2g

states near the Fermi energy and two e

�

g

states at higher energies. This
reflects the (approximate) octahedral arrangement of oxygen around the vanadium atoms.
Due to the trigonal symmetry of the corundum structure the t

2g

states are further split
into one a

1g

band and two degenerate e�
g

bands, see Fig. 10. The only visible difference
between (V

0:962

Cr

0:038

)

2

O

3

and V

2

O

3

is a slight narrowing of the t
2g

and e�
g

bands by
� 0:2 and 0:1 eV, respectively as well as a weak downshift of the centers of gravity of
both groups of bands for V

2

O

3

. In particular, the insulating gap of the Cr-doped system is
seen to be missing in the LDA DOS. Here we will employ LDA+DMFT(QMC) to show
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Figure 11. LDA+DMFT(QMC) spectra for paramagnetic (V
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0:038

)

2
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3

(“ins.”) and V
2

O

3

(“met.”) at
U = 4:5, 5 and 5:5 eV, and T = 0:1 eV � 1000 K [reproduced from Ref.44].

explicitly that the insulating gap is caused by the electronic correlations. In particular, we
make use of the simplification for transition metal oxides described in Section 2.7 and
restrict the LDA+DMFT(QMC) calculation to the three t

2g

bands at the Fermi energy,
separated from the e�

g

and oxygen bands.
While the Hund’s rule coupling J is insensitive to screening effects and may, thus,

be obtained within LDA to a good accuracy (J = 0:93 eV25), the LDA-calculated value
of the Coulomb repulsion U has a typical uncertainty of at least 0.5 eV.24 To overcome
this uncertainty, we study the spectra obtained by LDA+DMFT(QMC) for three different
values of the Hubbard interaction (U = 4:5; 5:0; 5:5) in Fig. 11. All QMC results presented
were obtained for T = 0:1 eV. However, simulations for V

2

O
3

at U = 5 eV, T = 0:143

eV, and T = 0:067 eV suggest only a minor smoothing of the spectrum with increasing
temperature. From the results obtained we conclude that the critical value of U for the
MIT is at about 5 eV: At U = 4:5 eV one observes pronounced quasiparticle peaks at
the Fermi energy, i.e., characteristic metallic behavior, even for the crystal structure of the
insulator (V

0:962

Cr

0:038

)

2

O

3

, while at U = 5:5 eV the form of the calculated spectral
function is typical for an insulator for both sets of crystal structure parameters. At U = 5:0

eV one is then at, or very close to, the MIT since there is a pronounced dip in the DOS at the
Fermi energy for both a

1g

and e�
g

orbitals for the crystal structure of (V
0:962

Cr

0:038

)

2

O

3

,
while for pure V

2

O

3

one still finds quasiparticle peaks. (We note that at T � 0:1 eV one
only observes metallic-like and insulator-like behavior, with a rapid but smooth crossover
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Figure 12. Comparison of the LDA+DMFT(QMC) spectrum44 at U = 5 eV and T = 0:1 eV � 1000 K below
(left Figure) and above (right Figure) the Fermi energy (at 0 eV) with the LDA spectrum44 and the experimental
spectrum (left: photoemission spectrum of Schramme et al.74 and Kim et al.;75 right: X-ray absorption spectrum
of Müller et al.76).

between these two phases, since a sharp MIT occurs only at lower temperatures39, 71). The
critical value of the Coulomb interaction U � 5 eV is in reasonable agreement with the
values determined spectroscopically by fitting to model calculations, and by constrained
LDA, see44 for details.

To compare with the photoemission spectrum of V
2

O

3

spectrum by Schramme et al.74

and by Kim et al.75 as well as with the X-ray absorption data by Müller et al.,76 the
LDA+DMFT(QMC) spectrum of Fig. 11 is multiplied with the Fermi function at T = 0:1

eV and Gauss-broadened by 0:05 eV to account for the experimental resolution. The the-
oretical result for U = 5 eV is seen to be in good agreement with experiment (Fig. 12). In
contrast to the LDA results, our results not only describe the different bandwidths above
and below the Fermi energy (� 6 eV and � 2 � 3 eV, respectively), but also the position
of two (hardly distinguishable) peaks below the Fermi energy (at about -1 eV and -0.3 eV)
as well as the pronounced two-peak structure above the Fermi energy (at about 1 eV and
3-4 eV). While LDA also gives two peaks below and above the Fermi energy, their position
and physical origin is quite different. Within LDA+DMFT(QMC) the peaks at -1 eV and
3-4 eV are the incoherent Hubbard bands induced by the electronic correlations whereas in
the LDA the peak at 2-3 eV is caused by the e�

g

states and that at -1 eV is the band edge
maximum of the a

1g

and e�
g

states (see Fig. 10). Note that the theoretical and experimen-
tal spectrum is highly asymmetric w.r.t the Fermi energy. This high asymmetry which is
caused by the orbital degrees of freedom is missing in the one-band Hubbard model which
was used by Rozenberg et al.77 to describe the optical spectrum of V

2

O

3

.
The comparison between theory and experiment for Cr-doped insulating V

2

O

3

is not
as good as for metallic V

2

O

3

, see Ref. 75. This might be, among other reasons, due to
the different Cr-doping of experiment and theory, the difference in temperatures (which
is important because the insulating gap of a Mott insulator is filled when increasing the
temperature71), or the fact that every V ion has a unique neighbor in one direction, i.e., the
LDA supercell calculation has a pair of V ions per unit cell. The latter aspect has so far not
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been included but arises naturally when one goes from the simplified calculation scheme
described in Section 2.7 (and employed in the present Section with different self-energies
for the a

1g

and e�
g

bands) to a full Hamiltonian calculation.
Particularly interesting are the spin and the orbital degrees of freedom in V

2

O

3

. From
our calculations,44 we conclude that the spin state of V

2

O

3

is S = 1 throughout the Mott-
Hubbard transition region. This agrees with the measurements of Park et al.78 and also
with the data for the high-temperature susceptibility.79 But, it is at odds with the S=1=2

model by Castellani et al.80 and with the results for a one-band Hubbard model which cor-
responds to S=1=2 in the insulating phase and, contrary to our results, shows a substantial
change of the local magnetic moment at the MIT.71 For the orbital degrees of freedom we
find a predominant occupation of the e�

g

orbitals, but with a significant admixture of a
1g

orbitals. This admixture decreases at the MIT: in the metallic phase we determine the
occupation of the (a

1g

, e�
g1

, e�
g2

) orbitals as (0.37, 0.815, 0.815), and in the insulating
phase as (0.28, 0.86, 0.86). This should be compared with the experimental results of
Park et al.78 From their analysis of the linear dichroism data the authors concluded that
the ratio of the configurations e�

g

e

�

g

:e�
g

a

1g

is equal to 1:1 for the paramagnetic metallic
and 3:2 for the paramagnetic insulating phase, corresponding to a one-electron occupation
of (0.5,0.75,0.75) and (0.4,0.8,0.8), respectively. Although our results show a somewhat
smaller value for the admixture of a

1g

orbitals, the overall behavior, including the ten-
dency of a decrease of the a

1g

admixture across the transition to the insulating state, are
well reproduced.

In the study above, the experimental crystal parameters of V

2

O

3

and
(V

0:962

Cr

0:038

)

2

O

3

have been taken from the experiment. This leaves the question
unanswered whether a change of the lattice is the driving force behind the Mott transition,
or whether it is the electronic Mott transition which causes a change of the lattice. For
another system, Ce, we will show in Section 5 that the energetic changes near a Mott
transition are indeed sufficient to cause a first-order volume change.

5 The Cerium Volume Collapse: An Example for a 4f -Electron
System

Cerium exhibits a transition from the - to the �-phase with increasing pressure or de-
creasing temperature. This transition is accompanied by an unusually large volume change
of 15%,81 much larger than the 1-2% volume change in V

2

O

3

. The -phase may also be
prepared in metastable form at room temperature in which case the reverse -� transition
occurs under pressure.82 Similar volume collapse transitions are observed under pressure
in Pr and Gd (for a recent review see Ref. 83). It is widely believed that these transitions
arise from changes in the degree of 4f electron correlation, as is reflected in both the Mott
transition84 and the Kondo volume collapse (KVC)85 models.

The Mott transition model envisions a change from itinerant, bonding character of the
4f -electrons in the �-phase to non-bonding, localized character in the -phase, driven
by changes in the 4f -4f inter-site hybridization. Thus, as the ratio of the 4f Coulomb
interaction to the 4f -bandwidth increases, a Mott transition occurs to the -phase, similar
to the Mott-Hubbard transition of the 3d-electrons in V

2

O

3

(Section 4).
The Kondo volume collapse85 scenario ascribes the collapse to a strong change in the

energy scale associated with the screening of the local 4f -moment by conduction electrons
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(Kondo screening), which is accompanied by the appearance of an Abrikosov-Suhl-like
quasiparticle peak at the Fermi level. In this model the 4f -electron spectrum of Ce would
change across the transition in a fashion very similar to the Mott scenario, i.e., a strong re-
duction of the spectral weight at the Fermi energy should be observed in going from the �-
to the -phase. The subtle difference comes about by the -phase having metallic f -spectra
with a strongly enhanced effective mass as in a heavy fermion system, in contrast to the f -
spectra characteristic of an insulator in the case of the Mott scenario. The f -spectra in the
Kondo picture also exhibit Hubbard side-bands not only in the -phase, but in the �-phase
as well, at least close to the transition. While local-density and static mean-field theories
correctly yield the Fermi-level peaks in the f -spectra for the �-phase, they do not exhibit
such additional Hubbard side-bands, which is sometimes taken as characteristic of the “�-
like” phase in the Mott scenario.84 However, this behavior is more likely a consequence
of the static mean-field treatment, as correlated solutions of both Hubbard and periodic
Anderson models exhibit such residual Hubbard side-bands in the �-like regimes.86

Typically, the Hubbard model and the periodic Anderson model are considered as
paradigms for the Mott and KVC model, respectively. Although both models describe
completely different physical situations it was shown recently that one can observe a sur-
prisingly similar behavior at finite temperatures: the evolution of the spectrum and the
local magnetic moment with increasing Coulomb interaction show very similar features
as well as, in the case of a periodic Anderson model with nearest neighbor hybridization,
the phase diagram and the charge compressibility.86, 87 From this point of view the distinc-
tion between the two scenarios appears to be somewhat artificial, at least at temperatures
relevant for the description of the �- transition.

For a realistic calculation of the Cerium �- transition, we employ the full Hamiltonian
calculation described in Sections 2.2, 2.3, and 2.4 where the one-particle Hamiltonian
was calculated by LDA and the 4f Coulomb interaction U along with the associated 4f

site energy shift by a constrained LDA calculation (for details of the the two independent
calculations presented in the current Section see Refs. 83, 51 and Ref. 50). We have not
included the spin-orbit interaction which has a rather small impact on LDA results for Ce,
nor the intra-atomic exchange interaction which is less relevant for Ce as occupations with
more than one 4f -electron on the same site are rare. Furthermore, the 6s-, 6p-, and 5d-
orbitals are assumed to be non-interacting in the formalism of Eq. (13), Section 2.3. Note,
that the 4f orbitals are even better localized than the 3d orbitals and, thus, uncertainties
in U are relatively small and would only translate into a possible volume shift for the
�--transition.

The LDA+DMFT(QMC) spectral evolution of the Ce 4f -electrons is presented in
Fig. 13. It shows similarities to V

2

O

3

(Fig. 11, Section 4): At a volume per atom
V = 20 Å3, Fig. 13 shows that almost the entire spectral weight lies in a large quasi-
particle peak with a center of gravity slightly above the chemical potential. This is similar
to the LDA solution, however, a weak upper Hubbard band is also present even at this
small volume. At the volumes 29 Å3 and 34 Å3 which approximately bracket the �- tran-
sition, the spectrum has a three peak structure. Finally, by V = 46 Å3, the central peak
has disappeared leaving only the lower and upper Hubbard bands. However, an important
difference to V

2

O

3

is that the spd-spectrum shows metallic behavior and, thus, Cerium
remains a metal throughout this transition monitored by a vanishing 4f quasiparticle reso-
nance.
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Figure 13. Evolution of the 4f spectral function A(!) with volume at T = 0:136 eV (! = 0 corresponds to
the chemical potential; curves are offset as indicated; �� = 0:11eV�1). Coinciding with the sharp anomaly
in the correlation energy (Fig. 14), the central quasiparticle resonance disappears, at least at finite temperatures
[reproduced from Ref. 51].

To study the energetic changes associated with the rapid change of the quasiparticle
weight at the Fermi energy, we calculate the DMFT energy per site for the model Hamil-
tonian (13)

E

DMFT

=

T
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Figure 14. (a) Correlation energy E
DMFT

�E

PMHF

as a function of atomic volume (symbols) and polarized
HF energy E

AFHF

�E

PMHF

(dotted lines which, at large V, approach the DMFT curves for the respective
temperatures); arrows: observed volume collapse from the �- to the -phase. The correlation energy sharply
bends away from the polarized HF energy in the region of the transition. (b) The resultant negative curvature
leads to a growing depression of the total energy near V =26–28 Å3 as temperature is decreased, consistent with
an emerging double well at still lower temperatures and thus the �- transition. The curves at T = 0:544 eV
were shifted downwards in (b) by �0:5 eV to match the energy range [reproduced from Ref. 51].

tonian (13).88 Since both E
LDA

and E
PMHF

�E

mLDA

have positive curvature through-
out the volume range considered, it is the negative curvature of the correlation energy in
Fig. 14a which leads to the dramatic depression of the LDA+DMFT total energies in the
range V = 26-28 Å3 for decreasing temperature, which contrasts to the smaller changes
near V=34 Å3 in Fig. 14b. This trend is consistent with a double well structure emerging
at still lower temperatures (prohibitively expensive for QMC simulations), and with it a
first-order volume collapse. This is in reasonable agreement with the experimental volume
collapse given our use of energies rather than free energies, the different temperatures, and
the LDA and DMFT approximations. A similar scenario has been proposed recently for
the Æ-� transition in Pu on the basis of LDA+DMFT calculations,48 which solves DMFT
by an ansatz inspired by IPT and includes a modification of the DFT/LDA step to account
for the density changes introduced by the DMFT.49

In a separate LDA+DMFT(NCA) calculation for Ce, we have obtained a number of
physical quantities for both phases which may be compared to experimental values.50 Var-
ious static properties extracted from the calculations50 and their counterparts from experi-
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Figure 15. Comparison between combined photoemission91 and BIS92 experimental (circles) and theoretical
(solid line) f -spectra for �- (upper part) and -Ce (lower part) at T = 580K. The relative intensities of the
BIS and photoemission portions are roughly for one 4f electron. The experimental and theoretical spectra were
normalized and the theoretical curve was broadened with resolution width of 0:4 eV. In the insets a comparison
between RIPES93 experimental (circles) and theoretical (solid line) f -spectra is given. The experimental and
theoretical data were normalized and the theoretical curve was broadened with broadening coefficient of 0:1 eV
[reproduced from Ref. 50].

action and thus of the missing multiplet structure of the 4f2-final states. The main feature
of the experimental spectra, i.e., a strong decrease of the intensity ratio for Kondo reso-
nance and upper Hubbard band peaks from �- to -Ce, can also be seen in the theoretical
curves of Fig. 15 as well as in the study presented in Fig. 13. A more thorough comparison
of these two independent LDA+DMFT(NCA) and LDA+DMFT(QMC) studies remains to
be done.

6 Conclusion and Outlook

In this paper we discussed the set-up of the computational scheme LDA+DMFT which
merges two non-perturbative, complementary investigation techniques for many-particle
systems in solid state physics. LDA+DMFT allows one to perform ab initio calculations
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of real materials with strongly correlated electrons. Using the band structure results cal-
culated within local density approximation (LDA) as input, the missing electronic corre-
lations are introduced by dynamical mean-field theory (DMFT). On a technical level this
requires the solution of an effective self-consistent, multi-band Anderson impurity prob-
lem by some numerical method (e.g. IPT, NCA, QMC). Comparison of the photoemission
spectrum of La

1�x

Sr
x

TiO
3

calculated by LDA+DMFT using IPT, NCA, and QMC re-
veal that the choice of the evaluation method is of considerable importance. Indeed, only
with the numerically exact QMC quantitatively reliable results are obtained. The results
of the LDA+DMFT(QMC) approach were found to be in very good agreement with the
experimental photoemission spectrum of La

0:94

Sr
0:06

TiO
3

.
We also presented results of a LDA+DMFT(QMC) study44 of the Mott-Hubbard metal-

insulator transition (MIT) in the paramagnetic phase of (doped) V
2

O

3

. These results
showed a Mott-Hubbard MIT at a reasonable value of the Coulomb interaction U � 5eV
and are in very good agreement with the experimentally determined photoemission and
X-ray absorption spectra for this system, i.e., above and below the Fermi energy. In
particular, we find a spin state S = 1 in the paramagnetic phase, and an orbital admix-
ture of e�

g

e

�

g

and e�
g

a

1g

configurations, which both agree with recent experiments. Thus,
LDA+DMFT(QMC) provides a remarkably accurate microscopic theory of the strongly
correlated electrons in the paramagnetic metallic phase of V

2

O

3

.
Another material where electronic correlations are considered to be important is

Cerium. We reviewed our recent investigations of the Ce �- transition, based on
LDA+DMFT(QMC)51 and LDA+DMFT(NCA)50 calculations. The spectral results and
susceptibilities show the same tendency as seen in the experiment, namely a dramatic re-
duction in the size of the quasiparticle peak at the Fermi level when passing from the �-
to the -phase. While we do not know at the moment whether the zero-temperature quasi-
particle peak will completely disappear at an even larger volume (i.e., in a rather Mott-like
fashion) or simply fade away continuously with increasing volume (i.e., in a more Kondo-
like fashion), an important aspect of our results is that the rapid reduction in the size of
the peak seems to coincide with the appearance of a negative curvature in the correlation
energy and a shallow minimum in the total energy. This suggest that the electronic corre-
lations responsible for the reduction of the quasiparticle peak are associated with energetic
changes that are strong enough to cause a volume collapse in the sense of the Kondo vol-
ume collapse model,85 or a Mott transition model84 including electronic correlations.

At present LDA+DMFT is the only available ab initio computational technique which
is able to treat correlated electronic systems close to a Mott-Hubbard MIT, heavy fermions,
and f -electron materials. The physical properties of such systems are characterized by the
correlation-induced generation of small, Kondo-like energy scales which require the ap-
plication of genuine many-body techniques. The appearance of Kondo-like energy scales
in strongly correlated systems leads to several experimentally relevant consequences. One
of the most important features is the enhancement of the quasiparticle mass m� (i.e., the
decrease of the quasiparticle residue Z). This phenomenon can be observed as an enhance-
ment of the coefficient  in the specific heat. Another important characteristic is the Wil-
son ratio between  and the Pauli spin susceptibility �. Future LDA+DMFT investigations
will determine these quantities for real systems, as well as the optical conductivity, phase-
diagrams, the local vertex function, and various susceptibilities.

LDA+DMFT provides, at last, a powerful tool for ab initio investigations of real mate-
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rials with strong electronic correlations. Indeed, LDA+DMFT depends on the input from
both band structure theory and many-body approaches. Hence, for this computational
scheme to be entirely successful in the future two strong and vital communities will finally
have to join forces.
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