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The correlation-induced metal-insulator transition found experimentally in Cr-doped V 2O3 is
investigated within the one-band Hubbard-type model and a realistic multi-band model, using
dynamical mean-field theory (DMFT). The DMFT equations are solved numerically with an
auxiliary-field quantum Monte-Carlo algorithm. For the one-band model a detailed phase di-
agram is obtained which resolves a long-standing controversy. The calculated spectra, orbital
occupations and the spin state obtained for the realistic model are found to agree with recent
polarization dependent X-ray-absorption experiments.

1 Introduction

The calculation of physical properties of electronic systems by controlled approximations
is one of the most important challenges of modern theoretical solid state physics. In par-
ticular, the physics of transition metal oxides – a singularly important group of materials
both from the point of view of fundamental research and technological applications – may
only be understood by explicit consideration of the strong effective interaction between
the conduction electrons in these systems. The investigation of electronic many-particle
systems is made especially complicated by quantum statistics, and by the fact that the phe-
nomena of interest (e.g., metal insulator transitions and ferromagnetism) usually require
the application of non-perturbative theoretical techniques.

One of the most famous examples of a cooperative electronic phenomenon of this type
is the transition between a paramagnetic metal and a paramagnetic insulator induced by the
Coulomb interaction between the electrons, referred to as Mott-Hubbard metal-insulator
transition. The question concerning the nature of this transition poses one of the funda-
mental theoretical problems in condensed matter physics.1, 2 Correlation-induced metal-
insulator transitions (MIT) are found, for example, in transition metal oxides with partially
filled bands near the Fermi level. For such systems band theory typically predicts metallic
behavior. The most famous example is V2O3 doped with Cr;3–5 see Fig. 1. While at low
temperatures V2O3 is an antiferromagnetic insulator with monoclinic crystal symmetry, it
has a corundum structure with a small trigonal distortion in the high-temperature paramag-
netic phase. All transitions shown in the phase diagram (Fig. 1) are of first order. In the case
of the transitions from the high-temperature paramagnetic phases into the low-temperature
antiferromagnetic phase this is naturally explained by the fact that the transition is accom-
panied by a change in crystal symmetry. By contrast, the crystal symmetry across the MIT
in the paramagnetic phase remains intact, since only the ratio of the c/a axes changes
discontinuously. This was usually taken as an indication for the predominantly electronic
origin of this MIT.
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Figure 1. Phase Diagram of V2O3 doped with Cr or Ti (temperature versus external pressure); from Ref. 4.

2 One-Band Hubbard Model

To explain a MIT induced by electronic correlations one may choose to start with the
investigation of an electronic many-body model to understand, at least, some of the basic
features of the MIT, or employ more material-specific approaches. Concerning the former
approach,5, 1 the spin S = 1/2, half-filled, single-band Hubbard model,6–8

Ĥone-band = −t
∑

〈i,j〉,σ

(
ĉ†iσ ĉjσ + ĉ†jσ ĉiσ

)
+ U

∑

i

n̂i↑n̂i↓ , (1)

is certainly the simplest possible model to be investigated. Here, the operators ĉ†iσ and ĉiσ
create and annihilate electrons of spin σ on lattice site i, respectively, while n̂iσ = ĉ†iσ ĉiσ
counts the electrons of spin σ on site i. It should be noted that due to the Pauli principle a
lattice site can be occupied by at most one electron per spin species σ ∈ {↑, ↓}. While the
on-site interaction energy parametrized by U is diagonal in the real-space representation
(1), the kinetic energy, i.e., the hopping processes parametrized by t, is diagonal inmomen-
tum space. Thus the two terms in the Hamiltonian are maximally incompatible concerning
their commutation.

The existence of a MIT in the paramagnetic phase9 of the half-filled Hubbard model
had been investigated already in the early work of Hubbard.10 The details of the transition
remained unclear for a long time. During the last few years, however, our understanding
of the MIT in the one-band Hubbard model has considerably improved due to the applica-
tion of the dynamical mean-field theory (DMFT). Within the DMFT, the electronic lattice
problem is mapped onto a single-impurity Anderson model (SIAM) with a self-consistency
condition. The mapping becomes exact in the limit of infinite coordination number11, 12 and
allows one to investigate the dynamics of correlated lattice electrons non-perturbatively at
all interaction strengths. This is of essential importance for a problem like the MIT which

348



−int. Dyson eq.k

Σ
G

G

impurity problem

G

Σ0

Figure 2. DMFT self-consistency cycle (see text).

occurs at a Coulomb interaction comparable to the electronic band-width. The Green func-
tion for the SIAM can be written as a functional integral over Grassmann variables ψ, ψ∗,

Gσn = −〈ψσnψ∗
σn〉A = − 1



with coshλ = exp(∆τU/2). Thus, the electron-electron interaction term which is quartic
in the Grassmann variables is replaced by the interaction with an external auxiliary Ising
field {sl} with sl = ±1. For a given Ising configuration, the functional integral becomes

Gσll′ =
1
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Figure 3. Spectra of the half-filled one-band Hubbard model for discretization ∆τ = 0.1.
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Figure 4. Energy E per lattice site as a function of on-site interaction U for (a) T = 0.067, and (b) T = 0.031.
Both figures show results for finite discretization ∆τ and extrapolations to the physical limit ∆τ = 0.

kink clearly signals the metal-insulator transition. Due to the regular shape, it is also possi-
ble to extrapolate to the physical limit ∆τ → 0. At the lower temperature T = 0.031, one
finds hysteresis between metallic and insulating solutions which coexist for 4.8 . U . 5.0
(depending on ∆τ ) as seen in Fig. 4b. This coexistence points to a first-order transition at
low temperatures in qualitative agreement with the respective transition observed in V2O3.
The crosses in the phase diagram (Fig. 5) summarize the QMC measurements of crossover
lines, the transition point, and the coexistence region above, at, and below the critical
temperature T ∗ ≈ 0.067, respectively. These results show excellent agreement with re-
cent finite-temperature calculations18 using the numerical renormalization group (NRG)
to solve the DMFT equations, but deviate considerably from early estimates12 obtained
within iterated perturbation theory (IPT). Obviously, the first-order phase transition line
has to be pinpointed within the coexistence region for obtaining the full phase diagram.
While a direct comparison of free energies is numerically unstable, we succeeded in deter-
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Figure 5. Phase diagram of the half-filled one-band Hubbard model in the paramagnetic phase. QMC results
(crosses and thick lines) are compared with NRG (squares) and IPT (dotted lines) results. The first-order transition
line extrapolates to the point at T → 0 obtained by the projective self-consistent theory (PSCT)12.

mining the first-order transition line from a Clausius-Clapeyron differential equation using
very precise measurements of energy and double occupancy plus low-temperature Fermi
liquid properties. The corresponding thick curve in Fig. 5 is drawn as a solid line where
it is completely determined from QMC, and as a dashed line at low temperatures where
it is dominated by additional (reliable) input from ground state methods such as NRG18

and the projective self-consistent theory (PSCT)12. The precise determination of the phase
diagram Fig. 5 does not only resolve a long-standing controversy about the physics of the
half-filled frustrated one-band Hubbard model within the DMFT, but may also serve as a
benchmark for alternative numerical methods of solving the DMFT equations.

3 Realistic Model for V2O3

Although the Hubbard model is able to explain certain basic features of the Mott-Hubbard
MIT and the phase diagram of V2O3, it cannot explain the physics of that material in
any detail. Clearly, a realistic theory of V2O3 must take into account the complicated
electronic structure of this system. In the high-temperature paramagnetic phase V2O3 has
an electronic structure with a 3d2 V 3+ state, where the two eg-orbitals are empty and
the three t2g-orbitals are filled with two electrons. A small trigonal distortion lifts the
triple degeneracy of the t2g-orbitals, resulting in one non-degenerate a1g-orbital and two
degenerate eπg orbitals. Starting from this orbital structure Castellani et al.19 proposed
a widely accepted model with a strong covalent a1g-bond between two V ions along the
c-axis. This bonding state is occupied by a singlet pair (one electron per V) and hence does
not contribute to the local magnetic moment. The remaining electron per V has a twofold
orbital degeneracy within the eπg orbitals and a spin S = 1/2. This S = 1/2 model, derived
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within a material-specific approach, strongly supported the hope that the half filled, one-
band Hubbard model was not only the simplest possible, but, in fact, a valid starting point
for the investigation of V2O3.

However, recent experimental results by Park et al.20 seem to require an interpreta-
tion in terms of a S = 1 spin state, and an eπg eπg orbital state with an admixture of eπga1g

configurations. Subsequently, Ezhov et al.21 and Mila et al.22 argued for S = 1 mod-
els without and with orbital degeneracy, respectively, for the antiferromagnetic insulating
phase of V2O3. LDA+U calculations indicate that the atomic Hund’s rule is responsible
for the high-spin ground state of the V ions.21 While LDA+U may be used to describe the
antiferromagnetic insulating phase of V2O3, the metal-insulator transition within the cor-
related paramagnetic phase is beyond the scope of this approach since the Coulomb inter-
action is treated within Hartree-Fock. Here the computational scheme LDA+DMFT,23–26

obtained by combining electronic band structure theory (LDA) with the many-body tech-
nique DMFT, is the best available method for the investigation of real systems close to
a Mott-Hubbard MIT.27 To solve the DMFT-equations we28 employ a multiband-version
of the quantum Monte Carlo method29, 30 which yields a numerically exact solution;31 the
resulting calculational scheme is referred to as LDA+DMFT(QMC).24, 26, 27 Note that in
multiband QMC calculations (with M = 3 bands), the numerical cost increases by an
additional factor of 2M2 −M = 15 compared to the single-band case, so that for a com-
parable computer allocation the lowest attainable temperature increases by about a factor
of 2.5.

In a first step, LDA calculations were performed for paramagnetic metallic V2O3 and
paramagnetic insulating (V0.962Cr0.038)2O3, respectively.28 The LDA results for corun-
dum V2O3 and (V0.962Cr0.038)2O3 are very similar. In particular, the changes in crystal
and electronic structure occuring at the transition are insufficiently reflected by the LDA
calculations and the experimentally observed insulating gap is missing in the LDA DOS. It
is generally believed that this insulating gap is due to strong Coulomb interactions which
are not adequately accounted for by the LDA. This is where our LDA+DMFT(QMC)
scheme sets in. Using this approach we can show explicitly that the insulating gap is
indeed caused by electronic correlations.

In the LDA+DMFT approach23–27 the LDA band structure, expressed by a one-particle
HamiltonianH0

LDA, is supplemented with the local Coulomb repulsion U and Hund’s rule
exchange J :

Ĥ = Ĥ0
LDA + U

∑

m

∑

i

n̂im↑n̂im↓ +
∑

i,m 6=m̃,σ,σ̃

(V − δσσ̃J) n̂imσn̂im̃σ̃. (9)

Here, i denotes the lattice site; m and m̃ enumerate the three interacting t2g orbitals. The
interaction parameters are related by V = U − 2J which holds exactly for degenerate
orbitals and is a good approximation for the t2g orbitals. Furthermore, since the t2g bands
at the Fermi energy are rather well separated from all other bands we restrict the calcula-
tion to these bands (for details of the computational scheme see Refs. 26, 27). With this
restriction only the LDA DOS of the three t2g bands enter the LDA+DMFT calculation.27

The LDA-calculated value of the Coulomb repulsion U has a typical uncertainty of at least
0.5 eV.26 For this reason, we adjust U to yield a metal-insulator transition with Cr doping.
A posteriori, we can compare whether the adjusted value is in the range of values obtained
from a constrained LDA calculation.
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Figure 6. a) LDA+DMFT(QMC) spectrum for U = 4.5, 5 and 5.5 eV at T = 0.1 eV ≈ 1000 K; b) Comparison
with the LDA spectrum and the photoemission experiment by Schramme et al.35 for two different V2O3 single-
crystal surfaces at T = 300 K. Note, that the (101̄2) surface has the same coordination number as the bulk.

The spectra obtained by LDA+DMFT(QMC) imply that the critical value of U for the
MIT is about 5 eV. Indeed, at U = 4.5 eV one observes pronounced quasiparticle peaks
at the Fermi energy, i.e., characteristic metallic behavior, even for the crystal structure of
(V0.962Cr0.038)2O3, while at U = 5.5 eV the form of the calculated spectral function
is typical for an insulator for both sets of crystal structure parameters. (We note that at
T ≈ 0.1 eV one only observes metallic-like and insulating-like behavior, with a rapid
but smooth crossover between these two phases, since a sharp MIT occurs only at lower
temperatures.34, 16)

To compare with the photoemission spectrum of V2O3 by Schramme et al.,35 the
LDA+DMFT(QMC) spectra are multiplied with the Fermi function at T = 0.1 eV and
Gauss-broadened by 0.05 eV to account for the experimental resolution. The theoretical
results28 for U = 5 eV are seen to be in good agreement with experiment (Fig. 6), in con-
trast with the LDA results. We also note that the DOS is highly asymmetric with respect
to the Fermi energy due to the orbital degrees of freedom. This is in striking contrast to
the result obtained with a one-band model. The comparison between our results, the data
of Müller et al.36 obtained by X-ray absorption measurements, and LDA in Fig. 7 shows
that, in contrast with LDA, our results not only describe the different bandwidths above
and below the Fermi energy (≈ 6 eV and ≈ 2 − 3 eV, respectively) correctly, but even
resolve the two-peak structure above the Fermi energy.

Particularly interesting are the spin and the orbital degrees of freedom in V2O3. We
find (not shown) that for U & 3 eV the squared local magnetic moment

〈
m2
z

〉
saturates at

a value of 4, i.e., there are two electrons with the same spin direction in the (a1g, eπg1, eπg2)
orbitals.28 Thus, we conclude that the spin state of V2O3 is S = 1 throughout the Mott-
Hubbard transition region. Our S=1 result agrees with the measurements of Park et al.20

and also with the data for the high-temperature susceptibility.37 Thus LDA+DMFT(QMC)
provides a remarkably accurate microscopic theory of the strongly correlated electrons in

354



0 2 4 6
Energy (eV)

In
te

ns
ity

 in
 a

rb
itr

ar
y 

un
its

LDA
QMC, U=5.0 eV
Exp.

Figure 7. Comparison of the LDA and LDA+DMFT(QMC) spectra at T = 0.1 eV (Gaussian broadened with
0.2 eV) with the X -ray absorption data of Müller et al.36 .

the paramagnetic phase of V2O3.28

The MIT will eventually become first order at lower temperatures;38, 16 QMC simula-
tions at T ≈ 300 K are under way, but are very computer-expensive. Furthermore, future
investigations will have to clarify the origin of the discontinuous lattice distortion at the
first-order MIT which leaves the lattice symmetry unchanged. In particular, the MIT might
be the driving force behind the lattice distortion by causing a thermodynamic instability
with respect to changes of the lattice volume and distortions.

4 Conclusions

The Mott-Hubbard metal insulator transition is a phenomenon occurring in solids where
the effective strength of the Coulomb interaction between the conduction electrons is com-
parable to the electronic band-width. Thus it belongs to the class of notoriously difficult
intermediate coupling problems whose investigation requires non-perturbative techniques.
We presented detailed results for the transition scenario occurring in the one-band Hub-
bard model and in a realistic multi-band model, obtained by the numerical solution of the
equations of the dynamical mean-field theory (DMFT) using an auxiliary-field quantum
Monte-Carlo algorithm (QMC). Our QMC results provide accurate insight into the de-
tails of the Mott-Hubbard metal insulator transition in the one-band model and thereby
resolve a long-standing controversy about the nature of this transition. Furthermore, ap-
plying the newly developed LDA+DMFT(QMC) scheme, which merges the conventional
local density approximation (LDA) with DMFT in combination with QMC, to investigate
the paramagnetic phase of V2O3 we find remarkable agreement with recent experiments.
Indeed, LDA+DMFT(QMC) turns out to be a workable computational scheme which pro-
vides, at last, a powerful tool for future ab initio investigations of real materials with strong
electronic correlations.

The novel computational scheme for the investigation of strongly interacting matter de-
scribed in this report can only be implemented on vector supercomputers like the CRAY-
T90 and massively parallel machines with large caches like the CRAY-T3E of the NIC.
In fact, using a total of about 2500 CPU hours on the T90 and 35000 CPU hours on the
T3E, the computer simulations reported here already tested the limits of these supercom-
puters. Eventually a genuine fusion of LDA with DMFT will make it necessary to go to
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considerable lower temperatures, i.e., room temperature and below. Furthermore, truly re-
alistic investigations of transition metals and their oxides will require the implementation
of a scheme where all relevant electronic bands are included. As discussed above a larger
number of bands and lower temperatures imply an enormous increase of numerical effort.
This shows that substantial progress in the modelling of correlated electronic materials
will only be possible with much faster computers. In view of the eminent importance of
these materials for fundamental research and technological applications the construction
and availability of faster supercomputers is thus highly desirable.
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