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The correlation-induced metal-insulator transition found experimentally in Cr-doped V 203 is
investigated within the one-band Hubbard-type model and a realistic multi-band model, using
dynamical mean-field theory (DMFT). The DMFT equations are solved numerically with an
auxiliary-field quantum Monte-Carlo algorithm. For the one-band model a detailed phase di-
agram is obtained which resolves a long-standing controversy. The calculated spectra, orbital
occupations and the spin state obtained for the realistic model are found to agree with recent
polarization dependent X-ray-absorption experiments.

1 Introduction

The calculation of physical properties of electronic systems by controlled approximations
is one of the most important challenges of modern theoretical solid state physics. In par-
ticular, the physics of transition metal oxides — a singularly important group of materials
both from the point of view of fundamental research and technological applications — may
only be understood by explicit consideration of the strong effective interaction between
the conduction electrons in these systems. The investigation of electronic many-particle
systems is made especially complicated by quantum statistics, and by the fact that the phe-
nomena of interest (e.g., metal insulator transitions and ferromagnetism) usually require
the application of non-perturbative theoretical techniques.

One of the most famous examples of a cooperative electronic phenomenon of this type
is the transition between a paramagnetic metal and a paramagnetic insulator induced by the
Coulomb interaction between the electrons, referred to as Mott-Hubbard metal-insulator
transition. The question concerning the nature of this transition poses one of the funda-
mental theoretical problems in condensed matter physics."? Correlation-induced metal-
insulator transitions (MIT) are found, for example, in transition metal oxides with partially
filled bands near the Fermi level. For such systems band theory typically predicts metallic
behavior. The most famous example is VoO3 doped with Cr;>~ see Fig. 1. While at low
temperatures VoOs is an antiferromagnetic insulator with monoclinic crystal symmetry, it
has a corundum structure with a small trigonal distortion in the high-temperature paramag-
netic phase. All transitions shown in the phase diagram (Fig. 1) are of first order. In the case
of the transitions from the high-temperature paramagnetic phases into the low-temperature
antiferromagnetic phase this is naturally explained by the fact that the transition is accom-
panied by a change in crystal symmetry. By contrast, the crystal symmetry across the MIT
in the paramagnetic phase remains intact, since only the ratio of the ¢/a axes changes
discontinuously. This was usually taken as an indication for the predominantly electronic
origin of this MIT.
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Figure 1. Phase Diagram of V203 doped with Cr or Ti (temperature versus external pressure); from Ref. 4.

2 One-Band Hubbard Model

To explain a MIT induced by electronic correlations one may choose to start with the
investigation of an electronic many-body model to understand, at least, some of the basic
features of the MIT, or employ more material-specific approaches. Concerning the former
approach,>! the spin S = 1/2, half-filled, single-band Hubbard model,**

Hone-band =—t Z (é;‘rgéjg + é;‘géig) + UZTALHTALQ 5 (1)
(i,3),0 i

is certainly the simplest possible model to be investigated. Here, the operators éjg and ¢,

create and annihilate electrons of spin o on lattice site 7, respectively, while 7, = éjo_ iy
counts the electrons of spin ¢ on site 7. It should be noted that due to the Pauli principle a
lattice site can be occupied by at most one electron per spin species o € {1, | }. While the
on-site interaction energy parametrized by U is diagonal in the real-space representation
(1), the kinetic energy, i.e., the hopping processes parametrized by ¢, is diagonal in momen-
tum space. Thus the two terms in the Hamiltonian are maximally incompatible concerning
their commutation.

The existence of a MIT in the paramagnetic phase’ of the half-filled Hubbard model
had been investigated already in the early work of Hubbard.!® The details of the transition
remained unclear for a long time. During the last few years, however, our understanding
of the MIT in the one-band Hubbard model has considerably improved due to the applica-
tion of the dynamical mean-field theory (DMFT). Within the DMFT, the electronic lattice
problem is mapped onto a single-impurity Anderson model (SIAM) with a self-consistency
condition. The mapping becomes exact in the limit of infinite coordination number!!>? and
allows one to investigate the dynamics of correlated lattice electrons non-perturbatively at
all interaction strengths. This is of essential importance for a problem like the MIT which
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Figure 2. DMFT self-consistency cycle (see text).
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occurs at a Coulomb interaction comparable to the electronic band-width. The Green func-
tion for the SIAM can be written as a functional integral over Grassmann variables 1, ¥,

<wanwan - /D wonwo’n Al g] (2)

Here, the index n denotes the fermionic Matsubara frequency w,, = (2n + 1)7T for
temperature 7" and Z is the partition function

Z — / D[y Al 9™.G] (3)

The action A can be expressed as A, ¥*,G] = limp_.oc Ap[t), 9", G] in terms of a

discretized imaginary time 7, = [A7 with a finite number A = /A7 of time slices, where
(8 = 1/T is the inverse temperature and

A-1
Ap[, 97, G] = (A7)* Z V(G5 by — ATU Y Wibpdfiy . (4)

o ll'= =0

The self consistency requires that the impurity Green function, which is related to the
(local) self energy X by the impurity Dyson equation G.} = G} + %, also fulfills the
k integrated lattice Dyson equation,

G = /ds, po(z-:) . 5)

ZWTL""/}*—EUTL_&

on

— 00

This equation is essential since it introduces the lattice nature of the problem via the non-
interacting density of states po(¢). A numerical solution of the DMFT problem is achieved
in an iterative process as illustrated in Fig. 2. Starting with some initial self energy >, (5)
is used to calculate the bath Green function G which defines the impurity problem. Its solu-
tion is a difficult problem which is in this work achieved using the auxiliary-field quantum
Monte Carlo (QMC) algorithm by Hirsch and Fye.!* After a Trotter decomposition of e,
a discrete Hubbard-Stratonovich transformation is employed,

ATU
o (%wm—wrlwf) =5 Y e ulivn —vivy)  ©

S =+1
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with cosh A = exp(A7U/2). Thus, the electron-electron interaction term which is quartic
in the Grassmann variables is replaced by the interaction with an external auxiliary Ising
field {s;} with s; = £1. For a given Ising configuration, the functional integral becomes

1 1 Si Si
o = 2y (MEV), " det M{™ des M{™, (7)
{s:}

where Mf;s'i} is the matrix with elements M;;l, = (AT)Q(ggl)”/ — A\odyrs;, and the
partition function has the value

2= det M{® det M7, (8)
{si}

Computing one of the 2" terms in (7) directly is an operation of order O(A?). However, if
the terms are ordered in a way so that successive configurations {s;} and {s;}’ only differ
by one flipped spin s; — —s; then all matrices and determinants can be updated at a cost
of O(A?).!* Only for A < 24 can all terms be summed up exactly. Computations at larger
A are made possible by Monte Carlo importance sampling which drastically reduces the
number of terms that have to be calculated explicitly from 2% to order O(A). Here, the
absolute values of the products of determinants in (7) and (8) are used as unnormalized
probabilities in a Metropolis single-spin update Markov chain. Numerical errors arise
at several stages of the algorithm: The finite Monte Carlo sampling length introduces a
statistical error (and possibly a systematic error from incomplete warm-up); systematic
errors incur from the finite number of iteration cycles and, most importantly, the finite
discretization A7 of the imaginary time. For constant accuracy, i.e., for a constant value
of A7 and constant numbers of iterations and sweeps, the total numerical effort scales
with T3, i.e., rapidly increases with decreasing temperature. In the one-band calculations
discussed in this section, very high accuracy could be obtained even at low temperatures
by using up to 10° sweeps per iteration, about 10-100 iterations, and up to Apax = 400
time slices.

The DMFT provides a framework for deriving a coherent picture of the electronic spec-
trum at all energy scales, i.e., of the incoherent features at high energies (Hubbard bands),'°
and the coherent quasi-particle behavior at low energies.”>'> At T = 0 the transition from
the metallic to the insulating state is then signaled by the collapse of the Fermi liquid quasi-
particle peak at the Fermi energy when the interaction is increased.'® Qualitatively, this
behavior is still seen at finite, not too high temperatures as shown in Fig. 3 for 7" = 0.05.
When the interaction U becomes of the order of the noninteracting bandwidth W = 4,
weight is shifted from the quasi-particle peak at w ~ 0 to the upper and lower Hubbard
bands. Within the Fermi liquid regime (U < 4.4), the DOS at the Fermi energy (w = 0) is
essentially pinned to its noninteracting value. The deviation for U = 4.7 signals the break-
down of the Fermi liquid before the MIT occurs at U ~ 4.8. The insulating gap becomes
more pronounced and widens when the interaction is further increased.

Spectra as shown in Fig. 3 require analytic continuation to the real axis via a maximum-
entropy method!” which is quantitatively less reliable than the QMC procedure itself.
Therefore, the phase diagram can be much more accurately determined from the analysis
of static properties. In Fig. 4a, the total energy E per lattice site is shown for a relatively
high temperature 7" = 0.067 as a function of U. For each value of the discretization A7, a
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Figure 3. Spectra of the half-filled one-band Hubbard model for discretization AT = 0.1.
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Figure 4. Energy FE per lattice site as a function of on-site interaction U for (a) 7" = 0.067, and (b) 7' = 0.031.
Both figures show results for finite discretization A7 and extrapolations to the physical limit A7 = 0.

kink clearly signals the metal-insulator transition. Due to the regular shape, it is also possi-
ble to extrapolate to the physical limit A7 — 0. At the lower temperature 7" = 0.031, one
finds hysteresis between metallic and insulating solutions which coexist for4.8 < U < 5.0
(depending on A7) as seen in Fig. 4b. This coexistence points to a first-order transition at
low temperatures in qualitative agreement with the respective transition observed in V,Os.
The crosses in the phase diagram (Fig. 5) summarize the QMC measurements of crossover
lines, the transition point, and the coexistence region above, at, and below the critical
temperature 7" ~ 0.067, respectively. These results show excellent agreement with re-
cent finite-temperature calculations'® using the numerical renormalization group (NRG)
to solve the DMFT equations, but deviate considerably from early estimates'? obtained
within iterated perturbation theory (IPT). Obviously, the first-order phase transition line
has to be pinpointed within the coexistence region for obtaining the full phase diagram.
While a direct comparison of free energies is numerically unstable, we succeeded in deter-
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Figure 5. Phase diagram of the half-filled one-band Hubbard model in the paramagnetic phase. QMC results
(crosses and thick lines) are compared with NRG (squares) and IPT (dotted lines) results. The first-order transition
line extrapolates to the point at 7" — 0 obtained by the projective self-consistent theory (PSCT)!.

mining the first-order transition line from a Clausius-Clapeyron differential equation using
very precise measurements of energy and double occupancy plus low-temperature Fermi
liquid properties. The corresponding thick curve in Fig. 5 is drawn as a solid line where
it is completely determined from QMC, and as a dashed line at low temperatures where
it is dominated by additional (reliable) input from ground state methods such as NRG'®
and the projective self-consistent theory (PSCT)'2. The precise determination of the phase
diagram Fig. 5 does not only resolve a long-standing controversy about the physics of the
half-filled frustrated one-band Hubbard model within the DMFT, but may also serve as a
benchmark for alternative numerical methods of solving the DMFT equations.

3 Realistic Model for V,03

Although the Hubbard model is able to explain certain basic features of the Mott-Hubbard
MIT and the phase diagram of V2Os, it cannot explain the physics of that material in
any detail. Clearly, a realistic theory of V2O3 must take into account the complicated
electronic structure of this system. In the high-temperature paramagnetic phase VoOg3 has
an electronic structure with a 3d® V37 state, where the two e -orbitals are empty and
the three t54-orbitals are filled with two electrons. A small trigonal distortion lifts the
triple degeneracy of the t24-orbitals, resulting in one non-degenerate a4-orbital and two
degenerate ey orbitals. Starting from this orbital structure Castellani ez al.’® proposed
a widely accepted model with a strong covalent a;,-bond between two V ions along the
c-axis. This bonding state is occupied by a singlet pair (one electron per V) and hence does
not contribute to the local magnetic moment. The remaining electron per V' has a twofold
orbital degeneracy within the e orbitals and a spin S = 1 /2. This S = 1/2 model, derived
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within a material-specific approach, strongly supported the hope that the half filled, one-
band Hubbard model was not only the simplest possible, but, in fact, a valid starting point
for the investigation of V,03.

However, recent experimental results by Park et a seem to require an interpreta-
tion in terms of a S = 1 spin state, and an egeg orbital state with an admixture of egalg
configurations. Subsequently, Ezhov et al.?' and Mila et al?* argued for S = 1 mod-
els without and with orbital degeneracy, respectively, for the antiferromagnetic insulating
phase of VoO3. LDA+U calculations indicate that the atomic Hund’s rule is responsible
for the high-spin ground state of the V ions.?! While LDA+U may be used to describe the
antiferromagnetic insulating phase of V203, the metal-insulator transition within the cor-
related paramagnetic phase is beyond the scope of this approach since the Coulomb inter-
action is treated within Hartree-Fock. Here the computational scheme LDA+DMFT,?3-26
obtained by combining electronic band structure theory (LDA) with the many-body tech-
nique DMFT, is the best available method for the investigation of real systems close to
a Mott-Hubbard MIT.?’ To solve the DMFT-equations we®® employ a multiband-version
of the quantum Monte Carlo method?®3° which yields a numerically exact solution;’! the
resulting calculational scheme is referred to as LDA+DMFT(QMC).>*2%27 Note that in
multiband QMC calculations (with M = 3 bands), the numerical cost increases by an
additional factor of 2M? — M = 15 compared to the single-band case, so that for a com-
parable computer allocation the lowest attainable temperature increases by about a factor
of 2.5.

In a first step, LDA calculations were performed for paramagnetic metallic VoO3 and
paramagnetic insulating (V.962Cro.038)203, respectively.?® The LDA results for corun-
dum V503 and (Vg.962Crp.035)203 are very similar. In particular, the changes in crystal
and electronic structure occuring at the transition are insufficiently reflected by the LDA
calculations and the experimentally observed insulating gap is missing in the LDA DOS. It
is generally believed that this insulating gap is due to strong Coulomb interactions which
are not adequately accounted for by the LDA. This is where our LDA+DMFT(QMC)
scheme sets in. Using this approach we can show explicitly that the insulating gap is
indeed caused by electronic correlations.

In the LDA+DMFT approach?7 the LDA band structure, expressed by a one-particle
Hamiltonian H{p, ,, is supplemented with the local Coulomb repulsion U and Hund’s rule
exchange J:

H=H’y, + UZ ZﬁimTﬁiml + Z (V = 665J) NimoNims-  (9)

m i i,m#m,o,6

1.20

Here, 7 denotes the lattice site; m and /m enumerate the three interacting to, orbitals. The
interaction parameters are related by V' = U — 2.J which holds exactly for degenerate
orbitals and is a good approximation for the 5, orbitals. Furthermore, since the 5, bands
at the Fermi energy are rather well separated from all other bands we restrict the calcula-
tion to these bands (for details of the computational scheme see Refs. 26,27). With this
restriction only the LDA DOS of the three t5, bands enter the LDA+DMFT calculation.?’
The LDA-calculated value of the Coulomb repulsion U has a typical uncertainty of at least
0.5 eV.? For this reason, we adjust U to yield a metal-insulator transition with Cr doping.
A posteriori, we can compare whether the adjusted value is in the range of values obtained
from a constrained LDA calculation.
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Figure 6. a) LDA+DMFT(QMC) spectrum for U = 4.5,5and 5.5eV at 7' = 0.1 eV ~ 1000 K; b) Comparison
with the LDA spectrum and the photoemission experiment by Schramme et al.3> for two different V203 single-
crystal surfaces at 7' = 300 K. Note, that the (1012) surface has the same coordination number as the bulk.

The spectra obtained by LDA+DMFT(QMC) imply that the critical value of U for the
MIT is about 5 eV. Indeed, at U = 4.5 eV one observes pronounced quasiparticle peaks
at the Fermi energy, i.e., characteristic metallic behavior, even for the crystal structure of
(V0.962Cr0.038)203, while at U = 5.5 ¢V the form of the calculated spectral function
is typical for an insulator for both sets of crystal structure parameters. (We note that at
T =~ 0.1 eV one only observes metallic-like and insulating-like behavior, with a rapid
but smooth crossover between these two phases, since a sharp MIT occurs only at lower
temperatures.>* 1)

To compare with the photoemission spectrum of Vo,O3 by Schramme et al.,’> the
LDA+DMFT(QMC) spectra are multiplied with the Fermi function at 7' = 0.1 eV and
Gauss-broadened by 0.05 eV to account for the experimental resolution. The theoretical
results®® for U = 5 eV are seen to be in good agreement with experiment (Fig. 6), in con-
trast with the LDA results. We also note that the DOS is highly asymmetric with respect
to the Fermi energy due to the orbital degrees of freedom. This is in striking contrast to
the result obtained with a one-band model. The comparison between our results, the data
of Miiller et al.® obtained by X-ray absorption measurements, and LDA in Fig. 7 shows
that, in contrast with LDA, our results not only describe the different bandwidths above
and below the Fermi energy (= 6 eV and ~ 2 — 3 eV, respectively) correctly, but even
resolve the two-peak structure above the Fermi energy.

Particularly interesting are the spin and the orbital degrees of freedom in VoO3. We
find (not shown) that for U 2> 3 eV the squared local magnetic moment <m§> saturates at
a value of 4, i.e., there are fwo electrons with the same spin direction in the (a4, €g;, €g)
orbitals.”?® Thus, we conclude that the spin state of V;03 is S = 1 throughout the Mott-
Hubbard transition region. Our S =1 result agrees with the measurements of Park et al.?’
and also with the data for the high-temperature susceptibility.>” Thus LDA+DMFT(QMC)
provides a remarkably accurate microscopic theory of the strongly correlated electrons in
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Figure 7. Comparison of the LDA and LDA+DMFT(QMC) spectra at 7" = 0.1 eV (Gaussian broadened with
0.2 eV) with the X -ray absorption data of Miiller et al.3°.

the paramagnetic phase of V,03.2

The MIT will eventually become first order at lower temperatures;*%'® QMC simula-
tions at 7' ~ 300 K are under way, but are very computer-expensive. Furthermore, future
investigations will have to clarify the origin of the discontinuous lattice distortion at the
first-order MIT which leaves the lattice symmetry unchanged. In particular, the MIT might
be the driving force behind the lattice distortion by causing a thermodynamic instability
with respect to changes of the lattice volume and distortions.

4 Conclusions

The Mott-Hubbard metal insulator transition is a phenomenon occurring in solids where
the effective strength of the Coulomb interaction between the conduction electrons is com-
parable to the electronic band-width. Thus it belongs to the class of notoriously difficult
intermediate coupling problems whose investigation requires non-perturbative techniques.
We presented detailed results for the transition scenario occurring in the one-band Hub-
bard model and in a realistic multi-band model, obtained by the numerical solution of the
equations of the dynamical mean-field theory (DMFT) using an auxiliary-field quantum
Monte-Carlo algorithm (QMC). Our QMC results provide accurate insight into the de-
tails of the Mott-Hubbard metal insulator transition in the one-band model and thereby
resolve a long-standing controversy about the nature of this transition. Furthermore, ap-
plying the newly developed LDA+DMFT(QMC) scheme, which merges the conventional
local density approximation (LDA) with DMFT in combination with QMC, to investigate
the paramagnetic phase of VoO3 we find remarkable agreement with recent experiments.
Indeed, LDA+DMFT(QMC) turns out to be a workable computational scheme which pro-
vides, at last, a powerful tool for future ab initio investigations of real materials with strong
electronic correlations.

The novel computational scheme for the investigation of strongly interacting matter de-
scribed in this report can only be implemented on vector supercomputers like the CRAY-
T90 and massively parallel machines with large caches like the CRAY-T3E of the NIC.
In fact, using a total of about 2500 CPU hours on the T90 and 35000 CPU hours on the
T3E, the computer simulations reported here already tested the limits of these supercom-
puters. Eventually a genuine fusion of LDA with DMFT will make it necessary to go to
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considerable lower temperatures, i.e., room temperature and below. Furthermore, truly re-
alistic investigations of transition metals and their oxides will require the implementation
of a scheme where all relevant electronic bands are included. As discussed above a larger
number of bands and lower temperatures imply an enormous increase of numerical effort.
This shows that substantial progress in the modelling of correlated electronic materials
will only be possible with much faster computers. In view of the eminent importance of
these materials for fundamental research and technological applications the construction
and availability of faster supercomputers is thus highly desirable.
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