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ISOMETRIES OF EXTRINSIC SYMMETRIC SPACES

J.-H. ESCHENBURG, P. QUAST, AND M. S. TANAKA

Abstract. We show that every isometry of an extrinsic symmetric space extends to an
isometry of its ambient euclidean space. As a consequence, any isometry of a real form of
a hermitian symmetric space extends to a holomorphic isometry of the ambient hermitian
symmetric space. Moreover, every fixed point component of an isometry of a symmetric
R-space is a symmetric R-space itself.

1. Introduction

Among the compact Riemannian symmetric spaces there is a subclass which always
got particular attention: extrinsic symmetric spaces. These are connected submanifolds
M ⊂ V = Rn of some euclidean space V which are invariant under the reflections along
any of its affine normal spaces, the extrinsic symmetries. The restriction to M of such
a reflection clearly defines a geodesic symmetry of M. In particular extrinsic symmetric
spaces are Riemannian symmetric spaces w.r.t. the induced metric.

We believe that an extrinsically symmetric embedding M ↪→ V is already generated
by the intrinsic structure of M . From this philosophy we expect that all isometries of M
extend to euclidean motions of the ambient space V . This is true:

Theorem 1.1. Let M ↪→ V be an extrinsic symmetric space and f : M →M an isometry
of M with respect to the induced metric. Then f extends to a euclidean motion F of V .

By the very definition of an extrinsic symmetric space, the statement is obvious if f lies
in the symmetry group of M, this is the closed subgroup of the full isometry group of M
which is generated by the geodesic symmetries of M. But the full isometry group of M
may have connected components where Theorem 1.1 is not obvious at all. This theorem
was proved for hermitian extrinsic symmetric spaces in [4] without classification. Although
general extrinsic symmetric spaces are just real forms of hermitian ones (see [25]), we could
not extend the arguments to the more general case; we had to do a case-by-case study. In
fact, isometries of a real form do extend to the hermitian symmetric space (see Theorem
3.1), but we can show this only as a consequence of Theorem 1.1.

In Section 2 we give a sharpened version of Theorem 1.1. Sections 3 and 4 discuss
consequences. We prove Theorem 1.1 in Section 5 using a general extension principle (cf.
Proposition 5.3) and case-by-case arguments. Special attention has to be devoted to the
triality automorphism of SO8/±, see Section 5.4.
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2. Extrinsic symmetric spaces

Extrinsic symmetric spaces have been classified by Dirk Ferus [7, 9] (see also [3]):
Compact extrinsic symmetric spaces are product embeddings of indecomposable ones, and
non-compact extrinsic symmetric spaces are cylinders over compact ones.

Moreover Dirk Ferus [7, 9] has shown that the full compact extrinsic symmetric spaces
arise as particular orbits of s-representations. Let M ⊂ V be a full compact extrinsic
symmetric space. We may assume that the barycentre of M is the origin of V. Since
every geodesic symmetry of M extends to an isometry of V, the symmetry group of M,
but also its connected component K, the transvection group of M, can be considered as a
closed subgroup of O(V ). By fullness K acts effectively on V. As explained in [3], one can
extend the Lie bracket on k to a Lie bracket on g := k⊕ V such that g becomes a compact
semi-simple Lie algebra and the linear involutive map σ of g with fixed point set k and (−1)-
eigenspace V is a Lie algebra automorphism. The map σ is called Cartan involution. The
vector space V is invariant under double Lie brackets and the map (x, y, z) 7→ [z, [x, y]] for
x, y, z ∈ V defines a Lie triple product on V. It turns out that K is the identity component
of the group of orthogonal Lie triple automorphims of V. If M is indecomposable, then
K acts irreducibly on V and V is an irreducible Lie triple. To emphasise the Lie triple
structure we will sometimes use the notation p instead of V. A decomposition g = k ⊕ p
of a compact Lie algebra into the fixed space k and the (−1)-eigenspace p of an involutive
automorphism of g is called Cartan decomposition. Up to translation and scaling the
extrinsic symmetric space M ⊂ V = p is then the K-orbit

M = AdK ξ = Kξ ⊂ p = V

of some element ξ ∈ p satisfying

(1) (adξ)
3 = − adξ,

and vice versa any such orbit is extrinsically symmetric in p (see [6, 7, 9, 3]). From a
different point of view these special s-orbits M are known as symmetric R-spaces (see [23,
21]), and the extrinsically symmetric embeddings M ↪→ p are their standard embeddings
([24, 13]).

Using the notions just established, we can actually sharpen Theorem 1.1 in the case of
compact extrinsic symmetric spaces:

Theorem 2.1. Let f be an isometry of a full extrinsically symmetric isotropy orbit M =
Kξ contained in p = V. Then there exists an orthogonal automorphism Φ of g that com-
mutes with the Cartan involution σ and preserves M such that Φ|M = f.

We assume again that the Lie triple p is irreducible. Let a be a maximal abelian subspace
of p that contains ξ, and let ∆+ ⊂ a∗ be a positive root system of p corresponding to a such
that α(ξ) ≥ 0 for all α ∈ ∆+. Then α(ξ) ∈ {0, 1} for all α ∈ ∆+. If Σ = {α1, . . . , αr} ⊂ ∆+

denotes a simple root basis, the value 1 can occur only once since δ(ξ) = 1 where δ is the
highest root (which is a sum of all simple roots αj with certain positive integer coefficients
mj). Thus ξ is a dual root of Σ, more precisely, ξ = α∗j for some j with mj = 1 (see [14,
Section 6] and [20, Lemma 2.1]).
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3. Hermitian symmetric spaces and their real forms

A case of particular interest happens when p is itself a Lie algebra, say p = g, and
M̂ = Gξ ⊂ g for some ξ ∈ g satisfying Equation (1), where G is the group of inner

automorphisms of g. The tangent space of M̂ at ξ is TξM̂ = [g, ξ] and the normal space is

NξM̂ = [g, ξ]⊥ = {η ∈ g : [η, ξ] = 0} = ker adξ .

From Equation (1) we see that adξ is a complex structure on (ker adξ)
⊥ = TξM̂ , making

M̂ a hermitian symmetric space of compact type. This is the standard embedding which
assigns to each x ∈ M̂ the complex structure Jx on the tangent space TxM̂ considered as
an infinitesimal isometry fixing x (see [17, pp. 165 ff.] and [12, 9]).

In the previous paper [4] we proved Theorem 1.1 in this particular case: Any isometry

f of M̂ ↪→ g can be extended to an orthogonal Lie triple automorphism F of the ambient
Lie algebra g. More precisely, a holomorphic isometry extends to an orthogonal Lie algebra
automorphism, while an anti-holomorphic isometry extends to an orthogonal Lie algebra
anti-automorphism of g.

In the general case, an extrinsic symmetric space M = Kξ ⊂ p is embedded in the
hermitian symmetric space M̂ = Gξ ⊂ g, where G is the group of inner automorphisms of g.
In fact, M is a real form of M̂ , that is the fixed point set of some anti-holomorphic involutive
isometry f of M̂. Here we obviously have F = −σ, where σ is the Cartan involution of g
having k as fixed point set. Vice-versa, any real form of a hermitian symmetric space of
compact type is actually a symmetric R-space. This result is due to Masaru Takeuchi
[25], see also [22].

Theorem 3.1. Let M be a real form of some hermitian symmetric space M̂ of compact
type. Then any isometry f of M can be extended to a holomorphic isometry of M̂ .

Proof. Let M = Kξ ⊂ p be a real form of the hermitian symmetric space M̂ = Gξ. Let
g = k ⊕ p be the corresponding Cartan decomposition. Since transvections in M are just
restrictions of transvections in M̂, we may assume that f fixes ξ. By Theorem 2.1, f extends
to an orthogonal Lie algebra automorphism Φ of g commuting with the Cartan involution
σ. Recall that G is the group of inner automorphism of the semi-simple Lie algebra g,
which is the identity component of the automorphism group of g. Thus conjugation by Φ
is an automorphism of G. Since Φ(ξ) = f(ξ) = ξ, we have Φ(gξ) = (Φ ◦ g ◦ Φ−1)(Φξ) =

(Φ ◦ g ◦Φ−1)(ξ) for any g ∈ G. Hence Φ preserves the adjoint orbit M̂, and f̂ := Φ|M̂ is an

isometry of M̂ that extends the isometry f of M = Kξ.
Recall that the complex structure of M̂ at ξ is given by Jξ = adξ |TξM̂ . Let f̂∗ denote the

differential of f̂ at ξ. Then f̂∗(Jξv) = Φ[ξ, v] = [Φξ,Φv] = [ξ, f̂∗v] = Jξ(f̂∗v) for all v ∈ TξM̂.

Using the parallelism of the complex structure J, this shows that f̂ is holomorphic. �

4. Fixed point components in symmetric R-spaces

In [5, Theorem 2] we showed that any extrinsically reflective subspace S ⊂ M of a
compact extrinsic symmetric space M ⊂ V , i.e. S is a connected component of M ∩Fix(τ)
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for some involutive isometry τ of V preserving M, is itself extrinsically symmetric in Fix(τ).
The argument can be extended easily to fixed components of any extrinsic isometry (see
below). As any intrinsic isometry extends to an extrinsic one by Theorem 1.1, we obtain:

Theorem 4.1. Any positive dimensional fixed point component of an isometry of a sym-
metric R-space is a symmetric R-space itself.

Proof. Let M ⊂ V be a full standardly embedded symmetric R-space, and let f be an
isometry of M. Consider a positive dimensional connected component Q of Fix(f). By
Theorem 2.1, f extends to a linear isometry F : V → V . Let V + := Fix(F ) be its (+1)-
eigenspace. We claim that Q ⊂ V + is extrinsically symmetric and hence a symmetric
R-space. In fact, let q ∈ Q and Sq the extrinsic symmetry of M at q. Observe that Sq
commutes with F since F (q) = q and hence Sq = SF (q) = F ◦ Sq ◦ F−1. Then V + is
Sq-invariant and splits into the (±1)-eigenspaces of Sq: V

+ = V +
+ ⊕V +

− . Thus Sq|V + is the
extrinsic symmetry of Q ⊂ V + at q, because TqQ = V +

− ∩TqM and NqQ = V +
+ ∩NqM . �

5. Proof of theorems 1.1 and 2.1

Let M ⊂ V be an extrinsic symmetric space and let f be an isometry of M. We want to
show that f extends to a euclidean motion of V. Since by the very definition of an extrinsic
symmetric space all geodesic symmetries of M extend to isometries of V, and since any two
points in M can be interchanged by the geodesic symmetry at the midpoint of a geodesic
arc connecting them, we may always assume that f fixes a suitable point of M.

5.1. Reduction to the indecomposable case.

Recall that by a result of Dirk Ferus (see [7, 9] and also [8]) a full extrinsically sym-
metric embedding M ↪→ V is a product of standardly embedded indecomposable extrinsic
symmetric spaces and possibly a Euclidean space V0. In particular, M is itself a Riemann-
ian product

M = V0 ×M1 ×M2 × · · · ×Mk,

where the factors Mj, j = 1, . . . , k are indecomposable symmetric R-spaces. Moreover, as
a consequence of Ferus’ classification of full indecomposable compact extrinsic symmetric
spaces (see [7, 9, 3]), one sees the following: The full isometric extrinsically symmetric
embedding of a symmetric R-space is unique up to extrinsic isometries. Since an isometric
permutation of identical factors clearly extends to the ambient space, we only need to
prove Theorem 1.1 for indecomposable compact spaces M ⊂ V. For hermitian symmetric
spaces of compact type this was done in [4]. Thus we only need to show Theorem 1.1
for indecomposable non-hermitian extrinsic symmetric spaces. These are listed in Table 1
below.

5.2. Extending isometries.

The most direct method to verify the claim of Theorem 1.1 is by extending a given
isometry f of M directly to the ambient vector space V . This applies in particular to the
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Table 1. Non-hermitian indecomposable extrinsic symmet-
ric spaces

No. M g K Remarks

1 Un su2n S(Un × Un)/∆Z2n n ≥ 2
2a SO2n+1 so4n+2 SO2n+1 × SO2n+1 n ≥ 2
2b SO2n so4n (SO2n × SO2n)/± n ≥ 3
3 Spn sp2n (Spn × Spn)/± n ≥ 2
4a (Sp−1 × Sq−1)/± sop+q SOp × SOq p+ q ≥ 3, p or q odd
4b (Sp−1 × Sq−1)/± sop+q (SOp × SOq)/± p and q even
5 Gp(Hn) su2n Spn/± n ≥ 2
6 G2(H4)/Z2 e6 Sp4/±
7 OP 2 e6 F4

8 (SU8/Sp4)/Z2 e7 SU8/Z4

9a Gp(R2n+1) su2n+1 SO2n+1

9b Gp(R2n) su2n SO2n/± n ≥ 2
10 (S1 · E6)/F4 e7 (S1 × E6)/∆Z3

11 U2n/Spn so4n U2n/± n ≥ 3
12 Un/On spn Un/± n ≥ 3

This list is taken from [2, p. 311], but rearranged according to the order
of treatment within this paper. The groups K can be found in [26, p.
324 f.] .
The notation “/±” means that x and −x are identified.

cases 1, 2 and 3 where M is a matrix Lie group. We need to know the isometry group of
a Lie group with a bi-invariant metric.

Lemma 5.1. Let G be a compact connected Lie group with a bi-invariant Riemannian
metric and with Lie algebra g = z⊕ g′ where g′ = [g, g] is simple and z is the center of g.
Further, let f be an isometry of G fixing the identity element e. Then either f or j ◦ f is
a Lie group automorphism of G, where j : G→ G, g 7→ g−1 is the inversion on G.

Proof. Let us first assume z = 0. We follow the arguments given in [16, proof of Theorem
3.3] and [19, Appendix C]. Let Io(G) be the identity component of the isometry group
of G. We have two injective group homomorphisms L,R : G → Io(G) given by L(g) =
Lg : x 7→ gx and R(g) = Rg−1 : x 7→ xg−1, and the group homomorphism G × G →
Io(G) : (g1, g2) 7→ L(g1)R(g2) is a covering map. Any automorphism φ of Io(G) either
preserves or interchanges the two subgroups L(G) and R(G). This is because the Lie
algebra decomposition io(G) = g⊕ g is unique and therefore invariant under φ∗.

In particular we consider the automorphism φ = φf which is the conjugation by the
isometry f ,

φ(α) = fαf−1
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for all α ∈ Io(G). If f happens to be the inversion, f(x) = j(x) = x−1 for any x ∈ G, then
φ reverses the two factors, that is φ(L(g)) = R(g) and φ(R(g)) = L(g):

φ(L(g))x = j(gj(x)) = (gx−1)−1 = xg−1 = R(g)x,
φ(R(g))x = j(j(x)g−1) = (x−1g−1)−1 = gx = L(g)x.

If f is arbitrary and φ interchanges R(G) and L(G), we replace f by f̃ = j ◦ f , then
φf̃ = φj ◦ φf preserves these subgroups. Thus we may assume that φ preserves L(G)
and R(G). Then φ induces automorphisms on these subgroups, φ(L(g)) = L(φ1(g)) and
φ(R(g)) = R(φ2(g)) for two automorphisms φ1, φ2 of G. Using the first of these equations
and f−1(e) = e, we obtain

φ(L(g))e = L(φ1(g))e = φ1(g),
φ(L(g))e = f(ge) = f(g).

which proves f = φ1 ∈ Aut(G).
In the general case where z is arbitrary, we note that the isometry f maps a maximal

torus onto a maximal torus. Thus it preserves the center of G which is the intersection of
all maximal tori. Hence the differential of f at e preserves the splitting g = z ⊕ g′. The
same holds for the inversion j. Since any orthogonal map on z is trivially an automorphism
of z, we obtain again that f is an automorphism of G, maybe after composition with j. �

5.2.1. Case No. 1: M = Un. The first case in Table 1 is M = Un ⊂ Cn×n. We know by
Lemma 5.1: If an isometry f of Un fixes the identity matrix I, it is an automorphism ψ of
Un, maybe after composition with the inversion. Since the inversion A 7→ A∗ extends to the
ambient space Cn×n, we may assume that f is an automorphism of Un. Any automorphism
of G = Un leaves invariant the center S1 = {zI : z ∈ C, |z| = 1} and the commutator
subgroup G′ = SUn. Thus f |S1 is an automorphism of S1. There are only two such
automorphisms, the identity z 7→ z and the conjugation z 7→ z̄.

The Dynkin diagram of the semi-simple part SUn (the “string”) allows only one non-
trivial diagram automorphism, the reflection of the string. Thus any two outer automor-
phisms differ by an inner one, and one outer automorphism is complex conjugation A 7→ Ā.
In fact, its differential is −id on the Cartan algebra of the diagonal matrices in sun; this is
not a Weyl group element, hence not inner. Thus there are two types of automorphisms of
SUn, inner ones or inner ones composed with the complex conjugation. Both types extend
canonically to Un and to the ambient space Cn×n: An inner automorphism is the identity
on the center S1, and complex conjugation on SUn extends to complex conjugation on Un.

It remains to consider the case of “mixed” automorphism which are inner on SUn and
complex conjugation on S1 (or the composition of such automorphims with complex con-
jugation on Un). If n ≥ 3, this is not possible since the inner automorphism fixes the
intersection S1 ∩ SUn but the conjugation on S1 maps z onto z̄.

On U2 however we also have the automorphism f : A 7→ A/ detA which is the identity
on SU2 and the conjugation on S1 since det f(A) = (detA)/(detA)2 = 1/ detA. Using
the inversion formula for 2 × 2-matrices A = ( a bc d ), namely A−1 = Av/ detA with Av =
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d −b
−c a

)
, we see that f extends to an orthogonal map F : X 7→ (Xv)∗ on the ambient

space C2×2, since for A ∈ U2 we have A∗ = Av/ detA = f(Av) and therefore f(A) = (Av)∗.

5.2.2. Cases No. 2 & 3: M = SOn and M = Spn. The extrinsic symmetric spaces SOn ⊂
Rn×n and Spn ⊂ Hn×n are cases 2 and 3 in Table 1. Using Lemma 5.1 again we know
that isometries of M fixing the identity matrix are group automorphisms, maybe after
composing with the inversion A 7→ A∗ which clearly extends to the ambient matrix algebra.
Since inner automorphisms also extend it suffices to look for outer automorphisms. The
group Spn has Dynkin diagram Cn which has no non-trivial diagram automorphisms, thus
Spn has no outer automorphisms. The same holds for SOn if n = 2m + 1 is odd (Dynkin
diagram Bm) while SOn for even n = 2m has classes (connected components) of outer
automorphisms corresponding to the non-trivial diagram automorphisms of Dm. For m 6= 4
there is just one non-trivial diagram automorphism, and the corresponding class consists
of conjugations with any A ∈ On with detA = −1, which clearly extend to the ambient
matrix space Rn×n.

In the case m = 4, the group of diagram automorphism is the dihedral group of the
equilateral triangle which has two generators, the reflection (which exists for any m) and
the rotation of order 3. An automorphism corresponding to such a rotation is the triality
automorphism θ on Spin8 which does not pass over to SO8, see subsection 5.4. All other
elements of this class differ from θ just by an inner automorphism, hence they are also
not defined on SO8. Thus n = 8 is no exception: the only outer automorphisms are
conjugations with elements of O8 whose determinant is−1, and these extend to the ambient
matrix space.

5.2.3. Case No. 4: M = (Sp−1 × Sq−1)/± ⊂ Rp×q. This is not a group case, but still we
can extend each isometry directly to the ambient space. The ambient space is V = Rp×q

with the embedding ±(v, w) 7→ vwT . The isometry group of Sp−1 × Sq−1 is O(p) × O(q)
when p 6= q, and if p = q, then there is another isometry, the exchange of the two factors.
All isometries descend to M , and they all extend to orthogonal maps of V : On V we have
the representation of Op × Oq by ((A,B), X) 7→ AXB−1, and the exchange of the factors
(when p = q) extends to the transposition X 7→ XT since vwT 7→ wvT = (vwT )T .

5.3. Extending automorphisms.

LetM ⊂ p be a full indecomposable compact extrinsic symmetric space with transvection
group K. Let g = k⊕p be the Cartan decomposition of the compact semi-simple Lie algebra
g explained in Section 2, and let σ be the Cartan involution of g having k as its fixed point
set. Recall that up to scaling and translation we have

M = AdK ξ = Kξ ⊂ p

with ξ ∈ p \ {0} satisfying Equation (1).
Since K is the identity component of the isometry group of M , K is invariant under

conjugation with any isometry f of M. Thus f defines an automorphism

(2) φ : K → K, k 7→ fkf−1.
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Remark 5.2. Recall that we may assume that f fixes ξ. Hence φ leaves

L := Kξ = {k ∈ K : kξ = ξ}

invariant.

Instead of extending the given isometry f of M we may as well extend the induced
automorphism φ of K. The following theorem shows that this is equivalent.

Proposition 5.3. An isometry f of M fixing ξ extends to an orthogonal map F on p if
and only if the differential φ∗ of the automorphism φ of K with φ(k) = fkf−1 extends to
an orthogonal automorphism Φ on g that commutes with the Cartan involution σ. In this
case Φ can be chosen such that F = Φ|p.

Proof. “⇒”: Let F : p→ p be an orthogonal linear map extending f ; this is unique since,
by fullness the K-orbit M does not lie in a proper linear subspace of p. We claim that F
is K-equivariant, that is:

(3) F (kx) = φ(k)F (x)

for any k ∈ K and for any x ∈ p. Clearly, if x ∈M we have F (kx) = f(kx) = fkf−1fx =
φ(k)Fx. Thus F = φ(k)Fk−1 on M , and hence φ(k)Fk−1 is another orthogonal linear
map on p which extends f . By uniqueness we have F = φ(k)Fk−1 and hence Fk = φ(k)F
on all of p.

Now we define a linear map Φ on g putting Φ = F on p and Φ = φ∗ on k. We claim that
Φ is an orthogonal Lie algebra automorphism of g. First we show that Φ is orthogonal
with respect to the bi-invariant metric on g which restricts to the given metric on p. By
irreducibility of p, there is just one AdK-invariant metric on p up to a factor, hence we
may assume that the metric on g is the negative Killing form,

〈A,B〉 = − traceg(adA ◦ adB)

for all A,B ∈ g. For A,B ∈ p, the scalar product is preserved by Φ since Φ|p = F is
orthogonal. Moreover, p ⊥ k since adA, A ∈ k preserve the decomposition g = k⊕ p while
adx, x ∈ p exchanges the two factors. Now let A,B ∈ k. Then adA ◦ adB preserves k and
p, and

(4) traceg(adA ◦ adB) = trace k(adA ◦ adB) + trace p(adA ◦ adB).

The k-part is the Killing form of k which is invariant under every automorphism of k. In
contrast, the p-part needs not to be invariant, but our automorphism Φ|k = φ∗ has a special
form: It is conjugation with an orthogonal map F ∈ O(p) which normalizes K ⊂ O(p).
Since the trace is invariant under conjugation, φ∗ preserves the p-part of (4). Hence φ∗ is
orthogonal on k and Φ orthogonal on g.

Now we show that Φ is an automorphism of g. From the equivariance (Equation (3)) we
obtain F (adB x) = adφ∗(B) Fx for all B ∈ k and x ∈ p and hence

(5) Φ[B, x] = [Φ(B),Φ(x)].
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Moreover, [x, y] ∈ k for all x, y ∈ p and hence Φ[x, y] = φ∗[x, y] while for all A ∈ k we have,
using the orthogonality of Φ and (5) with Φ(B) = A,

〈A, [Φx,Φy]〉 = 〈[A,Φx],Φy〉 = 〈Φ[Φ−1A, x],Φy〉 = 〈[Φ−1A, x], y〉 = 〈Φ−1A, [x, y]〉
= 〈A,Φ[x, y]〉 .

Thus Φ[x, y] = [Φx,Φy] which shows that Φ is a Lie algebra automorphism.

“⇐”: Let φ be the automorphism of K with φ(k) = fkf−1 as in (2). Suppose that
φ∗ : k → k extends to an orthogonal automorphism Φ of g which commutes with σ. Our
base point ξ lies in the fixed space Fξ of the group L = Kξ,

Fξ = {v ∈ p : kv = v ∀k ∈ Kξ} =
⋂
k∈Kξ

Fk

where Fk = Fix(k) = {v ∈ p : kv = v} is the fixed space of k ∈ Kξ in p. We claim

(6) Φ(Fξ) = Fξ.

We have to show Adk(Φv) = Φv for any k ∈ Kξ and v ∈ Fξ. Since K is connected, we may
write k = expA for some A ∈ k, but not necessarily A ∈ kξ. Then

(7) Φ−1 ◦ Adk ◦Φ = Adexpφ−1
∗ A = Adφ−1(k) .

Thus Φ−1 Adk Φv = Adφ−1(k) v = v for any v ∈ Fξ since k ∈ Kξ and Kξ is preserved by
φ−1. This proves claim (6).

Every k ∈ Kξ commutes with the extrinsic symmetry ρξ whose eigenspaces are the
tangent and normal spaces Tξ and Nξ of M at ξ. Thus the fixed space Fξ of Kξ is also
invariant under ρξ and therefore it decomposes as Fξ = F T

ξ ⊕ FN
ξ where F T

ξ = Fξ ∩ Tξ and

FN
ξ = Fξ ∩Nξ. For each η ∈ FN

ξ we have [η, ξ] = 0 since

〈k, [ξ, η]〉 = 〈[k, ξ], η〉 = 〈TξM, η〉 = 0.

Thus for each η ∈ FN
ξ , there is a maximal abelian subspace a ⊂ p containing both η and ξ.

Since Tξ = [k, ξ] and Nξ = [k, ξ]⊥ = {x ∈ p : 〈k, [ξ, x]〉 = 0} = {x ∈ p : [ξ, x] = 0}, we have
a ⊂ Nξ. We claim that dim(FN

ξ ∩ a) = 1 and hence η ∈ Rξ. In fact, as ξ satisfies (1), it
is a vertex of a spherical Weyl chamber in a, and hence Kξ is a “most singular” orbit (its
isotropy group L = Kξ is maximal). Or in other terms: by (1), ξ is a dual root for some
simple root system α1, . . . , αr for a, say ξ = α∗j . Let

kαi = {a ∈ k | ∃b ∈ p ∀x ∈ a : [x, a] = αi(x)b, [x, b] = −αi(x)a}
be the root space in k which corresponds to the root αi. It follows from αi(ξ) = 0 that
kαi ⊂ Kξ for all i 6= j. Thus [kαi , η] = 0 for η ∈ Fξ ∩ a and therefore αi(η) = 0. Hence η
as well as ξ belong to the one-dimensional subspace

⋂
i 6=j kerαi ⊂ a which means η ∈ Rξ.

Since η ∈ FN
ξ was arbitrary, we conclude that FN

ξ is one-dimensional, FN
ξ = Rξ.

What about the tangent part F T
ξ ? Let us consider Fξ ∩ M . Two points of M , say

kξ and ξ, have the same fixed space, Fξ = Fkξ, if and only if k ∈ N := NK(Kξ) = the
normalizer of Kξ in K, and hence Fξ ∩M = Nξ. Since Kξ is a normal subgroup of N , its
Lie algebra kξ is an ideal of n = Lie(N), and also its orthogonal complement (with respect
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to any Ad-invariant metric on k) is an ideal. Thus n splits into ideals, n = kξ⊕ n′. The full
orthogonal complement k⊥ξ ⊂ k is considered as the tangent space of M = Kξ = K/Kξ at

ξ, and n′ is the subspace corresponding to F T
ξ . In particular, F T

ξ = 0 if n′ = 0. Therefore

let us assume that n′ 6= 0. Since n′ ⊂ k⊥ξ is fixed under Ad(Kξ)o , the local holonomy group
of M , any non-zero element of n′ determines locally a parallel vector field on M . Hence
locally M splits off a one-dimensional factor which gives a global splitting for its universal
covering: M̃ = R× M̃ ′. Since K is the transvection group of M , some covering K̃ of K is
the transvection group of M̃ , and this splits off a real factor, K̃ = R× K̃ ′. Thus k = R⊕ k′.
This happens if and only if p is the Lie triple of an irreducible hermitian symmetric space
and n′ = R and F T

ξ is one-dimensional, see [11, Chapter VIII, section 6].
Thus Fξ is either one-dimensional and normal to M , or it is two dimensional and Fξ∩M

is a circle. In both cases, Fξ =
⋃
η∈M∩Fξ F

N
η . Therefore Φ(ξ) ∈ FN

η for some η ∈ M ∩ Fξ,
and hence Φ(ξ) = ±η = ±Adn ξ for some n ∈ N ′. If the sign is “+”, we put Φ̃ = Adn−1 ◦Φ,
and if the sign is “−”, we let Φ̃ = σ ◦ Adn−1 ◦Φ where σ is the Cartan involution on g. In
both cases, Φ̃ = Φ = φ∗ on k since n−1 lies in the center of K. Thus Φ̃ξ = ξ. Now we put
F = Φ̃|p. For any x ∈ p and k ∈ K,

(8) Φ̃(Adk x) = Adφ(k) Φ̃x

as in (7). Applying (8) to x = ξ we obtain

Φ̃(kξ) = Φ̃(Adk ξ) = Adφ(k) Φ̃ξ = Adφ(k) ξ = φ(k)ξ

for all k ∈ K. But also f(kξ) = fkf−1fξ = φ(k)ξ, hence Φ̃|M = f, as desired. �

We now apply Proposition 5.3 to the geodesic symmetry f = sξ of M at the point ξ.
By definition of an extrinsic symmetric space sξ extends to the ambient vector space p. In
this case the corresponding automorphism

τ : K → K, k 7→ sξksξ

of K, is called Cartan involution for the symmetric space M.

Corollary 5.4. Let sξ be the geodesic symmetry of M at ξ and τ ∈ Aut(K) the conjugation
with the symmetry. Then τ∗ extends to an orthogonal automorphism of g.

Corollary 5.5. Let M = Kξ ⊂ V be a non-hermitean indecomposable extrinsic symmetric
space and L = Kξ its isotropy group. Assume that one of the following conditions holds:

(i) K has no outer automorphism.
(ii) L has no outer automorphism and the isotropy representation of M = K/L is irre-

ducible.

Then every isometry f of M extends to an orthogonal map of V .

Proof. Let f be an isometry of M . As before, we may assume that f fixes ξ. Therefore the
automorphism φ of K given by the conjugation with f preserves L, that is φ(L) = L.

(i): If K has no outer automorphism, then φ∗ is inner automorphism of k which clearly
extends to an inner automorphism of g, thus we are done by Proposition 5.3.
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(ii): If L has no outer automorphism, then φ|L is inner. Thus there is an inner automor-

phism φ̃ of K by conjugation with an element of L such that φ̃ = φ on L. Hence ψ = φ̃φ−1

is an automorphism of K fixing every point in L. Let k = m⊕ l be the Cartan decomposi-
tion corresponding to M = K/L. Then ψ∗ commutes with the isotropy representation of
L on m. Since this representation is irreducible and not complex, Schur’s lemma implies
ψ∗ = ±I on m. Thus either φ or τ ◦ φ are inner, where τ is the Cartan involution on K
corresponding to M . In both cases, φ∗ extends to g (where we use Corollary 5.4 in the
second case), and we are done by Proposition 5.3. �

Outer automorphisms of a simply connected compact semi-simple Lie group correspond
to automorphisms of its Dynkin diagram; more precisely, every non-trivial diagram auto-
morphism corresponds to a class of outer automorphisms modulo composition with inner
automorphisms and vice versa (see e.g. [18, Proposition 3.4, p. 128]). For each outer
automorphism τ of the universal covering K̃ of K we will ask the following questions:

(1) Does τ descend to an automorphism of K?
(2) If yes, does τ keep L invariant?
(3) If yes, does τ∗ extend to a Lie algebra automorphism of g?

The answer to (1) is the same for every automorphism in the same class. An automorphism
for which the first three questions are answered affirmatively is called admissible. We must
show that (3) is answered affirmatively for any admissible automorphism τ of K̃.

5.3.1. Cases No. 5 – 8. By K̃ and L̃ we denote the universal covers of K and L. If they
do not admit outer automorphisms, the same holds for K and L. As the Dynkin diagrams
of type Cn and F4 do not allow for diagram automorphisms we get:

Case No. 5: K̃ = Spn has no outer automorphism.

Case No. 6: K̃ = Sp4 has no outer automorphism.

Case No. 7: K̃ = F4 has no outer automorphism.

Case No. 8: L̃ = Sp4 has no outer automorphism and the isotropy representa-
tion of K/L is irreducible.

We are done by Corollary 5.5.

5.3.2. Case No. 9: M = Gp(Rn). In this case M = SOn/S(Op × Oq) with p + q = n;
this is the Grassmannian Gp(Rn) of p-planes in Rn, embedded in the space of symmetric

matrices. If n = 2m+ 1 is odd, the Dynkin diagram of K̃ = Spinn is of type Bm and has
no non-trivial automorphisms. Thus all automorphisms of K are inner for n odd.

If n = 2m is even, then K = SO2m/± = Spin2m/Z where Z denotes the center of
Spin2m. Thus all automorphisms of Spin2m descend to K. The Dynkin diagram is of type
Dm, and there is always a non-trivial diagram automorphism, the reflection ρ exchanging
the two ends of the bifurcation of Dm.
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Conjugation with a hyperplane reflection on R2m is an outer automorphism (see Lemma
5.6 below) of order 2 on SO2m and hence on SO2m/±. This conjugation clearly extends to
the group G = SU2m/± that has Lie algebra su2m. For m 6= 4 we are done since there are
no other diagram automorphisms of Dm.

It remains to consider the case m = 4, n = 8. The automorphism group of the Dynkin
diagram D4 is the dihedral group S3 of the equilateral triangle, which is generated by the
reflection ρ and a rotation of the three branches of D4. A rotation corresponds to the
triality automorphism θ of Spin8 and SO8/±. In Lemma 5.7, see the next section 5.4, we
show that no automorphism in the class of θ preserves L = S(Op × O8−p)/±. Thus the
only admissible outer automorphism are in the class of ρ. Hence the case m = 4 is not
special. This finishes case 9.

Lemma 5.6. Let A ∈ On with detA = −1 and let α(X) = AXA−1 for any X ∈ SOn.
Then α is an inner (outer) automorphism of SOn if n is odd (even).

Proof. Suppose that α is inner. Then there is some B ∈ SOn with AXA−1 = BXB−1

for all X ∈ SOn, and C := B−1A commutes with every X ∈ SOn. Since SOn ⊂ Cn×n is
an irreducible complex representation, we have C = ±I by Schur’s lemma (any complex
eigenspace of C is SOn-invariant, hence the real matrix C has only one eigenvalue). Thus
B = ±A, but detB = 1 and detA = −1 which holds if and only if B = −A and n is
odd. �

5.4. The triality automorphism.
This section is self-contained. For references and further details see e.g. [1, 10, 15].

Recall that the Clifford algebra Cl8 is the algebra of all real 16× 16 matrices

Cl8 = R16×16 =
{

( A B
C D ) | A,B,C,D ∈ R8×8

}
.

We have Cl8 = Cl+8 ⊕Cl−8 where the “even” and the “odd” parts Cl±8 consist of the block
diagonal and block anti-diagonal matrices ( A D ) and ( B

C ), respectively. The vector space
R8 = O is embedded into Cl−8 as

Ô =

{
x̂ :=

(
−Lx̄

Lx

)
: x ∈ O

}
where O = R8 is the normed division algebra of the octonions and Lx ∈ R8×8 the left
multiplication with any x ∈ O. Note that

x̂ŷ =

(
−Lx̄Ly

−LxLȳ

)
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which implies the Clifford relation x̂ŷ + ŷx̂ = −2〈x, y〉 I16, using the octonionic relations

Lx̄Ly + LȳLx = 2〈x, y〉 I8

which arise from polarizing Lx̄Lx = 〈x, x〉 I8.
The group Pin8 is the subgroup of the multiplicative group of Cl8 generated by the

subset Ŝ7 = {v̂ : v ∈ S7} ⊂ Cl8. Conjugation with v̂ preserves Ô; in fact, up to sign it is
the reflection Sv at the hyperplane v⊥ since

v̂x̂v̂ =

{
−v̂2x̂ = x̂ if x ⊥ v ,
v̂2x̂ = −x̂ if x ∈ Rv

}
= Ŝvx .

The group Spin8 is the subgroup generated by the set of matrices

(9)
{
v̂ŵ = ( A B ) : A = −Lv̄Lw, B = −LvLw̄, v, w ∈ S7

}
⊂ Cl+8 .

Conjugation with v̂ŵ = ( A B ) preserves Ô and corresponds to a rotation C ∈ SO8,

( A B ) x̂
(
At

Bt

)
= Ĉx

or equivalently

(10) BLx = LCxA.

In particular, for the generators (9) of Spin8 we have

(11) A = −Lv̄Lw, B = −LvLw̄ ⇒ C = SvSw.

Applying both sides of (10) to any y ∈ O, we obtain for all x, y ∈ O
(12) B(xy) = (Cx)(Ay) .

This property (12) of the octonions is known as triality principle. Let

H =
{

(A,B,C) ∈ SO8 × SO8 × SO8 : B(xy)
(12)
= (Cx)(Ay) ∀x, y ∈ O

}
.

This is a subgroup of SO8 × SO8 × SO8: If (A,B,C), (A′, B′, C ′) ∈ H, then

B′B(xy)
(12)
= B′((Cx)(Ay))

(12)′

= (C ′Cx)(A′Ay),

hence (AA′, BB′, CC ′) ∈ H. Further,

B−1(xy) = B−1
(
CC−1x)(AA−1y

) (12)
= (C−1x)(A−1y),

thus (A−1, B−1, C−1) ∈ H.
By (12), the homomorphism π12 : (A,B,C) 7→ (A,B) takes values in Spin8 ⊂ SO8×SO8.

In fact, π12 : H → Spin8 is an isomorphism: It is injective since (A,B) determines C by
(12). Further, applying (12) in the cases x = 1 ∈ O or y = 1 and putting a = A(1) and
c = C(1) we see B = LcA and B = RaC where L and R denote left and right multiplication
in O. Consequently, LcA = RaC and hence C = R−1

a LcA. Consider the homomorphism
π3 : H → SO8, (A,B,C) 7→ C. We claim that ker π3 = {(I, I, I), (−I,−I, I)}. In fact,

when C = I, then c = 1 and A = B = Ra, thus (xy)a
(12)
= x(ya) for all x, y ∈ O. This

associativity holds only for a ∈ R, and since |a| = 1 we obtain a = ±1. Consequently,
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π12(H) ⊂ Spin8 is a 2-fold cover of SO8 which proves π12(H) = Spin8. Therefore we will
no longer distinguish between H and Spin8. The map

(13) π3 : H = Spin8 → SO8 : (A,B,C) 7→ C

is the so called vector representation of Spin8.
The triality automorphism θ on Spin8 is essentially the cyclic permutation of triples

(A,B,C) ∈ Spin8. More precisely: assuming |x| = |y| = 1 and putting z = xy, we have

(Cx)(Ay) = Bz ⇐⇒ (Ay)(Cx) = Bz ⇐⇒ Cx = (Ay)(Bz).

Now Cx = C̃x̄ with C̃ = κCκ, where κx = x̄ is the octonionic conjugation, κ =
( −1

I7

)
.

Thus (12) holds if and only if C̃x̄ = (Ay)(B̃z̄), and since yz̄ = x̄ when z, x have unit length,
we have (B̃, C̃, A) ∈ Spin8. The map

θ : (A,B,C) 7→ (B̃, C̃, A)

is the triality automorphism of Spin8. It has order 3 since its iterations are

(A,B,C) 7→ (B̃, C̃, A) 7→ (C, Ã, B̃) 7→ (A,B,C).

This automorphism of Spin8 descends to an automorphism of Spin8/center = SO8/±,
called θ again, and using (13) and (11) we obtain

(14) θ : ±C 7→ ±A , ±SvSw 7→ ±Lv̄Lw .

But θ does not descend to SO8 since changing w to −w does not change C while it does
change the sign of A. Thus θ cannot be an inner automorphism. Since it has order 3, it
must lie in the class of a diagram automorphisms of order 3 for the Dynkin diagram D4.

Lemma 5.7. The subgroup L = S(Op × O8−p)/± of K = SO8/± is not invariant under
the automorphism γθ for any inner automorphism γ of K.

Proof. We proceed by contradiction. Suppose that L is invariant under γθ for some inner
automorphism γ(X) = g−1Xg, X ∈ SO8. We have L = {±k ∈ K : k(Rp) = Rp}. From
γθL = L we obtain θL = gLg−1 = {±k ∈ K : k(gRp) = gRp}. Thus all elements of θ(L)
leave the subspace gRp ⊂ R8 invariant. But L contains the elements Se1Sei for i = 2, . . . , 8
which are mapped by θ onto Le1Lei = Lei using (14) (recall that e1 = 1 ∈ O). Thus the
subspace V = gRp ⊂ O must be invariant under all Lei , hence V is invariant under left
multiplications with all octonions. But any non-zero subspace V ⊂ O with this property
is the full division algebra O: Left multiplication of any non-zero v ∈ V with v−1 gives 1,
hence 1 ∈ V , and then x = Lx1 ∈ V for any x ∈ O. �

Remark 5.8. Note that in the case p = 4, the identity component of L is preserved
by θ: In fact, this is L+ := (SO4 × SO4)/±, which is generated by ±SvSw with either
v, w ∈ R4 = H (the standard quaternion subalgebra in O) or v, w ∈ H⊥. In both cases,
±Lv̄Lw also preserves H and thus belongs to L+. Thus θ(L+) = L+ which shows that
θ induces an isometry on the Grassmannian of oriented 4-planes G+

4 (R8). But only the
Grassmannian G4(R8) of non-oriented 4-planes is extrinsic symmetric, not G+

4 (R8).
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5.5. Cases with local S1-factor.

It remains to consider cases No. 10, 11 and 12 with K = K ′ · S1 = (K ′ × S1)/Γ, where
the Lie algebra k′ of K ′ is simple and L ⊂ K ′. Both K ′ and S1 can be considered as
transformation groups on p, where S1 = {λI : λ ∈ C, |λ| = 1} and Γ = K ′ ∩ S1. Then
S1 ⊂ K is the center of K. Thus any automorphism φ of K preserves the subgroups S1

and K ′; observe that k′ = [k, k] is invariant under φ∗. Let α and β be the automorphisms
on K ′ and S1 induced by φ. There are only two possibilities for β, the identity β(λ) = λ or
the complex conjugation β(λ) = λ̄. The possibilities for α are obtained from the Dynkin
diagrams of k′ and l. But we also need to have α = β on Γ = K ′∩S1. In all but one case, φ
is inner or the Cartan involution τ for M = K/L, and then φ∗ extends to an automorphism
of the larger Lie algebra g, using Corollary 5.4. This finishes the proof using Proposition
5.3.

5.5.1. Case No. 10: K = (E6 × S1)/Z3, L = Sp4. Since the Dynkin diagram C4 of Sp4

has no non-trivial diagram automorphism, any automorphism α of K ′ = E6 preserving
L is inner on L. After composing α with an inner automorphism if necessary, we may
assume α|L = id, and hence α∗ commutes with AdL . Since the isotropy representation of
K ′/L is irreducible, we have by Schur’s Lemma (see the proof of Corollary 5.5) α∗ = id or
α∗ is the Cartan involution τ ′ for K ′/L. If β(λ) = λ̄, the two non-trivial center elements
are interchanged, thus α = τ ′, and (α, β) is the Cartan involution τ for M = K/L. This
extends to g by Corollary 5.4. If β(λ) = λ, we need to have α inner, and this automorphism
extends, too.

5.5.2. Case No. 11: K = U2n/±, L = Spn/±, n ≥ 3. Again the Dynkin diagram Cn does
not allow for any non-trivial diagram automorphism. Thus we may assume α|L = id, and
as before we conclude α ∈ {id, τ ′} where τ ′ is the Cartan involution for K ′/L = SU2n/Spn.

We have U2n/± = (SU2n × S1)/Γ̂ where Γ̂ = {(ζI,±ζ) : ζ2n = 1}. Let us assume α = id
and β(λ) = λ̄. Then we need to have ζ = ±ζ̄ for all ζ with ζ2n = 1, but this is true only
for n = 2 which was excluded.∗ In all other cases this is impossible. The only remaining
possibilities for φ are either the identity or the Cartan involution τ for K/L. Thus φ∗
extends to g, cf. Corollary 5.4.

5.5.3. Case No. 12: K = Un/±, L = On/±, n ≥ 3. As in the previous case, the only
automorphisms of SUn×S1 which descend to Un/± are inner automorphisms and the Car-
tan involution τ for K/L, unless n 6= 4. But on U4/± there is yet another automorphims:

φ(±A) = ±A/
√

detA. In fact, φ = id on SU4 and det(φ(A)) = det(A)/
√

det(A)4 =
1/ detA, hence φ(λ) = λ̄ for λ ∈ S1. But φ is not admissible: it fixes the identity component
L+ = SO4/± of L = O4/±, but the other component L− = {±A : A ∈ O4, detA = −1} is

not mapped to L as
√

detA is no longer real. Likewise, γφ cannot preserve L for any inner

∗In the case n = 2 we have K ′/L = (SU4/±)/(Sp2/±) = SO6/SO5 = S5, and K/L = (S5× S1)/±; this
belongs to case 4, see Section 5.2.3.
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automorphism γ(x) = gxg−1 on U4: Otherwise, γ would preserve L+, but any conjugation
in U4 preserving L+ would also preserve L while φ does not preserve L, a contradiction.

This finishes the proof of theorems 1.1 and 2.1.
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